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Preface 

The fluid flows can be basically described at three levels: macroscopic, 

mesoscopic and microscopic. In the macroscopic level, the physical 

conservation laws of mass, momentum and energy are applied to a 

control volume to establish a set of partial differential equations (mass, 

momentum and energy equations) for governing the fluid flow. The 

conventional computational fluid dynamics (CFD) is to solve these 

governing equations by using various numerical methods. In contrast, the 

lattice Boltzmann method (LBM), developed about two decades ago, is 

an approach at mesoscopic level. LBM studies the microdynamics of 

fictitious particles by using simplified kinetic models. It provides an 

alternative way for simulating fluid flows. The kinetic nature brings 

many distinctive features to LBM such as the clear picture of streaming 

and collision processes of simulated fluid particles, the simple algorithm 

structure, the easy implementation of boundary conditions, and the 

natural parallelism. These appealing features make LBM a powerful 

numerical tool for simulating fluid systems involving complex physics. 

The past two decades have witnessed the rapid development of LBM 

in fundamental theories, basic models, and wide applications. Indeed, the 

method has gained much success in modelling and simulating various 

complicated flows. Several books have been published to address the 

need of students and researchers in the study, development and 

applications of LBM. The present book has the following unique features 

to distinguish it from previous ones. At first, this book is comprehensive 

in scope. It presents a systemic and self-contained description of  

LBM, including the basic idea, model construction, algorithm and 

implementation, and various applications. Secondly, it covers the state-

of-the-art development and applications of LBM, and some areas in this 
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book such as treatments of body force, acceleration techniques, 

initialization methods, and applications in micro flows and moving 

boundary flows, have not been addressed in the previous books. Thirdly, 

through some sample examples, the book provides step by step 

implementation of algorithms, treatments of boundary conditions and 

computer codes. It is believed that this part of work is useful to the 

graduate students and beginners in the area.  

The authors of this book, Drs Zhaoli GUO and Chang SHU, have 

been working on the development and applications of LBM for more 

than 12 years. They gained much experience from their research in this 

area. Indeed, many parts of the book are from their research work. For 

this book, Guo contributed Chapters 1-5, 7, 8 and most parts of Chapter 9, 

and Shu contributed Chapter 6, the section of Taylor series expansion 

and least square-based LBM as well as the stencil adaptive LBM in 

Chapter 3, and the section of immersed boundary-lattice Boltzmann 

method in Chapter 9.  

This book is written for different levels of readers. For students and 

beginners, the book is easy to understand and follow. The detailed 

description of algorithms and implementation of initial/boundary 

conditions as well as sample applications will give a great help to them. 

The book will also attract experts in the LBM community. The detailed 

presentation of physical origins, mathematical derivations and theoretical 

analysis of various LB models provides useful information for 

researchers in the area. Furthermore, the comprehensive references 

enable the reader to find more sources if further information is needed. 

Finally, the authors would like to thank their research assistants for 

preparing some of the materials to write this book. Guo also expresses 

his acknowledgement for the finical supports from the National Natural 

Science Foundation of China (51125024) and the National Basic 

Research Programme of China (2011CB707300).  
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1 

Chapter 1 

Introduction 

1.1   Description of Fluid System at Different Scales 

Fluids, such as air and water, are frequently met in our daily life. 

Physically, all fluids are composed of a large set of atoms or molecules 

that collide with one another and move randomly. Interactions among 

molecules in a fluid are usually much weaker than those in a solid, and a 

fluid can deform continuously under a small applied shear stress. Usually, 

the microscopic dynamics of the fluid molecules is very complicated and 

demonstrates strong inhomogeneity and fluctuations. On the other hand, 

the macroscopic dynamics of the fluid, which is the average result of the 

motion of molecules, is homogeneous and continuous. Therefore, it is 

can be expected that mathematical models for fluid dynamics will be 

strongly dependent on the length and time scales at which the fluid is 

observed. Generally, the motion of a fluid can be described by three 

types of mathematical models according to the observed scales, i.e. 

microscopic models at molecular scale, kinetic theories at mesoscopic 

scale, and continuum models at macroscopic scale.  

1.1.1   Microscopic description: molecular dynamics 

In microscopic models, the motion of each molecule is tracked so that its 

position and momentum can be obtained. The collective dynamics of the 

whole fluid system can then be computed through some statistical 

methods. Usually, the molecular dynamics of the fluid is described by 

Newton’s second law,  

 � �� ���� � , (1.1)  
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where m is the mass of the fluid molecule, ���is the position vector of the 

molecule i, the dots represent time derivatives, and �� is the total force 

experienced by the molecule, which usually includes two parts,  

 
��

�

� �� �

� � �� �

� ��� � � , (1.2) 

where ��� is the force exerted by molecule �, � is the number of molecules 

in the system, and �� is the external force such as gravity. The inter-

molecular force can be expressed in terms of an interaction potential ����,  

 �� ���� ���� ��� � , (1.3) 

where rij is the displacement between molecules i and j. In microscopic 

models, the inter-molecular potential plays a vital role. A widely used 

model is the Lennard-Jones 12-6 potential, 

 

�� �

� � 	�
� �

� �
� �

� �	 
 	 
� � � ��  � � �� � � � � � � �� �� �

, (1.4) 

where � characterizes the interaction strength and � represents the 

interaction range. 

By solving Eq. (1.1) we can obtain the position and velocity of each 

molecule at every time, and then the macroscopic variables of the fluid, 

such as density, velocity, and temperature, can be measured from the 

microscopic information: � �� � �. Here � is a macroscopic quantity and 

a is the corresponding microscopic quantity; the symbol ���  represents 

the ensemble average of a microscopic variable. The transport 

coefficients of the fluid (viscosity, thermal conductivity, diffusivity, etc.) 

can also be measured according to the linear response theory, which 

indicates that each transport coefficient can be obtained through the 

Einstein expression or the Green-Kubo relation [Rapaport, 2004].  

An alternative description of the fluid is to consider the Hamiltonian 

of the �-body system � �� � � ��� � � , where � � �� �  are the generalized 

coordinates that constitute the phase space of the system, i.e. �������������

…������are the 
� spatial coordinates of the � molecules, and �������������

…����� are the 
� conjugate momenta. � is the total energy of the system 

including the kinetic energy and the potential energy due to molecular 
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interactions. In terms of the Hamiltonian of the system, the motion of the 

fluid molecules can be expressed as  

 
� �

�� �

� �

� �
� � �

� �
� �� �

� �
,   ���������…���.              (1.5) 

In either the Newtonian formulation (1.1) or the Hamiltonian 

formulation (1.5), the numbers of unknowns are very large (��). Even 

for a small volume of fluid in practice, the number of molecules is so 

large (���
) that it is impractical to describe the whole system with a 

molecular model. Actually, even with the most advanced computer 

resources, molecular dynamics method is still limited to sub-micrometer 

systems.  

1.1.2   Mesoscopic description: kinetic theory 

A coarser description of the N-body fluid system is to make use of the 

concept of probability distribution function (pdf) � � � ��	 �� � in the phase 

space, which determines the probability �	 
 
� � that the state of the 

system falls in the infinitesimal volume � � � � � �
 
� � �� � � � � � in the �� 

dimensional phase space. From 	N , all of the statistical properties of the 

molecular dynamics can be extracted. The evolution of 	N follows the 

Liouville equation [Harris, 1971], 

 
�


�

� � � �
� �

� � �


	 	 	 	


� � �

� �� � �� �� � � � � �� �� � �� �
� � �� �

� �
, (1.6) 

or 

 
� �

�


�

� � �

� � � � �

	 	 	

� �

� �� � � � �� �� � �� �� � � � �� �
�

� � � �
. (1.7) 

From 	N, we can define some reduced distribution functions,  

� � � � � �� � � � � � � � � � � �� � � � � � � � � �� 	 
 
 
 
� �� �� � �� � � � � � � � � � � � , (1.8) 

which is termed as the s-particle probability distribution function. We 

can derive a chain of evolution equations for �� (1 ≤ � ≤ N) from the 

Liouville equation, which is usually called as the BBGKY (Bogoliubov–

Born–Green–Kirkwood–Yvon) hierarchy. This hierarchy is identical to 
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the original Liouville equation completely. In this chain, the first 

equation for the single-particle pdf contains the two-particle pdf, the 

second equation for the two-particle pdf contains the three-particle pdf, 

and generally the �-th equation for the �-particle pdf contains � ��� � -th 

pdf. Therefore, the BBGKY hierarchy is fully coupled, and the 

difficulties of solving it are the same as solving the Liouville equations. 

However, under some assumptions, the BBGKY hierarchy can be 

truncated at certain orders so that a smaller set of equations can be 

obtained to approximate the original chain. Actually, this approach has 

served as a common strategy for developing kinetic equations in many 

applications of kinetic theory. Particularly, the approximation equation 

truncated at the first order leads to the well known Boltzmann equation 

for the velocity distribution function 	, which is defined as  

 � � � �� � � � � � � �	 � ��� ��� � � , (1.9) 

where we have changed the notations from phase space to physical space: 

�	���� is the position of a particle and ���� �� is its velocity. The 

Boltzmann equation, which plays the central role in kinetic theory of 

gases, describes the transportation of 	: 

 � � � �
	

	 	 	
�

�
� � � � �

�
, (1.10) 

where �  represents the rate of change in 	 due to binary molecular 

collisions. When the velocity distribution function is obtained, the fluid 

density � , velocity 
, and internal energy � can be determined from its 

moments: 

 � � � �
�

�
� � � � � �	 
 	 
 � � 	 
� � �� � �� � �
 � , (1.11) 

where C is the magnitude of the particular velocity � �� 
�  (In this 

book, the magnitude of a vector � will be always denoted by �). The 

pressure tensor and heat flux, can also be determined from 	 : 

 � � � �
�

�
� � � � � � � � ��	 � 
 	 � 
� �� � �� � � � � . (1.12) 

The evolution equations for the fluid density, velocity, and energy can be 

derived from the Boltzmann equation under some assumptions. 
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The collision operator �  in the Boltzmann equation (1.10) is a bi-

linear integral function of f, and conserves mass, momentum, and energy: 

 � � �� � � � � � � 	 � 
� �� � , (1.13) 

where � ��� � � ��� �  (or �� ) are called summational or collisional 

invariants. From the Boltzmann equation, it can be shown that the  

H-function, defined by �� � ��� � 	 	 
 
� � � , will always decrease with 

time (H-theorem), i.e.,  

 

�


�
� . (1.14) 

The equality holds only and if only the system reaches its equilibrium 

state, whence the distribution function is a Maxwellian one, 

 
�

�
�

� �


��

� �
� � � � ���

�� � �
��	 �

�� ��

�

�

� ��� �� �� �� �



�  ,  (1.15) 

where ��� � �� is the gas constant with �� the Boltzmann constant and 

� the molecular mass. At equilibrium, the collision does not take net 

effects, i.e., � � � �� � � �� ��	 	� � . With this knowledge, the collision operator 

can be approximated with some simplified models [Harris, 1971], among 

which the BGK (Bhatnagar-Gross-Krook) model [Bhatnagar et al., 1954] 

is the most popular one, 

 � ��
��

���

�

	 	
�

� �� � � �� � , (1.16) 

where ��  is the relaxation time. This model reflects the overall effect of 

intermolecular collisions, i.e., the distribution function relaxes to the 

equilibrium state with collisions. It can be easily verified that the BGK 

collision model conserves mass, momentum, and energy, and satisfies 

the H-theorem. However, because only one relaxation time is used to 

characterize the collision effects, this model also suffers from some 

limitations. For example, the Prandtl number (Pr), which reflects the 

difference between momentum exchange and energy exchange during 

the collision process, is fixed at 1 in the BGK model, while the  

full Boltzmann collision operator gives ��� �� ��
. Some modified  

models have been proposed to overcome this problem, such as the 
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Ellipsoidal Statistical BGK model [Holway, 1966] and the Shakhov 

model [1968].  

1.1.3   Macroscopic description: hydrodynamic equations 

At macroscopic scale, a fluid is treated as a continuum regardless of  

its molecular structure and interaction; the fluid is assumed to be 

continuously distributed throughout the domain of interest, having its 

own properties such as density, velocity, and temperature. The molecular 

properties are reflected by the transport coefficients of the fluid such as 

the viscosity and thermal conductivity. A good criterion to determine if a 

continuum model is acceptable is to check whether the Knudsen number 

�� of the fluid system, which is defined as the ratio of mean-free-path of 

molecules (	 ) to the characteristic length (�) of the flow region, is 

sufficiently small. The mean free path is the average distance of the fluid 

molecules between two successive collisions. For an ideal gas composed 

of hard-sphere molecules, it can be expressed as � �� � ��
	 � �� , where 

� is the number density of the molecules and 
 is the diameter of the gas 

molecule. The characteristic length is usually taken as the size of the 

flow domain or objects in the flow, such as the diameter of an object in 

the flow. In some cases, it is more suitable to define � based on the scale 

at which a flow variable changes, e.g. �� �� � �� � . 

In continuum theory, the motion of fluid is described by a set of 

partial differential equations (PDEs), which actually describes the 

conservation laws of the fluid [Batchelor, 1967]: 

 � � 
�

�
�

�
� � � �

�

 , (1.17) 

 
� �

� � �
�

�
�

�
� � � � �� � � �

�
�





 , (1.18) 

 
� �

� � �
�

� �
�

�
�

�
� � � � �� � � � � � �

�
�
 � 
 
 , (1.19) 

where � is the pressure, � is the deviatoric stress tensor, and � is the heat 

flux. This set of equations are not closed because the variables �, �, and � 

are yet unknown. The pressure can be modeled by an equation of state, 
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i.e. ������, while the deviatoric stress tensor can be modeled by a  

stress-strain constitution equation, 

 
�

�
� � � � � �




 
 
 
 


	 
�� �� � � � � � �  � �� � � �
� � 
 � � 
 � ,  (1.20) 

where 
 and 
�  are the first and second dynamic viscosities, �� is the 

second-order unit tensor, and � is the strain-rate tensor defined by 

� � � � � ��� � � �� 
 
 . Here, a tensor with a notation “ ° ” denotes the 

traceless part of the original tensor. The coefficient � �
� 
 
�� �  is 

also called bulk viscosity in some textbooks, which is usually assumed to 

be zero (Stokes’ hypothesis). The heat flux in Eq. (1.19) is usually 

related to the temperature gradient following Fourier’s law,  

 �� � �� � ,                              (1.21) 

where � is the thermal conductivity. The set of equations (1.17)-(1.19) 

with the constitution relations (1.20) and (1.21) are the widely used 

Navier-Stokes-Fourier equations, which are also called Navier-Stokes 

equations sometimes. This set of equations can be simplified in some 

special cases. If the viscosity and thermal conductivity are neglected, the 

Navier-Stokes equations then reduce to the Euler equations; If the fluid 

density does not change with motion, i.e.,  

 




� �

� �
�

�
� � � � �

�

 , (1.22) 

the fluid is said to be incompressible, and the continuity equation (1.17) 

becomes � � �
 , and the stress tensor can be simplified as �
�� � . 

The compressibility of a fluid can be characterized by the Mach number 

of the flow, � �� � �� , where � is the characteristic velocity of the flow 

and ��� is the sound speed. Usually, the fluid flow can be regarded as 

incompressible when ����
. 

Although the conservation equations are developed phenomeno-

logicallly, it is shown that they can also be derived from the Boltzmann 

equation. Actually, by multiplying the Boltzmann equation (1.10) by the 

collisional invariants ��  and integrating over the molecular velocity 

space, one can get Eqs. (1.17) ~ (1.19) after identifying that �� � � � . 
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The stress tensor � and the heat flux � can be approximated via some 

asymptotic methods (e.g., Hilbert or Chapman-Enskog expansions).  

In most of practical problems, the continuum model works very well. 

However, with the increasing interests in nano/micro and multi-scale 

problems, the continuum model becomes inadequate due to the relative 

large Knudsen number of the system. In viewing that the Navier-Stokes 

equations can be derived from the Boltzmann equation, some extended 

hydrodynamic models beyond the Navier-Stokes model have been 

developed from the Boltzmann equation from different viewpoints, such 

as the Burnett equations, super-Burnett equations, Grad’s 13-moment 

equations (see a recent comparison of these hydrodynamic models by 

Lockerby et al. [2005]). 

1.2   Numerical Methods for Fluid Flows 

The mathematical models for fluid flows, either the Newtonian equation 

for the vast number of molecules, or the Boltzmann equation for the 

singlet distribution function, or the Navier-Stokes equations for the 

macroscopic flow variables, are all extremely difficult to solve 

analytically, if not impossible. Accurate numerical methods, however, 

have been proven to be able to provide satisfying approximate solutions 

to these equations. Particularly, with the rapid development of computer 

hardware and software technology, numerical simulation has become an 

important methodology for fluid dynamics.  

The most successfully and popular fluid simulation method is the 

Computational Fluid Dynamics (CFD) technique, which is mainly 

designed to solve the hydrodynamic equations based on the continuum 

assumption. In CFD, the flow domain is decomposed into a set of sub-

domains with a computational mesh, and the mathematical equations are 

discretized using some numerical schemes such as finite-volume, finite-

element, or finite-difference methods, which results in an algebraic 

system of equations for the discrete flow variables associated with the 

computational mesh. Computation can then be carried out to find the 

approximate solutions on a computer by solving the algebraic system 

using some sequential or parallel algorithms. CFD has developed into a 
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branch of fluid mechanics since 1960s, and many textbooks on different 

topics in this field are available [e.g., Anderson, 1995; Ferzige and  

Peric, 2002; Patankar, 1980]. There are also many free and commercial 

softwares for both fundamental researches and practical engineering 

applications.  

With the increasing interests in micro and nano scale science and 

technology, molecular dynamic simulation (MDS) techniques have also 

received much attention in modern fluid mechanics. In MDS, the 

movements of individual atoms or molecules of the fluid are recorded by 

solving the Newtonian equations on a computer. The main advantage of 

MDS is that macroscopic collective behaviors of the fluid can be directly 

connected with the molecular behaviors, in which the molecular structure 

and microscopic interactions can be described in a straightforward 

manner. Therefore, MDS is very helpful for understanding the 

fundamental microscopic mechanism of macroscopic fluid phenomena. 

However, due to the vast number of atoms of the fluid, the computational 

cost of MDS is rather expensive and this disadvantage limits it to 

systems with a temporal scale of picoseconds and spatial scale of 

nanometers. 

Besides the macroscopic CFD and microscopic MDS methods, 

another kind of numerical methods for fluid system is developed based 

on mesoscopic models. Basically, mesoscopic methods can be classed 

into two types. The first type is to solve the kinetic equations (e.g., the 

Boltzmann equation) with some numerical schemes. Such methods 

include the finite difference discretization of the linearized Boltzmann 

equation [Kanki and Iuchi, 1973], the elementary method [Cercignani, 

1988], the discrete velocity or discrete ordinate methods [Aristov, 2001; 

Sone et al., 1989], the finite difference Monte Carlo method [Cheremisin, 

1991], gas kinetic scheme [Xu, 1993], and lattice Boltzmann equation 

(LBE) method [Benzi et al., 1992]. Another type of mesoscopic method 

is to construct numerical models to simulate the physical process of some 

virtual fluid particles directly. The most well-known method of such type 

is the Direct Simulation Monte Carlo (DSMC) method [Bird, 1994], and 

other methods of this type include the lattice gas automata (LGA) 

method [Rothman and Zaleski, 1997] and the dissipative particle 

dynamics (DPD) method [Hoogerbrugge and Koelman, 1992].  
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Because the underlying mathematical models have different physical 

bases, the numerical methods also have their own application ranges. 

CFD is very successful in continuum flows, and MDS is most suitable 

for nanoscale flows. With the increasing interests in multiscale flows, the 

mesoscopic method has received particular attentions in recent years, 

among which the lattice Boltzmann equation (LBE) method, or lattice 

Boltzmann method), is perhaps the most active topic in this field due to 

some distinctive features. In addition to a large amount of journal papers 

in different research fields, LBE is also a hot topic in many international 

conferences on fluid dynamics, and some courses on this topic have been 

set up in some universities. In the rest part of this book, we will give a 

systemic introduction of this method. 

1.3   History of LBE 

Historically, the LBE evolved from the LGA method, which is an 

artificial microscopic model for gases, and later it was shown that LBE 

could also be derived from the Boltzmann equation following some 

standard discretization. From the first viewpoint, LBE can be regarded as 

a fluid model, while the second viewpoint indicates that LBE is just a 

special numerical scheme for the Boltzmann equation. Despite of this 

conceptual difference, either approach demonstrates that LBE is a 

method which is quite different from the traditional CFD algorithms.  

1.3.1   Lattice gas automata 

LGA is the precursor of LBE, which aims to simulate fluid flows with 

simple fluid models. In LGA, the fluid is treated as a set of simulated 

particles residing on a regular lattice with certain symmetry properties, 

where they collide and stream following some prescribed rules that 

satisfy some necessary physical laws. The philosophy behind LGA is 

that fluid behaviors at macroscale are nothing but statistical collective 

results of the micro-dynamics of fluid molecules, and are insensitive to 

the detailed information of the individual molecules. In other words, 

fluids with different micro structures and interactions may have the  
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same macroscopic phenomena. Therefore, it is possible to simulate 

macroscopic flows with a fictitious micro fluid model which has simple 

micro-dynamics but satisfies some necessary physical laws. LGA is just 

one such fluid model, and the key requirement of a LGA model is that 

the mass, momentum, and energy must be conserved during the particle 

collision and streaming processes. 

The first LGA model was attributed to three French scientists, Hardy, 

Pomeau, and de Pazzis, which is called the HPP model after the authors 

[Hardy et al., 1973a, 1973b]. This model utilizes a two-dimensional 

square lattice on which the gas particles at a node can move to any of the 

four nearest neighboring nodes along the lattice lines (see Fig. 1.1). The 

collision of the HPP model follows the so called head-on rule, namely, 

when two particles move to one same node with opposite velocities, their 

velocities will turn around 90° after the collision; In any other cases, no 

collision occurs and the particle velocities remain unchanged. 

Mathematically, the motion of the particles in HPP model can be 

described by the following discrete kinetic equation, 

 � � � � � � � � � ��� � � � � �� � � � � � � � � � �� � � � ,   (1.23) 

where � � � �� � ��  or � representing the number of particles moving with 

discrete velocity �� at node � and time �, � is the time step, �� is the 

collision operator representing the influence of particle collisions. The 

 

1 

2 

3 

4 

 
 

Fig. 1.1.  Lattice and discrete velocities of the HPP model. 
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discrete velocity set of the HPP model is given by �������� with �������

��������������
��−����, and �	����−��, and ����/� is the lattice 

speed where �is the lattice spacing. The collision operator describing 

the head-on rule can be expressed as 

� 
 � � 
 ��� ��� � �� ��� �� � � � � � � � �� � � � � � � � �� � � � � �� � � � � � , (1.24) 

where “⊕” represents the modulo 4 addition. It can be verified that �� 

conserves mass, momentum, and energy: 

 �

�

� �� ,  � �

�

� ��� ,  
�


�

�
�

�

�
� �� . (1.25) 

The evolution of the fictitious particles can also be decomposed into two 

sub-processes, i.e,  

Collision:             � � � � � � � � � ��� � �� � � � � � �� � �� � � ,   (1.26) 

Streaming:   � � � � � �� � � � �� � � �  �� � �� � � .    (1.27) 

The flow variables such as the density, velocity, and temperature can  

be obtained from the ensemble average (distribution function) of the 

Boolean number � �	 �� � � ,   

�� � � �
�

� � � � � �

�

�	 	 �
�

� �� 	� � � �� � � � �� � �
 � 
� , (1.28) 

where � is the molecular mass of the gas, and will be assumed to be 1 

without loss of generality. It is not straightforward to compute the 

ensemble average from ��, and usually it can be replaced by temporal or 

spatial (or both) average in applications. 

Although the microdynamics of the HPP model satisfies the basic 

conservation laws, the hydrodynamics variables do not satisfy the 

continuum equations due to the insufficient symmetry of the square 

lattice. Actually, the HPP model was designed as a micro fluid model 

rather than a computational method for hydrodynamic flows. Even 

though, the basic idea behind the HPP model opens a new way for flow 

computations. 

The symmetry requirement on the lattice was first discovered in 1986 

when Frisch, Hasslacher, and Pomeau proposed their hexagonal LGA 
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model [Frisch et al., 1986] (and simultaneously by Wolfram [1986]), 

which is now known as FHP model after the authors. This model uses a 

triangular lattice, and each node has six nearest neighbours (Fig. 1.2). 

The discrete velocities can be expressed as ��������� �� ����� ��� with ����

���−�����
 for �������. Like in the HPP model, the state of FHP model 

can be described by six Boolean numbers����that represent the number of 

particles moving with velocity��� . The collision rule of the FHP model 

includes five different cases, as shown in Fig. 1.2.  

It is noted that in some cases, one input state may correspond to two 

possible output states (cases � and 
 shown in Fig. 1.2). In such cases, 

each output state is chosen randomly with equal probability. As such, the 

mathematical formulation of the collision operator can be written as 

� 
  � 	 � 
  � 	

� 	 � 
  �  � 
 	


 � � 	  

�� �

�

� � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � �

�

� � � � � � � � � � � � �

�� � � � � � � � � � � �

� � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � �

� �

� ��

�

  

(1.29)

 

where “⊕” represents the modulo 6 addition and � is a random number 

distributed uniformly in [0,1].  

It can be shown that the collision operator of the FHP model leads to 

a Fermi-Dirac distribution at equilibrium for the distribution function 

[Frisch et al., 1987], i.e., 

 � � � �

� ���� �

��
�

�

	
� �

�
�
� � �� 


 , (1.30) 

where � and � are the Lagrangian multipliers, which can be determined 

by expanding � ���
�	  into a series of 
 and imposing the mass and 

momentum constraints (for isothermal flows) given by Eq. (1.28). The 

final expression of � ���
�	  for the FHP model can be written as [Frisch  

et al., 1987],  

 � �

� 	

�
� � �

� �

�� � �
�

� �

	 �
� �

�
�

� ��
� �� � �
� �
� �

� 
 � 


, (1.31) 

where � ����� ��  is usually called sound speed in LGA (and LBE),  

��������−��������−���, and �
� � � ��� �� � � � . With this expanded equilibrium 
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distribution function (EDF), it can be shown that the fluid density and 

velocity of the FHP model satisfy the following hydrodynamic equations 

in the incompressible limit (��� �): 

 � � �
 ,                               (1.32) 

 

 
 

Fig. 1.2.  FHP model and the collision rule. 
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 , (1.33) 

where  
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�
��� �  
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� ,   �� �





� �

�� � 	
� ��
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�

� �
� �� �
� ��� �

, 

with �������! ����−�
�����−���. In general  �≠�� and this leads to the 

breakdown of the Galilean invariance. However, the Galilean invariance 

can be restored by rescaling the time, i.e., �� �� ���, and the momentum 

equation becomes  

 �"
�

�
� � � � �� � �

�

 
 





� , (1.34) 

where "= ���  and �����
��� . Equation (1.34) resembles the incom-

pressible Navier-Stokes equation very closely, except that the rescaled 

pressure " depends on the velocity. This is somewhat unphysical, but as 

the Mach number is small, the pressure �satisfies an equation of state of 

ideal gas, �
�� � �� .   

Both the HPP and FHP models are designed for two-dimensional  

(2D) flows. It is not an easy task to find a 3D lattice with sufficient 

symmetries. On the other hand, it was shown that the 4D Face-Centered-

Hyper-Cube (FCHC) lattice, which contains 24 discrete velocities with 

magnitude 2�, has the desired properties [d'Humières et al., 1986]. By 

projecting back onto three-dimensional, one can obtain a set of 3D 

discrete velocities that have the required symmetries. However, the 

number of possible states of the collision rule in the FCHC model is still 

very huge (��	!), so it is a tough job to design an efficient collision rule 

for it, and this was also the target of many subsequent works. The 

theoretical foundation of the FCHC model was accomplished by 

Wolfram [1986] and Frisch et al. [1987], and after that, many 

applications have been conducted to complex flows such as multiphase 

systems and flows in porous media.  

The implementation of a LGA model is straightforward, just a 

following of the collision-streaming paradigm. Particularly, the Boolean 

representation of the basic variable in LGA means that the computation 

can be realized with pure Boolean operations without round-off errors, 
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and the computation will be unconditional stable. Furthermore, because 

the update of the state at each node is completely local, the algorithm 

exhibits natural parallelism and thus is very suitable for parallel 

computations. Despite these advantages, the LGA method also has some 

disadvantages, such as the statistical noise arising from the Boolean 

variables, the violation of the Galilean invariance, and the dependence of 

velocity of the pressure. Historically, it is these unexpected features that 

motivate the invention of the lattice Boltzmann method. 

1.3.2   From LGA to LBE 

The LBE first appeared in the analysis of the hydrodynamic behaviors of 

the LGA model [Frisch et al., 1987]. But it was McNamara and Zanetti 

who first proposed using LBE as a computation method [1988]. In order 

to reduce the statistical noise in LGA, they replaced the Boolean variable 

�� by the real-valued distribution function 	� directly, and the collision 

rule for 	� is the same form as that for ��. The evolution equation of this 

method (MZ model) can be written as 

 � � � � � � � � � ��� � � �� �	 � 	 � 	 � � � � � �� � � � , (1.35) 

where the term on the right hand is the collision operator, � �� 	� �  

� � � � � �� � �� � � � � 	� � � � � � . 

Although the MZ model can remove the statistical noise effectively, 

the collision operator is still rather complicated. Soon after the MZ 

model, Higuera and Jimenez proposed an improved version (HJ model) 

[1989]. They showed that the collision operator in the MZ model could 

be approximated by a linearized one by assuming that 	� is close to its 

equilibrium, 

 � � � ��� ���
� � �	 	 	� �  ,  (1.36) 

where 
� ���
�	  is the expansion of the Fermi-Dirac distribution function with 

a similar formulation as Eq. (1.31), and � ����
�	  is the nonequilibrium part. 

Expanding ��  around � ���
�	  leads to a linearized collision operator, 

 � �� � � ���
� �� � �	 � 	 	� � �  ,  (1.37) 
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where ��� � �� 	� �� �  is the collision matrix. Here the fact that  
� �� ���� �	� �  has been used. The use of the linearized collision operator 

significantly simplified the HJ model, although both ��� and � ���
�	  are still 

dependent on the collision operator of the underlying LGA model. 

A LBE model utilizing a collision matrix independent of any LGA 

models was developed by Higuera et al. (HSB model) [1989], but the 

EDF still comes from the LGA: 

 � �
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  , (1.38) 

where # is the spatial dimensional, $ is the number of the discrete 

velocities, and $
 �� is the mean density, while the function � and the 

tensor ���are given by 
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�
� � � �  .  (1.39) 

Because the collision matrix ��� in the HSB model can be constructed 

independently from the LGA models, it is possible to derive the desired 

hydrodynamic equations when the elements are setup appropriately.  

In around 1991, the collision matrix is further simplified by several 

groups independently [Chen et al., 1991; Koelman, 1991; Qian et al., 

1992], �
�
��� � , where � is a nondimensional parameter. As such the 

collision operator can be simply expressed as  

 � ��
� � ��
� � �	 	 	

�

� �� � � �� �� �
, (1.40) 

which just has the same formulation as the BGK model in kinetic theory 

(see Eq. (1.16)). Usually a LBE with such a collision operator is called 

lattice BGK (LBGK) or single-relaxation-time (SRT) model. Unlike 

previous LBE models, the EDF in LBGK model is completely 

independent of LGA method, and can be constructed with some 

freedoms such that the corresponding hydrodynamic equations satisfy the 

desired ones. Therefore, the choice of the equilibrium distribution 

function is one of the key problems in LBGK method. For isothermal 

flows, the BGK collision operator should conserve mass and momentum, 
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i.e.,  

 � � � ���� ��
� � � � � �

� � � �

	 	 	 	� �� � � �� � � �� �
 .   (1.41) 

The use of the BGK collision operator enhances greatly the 

computational efficiency of LBE, and makes the implementation of the 

collision process much easier than other models. The LBGK model is 

perhaps the most popular one in the LBE community.  

1.3.3   From continuous Boltzmann equation to LBE 

As shown above, LBE was originated from the LGA method. On the 

other hand, it can show that LBE can also be derived from the continuous 

Boltzmann equation. For simplicity and without loss of generality, we 

take the isothermal LBGK model as an example. The starting point is the 

Boltzmann equation with the BGK approximation, 
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� � � ,  (1.42) 

where 
� ���	  is the Maxwellian distribution function. The first step is to 

discretize the velocity space of � into a finite set of velocities " #��  

without affecting the conservation laws. To do so, � ���	  is first expanded 

into a Taylor series in terms of the fluid velocity, 
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. (1.43) 

It should be born in mind that this expansion can only be used for low 

Mach number flows, i.e. � �� ���
 � . In order to obtain the correct 

Navier-Stokes equations in the limit of low Mach number, the discrete 

velocity set should be chosen so that the following quadratures of the 

expanded EDF hold exactly 

 � �� � � �� ��  
� �� � ��
� � �

�

	 
 & 	 �� � ��� ��  (1.44) 

where &� and �� are the weights and points of the numerical quadrature 

rule. Based on the formulation of the expanded EDF given by Eq. (1.43), 

it is natural to choose a Gaussian quadrature with at least fifth-order. 
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Once the quadrature rule is chosen, we can define a discrete distribution 

function, � � � � � � �� � �	 � & 	 ��� � � , which satisfies the following equation 

 � �� ���
� � � �

�

	
	 	 	

� �

� � �� � � � � �� �� ��
�  ,  (1.45) 

where � � � �� � � � � � ��� ��
� � � �	 � & 	 ��� � � . Obviously, the fluid density and velocity 

can be obtained from the discrete distribution function, 

 �� � �

� �

	 	� �� �� �
 � .  (1.46) 

Integrating equation (1.45) from t to �� �  along the characteristic line 

and assuming that the collision term is constant during this interval, we 

can obtain  

 � �� � � � � � � � � � �
�

���
� � � � � � �	 � 	 � 	 � 	 � 

�
� �� � � � � �� �� �� � � � � , (1.47) 

where �� �� � � is the dimensionless relaxation time. Clearly, this is just 

the LBGK model. 

1.4   Basic Models of LBE 

In this section we will list some widely used LBE models for isothermal 

flows, and then show how to derive macroscopic equations from LBGK 

models using an asymptotical method. LBE models for thermal flows 

will be detailed in one specific chapter.  

1.4.1   LBGK models 

The LBGK models are the most popular LBE method and have been 

widely applied in variety of complex flows. Among the available models, 

the group of D�Q$ (�-dimensional $-velocity) models proposed by Qian 

et al. are the most representative ones [1992]. In D�Q$, the discrete EDF 

can be expressed as 
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, (1.48) 
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where � i is the weight associated with the velocity ��, and the sound 

speed �� is model dependent. In Tab. 1.1 several popular D�Q$ models 

are presented (here the lattice speed � is assumed to be 1). 

The lattice velocities of the D�Q$ models can form certain lattice 

tensors with different ranks. The�-th rank lattice tensor is defined as  

 
� � � ���� ���

� �� � �

�

� � � �� � � � � �� � . (1.49) 

Consequently, we have the 1
st
, 2

nd
, 3

rd
 and 4

th
 rank lattice tensors as 
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�

� � � � � �

� � �

� � � �

�

� � � � � � � � �

� � � � �

� � �

�

� � �

�

� � �� � � ��� � � �

���� � � � �

 (1.50) 

A tensor of �-th rank is called isotropic if it is invariant with respect to 

arbitrary orthogonal transformations (rotations and reflections). The most 

general isotropic tensors up to 4th rank are provided by the following 

theorem. 

Table 1.1.  Parameters of some D�Q$ models. 

Model Lattice vector ��  Weight �& �
�
��  

D1Q3 
0, 

±1 

2/3, 

1/6 
1/3 

D1Q5 

0, 

±1, 

±2 

6/12, 

2/12, 

1/12 

1 

D2Q7 

(0,0), 

(±1/2, ± 
 � ) 

1/2, 

1/12 
1/4 

D2Q9 

(0,0), 

(±1,0),(0, ±1), 

(±1, ±1) 

4/9, 

1/9, 

1/36 

1/3 

D3Q15 

(0,0,0), 

(±1,0,0), (0, ±1,0),(0,0, ±1), 

(±1, ±1, ±1) 

2/9, 

1/9, 

1/72 

1/3 

D3Q19 

(0,0,0), 

(±1,0,0), (0, ±1,0),(0,0, ±1), 

(±1, ±1,0), (±1,0, ±1),(0, ±1, ±1) 

1/3, 

1/18, 

1/36 

1/3 
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• There are no isotropic tensors of rank 1 (vectors). 

• An isotropic tensor of rank 2 is proportional to the 2
nd

 Kronecker 

delta tensor �� . 

• An isotropic tensor of rank 3 is proportional to ����  with ��
� = 

�
� 
�� �� �� � , �
� ��
 
�� �� � �� � � �  and zero others. 

• There are three different (linear independent) tensors of rank 4, �� ��  , 

�� ��  , and �� ��  , which can be combined to give a general form, 

�� � $ ����� �� �� �� �� �� ��     � � � , where �, �, �  and � are arbitrary 

constants. 

The lattice tensors can also be generalized to include the weights. A 

�'th rank generalized lattice tensor is defined as 

 
� � � ���� ���

� �� � � �

�

� � � �� � � � � ��� � , (1.51) 

where the �i's are the weights appearing in the discrete equilibrium 

function. In the LBE context, the lattice tensors of odd rank are usually 

zero. With the knowledge about the lattice tensors, it is easy to find the 

first several velocity moments of the discrete EDF 
� ���
�	 , 

 � ���
�

�

	 ��� , � ���
� �

�

	 ���� 
 , � ���
� � �

�

	 ��� �� � 

� � ,  

 �
� � � �� � � ���

� � � � � �

�

	 � � % %� %� �� � � ��� � �� � �� � ��� �   � � �!� 
 . (1.52) 

These relations are helpful in the derivation of the hydrodynamic 

equations from the D�Q$  LBGK models. 

1.4.2   From LBE to the Navier-Stokes equations:  

Chapman-Enskog expansion 

The macroscopic dynamics of a fluid can be seen as the result of the 

collective behavior of microscopic particles in the system and it is well 

described by the Navier-Stokes equations. The derivation of the 

macroscopic Navier-Stokes equations from the LBE runs under the 

Chapman-Enskog expansion, which is a multi-scale analysis developed 

by Chapman and Enskog. As an example, in what follows we will 

perform an analysis of the D2Q9 model. First the following multiscale 
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expansions are introduced, 

�� ��� ����
� � � �	 	 	 	� �� � � �� ,    

 �

�
� � �� �� � � � � ,   � ��� � � , (1.53) 

where � is a small number proportional to ��, and ��  and ��  are the 

short notations of � �� � and � ��� � , respectively. In this expansion, � is 

the fast convective scale, and �� is the slow diffusive scale. The second 

order Taylor series expansion of the LBGK equation (1.47) yields 

 � ��
� � � �

�
��

� � � � � � �
�

�

# 	 # 	 	 	 ( 
�


� � � � � , (1.54) 

where � � � � �# � � �� � � � � � � � �� . Here the Einstein’s summation rule 

is used, i.e., two repeated index means taking the summation over this 

index. Substituting the expansions (1.53) into Eq. (1.54), and equating 

the coefficients of each order of �, one can obtain that 

���": �� � ���
� �	 	�  ,        (1.55) 

���#:                     �  �   ��� �

�

� � �# 	 	
�

� �  ,      (1.56) 

�$:                   �  �  �  �  
�

 �  ��� �� � �
� �

�
� �

�
� � � � �

�

	 # 	 # 	 	




�
� � � � �  , (1.57) 

or  

 
�

�� �� ��� ���� �
�

�
� � � � �

�

	 # 	 	
� �

	 
�� � �  � �� � � �
,               (1.58) 

where 


��
� � �# � � � � �� . From Eq. (1.55), together with Eqs. (1.46) 

and (1.52), we can obtain that 

 � � �
�

�

	 �� ,   � ��
� �

�

	 �� 0�   for  � % .  (1.59) 

Multiplying Eq. (1.56) by 1 and �� , respectively, and taking 

summation over �, we can obtain the mass and momentum conservation 

equations at order of �, 

 
  � � � � ��� � � �
 ,                        (1.60) 

 �
 

��� � � �� � � � �
 ,  (1.61) 
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where �� ��
� ��
� � 	 % % �� � � � ����� � � � ��  is the zeroth-order momentum 

flux tensor, with �
�� � �� . Here the following properties of the generalized 

lattice tensors of the D2Q9 model have been used: 

 � � � � � �

� �

� � � �� � � �� �� �� � , �
� � � �

�

� � �� � ��� �� ,  

 	
� � � � � �

�

� � � � �� � � � ����� � &� , (1.62) 

where ���� �� �� �� �� �� ��     & � � � . Equations (1.60) and (1.61) are 

the Euler equations, just the same as those from the continuous 

Boltzmann equation in kinetic theory. 

Similarly, the zeroth and first order moments of Eq. (1.58) leads to 

the conservation equations at order of ��, 
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� �� � ,                              (1.63) 
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 ,                        (1.64) 

where ��� ���
� � ��� � 	� ���� � � . In order to evaluate ���

��� , we multiply Eq. (1.56) 

by � �� �� � and take summation over �: 

�  
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(1.65)

 

where � is the Mach number. Here the equations on the first order of � , 

(1.60) and (1.61) have been used to evaluate the time derivatives. 

Specifically, the following relations have been applied: 

 
  � �� %� ���� ��� ,                          (1.66) 

 


��
  � � � �� % � % %�� � � �� ��� � �� � ��� � �� � , (1.67) 

 
  � % � % %� � � � ���� � � �� � , (1.68) 
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where the last equation is derived from the first two equations. Equation 

(1.65) gives then that ���
 � �� � % %� � � ���� � � � � � �  after neglecting the 

terms of (��
�.  

Combining the mass and momentum conservation equations on both 

the � and �$ scales, we can get the hydrodynamic equations correspond-

ing to the D2Q9 model: 

 � � �� �� � � � �
 ,                             (1.69) 

 �  
� �

� � ��
�

�
� ��

� � �� � � �� � � � � � �� ��






 
 
 , (1.70) 

where � is kinematic viscosity given by 

 � �

�
� ��� � 
	 
�� � � � � �

, (1.71) 

and � 
�� ��  for the D2Q9 model. In small Mach number limit, the 

density variation can be negligible. Thus one can further obtain the 

incompressible Navier-Stokes equations 

 0 � � �
 , (1.72) 

 2
�
�

�
�

�

�
� � � � � � � �

�





 
 
 . (1.73) 

It is noted that low Mach number assumption has been employed in both 

the expansion of the discrete EDF from the Maxwellian distribution 

function and the derivation given above. As such, the LBGK models are 

only suitable for low speed flows in principle. On the other hand, it is 

known that the density variation of a flow is proportional to the square of 

the Mach number, which means that the LBGK method is actually an 

artificial compressibility method for the incompressible Navier-Stokes 

equations. Therefore, besides the temporal and spatial discretization 

errors, LBGK method also suffers from an additional error from the 

compressibility when applied to incompressible flows. Several 

incompressible LBGK models have been developed to overcome the 

compressibility error from different viewpoints [Zou et al., 1995; He and 

Luo, 1997; Chen and Ohashi, 1997; Guo et al., 2000]. 
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Now we discuss the accuracy of the LBGK models. First it is noted 

that the LBGK equation (1.47) is a first-order finite-difference scheme 

for the discrete velocity Boltzmann equation (1.45). If we apply the 

Chapman-Enskog analysis to the Eq. (1.45) directly, we can also derive 

the isothermal or athermal Navier-stokes equations (1.70), but with a 

kinematic viscosity � �
� � ��� �� � �� �  which contains no temporal and 

spatial discretization errors. In the above analysis, however, the 

expansion of the LBGK equation (1.47) was truncated up to O( �
� ) and 

O( �
� ), which means that LBGK method can be viewed as a second-order 

scheme for the compressible Navier-Stokes equations after absorbing the 

numerical viscosity � ���� ��� � , which comes from the term � �� ���� � �# 	  

in Eq. (1.54), into the physical one. This is an appealing feature of the 

LBGK method for complex flows. Also, because the underlying lattices 

of the LBGK models posses better rotational symmetry than classical 

second-order finite-difference/finite-volume schemes, LBGK and other 

LBE models may yield more accurate results than classical CFD methods 

with the same temporal and spatial accuracies. Actually, some 

comparative studies indicate that the results of LBE are even comparable 

to spectral methods for turbulent flows [Martinez et al., 1994].  

1.4.3   LBE models with multiple relaxation times 

Like the BGK model in kinetic theory, the LBGK model uses a 

relaxation process with a single relaxation time to characterize the 

collision effects, which means that all of the modes relax to their 

equilibria with the same rate. However, physically, these rates should be 

different during the collision process. In order to overcome this 

limitation, a collision matrix with different eigenvalues or multiple 

relaxation times  can be used. Actually, such models were proposed by 

d'Humèriers almost at the same time when the LBGK method was 

developed [d'Humières, 1992]. Such MRT-LBE models have been 

attracting more and more attentions recently due to some inherent 

advantages [Lallemand and Luo, 2000]. 

The LBE with a MRT collision operator can be expressed as, 

 � �� � � � � � �  ���
� � � � � �� � �

�

	 � 	 � 	 	 � $� �� � � � � ' � � �� �� ��� � � �  , (1.74) 
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or  

 � � �� � � � � � � ���
� � � � � � � � � � �� � � � � � � ,  (1.75) 

where b is the number of discrete velocities, and ΛΛΛΛ is the collision matrix. 

Equation (1.74) or (1.75) describes the evolution of the population 

 ��� � � � ��$	 	 	 �� ��  in the velocity space �. On the other hand, the 

evolution process can also be described in a moment space �. To see 

how this is realized, we first define b moments based on �,  

 � �� �� �� ,       ��∼$−�,  (1.76) 

where ��  is a vector with $ elements, each of which is a polynomial of 

the discrete velocities. These $ vectors are independent and thus form a 

basis of the velocity space. The relation between the moments and the 

distribution functions can also be expressed in a concise form,  

  � �� � � � ��$� � � �� � �� �� , (1.77) 

where the invertible transformation matrix � is composed of the vectors 

�� . The space where the moments take values is just the moment space. 

From Eq. (1.75), we can obtain the moment evolution equation as, 

 � �� � � � � � � ���
� � �� � � � � � � �� � � � � � � � , (1.78) 

where � ���� � �  is usually a diagonal matrix, i.e. ���$�%&���������…��

�$−��, and � � � ��� ���� ��  is the equilibria in the moment space.  

In practical applications, however, the MRT-LBE usually combines 

the evolutions in the velocity space and moment space. That is, the 

collision step is executed in the moment space while the streaming step is 

still performed in the velocity space just like the LBGK method.  

Therefore, the basic flowchart of a MRT-LBE model can be described as 

follows, 

• Transforming the distribution functions ��to moments � according to 

Eq. (1.77); 

• Colliding in moment space: � �� ���� � � �� � � � � ; 

• Transforming the post-collision moments �� back to the post-

collision distribution function: ��� ��� � � ; 

• Streaming in velocity space: � � � � � �� � � � �	 � 	 �  �� � �� � � . 
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Therefore, the evolution of the MRT-LBE can be effectively expressed 

as 

 � � �� � � � � � � ���� � �� �  �� � � � � �� � � � � � � � � . (1.79) 

In MRT-LBE, the relaxation rates ��� or the relaxation times �������� can 

be tuned with some freedom. This means that these parameters can be 

optimized to enhance the performance of the algorithm [Lallemand and 

Luo, 2000]. It is also noted that as ������, the MRT-LBE reduces to the 

LBGK models. Nonetheless, the involvement of the transforms between 

the velocity and moment spaces will increase some computational costs. 

However, the increase is not significant because � is usually an 

orthogonal matrix. Some numerical tests demonstrate that the increase in 

time is within 20% [d'Humières et al., 2002]. 

The transformation matrix �, or the base vectors �� , can be 

constructed from the polynomials � � )
�� �* �+� � �  (�, �, ) ≥ 0) through the  

Gram-Schmidt orthogonalization [Bouzidi et al., 2001]. Generally, the 

basis includes the following vectors corresponding to the mass and 

momentum: 
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 (1.80) 

Another key point of the MRT-LBE model is the equilibria in moment 

space. In principle ����� can be constructed with some freedoms. But a 

more convenient way is to compute them from the discrete EDFs fi
(eq)

 of 

the D�Q$ models once the transformation matrix � is determined. 

Several 2D and 3D MRT-LBE models are listed below. For simplicity, 

we assume that ����� in all cases, otherwise the base vectors can be 

normalized by ��and the results are similar. 

(1) Standard D2Q9 model 

The lattice is the same as the D2Q9 LBGK model, i.e, a two-dimensional 

square lattice. The corresponding moments are  

 �  � � � � � � � �
�

� � * * �� �*� � � � � � �� ��� , 
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while the equilibria in the moment space are 

 �  � � � � � ��� � 
 � � � � � � �
�

��
� � * * � * � *% % % % % % % % % %� � �� � � � � � �� , 

where � and � are two free parameters, and when ����� and ����−
, the 

equilibria are consistent with those of the D2Q9 LBGK model. The 

transformation matrix is  
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� � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � �� � � � � �� � � � �� � � � � �� �

� . 

The relaxation rates corresponding to the moments are 

 � � � �  � �  � � � �� � �� � � � � �� � ��� , 

and the kinematic viscosity and bulk viscosity are related to the 

relaxation rates se and sν,  
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�

� �
� � � �

�

� �
� ��

�  � 
	 
 	 
 � �� �  � � � � � � � � � �

, 

where � ��
�� � . 

(2) Rectangular D2Q9 model 

An advantage of MRT-LBE is that a nonstandard mesh can be used as 

the underlying lattice due to the freedoms in choosing the equilibria and 

the relaxation times. For example, a D2Q9 MRT-LBE model using a 

rectangular lattice has been developed. The lattice vectors are given by  

 
 �  �  � � � �

  � � � � � �

� �� � �� �� � �� � �� �� �
� , 
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where �* ��  �  is the ratio of the lattice spacing and here ��is set to be 

unity. The nine moments are  

 �  � � � � � � � 
 �
�

� � * * �� �*� � � � � � �� ��� ,  

and the corresponding equilibria are given by 
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where ��, �, �, and � are free parameters. The transformation matrix is  
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� , 

where �
� �� �� � , �

� � �� �� � , �

 �� �� � � , �

	 �� �� � � , �
 ��'� � , 

and �
� � �� �� � � . The relaxation rates are similar to those of the 

standard D2Q9 model,  

 �� � � � � � � � �� � �� � � � � �� � ��� . 

The shear and bulk viscosities are  
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� � � � � �� �  � � � � � � � � � �
. 

As expected, if ��� �, � ��
�� � , and ���� −�, this rectangular model 

reduces to the standard D2Q9 model. It should be noted that the 

corresponding rectangular D2Q9 LBGK model does not exist. 
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(3) D3Q13 model 

D3Q13 MRT-LBE model uses the following discrete velocities, 
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The corresponding moments are 
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with the following equilibrium moments, 
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The corresponding transformation matrix is 
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� �

, 

and the relaxation rates are 

 �� � � � � � � � � � � � �� � � �� � � � � � � � �� � � � �
� � ��� , 

while the shear and bulk viscosities are ( � ��
�� � ) 
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(4) D3Q15 model 

This model shares the same discrete velocities as the D3Q15 LBGK 

model. The fifteen moments are  

 �  � � � � � � � � � 
 � � � � �
�
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with the corresponding equilibria, 
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The transformation matrix is given as follows, 
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. 

The relaxation rates are set as follows, 

 �� � � � � � � � � � � � � � �� � � � �� � � � � � � � � � ��� � � � � � � , 

which are related to the viscosities as follows, 
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(5) D3Q19 model 

The discrete velocity set of the D3Q19 MRT model is the same as that of 

the LBGK model. The corresponding moments are  
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where �, �, and � are free parameters. As ����
,�����−����, and ����−���, 

the equilibria reduce to those of the D3Q19 LBGK model. The 

transformation matrix of this model is 

. 

The relaxation rates of this model are 

 �� � � � � � � � � � � � � � � � � � �� � � � � � �� � � � � � � � � � � � � � �� � � � � � � ��� , 

while the shear and bulk viscosities as 
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It can be shown that with the equilibrium moments described above, 

the Navier-Stokes equations can be obtained either by the Chapman-

Enskog expansion method [d'Humières, 1992; d'Humières et al., 2002] 

or a linear analysis [Lallemand and Luo, 2000]. 

1.5   Summary 

In this chapter we have presented an overview of the LBE method. It can 

be seen that the LBE is a novel approach for fluid dynamics, quite 

different from the classical CFD techniques that are based on the solution 

of Navier-Stokes equations. Firstly, although LBE aims to solve 

continuum flows at macroscopic scales, it is developed based on 

microscopic models (LGA) or kinetic theory (Boltzmann equation). This 

feature suggests that the LBE has the potential to model nonequilibrium 

flows which cannot be described by the Navier-Stokes equations. 

Secondly, the kinetic nature of LBE makes it suitable for describing the 

internal interactions among fluid particles and those between the fluid 

and external environment, and this brings great advantages in simulating 

complex flows such as multi-component/phase flows and flows in porous 

media. Finally, the clear evolution picture of LBE makes it quite easy to 

code; Particularly, the collision process involves only local computations 

and the streaming process can be realized by simple index shift 

operations, which makes LBE well suited for massive parallel computers.  

These distinctive features have made LBE an attractive numerical 

tool for modeling and simulating complicated fluid flows and associated 

phenomena. Actually, LBE can find its applications in simulation of 

laminar and turbulent flows, interfacial dynamics of multiphase flows, 

flows in porous media, particulate and suspension systems, bio-fluid 

mechanics, electro-kinetic flows, magneto-hydrodynamics, quantum and 

relativistic flows, nano/micro fluidics, and multiscale flows. The 

developments of LBE at different stages have been summarized in 

several excellent review papers [Benzi et al., 1992; Chen and Doolen, 

1998; Yu et al., 2003; Aidun and Clausen, 2010], and a number of books 

on both general LBE methods [Wolf-Gladrow, 2000; Succi, 2001] and 

specific topics [Sukop and Thorne, 2006; Zhou, 2004] are also available.  
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The past two decades have witnessed the rapid development and great 

success of LBE in fundamental theory and applications in a variety of 

related areas, and nowadays the research in this field is still very active 

and exciting. The LBE has been becoming a topic of great interest in 

many international conferences, and even two specific conferences on 

this subject, DSFD (International Conference on the Discrete Simulation 

of Fluid Dynamics) and ICMMES (International Conference for 

Mesoscopic Methods in Engineering and Science), have been established. 
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Chapter 2 

Initial and Boundary Conditions for 

Lattice Boltzmann Method 

Initial and boundary conditions play an important role in fluid dynamics 

since they are essential in the determination of the solution of the flow. 

Generally, these conditions are specified in terms of the fluid variables 

such as velocity, pressure, and temperature. However, the primitive 

variable in LBE is the discrete distribution function. The fluid density 

and velocity (and temperature in thermal flows) can be determined 

uniquely by the distribution function, but not vice versa. Therefore, it is 

critical for LBE to find a way to transform the initial and boundary 

conditions from the fluid variables to those for the distribution functions. 

Some studies have revealed that these conditions do have significant 

influences on the accuracy, stability, and convergence of LBE. So, the 

treatments of initial and boundary conditions are a fundamental topic in 

the study and applications of LBE. In this chapter, we will present some 

useful rules for realizing these conditions in LBE. We will focus on 

isothermal cases unless mentioned otherwise. 

2.1   Initial Conditions 

2.1.1   Equilibrium scheme 

The equilibrium scheme is a widely used method for imposing initial 

conditions in LBE. In this scheme, the distribution functions are 

initialized as the equilibria directly,  

 � �
� � �� � � � �� � ���

� �� � � � ��� � �� � , (2.1) 
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where �� and �� are the initial values of density and velocity at time ��. In 

many problems, only the velocity is initialized and the density (or 

pressure) is unknown. In such case, the density must be determined first 

from the velocity field in a compatible manner. For instance, the initial 

pressure �� can be obtained by solving a Poisson equation for 

incompressible flows, and then the density can be initialized as  

 � �
�

� �

	
� �

�
� � , (2.2) 

where �  and � are the average density and pressure, respectively.  

For steady or quasi-steady flows, the final results are independent of 

initial conditions, and the equilibrium scheme will work well. But for 

unsteady or strong nonlinear flows which are very sensitive to initial 

conditions, this scheme may lead to large errors due to the initial layers 

in the discrete distribution functions. In such cases, more accurate initial 

schemes should be adopted. 

2.1.2   Non-equilibrium scheme 

In order to increase the approximation accuracy to ������, we can introduce 

some corrections from the non-equilibrium part of the distribution 

function, � � � �
�� ��
� � �� � �� � . This technique was first proposed by Skordos 

[1993]. The key point of such schemes is how to obtain the non-

equilibrium part from initial conditions. 

We first consider the LBGK models. The LBGK equation gives that 

 � �� � � � � � � � �
��
� � � � � �� � � � � �� � �� �� � � � �� �	 

� � � � .   (2.3) 

The Taylor expansion of the right hand side gives that 

 � � �� �
��
� � � � �� � � ��� �� � � ,  (2.4) 

where � � �� � � � � � . On the other hand, the distribution function can 

be expanded into a series following the Chapman-Enskog method,  

 � � ��� ������
� � � �� � � ���� � � �� , (2.5) 
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where the expansion parameter ��is proportional to the Knudsen number 

which is very small for continuum flows. Therefore, the non-equilibrium 

distribution function can be approximated as 
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, (2.6) 

where �����. In the above equation � ����
�� �� �  and � ����

��� �� can be 

evaluated exactly from the expressions of 
� ���
�� . For example, the EDF of 

the DnQb models gives that 
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The temporal and spatial derivatives in Eq. (2.6) should be evaluated 

numerically, and the two temporal derivatives can be converted into 

spatial gradients first following the conservation equations. If the 

hydrodynamic equations at the �� scale in the Chapman-Enskog 

expansion (i.e. the Euler equations) are used, we can obtain that 

� �� �� � � �� � �  �  �� � � ,  � �� �� �� � � � �  �  �� � � � � � . (2.9) 

Alternatively, we can use the Navier-Stokes equations to evaluate the 

temporal derivatives, which give that 
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 (2.10) 

where � is the stress tensor. 

Substituting the above results into Eq. (2.6), one can obtain an 

explicit approximation to the non-equilibrium distribution function, 

which is quite complicated. In order to simplify the expressions, one can 

ignore terms of second and high-order of  (Mach number). For 

example, the final formulation of Eq. (2.6) can be expressed as 

 � �

�

�
	
��

� � � � �

�
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� �
� �� �  �  �
� �	 

� � � ���� � .  (2.11) 
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Guo et al. [2003] made a further simplification by noticing that 
��� � � �� � � �� �� � � �  for nearly incompressible flows,  

 � �

�
	
��

� � � � �

�

�
	

�� �
�

� � � � � .  (2.12) 

This result is consistent with the mass and momentum conservation 

constraints for incompressible flows,  

 � � � ��� �
�� 
��
� � � �

� �

� ��� �  �� � � �� �� � .  (2.13) 

The above non-equilibrium schemes are designed for LBGK models, 

and they can also be extended to MRT-LBE models. For instance, 

Lallemand and Luo [2000] suggested correcting the initial moments 

using the non-equilibria ones in moment space first, and then transform 

back to the velocity to obtain the initial distribution functions: 

� � � � � � � �
� ��� ��
� �


�� � �� � � �� �� � � �	 	� � � �� � , � � � � �
�� 
����� � 	 , (2.14) 

where � �� � ��� � � ����� 	 	 	� � � ���� �  and �

� �

��� �� � . 

2.1.3   Iterative method 

In order to obtain consistent initial distribution functions from a given 

velocity field, some researchers suggested solving a Poisson equation 

using a LBE, which can provide both the desired pressure (or density) 

and the distribution functions [Caiazzo, 2005; Mei et al., 2006]. For the 

LBGK equation,  

    � �� ��
� � � � � � � � � � � �� � � ���
� � � � � � �� � � � � � � � �� � �

�
� �� � � � �� �	 


� � � � � � � , (2.15) 

the procedure of iterative initialization method is as follows, 

(a) Collision: 

� �� �
�

�
� � � � � � � � � � � ����
� � � �� � � � � � � ��

�
� �� � � �� �	 


� � � � �� � �� � � �� . 

(b) Streaming: 

� � � � � �� � � � �� � � �� � �� � �� � �� �� � . 
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(c) Calculating the predicted initial density: 

�� � � � � �� � �

�

� � �� � �� � �� ��
�� �� . 

(d) If �� converges to its steady state ��, the iteration will end, and 

the initial distribution functions as well as the density are set to 

be �� � � � � �� � �� � � � �� �� �
� � and � �� � ��� ��� � � ���� �� �� �� , respec-

tively; otherwise, go to (a) for next iteration. 

Note that in the above iterative procedure we have used the notation 

with a tilde to distinguish the variables from the physical ones. 

Meanwhile, in the EDF � ���
��
� , the velocity always takes the initial value 

during the pseudo time evolution, and only the density ��  acts as a 

conservative variable. Actually, the iterative procedure corresponds to 

the following modified LBGK equation, 

    � �� �
�

�
� � � � � � � � � � � ����
� � � � � � �� � � � � � � �� � �

�
� �� � � � �� �	 


� � � � � �
� � �� � � �� ,  (2.16) 

with the constraint that 

 � �� �
��

��
� �

� �

� �� �� �� � �
�� � . (2.17) 

One can show that the hydrodynamic equation derived from this LBGK 

equation via the Chapman-Enskog method is  

 � �
� � ��

� � 	 � ��

�

	
� 	

� �
� � �

� � ��  � �  � 	 
�
� � �

�
� � �

�
.  (2.18) 

If the initial velocity field is incompressible, i.e., � � � �� , at steady 

state the leading order of the above equation is 

 �
� �� �� � �� � � � ,  (2.19) 

where �
�� 	 ���  is the dynamic pressure. This means that the above 

iterative procedure leads to a consistent initialized pressure field and the 

distribution functions as well. 

The iterative procedure can also be applied to MRT-LBE models with 

some slight modifications [Mei et al., 2006]. The procedure is the same 
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as that for the LBGK model except that the collision is carried out in the 

moment space, i.e., the collision step (a) is replaced by the following one: 

(a') Collision: 

 � �� �
�� � � � � � � � � � � ����

� � � � �� � � � ��� �� � � �� �	 

	 � 	 � 	 � 	 � �� � � �� � � � � ,   

 ��� � � ��� ��� � �� 	 �� �� �� . 

Note that the momentum �� is not a conservative variable and the 

corresponding relaxation rate �� is nonzero. The corresponding hydro-

dynamic equation is the same as Eq. (2.18) except that the kinematic 

viscosity appearing on the right hand side is now replaced by a 

diffusivity �� ���� � �� 	 � �� �  where �� ������. Because the relaxation time 

���  can be adjusted independently from that for the kinematic viscosity, 

the iteration can achieve a faster convergence than that for the LBGK 

models. This feature is particularly useful for high Reynolds number 

flows where the viscosity is small. 

2.2   Boundary Conditions for Flat Walls 

Similar to initial conditions, the distribution functions at a boundary 

should also be constructed to reflect specified boundary conditions for 

fluid variables (pressure, velocity, and temperature). A variety of 

boundary schemes have been introduced for LBE. According to 

methodology employed, boundary conditions in LBE can be classified 

into heuristic schemes, hydrodynamic schemes, and interpolation/ 

extrapolation schemes. We first present some boundary schemes for flat 

boundaries.  

2.2.1   Heuristic schemes 

Heuristic or phenomenological schemes are designed based on the 

dynamics of fluid particles as they encounter a wall. Several such 

schemes are sketched in Fig. 2.1 for a flat wall. The bounce-back scheme 

is the most widely used rule for stationary no-slip walls. This scheme 

assumes that a particle just reverses its velocity after colliding with the 
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wall, which means that the post-collision distribution function at a 

boundary node ���is 

 ı � � � � � �� � �� � � �� ��� � , (2.20) 

where ı � �� �� � with �� pointing to the fluid, �� is a node located on the 

wall, and � � � ��� � �� �  is the neighboring fluid node. Based on the 

collision-streaming process, the bounce-back scheme can also be 

expressed in alternative formulations, 

 ı � � � � � �� � � �� � � �� �� �� � ,  (2.21)  

or  

 ı � � � � � �� � � �� � � � �� �� � �� � . (2.22) 

Particularly, the formulation given by Eq. (2.21) has nothing to do with 

boundary nodes and the computation is completely local, and therefore is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 2.1.  Sketch of several heuristic schemes. 
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widely used in practical applications. For example, for the D2Q9 model 

the unknown distribution functions in the directions ������and � can be 

easily obtained as (see Fig. 2.1) 

��� � � � � �� � �� � � �� �� �� � , ��� � � � � �� � �� � � �� �� �� � , 

��� � � � � �� � �� � � �� �� �� � . (2.23) 

It is noted that in the standard bounce-back scheme the collision 

process is not carried out on the boundary nodes. If the collision is also 

imposed on the boundary, the method is called modified bounce-back 

scheme, which specifies the unknown pre-collision distributions at the 

boundary nodes as follows, 

 ı � � � � � �� � �� � � ��� � . (2.24) 

Then the fluid density and velocity at the boundary nodes can be 

calculated from the distribution functions, and the collision step can be 

executed. The modified bounce-back scheme for the D2Q9 model can be 

expressed as 

        ��� � � � � ��� � � �� 
� � , ��� � � � � ��� � � �� 
� � , ��� � � � � ��� � � �� 
� � . (2.25) 

Another modification of the standard bounce-back scheme is the half-

way bounce-back scheme, whose formulation is totally identical to the 

standard one except that the wall is placed at the middle of the link, �����

������. The physical picture of this scheme is clear: The post-collision 

particles with velocity �� at node ���will arrive at the wall after time ����, 

and are then reflected back to �� with a reversed velocity ı� after another 

����, and so ı � � � � � �� � � �� � � �� �� �� � , which is the same as the standard 

bounce-back scheme. This also implies that the standard bounce-back 

scheme does not exhibit such a physical picture. Actually, some studies 

have shown that the half-way bounce-back scheme is of second-order 

accuracy, while the standard one is only of first order [He et al., 1997]. 

Similar to the half-way bounce-back scheme, the modified bounce-back 

scheme is also of second-order accuracy. 

It is clear that in the bounce-back schemes, the momentum of a 

particle is just reversed before and after it hits the wall, which means that 

the macroscopic velocity at the wall is zero. Therefore, these bounce-back 
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schemes work for stationary walls. As the wall moves with a velocity���� 

the schemes should be modified to include the contribution of the  

wall motion. For example, Ladd has suggested a revised half-way 

bounce-scheme,  

 ı �
� � � � � � � � � � �
� � � � � �

�

� � � �
	

� � ��� � �
�� �

� � � , (2.26) 

where �� is the weight appearing in the EDF of the DnQb model. 

The bounce-back schemes given above can also be extended to 

complicated geometrics straightforwardly. The main advantage of such 

schemes is its simplicity and easy implementation. Particularly, the 

locality makes it very efficient for flows with complex geometries such 

as porous flows, which are difficult to solve for the classical CFD 

methods. 

Similar to the standard bounce-back scheme, another heuristic 

boundary condition is the specular reflection scheme, which assumes that 

the particle hitting the wall will be reflected to the fluid specularly, 

 ı � � � � � �� ��� � � �� ��� � , (2.27) 

where ı �� �� � �� �� �� � �  is the mirror-symmetric velocity of ��� with 

respect to �, the outward unit vector normal to the wall. Like the 

standard bounce-back scheme, the collision is not performed on 

boundary nodes in this scheme, and we can construct a modified 

specular-reflection scheme where collisions also occur on the boundary, 

ı � � � � � ����� � � ��� � , or a half-way specular-reflection scheme. It is clear 

that the tangential velocity of the particle does not change during the 

collision, while the normal momentum velocity is just reversed in the 

specular-reflection schemes. Therefore, these schemes can be used to 

realize the free-slip boundary condition on a smooth surface.  

2.2.2   Hydrodynamic schemes 

The simple heuristic schemes given in the above subsection can be used 

to realize no-slip and free-slip boundary conditions in a straightforward 

way. However, these schemes will also introduce some errors inevitably 
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[He et al., 1997]. To overcome such limitations, some more elaborated 

approaches, i.e. hydrodynamic schemes, have been developed to realize 

the exact boundary conditions based on the relations between the 

macroscopic fluid variables and the distribution functions. For isothermal 

LBE models, the constraints in constructing a hydrodynamic scheme are  

 �� � � � � �

� �

� �� �� �� �� � , (2.28) 

where �� is the density at the wall which is not necessarily a known 

variable. Generally these two constraints are not sufficient to determine 

the unknown distribution functions on the wall nodes. For instance, for 

the D2Q9 model sketched in Fig. 2.2, after streaming, the distribution 

functions ���,����,����,����,����,���� are known, the unknowns are ���,����,����, and 

�� , which cannot be determined from the three equations given in (2.28).  

The first hydrodynamic scheme for velocity boundary condition was 

developed by Noble et al. [1995] for the D2Q7 model. In this case the 

unknown variables are ���,����, and �� , which can be determined exactly 

from the following equations:  

 � � � � � � �� ��� � � � � � � ��� � � � � � � � � � ,  

 � � � � � �

�
�� � ��

�

�
� � � � � � �

	
�� � � � � � � � � , (2.29) 

 � � � �

�

�

�

�

�
� � � �

	
�� � � � , 

           
 

Fig. 2.2.  Sketch of the hydrodynamic scheme for the D2Q9 and D2Q7 model. 
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where ��� and ��� are the two components of ��. From these three 

equations we can obtain that, 
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� �

�

 (2.30) 

For more general cases, Noble et al. suggested using the energy 

condition as a complementary condition [Noble et al., 1995], 

 �� �� � � �

�

� ����� �� � � , (2.31) 

where � is the spatial dimension, � is the gas constant, and ���is the wall 

temperature which is a constant and related to the lattice speed c for 

isothermal LBE models (e.g., �
� ��� 	�  for the DnQb models). With this 

condition, the unknown distribution functions in D2Q9 can be solved 

analytically.  

Inamuro et al. [1995] proposed another hydrodynamic scheme 

(counter-slip scheme), which assumes that the unknown distribution 

functions on a boundary node take the same formulation as the discrete 

EDF but with an undetermined density and velocity: 

 � �� � ���
� � �� � �� �� �� �     ( �� � �� � ), (2.32) 

where �′  is a fictitious density and ��′����′���� is a counter-slip velocity, 

both of which are determined so that the fluid velocity at the wall is 

equal to the wall velocity. With this condition and Eq. (2.28), one can 

obtain the following results for the D2Q9 model [Inamuro et al., 1995], 
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  (2.33) 
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With these results, the unknown distributions can then be calculated 

according to Eq. (2.32).  

Zou and He [1997] proposed an alternative supplementary condition, 

i.e., bounce-back of the non-equilibrium distribution functions. For the 

D2Q9 model as sketched in Fig. 2.2, this scheme assumes that 

 � � � �
� � � �� � � � � � � ��� ��

� � � �� � � �� � �� � � � ,  (2.34) 

or  

 � � � �
� � � �

�
� � � � � � � �

�

� ��� ��
� � � �

�
� � � �

	

�
� � � �� � � � . (2.35) 

With this condition and Eq. (2.28), the unknown distributions at the wall 

nodes can be determined, 

 � �
� � � �

� � �
� �

� � � �

� � � �� �
� �� � �

� � � �
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(2.36)
 

where the wall density is given by 

 � � � � � �

�
�� �

� �
�

�

� � � � � �
� 	

� � �� � � � � �	 
�
,  (2.37) 

which is the same as that in Inamuro’s counter-slip scheme. 

The main advantage of the hydrodynamic schemes is that they can 

realize the specified velocity boundary conditions exactly. As discussed 

above, however, these schemes depend severely on the LBE models, and 

special treatments are required for corner nodes. Therefore, most of the 

applications of the hydrodynamic schemes are focused on flows with 

simple flat boundaries.  

2.2.3   Extrapolation schemes 

The heuristic and hydrodynamic schemes given above are mainly used 

for velocity boundary conditions. In many practical problems, however, 

the boundary conditions may also involve gradients of fluid variables 
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(e.g. the Neumann boundary conditions). For such boundary conditions, 

the previous schemes are not applicable. By borrowing ideas from the 

finite-difference methods for partial differential equations, some 

researchers were able to develop more general boundary schemes for 

such problems, and a good example is the extrapolation schemes.  

The first extrapolation scheme was due to Chen et al. [1996]. As 

sketched in Fig. 2.3, a ghost layer is put outside the wall and the physical 

wall is just treated as an inner part of the flow domain where the standard 

collision and streaming processes are carried out. The distribution 

functions at the ghost nodes are obtained by a second-order extrapolation 

from those at inner nodes: 

 � � �� � � � � � � � � �� � �� � � � � �� � �� � � , (2.38) 

where −1, 0, and 1 are the labels of the ghost layer, the wall, and the first 

fluid layer, respectively. After this extrapolation, collisions are 

conducted at all inner nodes, including the wall nodes. But it is noted that 

the specified density or velocity given by the boundary conditions is used 

in the calculation of the EDFs for wall nodes. 

It can be shown that the above extrapolation scheme is of second-

order accuracy, which is consistent with the accuracy of LBE. Unlike the 

hydrodynamic schemes, this scheme is easy for implementation, and can 

be extended straightforwardly to other types of boundary conditions. 

 
 

Fig. 2.3.  Sketch of the extrapolation scheme. 
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However, some studies showed that the extrapolation scheme may suffer 

from numerical instabilities [Zou and He, 1997; Guo et al., 2002a].  

Guo et al. [2002a] proposed an alternative extrapolation scheme 

based on non-equilibrium distribution functions. The basic idea of this 

non-equilibrium extrapolation scheme is to decompose the distribution 

functions at a wall node into its equilibrium and non-equilibrium parts, 

where the equilibrium one is constructed based on the specified 

macroscopic boundary conditions, while the non-equilibrium part is 

approximated with a first-order extrapolation. Because for continuum 

flows the non-equilibrium part is a small quantity in comparison with the 

equilibrium one (cf. the Chapman-Enskog expansion), the overall 

accuracy will be of second-order, and the use of the lower order 

extrapolation can ensure a good numerical stability.  

We take the D2Q9 model as an example to illustrate the basic 

structure of this scheme. As shown in Fig. 2.2, at time �� the unknown 

distributions at the boundary node �� after the streaming step are ���, ���, 

and ���, while these at the neighboring nodes � � � ��� �� � �  (�����������), 

together with the fluid density and velocity, are all known. To determine 

the unknown distribution functions at ���, they are first decomposed as  

 � � � �� � � � � � � � �� �� �� ��� 
��
� � � � � �� � � � � � �� � �� � � .  (2.39) 

For velocity boundary conditions where �� is known while ��� is 

unknown, the EDF is approximated by  

 � � � �� � � � � � �� �� ������� ��
� � � � �� � � � ��� �� � � ,  (2.40) 

in which the density at the wall is approximated by that at the 

neighboring fluid nodes. Similarly, the non-equilibrium part in Eq. (2.39) 

is also approximated by that at ���,� 

   � � � � � �� � � � � � � � � � � �� �� �� �
�� 
�� ��
� � � � � � � �� � � � � � � � �� � � �� � � � . (2.41) 

Therefore, the non-equilibrium extrapolation scheme can be expressed as 

 � � � �� � �� � � � � � � �� �� �
�� ��

� � � � � � �� � � � �� � ��� �
	 


� �� � �� �	 
� � � � � , (2.42) 

for������������. 
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The accuracy of the non-equilibrium extrapolation scheme can be 

estimated by analyzing the approximations of the equilibrium and non-

equilibrium parts. It is well understood that the density variation in 

nearly incompressible flows is in the order of M
 2
. Therefore,  

 �� � � � � � � � � �� � � �� � � � � � � �� �  ��� � � , (2.43) 

where �� �� ��  with � representing the characteristic length. On the 

other hand, it is known that  
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	 �

�
� �

� ���� � �� �� �� �
� � , (2.44) 

where � is the velocity and ��������� is the Reynolds number. With 

this result we can see that  

 � � � � �� � � � � ��� ��
� � � � �� � � � ��� � � . (2.45) 

Now we come to the non-equilibrium part. As implied in the 

Chapman-Enskog analysis, the nonequilibrium is of ����, i.e,  

 � � � � ���
�� ��
� � � � � �� � � ��� �� � � ,  (2.46) 

where ���
�� is at the same order as � ���

�� (here we have assumed that � �� �� ). 

On the other hand,  

 ��� ���� � � � � � � �� � � � �� � � � � �� �� � , (2.47) 

which means that  

 � � � � ��� ��� �� � � � � � � �
�� 
��
� � � � � � � � � �� � � �� �� �� �� �	 
� � � �� � . (2.48) 

With Eqs. (2.45) and (2.48), we can conclude that the non-equilibrium 

extrapolation scheme (2.42) is of second-order accuracy in both time and 

space.  

2.3   Boundary Conditions for Curved Walls 

In the previous section we have discussed boundary conditions for flat 

walls. We now turn our attention to curved walls where lattice nodes 

generally do not fall at the physical boundaries. Fig. 2.4 illustrates a 
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curved wall together with the neighboring lattice nodes along the 

direction ���. The link between the fluid node ���(nodes in the fluid region) 

and the solid node �� (nodes in the solid wall) is cut by the wall at the 

point ���� and the fraction of the intersected link in the fluid region is  
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� �
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� �
� �

� �

� � � �

� �
, (2.49) 

where the spacing ∆x depends on ���and may be different from the lattice 

spacing ���

. It is clear that � ��� � , and generally the boundary schemes 

for flat walls are not suitable for such type of problems. In order to treat 

such boundary conditions, we must revise the above mentioned schemes 

or develop new methods. 

2.3.1   Bounce-back schemes 

The bounce-back schemes given in Sec. 2.2.1 can be applied to no-slip 

boundary conditions of a curved wall after making some necessary 

approximations. According to the location where the bouncing occurs, 

the bounce-back schemes can be classified into two types. The first kind 

is nodal bounce-back scheme, in which the bouncing occurs at the node 

nearest to the physical wall, or in other words, the wall boundary is 

approximated by the lattice nodes according to the value of �
�

: 
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.  (2.50) 

 
Fig. 2.4.  Sketch of a curved wall and the lattice nodes near the wall. 
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Another type is the so-called link bounce-back scheme, which is similar 

to the half-way bounce-back scheme. In this scheme the wall node is 

taken as the mid-point of the link between ���and �� regardless of the 

values of �, i.e., � ���� � �� �� � � . 

It is obvious that in either of the bounce-back schemes, the physical 

wall is approximated by a staggered stair step. This will degenerate the 

accuracy of the schemes and subsequently the overall accuracy of LBE. 

However, the simplicity of the bounce-back schemes is still very 

appealing, particularly for flows with highly complicated geometries 

such as porous media.  

2.3.2   Fictitious equilibrium schemes 

The first boundary condition which considers the accurate shape of a 

curved wall was proposed by Filippova and Hänel [1998]. In order to 

calculate the unknown post-streaming distribution function at the fluid 

node ���, i.e. ı � � �� �� � ���  shown in Fig. 2.4, this scheme (referred to FH) 

defines a post-collision distribution function at the solid node �� formally, 

which is a combination of the bounce-backed distribution and a fictitious 

EDF, 

           ı
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�

, (2.51) 

where �  is the combination coefficient and !
�� is the fictitious EDF 

defined by 
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, (2.52) 

where �!�is a fictitious velocity to be determined, and � � �� � ��� � � . The 

parameter �  depends on the choice of the temporary velocity �!. The FH 

scheme uses the following choices,  

                  !� � � 	 �����
� �

�
�

�

�
� �

�

�
� �

�
� �� , (2.53) 

 ! � � � �
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� �
�
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�

�

� �
# � � �� � � . (2.54) 



52 Lattice Boltzmann Method and Its Applications in Engineering 

The parameter �  depends on the relaxation time τ in the FH scheme, 

particularly as � is close to 1, �  will become very large as �	�����, and 

the FH scheme will suffer from severe numerical instability. Later, Mei 

et al. [1999] proposed an improved fictitious equilibrium scheme 

(denoted as MLS after the authors), which still uses Eq. (2.54) if ��≥����, 

and uses 

 !�
� �

�
�

�

�
�

�

�
�� �

�
�� , (2.55) 

if �	�����. It is obvious that by employing the information at the next 

neighboring fluid node �
�� , the MLS scheme can release the constraint of 

the FH scheme to some extent. With the help of the Chapman-Enskog 

analysis, it can be shown that both the FH and MLS are of second-order 

accuracy [Filippova and Hänel, 1998; Mei et al., 1999]. 

2.3.3   Interpolation schemes 

The FH and MLS schemes can be viewed as a correction to the bounce-

backed scheme. Later Bouzidi et al. [2001] proposed an interpolation 

scheme (referred to BFL) based on bounce-back scheme from an 

alternative viewpoint. First we consider a stationary wall (������). As 

shown in Fig. 2.5, if the wall node �� is closer to the solid node �� than to 

the fluid node ���  (i.e. ��≥� ����, the post-collision particles at ���with 

velocity ���will arrive at and collide with the wall after a time duration 

����, and the particle velocity changes to ı� . After another time duration 

��−�����, the particles will arrive at the location ���between ��� and ���

: 

 ı �� � �� ��� � � � �� � ��� � � � � � �� � ��  ,  (2.56) 

where ��������	. Therefore, the distribution function at this location is 

known at time �������	 

 ı � � � � � �� � � �� � � �� �� �� � . (2.57) 

At the same time, the distribution function � � �� ��� � �� ��  is also known 

after streaming, and therefore the unknown distribution function 

ı � � �� �� � ���  can be approximated by a linear interpolation: 
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(2.58)

 

As ��"����, the location ���given by Eq. (2.56) is between ���and �
�� , 

and Eq. (2.58) becomes an extrapolation which may induce numerical 

instability. In order to avoid this possibility, the BFL scheme suggests  

constructing the post-collision distribution function at location  

 ı ı� � � � �� � �� � � �� � � � � � � �� �  �  .  (2.59) 

Since ���	�	�����, this point locates between ���and �
�� , and so we can 

obtain the post- collision distribution function by a linear interpolation, 

 � � � � � � � �� � � � � �� � � � � �� � �� � � � �� � � �� � �� � � . (2.60) 

After a time duration ���−������ �the particle will arrive at the wall, then 

leave the wall with an inversed velocity and arrive at ���at time �������. So 

the unknown distribution is 

 ı � � � � � � � � � � �� � � � � �� � � � � � � �� � � � �� � � � �� � � � �� � � � �� � � � . (2.61) 

 
 

Fig. 2.5.  Diagram of the BFL scheme. The open circle (� f �

) is the interpolation point. 
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The above scheme works for a stationary wall. For a moving wall, the 

contribution from the wall should also be considered. After making a 

similar analysis, the BFL scheme can be expressed as 
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(2.62)

 

It is also obvious that as ������� the BFL scheme reduces to the Link-

Bounce-Back scheme. Furthermore, we can also use a second-order 

interpolation in the BFL scheme, which gives 
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   (2.63) 

The BFL schemes use different interpolations for ��"���� and ��≥����, 

which may induce some undesirable oscillations near the wall. Yu et al. 

[2003] developed a unified interpolation scheme (refereed to YMS 

hereafter). As illustrated in Fig. 2.5, the YMS scheme assumes that the 

post-collision distribution functions � � �� �� ���  can arrive at the solid node ���

across the wall so that � � � � � �� � � � �� � � ��� �� �� � . The distribution function 

at �� can then be approximated using a linear interpolation, 

 � � � �� � � � � � � �� � � � � � � � �� � � � � �� �� � �� � � � � �� � � .  (2.64) 

Then the bounce-back is employed at the wall node to ensure a no-slip 

boundary condition, 

 ı �
� � � � � � � � �
� � � � � � �

�

� � � �
	

� � � �� � �
�

�
��

� � . (2.65) 
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Using the linear interpolation again, we can obtain that 

 ı ı ı

�
� � � � � � � � �

� �
� � � � � �� � � � � �

� �

�
� � ��� � � � �

� �
� � � , (2.66) 

and the final expression of the YMS scheme can be written as 

ı ı �
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� 	
� �

� �
� �� � � � �� �
� �	 


�
� � � �

� �
 (2.67) 

It is noted that as��������, the YMS scheme does not reduce to the 

half-way bounce-back scheme. One can prove that the YMS scheme is 

also of second order accuracy, and high-order interpolations can also be 

employed to obtain better accuracy. 

2.3.4   Non-equilibrium extrapolation scheme 

The non-equilibrium extrapolation scheme for flat walls given in  

Sec. 2.2.3 can also be extended to boundary conditions for curved walls 

[Guo et al., 2002b]. Unlike the fictitious and interpolation schemes, the 

extrapolation scheme performs the collision step at the solid node xs.  

To do so, ı � � ��� �� is first decomposed into its equilibrium and non-

equilibrium parts, 

 ı ı ı

� � � �� � � � � � � � ��� 
��
� � �� � � � � �� �� � � .  (2.68) 

The equilibrium is approximated as,  
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where ���is determined from �������� ,���������, and � � �� ��� � , 
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where  

        � �

� � � �
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� � � � � � �� . (2.71) 
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The non-equilibrium part is approximated as 
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. (2.72) 

With these approximations, the post-collision distribution function at 

node xs can be obtained, 

ı ı ı ı ı

� � � �!� �
� � � � � � � � � � � � � � �
�� 
��
� � � � �� � � � � � � � � �

�

� �

�
� � � � �� � � � � .  (2.73) 

Guo et al. [2002b] have shown that the non-equilibrium extrapolation 

has good numerical stability and is of second-order accuracy. 

2.4   Pressure Boundary Conditions 

Besides velocity boundary conditions, pressure boundary conditions are 

also frequently encountered in many problems such as pipe or porous 

flows. Some schemes were also developed to implement such boundary 

conditions in LBE from different viewpoints.  

2.4.1   Periodic boundary conditions 

For problems where the pressure gradient is a constant, such as flow in a 

long channel driven by a pressure drop, we can replace the pressure 

gradient by a body force and apply periodic boundary conditions to the 

stream-wise boundaries, which means that a particle leaving a boundary 

will re-enter the fluid domain from the opposite side. For instance, if we 

apply the D2Q9 model to the flow in a channel of length �, the periodic 

boundary conditions at the inlet and outlet can be expressed as (see  

Fig. 2.6) 

Inlet:          �� � � � � � � �� �� �� �� � � � �� �� � � � � � � 	 � �� ��� � � � .  (2.74) 

Outlet:        �� � � � � � � �� �� �� �� � � � �� �� � � � � � � 	 � �� ��� � � � . (2.75) 

where ��  and ���denote the nodes at the inlet and outlet, respectively. 
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Periodic boundary conditions are usually applied to flows with spatial 

periodicities, and the above treatment is only an approximation. 

Furthermore, the rule given by Eqs. (2.74) and (2.75) indicates that the 

pressure values at �� and ��� #re identical. Recently, Zhang and Kwok 

[2006] extended the above rule to incorporate pressure difference for 

fully developed periodic flows where the pressure gradient may be not a 

constant. Assuming that  

 �� � � � � � � ��� � � � � ��� � , �� � � � � � � ��� � � � � � � � ��� � ,  (2.76) 

the modified periodic boundary conditions can then be implemented as 

follows,  

Inlet:  

�
�

�

�
� � � � � � � � � �� �� ��
� � � � �� �

!��

	
� � � � � � � 	 � �

� �
� �

�

�
�� � � � ,  (2.77) 

Outlet: 
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�
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�
� � � � � � � � � �� �� ��
� � � � �� �

�


	
� � � � � � � 	 � �

� �
� �

�

�
�� � � � , (2.78) 

where �� is a reference density, and ��
 and �!�� are the average densities 

at the inlet and outlet, respectively. With this periodic boundary 

conditions, Zhang and Kwok [2006] simulated several fully developed 

flows driven by a pressure drop and reported satisfactory results.  

 

 

 

 

 

 

 

 

 
 

Fig. 2.6.  Sketch of pressure boundary conditions. 
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2.4.2   Hydrodynamic schemes 

With the idea of bounce-back of non-equilibrium distribution functions, 

Zou and He [1997] developed a hydrodynamic scheme for pressure 

boundary conditions. As shown in Fig. 2.6, for the D2Q9 model the 

unknown distribution functions����,����, and ����at the inlet are determined 

from the following conditions, 

� � � � � � � � �� ��
� � � � � � � � ��� � � � � � � � � , (2.79) 

� � � � � ���
 �
� � � � 	 � � ��� � � � � � , (2.80) 

� � � � � �� � � � � �� � � � � � , (2.81) 
� � � �

� � � �
�� ��

� � � �� � � ,  (2.82) 

where the velocity at the inlet is � � ���
 �
���  and it is unknown, while 

the density at the inlet, �
� , can be obtained from the specified pressure. 

By solving this set of equations, one can get the unknown distributions at 

the inlet, and those at the outlet can be determined similarly. 

2.4.3   Extrapolation schemes 

Based on the extrapolation technique, Chen et al. [1996] devised a 

simple extrapolation scheme for pressure boundary conditions similar to 

that for velocity boundary conditions. Again consider the inlet shown in 

Fig. 2.6, a ghost layer is appended to the layer at the inlet, and the 

distribution functions at the ghost layer are approximated by 

 � �� � ��� ���� � �� � �� � � , (2.83) 

where�−����, and ��are the labels for the ghost layer, the inlet, and the 

first fluid layer, respectively. Then the collision process can be carried 

out on all nodes including the ghost ones, but it should be noted that the 

specified pressure/density is used in calculating the EDFs at the inlet. 

Maier et al. [1996] also presented a similar method. 

The non-equilibrium technique can also be used to treat pressure 

boundary conditions. In this case the unknown distribution functions at 

the inlet are again decomposed into two parts, where the equilibrium part 
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is approximated by 

 � � � �
 � � � � � �� �� �� ��� ��
� � � �
 �
� � � ��� �� � , (2.84) 

where � �� � � ��
 � � ��� ��� � � � � �  is the velocity at the nearest 

neighboring fluid node along the particle velocity. The non-equilibrium 

part is approximated by that at the same fluid node, too. The final 

expressions of the unknown distribution functions then read, 

     � � � �� � � � � � � �� � � � � � � ��� �� �� ��� ��
� � � �
 � � � � �� � � � � � � � ��� � � �� � � � � . (2.85) 

Similar to the analysis for the non-equilibrium extrapolation schemes for 

velocity boundary conditions, it can be shown that this scheme is also of 

second-order accuracy. Also, because only first order extrapolations are 

involved, this scheme has good numerical stability as well [Guo et al., 

2002a]. 

2.5   Summary 

In this chapter we have discussed the initial and boundary conditions in 

LBE, which are fundamental topics in this field. For initial conditions, 

two main approaches are presented, i.e. the earlier non-equilibrium 

correction method and the recent iterative method. Some schemes for 

velocity and pressure boundary conditions, which are widely used in the 

applications of LBE, are also described.  

It is noted that the simple equilibrium schemes are not discussed in 

the above sections, since it is quite straightforward to implement such 

boundary conditions. For example, when the pressure is given, with an 

extrapolated velocity, the EDFs can be approximately used in the 

required unknown directions. Some theoretical studies of boundary 

conditions for LBE, were not detailed in this chapter, either. For instance, 

He et al. [1997] found the analytical solutions of the LBE under different 

boundary conditions, based on which the accuracies of the schemes were 

analyzed. Junk and Yang [2005a] made an asymptotic analysis of the 

bounce-back, BFL, FH, and MLS schemes. Kao and Yan [2008] 

compared the FH, BFL, and YMS schemes, and developed a scheme 
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without interpolation. On the other hand, Suh et al. [2008] performed 

theoretical and numerical comparisons of the YMS, BFL, and non- 

equilibrium extrapolation schemes for curved walls. Some new boundary 

schemes are also developed from different pictures [Junk and Yang, 

2005b; Chun and Ladd, 2007]. In summary, developing accurate, 

effective, and simple schemes for initial and boundary conditions is still 

a very active branch in LBE. 
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Chapter 3 

Improved Lattice Boltzmann Models 

In Chapter 1, we have described the general LBE models for isothermal 

flows. These models (particularly the D�Q� LBGK models), together 

with the initial and boundary conditions introduced in Chapter 2, have 

been successfully applied to many simple and complicated flow 

problems. However, there is still much space to improve the performance 

of these models, and in this chapter we will give a few examples.  

3.1   Incompressible Models 

As shown in Chapter 1, the hydrodynamic equations derived from the 

LBE equation are actually the compressible Navier-Stokes equations. 

Meanwhile, the intrinsic low Mach number requirement of LBE indicates 

that it is limited to nearly incompressible flows. Therefore, the LBE  

can be viewed as a special artificial compressibility method for 

incompressible flows [He et al., 2002; Ohwada et al., 2011]. As such, a 

numerical error related to the artificial compressibility will arise in 

addition to those from the spatial and temporal discretization. The 

compressible effect may lead to significant errors in some cases. For 

instance, in a comparative study of a two-dimensional turbulent flow 

[Zou et al., 1995], Martinez et al. found that the LBE results deviated 

greatly from the spectral data at the late stage, and they attributed this 

deviation to the compressible effects of the LBE.  

In order to reduce the compressible effects in LBE, some 

modifications to the standard models have been developed from different 

viewpoints, and we will call such models as incompressible LBE models 

although they may still contain some compressibility errors. In 1995, Zou 

and his coworkers made the first attempt to construct an incompressible 
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D2Q9 model for steady flows. In this model, the evolution equation is 

the same as the standard LBGK model, but the discrete EDF is re-

defined as 
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� � ��� �
. (3.1) 

It can be seen that this EDF is very similar to that of the standard D2Q9 

model except that the density is decoupled from the momentum. The 

fluid density and velocity in Zou’s model are calculated as 

 �� � �

� �

� �� � �� �� � .  (3.2) 

The hydrodynamic equations derived from Zou’s model via the 

Chapman-Enskog expansion read, 

�	�� �  � �� ,                             (3.3) 

 � �� � 
�
	

��
� � ��  � � � �  �  � 	 
�
�

�� � � , (3.4) 

where the pressure � and the kinematic viscosity are both the same as the 

standard D2Q9 model. It is clear that Eqs. (3.3) and (3.4) reduce to the 

standard incompressible Navier-Stokes equations at steady state, namely, 

the compressible effects are removed totally.  

It is noted that in Zou’s incompressible model, the pressure is still 

related to the fluid density. Sometime later, Lin et al. [1996] proposed a 

similar incompressible model which used a density-independent pressure. 

Numerical results show that Zou’s model works well for steady flows. 

But for unsteady flows, this model still contains compressibility error. 

Chen and Ohashi [1997] extended Zou’s model for general flows by 

introducing a correction to the velocity defined by Eq. (3.2). That is, the 

flow velocity is  

 ��� �� � ,                             (3.5) 

where � is a scalar to be determined. In order to enforce � to be 

divergent free, ��should satisfy the following Poisson equation, 

� �
�

�
 � �  � �  .                          (3.6) 
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After solving the above equation, one can obtain the fluid velocity � 

according to Eq. (3.5).  

It is noted that in the Chen-Ohashi model, the fluid velocity appearing 

in the discrete EDF is � instead of �. The Chapman-Enskog expansion of 

this model leads to the exact incompressible Navier-Stokes equations  

for �, and the pressure is given by �
�� � � �� � . The basic idea of the 

velocity correction method employed in the Chen-Ohashi model is 

similar to the pressure-correction method for incompressible Navier-

Stokes equations in traditional CFD method. Because the Laplacian 

operator in the Poisson equation (3.6) is non-local, the computational 

costs of the Chen-Ohashi model will be greater than Zou’s model.  

Almost at the same time when Chen-Ohashi model was proposed, He 

and Luo [1997] developed another general incompressible LBGK model. 

The basic idea is to remove terms of high-order Mach number due to 

density variations in the EDF. In this model, the independent variables 

are the pressure and velocity rather than the density and momentum.  

As known, the density variation of the density, ���� � , in nearly 

incompressible flows is of order �

�, where ��  is a averaged density. 

Therefore, the standard EDF of the DnQb models can be approximated as 

 � � 	
� �

�

� � � � � � ���
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��
� � � � � �

�

� ���� � � � � � �� �� �� �
� � ,  (3.7) 

where
��
is the collective of the velocity terms in the EDF, 
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Therefore, after neglecting the ���

	� terms, and let � � � ���� ��
� � �� � �� , one 

can obtain a pressure EDF, 
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� �� ���
, (3.9) 

where 
�
�� � ��  and 

�
� ��� � �� , and the evolution equation of the He-Luo 

model is, 

 � �� � � � � � � � � � �
�

���
� � 	 	 � � �	 � 	 � �� 	 	� �

�
� �� � � � � �� �	 
� � � � � , (3.10) 
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while the pressure and velocity are defined by 

 ��� � �

� �

� �� �� �� �� � .  (3.11) 

The hydrodynamic equations derived from the He-Luo model are 

�

�
�	

�

�
�

� �  � �� ,                          (3.12) 

 ��
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� �  � � � 
�
�

� � � , (3.13) 

where ��� � �� . It is clear that Eqs. (3.12) and (3.13) are just the artificial 

compressible version of the incompressible Navier-Stokes equations. The 

solution of the above equations can be a good approximation to that of 

the incompressible Navier-Stokes equations provided that the first term 

in Eq. (3.12) can be neglected. In order to see how this can be achieved, 

we rewrite Eq. (3.12) in dimensionless form, 

�

�
�

� �

� 	 	

�� � ��  � �
��

� ,                          (3.14) 

where the nondimensional variables with a prime are defined by,  
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� � , 

�
� �
�

� ,  (3.15) 

with 	� and �
 ���� the characteristic time and length, respectively. 

Therefore, in order to neglect the transient term in Eq. (3.14), it is 

required that � � �	 � �� . 

The He-Luo model has the same structure as the standard LBGK 

method and shares all of its advantages. Particularly, in this model the 

pressure behaves as an independent variable and can even take negative 

values. Actually, in some works the pressure in the EDF (3.9) is defined 

from the density variation directly, i.e. 
�
�� � ��� . In this regard, �acts as 

a dynamic pressure rather than a thermodynamic one.  

Guo et al. [2000] developed another pressure-based incompressible 

LBGK model later. Unlike the previous incompressible models which 
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are based on the original density-based models, Guo’s model is designed 

with intent to solve the incompressible Navier-Stokes equations directly. 

The EDF in Guo’s D2Q9 model reads, 
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 (3.16) 

where ��is defined by Eq. (3.8), and the parameters �, 	, and 
 satisfy 

the following relation 

 � � � �	 
 � 	 
� � � � . (3.17) 

With this EDF, the evolution equation of Guo’s model is expressed as 
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���
� � 	 	 � � �	 � 	 � �� 	 	� �

�
� �� � � � � �� �	 
� � � � � , (3.18) 

and the pressure and velocity are defined by 
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� ��� � .  (3.19) 

The Chapman-Enskog expansion of this model leads to the exact 

incompressible Navier-Stokes equations,  

 � � �� , (3.20) 

 ��
	

�
�

� �  � � � 
�
�

� � � , (3.21) 

where the shear viscosity is the same as the standard D2Q9 model. 

The above incompressible LBGK models can be easily extended to 

MRT models. For example, the MRT version of the He-Luo model has 

been proposed in [d'Humières et al., 2002], while the MRT version of 

Guo’s model was reported in [Du et al., 2006]. 
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3.2   Forcing Schemes with Reduced Discrete Lattice Effects 

Fluid flows are usually exposed to external or internal forces, such as 

gravity or intermolecular interactions. In the continuous Boltzmann 

equation, the contribution of a body force ��� � , where � is the force 

acceleration, to the change of the distribution function � is described by a 

forcing term � � � �� 	� � �� � . In LBE, however, this forcing term cannot 

be employed straightforwardly because the particle velocity is discretized. 

Therefore, it is a fundamental topic to include such forces into the LBE, 

and a variety of discrete forcing schemes have been developed from 

different physical pictures. For convenience, we will express the EDF as 

a function of the fluid density and velocity, 
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3.2.1   Scheme with modified equilibrium distribution function 

If the force is induced by a potential and the density variation is small, i.e. 

�
����∇��≈��∇�����, it can be included into the LBE by modifying the 

EDF [Buick and Greated, 2000], 
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 (3.23) 

where 
�� ��� � � �� � , and � is defined by  

 � �

�

�� � �� � . (3.24) 

It is easy to verify that the zeroth, first, and third order moments of � ���
��  

are the same as those of the standard DnQb models (c.f. Eq. (1.52)), but 

the second-order moment involves the potential, 

 � � � ���
� � �

�

� � � � � ��  � � � � �� �� . (3.25) 
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With this change, we can show that the momentum flux at the order of 

� in the Chapman-Enskog expansion is (neglecting the terms of �(��)), 
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 �   �
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�� ��

�� � � � � � � �	
�� � � � � �

. (3.26) 

Therefore, the momentum equation will be 

 � ��
� �

� � � � 

�� �

	

�
� � ��

� � ��  � � � �  �  �  � �	 
�
�

�� � � � , (3.27) 

where the residual term � is given by 

 � �	 	 �� � � ��  �  � ��� � �� � �� �	 � 
 . (3.28) 

Clearly, � does not vanish in general, and so the above method will bring 

some additional errors due to the force field. 

The force can also be included in LBE by modifying the fluid 

velocity appearing in the EDF [Shan and Chen, 1993], namely, the 

equilibrium velocity is now given by, 

 � ���
	��� �� � � . (3.29) 

In the original method developed by Shan and Chen (referred to SC) 

[1993], the fluid velocity � is still defined by Eq. (3.24). In a later work, 

it was argued that the fluid velocity (denoted by � for clarity) should be 

defined as the average of pre- and post-collision velocities (referred to 

SD scheme) [Shan and Doolen, 1995], 
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� � �

�

� �
�

� ��� � � ��� � � � . (3.30) 

3.2.2   Schemes with a forcing term 

The most straightforward way to account for the body force is to add a 

forcing term to the LBE, like that in the Boltzmann equation, 

       � �� � � � � � � � � �
�

� ���
� � 	 	 � � � 	 �	 � 	 	 � 	� � �� � �

�
� �� � � � � � �� �	 
� � � � � , (3.31) 
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where the forcing term �� depends on the body force �. A variety of 

expressions for �� have been proposed with different interpretations of 

the fluid velocity. 

Scheme based on LGA 

The early widely used forcing scheme originates from the LGA method 

[Frisch et al., 1987; Luo, 1997], which can be written as, 

 
�

�
� �

�

�
�

�
�

�
� �

. (3.32) 

This forcing scheme is constructed to enforce mass and momentum 

conservations [Frisch et al., 1987; Luo, 1997], 

 ��

�

� �� ,      � �

�

� ��� � . (3.33) 

In this forcing scheme, the EDF and the fluid velocity are both the same 

as the standard DnQb models, i.e. � � � � ���
� �� � �� �  and the fluid velocity 

is still defined by Eq. (3.24). It was also suggested by some researchers 

that the fluid velocity takes � instead of � [Ginzbourg and Adler, 1994], 

and we will call this scheme as modified LGA scheme and denoted by 

mLGA. 

Buick-Greated scheme 

In this scheme the forcing term is defined by [Buick and Greated, 2000], 
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, (3.34) 

while the fluid velocity is defined again as the average of the pre- and 

post-collision velocities, 
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� �

�

�� �� �
� �

�
� , (3.35) 

which is also used in the EDF, i.e. � � � � ���
� �� � �� � . 

He-Shan-Doolen scheme 

This model (denoted by HSD) was developed based on the continuous 

Boltzmann equation [He et al., 1998]. The forcing term in the continuous 
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velocity space is first approximated as, 

     � � � �

�

� �
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�

� 	 � 	 � 	
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� �
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� �
� � � � �� �

�
� � � , (3.36) 

where � �� � � �� � � � � � � �� � � ��� ��� 	 � 	 	��� � � �� �  is the equilibrium distribution 

function given by 
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��
, (3.37) 

and here � is the spatial dimension. Following the standard discretization 

procedure as given in Chapter 1, one can obtain a discrete velocity model 

with a forcing term, 
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� � � � �
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	 �

� � �� �  � � � �� �	 
�
� , (3.38) 

where the forcing term is given by 
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�

� �� ��
� �
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�
� � �

, (3.39) 

with 
�
�� �
� being the sound speed, and 

� � � � ���
� �� � �� � . The density 

and velocity of the fluid are given by 

 �

�

�� � � ,      � �

�

�� � �� � . (3.40) 

Integrating Eq. (3.38) along the characteristic line leads to 
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� � 	 	 � � �� 	 � 	 	 	 	 �	
�

� � � � �� � � � � � � � � � � � , (3.41) 

where  

 � �� ��
� � � �

�

� � �
�

� �� � � � �� �	 
 . (3.42) 

Evaluating the integral on the right hand side of Eq. (3.41) using the 

trapezoidal rule one can obtain that 

     � � � � � � � � � � � �
�

	
� � 	 	 � � � 	 	 �� 	 � 	 	 	

�
� � � �� �� � � � � � � � �	 
� � � � � � . (3.43) 
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The above scheme is implicit. However, the implicitness can be eliminated 

by introducing the following distribution function, 

 � � � � � �
�

	
� � �� � 	 	

�
� � �� � . (3.44) 

Equation (3.43) can then be rewritten as Eq. (3.31) with ��������	�
���, 
and  
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� � �
� . (3.45) 

From Eq. (3.44) we can see that the density and velocity of the fluid can 

be computed from the new distribution function directly, 
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� � �� � ,   
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� � � �� �� � � � . (3.46) 

It is also noted that the term associated with the force in the EDF given 

by Eq. (3.45) can be regrouped into the forcing term so that the He-Shan-

Doolen forcing scheme becomes 
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� . (3.47) 

Moment-expansion scheme 

Luo noted that although the forcing term � � � �� 	� � �� �  in the Boltzmann 

equation cannot be discretized in the discrete velocity space, the first 

three moments of this term can be written out explicitly [Luo, 1998], 
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 (3.48) 

Therefore, the forcing term can be expanded as a series of ξξξξ,  

 ��� ��� ���� � �� ��� � ��  � � � � �	 
� � � �� � � �� , (3.49) 

where  
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� , (3.50) 
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and the expansion coefficients are  
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�
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� �
� �

,  ���
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� �
�

� ,  � ����

�

�

� ��
� � �� �� �� . (3.51) 

Substituting these results into Eq. (3.49) we can express the forcing term 

explicitly, which further leads to the following discrete forcing scheme, 
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� � �� �
� . (3.52) 

It is noted that in the moment-expansion scheme, the fluid velocity � is 

the same as �.  

The moment-expansion scheme was also obtained independently by 

Martys et al. [1998] based on Hermite expression of the distribution 

function, and Shan et al. [2006] made a further extension by including 

higher-order moments. It is also noted that if only the zeroth moment is 

considered in the expansion, the moment-expansion scheme reduces to 

the scheme based on the LGA method.  

Modified moment-expansion schemes 

Ladd and Verberg [2001] proposed another two moment-expansion 

schemes (denoted by ���� and �����, respectively), which can be 

expressed as, 
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The coefficients and the EDF are  
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(3.54) 

Later, Guo et al. [2002c] proposed another moment-expansion scheme 

(denoted by GZS) which has the same formulation as Eq. (3.53) and the 
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coefficients are given by 
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3.2.3   Analysis of the forcing schemes 

We now make an analysis of the LBE with a forcing scheme through  

the Chapman-Enskog expansion method. The derived hydrodynamic 

equations will contain some additional terms due to the forcing term in 

comparison with the standard Navier-Stokes equations, through which 

we can evaluate the accuracy of the forcing schemes. 

First, we express the forcing schemes (except for the HSD scheme) 

given in previous sections in a general formulation, 

 

� � � �

� �

� � �

� �

� �

� �

�

�

�
�

� � ��
� �

� �

� � ��
�

� �

� ��
�

� �

� ��

� �

� �� ��� �� �� �
� �	 

� ���� �� �� �
� �	 


� � �� � � 	� �

� � � � 	� �

�

�

  

(3.56)

 

together with the following EDF, equilibrium velocity ��, and fluid 

velocity �, 

� � � � �� � ����
� � � � 	 � � 	

� �

� � � � � �� � � � �� � � � �� �� � �� �� � ,  (3.57) 

where �,
�,
�, and �are scalar parameters. It can be easily shown that 

 � ��� � � �� � � � � �

� � �

� � � � �� � � �� � �� � � � ��� � .  (3.58) 

In Tab. 3.1 the parameters of different forcing schemes are listed. It is 

noted the HSD scheme can also be expressed as Eq. (3.56) together with 

some terms of �����, and the zeroth- and first-order moments are also the 

same as those given in Eq. (3.58), but the second-order moment is  
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. (3.59) 
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After neglecting the term of order  (�	), it can be seen that the 

parameters of the HSD and GZS schemes are just the same, although 

their expressions are different. 

With the general formulation, the LBE with a forcing term can be 

expressed as 

  ��
� � � � � � � � � � � � � � �� � 	 	 � � � 	 �� 	 � 	 � 	 � � 	� � � �

�
� �� � � � � � �	 
� � � � � � . (3.60) 

The hydrodynamics equations can be derived from Eq. (3.60) following 

the standard Chapman-Enskog expansion method. With the expansions 

given by Eq. (1.53), the equations of the Taylor series expansion of  

Eq. (3.60) can be expressed at each time scale as, 

    � ��                             ��� �� � �� �� � �� � , (3.61) 

� ��                       ��� ��� ���
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�

�
� � � � � ,  (3.63) 

Table 3.1.  Parameters of the forcing schemes. 

Scheme � � � � 

LGA  !� !� "� !�
mLGA  !� "#$� "� !�
SC �� !� !� !�

SD  �� "#$� !� !�

BG  "#$� "#$� �$��"��#$�� !�

Luo  !� !� "� "�

LV-I  !� !� "� �$��"��#$��

LV-II  !� "#$� "� "�

GZS  "#$� "#$� �$��"��#$�� �$��"��#$��

HSD*  "#$� "#$� �$��"��#$�� �$��"��#$��

 *The second-order moment of the HSD scheme is �� � � � �� �� ��� � ��� � �� �� � � . 
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where �������	 and 
�� �� 	 �� � � �� � � � . Here we have assumed that �
�������


!�"
��
�
���
���. Equation (3.63) can also be rewritten as  
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. (3.64) 

From the definitions of � and �� we can see that 
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#
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�

� ��� 
��
#
��. (3.65) 

With these results, we can obtain the hydrodynamics equations at 	�  

scale, 

 
�

�
� � � �	 �� �� �� � � � , (3.66) 
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, (3.67) 

where 
��� � �� � ��  ��� � �� � . It is apparent that all of the forcing schemes 

listed in Tab. 3.1 satisfy the condition that �������
�, which means 

that Eqs. (3.66) and (3.67) are the Euler equations for the velocity �� and 

pressure �
�� � �� with a body force.  

The equations at 	� scale are obtained from Eq. (3.64), which can be 

expressed as 
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, (3.68) 
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where  
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�
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,  ��� ���

� � �

�

� � �� �� � � . (3.70) 

The first order momentum flux can be evaluated from the equations at 	� 

scale. After some algebra, we can obtain that 

 ��� ���� � ��� � � �
� ��� �� � � �	 �� � � � � � � �� �� � � � � � � �� �	 
�  � �   �� � �� � , (3.71) 

where the terms of order ���	� have been neglected.  
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Combining the equations at 	� and 	� time scales we can obtain the 

following hydrodynamic equations  

 � �
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	 �
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� � , (3.72) 
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(3.73)

 

where � � �� � � �� � �� �   �� � � � , and we have assumed that �����	��� 

����	 or ������	�
�
�. The above equations can also be written in terms 

of the fluid velocity
 � 

by noticing that � � � 	� � �� � �� � � , 
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where �� and ��are the residual terms that reflect the derivations of the 

derived hydrodynamic equations from the desired mass and momentum 

conservation equations. These terms can be written out explicitly as, 
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(3.77)

 

where ����������

���	 and � � � �� � �� �   �

� � �� � � � . It is clear that 

different forcing schemes will give different residuals. In Tab. 3.2 �� and 

��are listed for some forcing schemes.  

It is clear that most of the forcing schemes give nonvanishing 

residuals in the mass and momentum conservation equations. 

Specifically, only those using �
�
����������	�� (i.e. �
�
���) as the fluid 

velocity satisfy the mass conservation equation in general, and the 

spurious velocity ��
 due to the body force vanishes only when the 

equilibrium velocity �  is taken as the fluid velocity � (i.e ����� ); 
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Furthermore, it is found that the force contribution to the momentum flux 

does not appear only when
�
�
 ��−�����. It is apparent that only the  

GZS and HSD schemes satisfy these constraints and yield the correct 

hydrodynamics equations. It is also noted that when the acceleration a is 

a constant and the density changes slowly in both time and space, the 

continuity equation holds for all of the forcing schemes, and the terms of 

temporal/spatial derivatives of the force in the momentum equation can 

be neglected, which means that the SD, LV-I, and LV-II schemes also 

give the desired hydrodynamic equations. On the other hand, the residual 

term ��
in the momentum equation of the other five schemes does not 

disappear even in such case due to the coupling terms �� and ��. 

3.2.4   Forcing scheme for MRT-LBE 

The forcing schemes for the LBGK models can be easily extended to 

MRT-LBE models. For example, Guo and Zheng [2007] have extended 

Table 3.2.  Residual terms of the hydrodynamics equations for some forcing schemes. 

Scheme ��  �� 

LGA  
�
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the GZS scheme to MRT-LBE recently, and the evolution equation with 

a forcing term is written as 

    � � � � $� � � � � � % &��
� 	 	 		 	� � �� �� � � � � � �� � � � � � �� � � � � ,  (3.78) 

for �
�
��
��
'�
��−��, where � is the transform matrix, �
�
"!�����
���
'�


��!�� is the relaxation matrix, and $� is the moments of the forcing term in 

the moment space which can be expressed as  

 
�$
�

� ���� � �� �� �� �
� 	 � �� , (3.79) 

where � �� � �� � �



�� � � ��� � is related to the body force �,  
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, (3.80) 

and here the fluid velocity � is defined by Eq. (3.55). Obviously, when  

��
�
��� the forcing scheme reduces to that for the LBGK model. The 

forcing moments can be computed explicitly. For example, for the D2Q9 

MRT model the nine moments are 
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� ���� � � �� �� �� �
. 

With the forcing moments, the collision process of a MRT-LBE can 

be implemented in moment space as 

 � � $� � � � � � � � � ��
� � � � 	 ��� 	 � 	 � � 	 � ��� �� � � � �� �	 
� � � . (3.81) 

Then the post-collision moments are transformed back to the velocity 

space where the standard streaming process is carried out.  

The Chapman-Enskog expansion of Eq. (3.78) together with the 

forcing term given by Eq. (3.79) leads to the correct hydrodynamics 

equations, where the shear and bulk viscosities are the same as those 
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given in Chapter 1. It is noted that the above forcing scheme is closely 

related to that for the LBGK model. But due to the freedom of MRT 

models, the forcing scheme can also be constructed directly in moment 

space. 

3.3   LBE with Nonuniform Grids 

The standard LBE models utilize certain regular lattices associated with 

the discrete velocities as the computational meshes. The flexibility of 

such meshes is rather limited, particularly for flows with irregular 

geometries. The choice of the computational meshes as the underlying 

lattice is not essential, however. Such choice is mainly due to historic 

reasons that LBE is a descendant of the LGA method which utilizes a 

regular lattice. Once the fact that LBE is a special finite-difference 

scheme of the continuous Boltzmann equation is recognized, we can 

decouple the computation mesh from the underlying lattice.  

A number of LBE methods using irregular meshes have been 

developed in the past years. The method can be classified into six types: 

(1) Grid-refinement and multi-block methods, (2) interpolation methods, 

(3) finite-difference based methods (FD-LBE), (4) finite-volume based 

methods (FV-LBE), (5) finite-element based methods (FE-LBE), (6) 

Taylor series expansion and least square-based methods (TLLBE). In this 

section we will present some examples of these non-standard LBE 

methods. 

3.3.1   Grid-refinement and multi-block methods 

Grid-refinement technique is widely used in CFD methods to treat the 

regions where flow variables change rapidly. The main advantage of the 

grid refinement method is that the boundary information can be spread to 

the flow domain quickly on the coarser grid and the overall flow pattern 

can be captured with low computational costs. The detailed information 

in the regions where large gradients exist can be captured more 

accurately on the refined grid. This technique was introduced into LBE 

first by Filippova and Hänel (referred to as FH) [1998]. In their method a 
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coarse mesh  is first used to cover the flow domain, and then one or 

several patches  with refined resolutions will be inserted into some 

regions on  where the flow may change significantly. Different patches 

can be used in different regions, and nest refinements can be employed if 

necessary. As an example, in what follows we will consider a mesh 

composed of a coarse lattice with spacing �
"� and a fine one with 

spacing �
"� , and assume that �� �

" "� � ��  is an integer.  

The evolutions on the coarse and fine grids can be written as 

      � ��
� � � � � � � � � � � ���� � � � � � � � �

� � 	 	 � � ��
� 	 � 	 � 	 � 	� �

�
� �� � � � � �� �	 
� � � � � , (3.82) 

where the variables with a superscript �
�
� or � represent quantities on 

the coarse or fine grid. Note that the EDF is identical on both coarse and 

fine grid since it depends only on the grid-independent variables (sound 

speed, fluid density, and velocity). Furthermore, since the sound speed 

and viscosity of the fluid should be independent of the meshes, the 

following relations must hold, 
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. (3.83) 

On the other hand, from the Chapman-Enskog analysis we can see that 

the nonequilibrium parts of the distribution functions on the nodes shared 

by both grids satisfy the following condition,  
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or in other words, 
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, (3.85) 

where the prime denotes the post-collision state. Therefore, the post-

collision distribution functions on the node shared by the two grids have 

the following relations,  
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 (3.86) 
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where the variables with a tilde represent the counterparts on the fine 

grid interpolated from the coarse one. As such, the relationship between 

the two grids is well established.  

The grid-refinement method developed by Filippova and Hänel is 

sketched in Fig. 3.1, and the process can be described as follows: 

(1) Initializing the distribution functions on both coarse and fine grids; 

(2) Calculating the post distribution functions �� � �
� �

�� 	� �  and �� � �
� �

�� 	� �  

at all nodes; 

(3) Evolution on the coarse grid at time t: 

(a) Re-calculating � � �
� �

�� 	� � at the common nodes according to  

Eq. (3.86); 

 
Fig. 3.1.  Schematic of the FH grid-refinement method. Top: Coarse and fine grids for  

����. Solid circle: node of coarse grid; open square: node of fine grid; open circle: 

common node. Bottom: Evolution process on two grids. (0)-(4): computation order; 

dashed arrow: information exchange between grids; solid arrow: streaming. 

 



 Improved Lattice Boltzmann Models 81 

(b) Streaming: � � � � � �
�� � � � �

� � 	 	 �� 	 � 	� � �� � �� � � ; 

(c) Collision: � �� � � � � � % � � � � � �& �
� ��� � � � � � �

� 	 � � �� 	 � 	 � 	 � 	� �� � � � �� � � � . 

(4) Evolution on the fine grid at time steps �
� 		 	 ��� � ��
�
��
��
�−��:  

(a) calculating � � ���
� ��� 	� �� by interpolation from those on the coarse 

grid; 

(b) Streaming: �� � � � � �
�� �� �

� � 	 � � �� 	 � 	� � �� �� � � ; 

(c) Collision: � �
�� � � � � � % � � � � � �& �

� ��� �� � � �
� � � � �� 	 � 	 � 	 � 	 ��� � � �� � � � . 

(5) Go to (3) until certain stop criterion is satisfied.  

It is noted that the FH scheme may encounter numerical instability if 

������ or ������. Dupuis and Chopard [2003] suggested another grid 

refinement method (referred to as DC). Like the FH method, the 

information exchange in the DC method is also based on Eq. (3.84), but 

this is achieved through the distribution functions rather than the post-

collision ones, 

    � � � ��� ��� �
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�

�
� � �

�
� �

�

�
� �� �� �� 	 

� �� . (3.87) 

These distributions are then used in the collision processes on both grids. 

Based on this grid refinement method, Dupuis and Chopard further 

proposed an acceleration technique: a coarse grid is used first to obtain a 

solution, from which an initial state on a finer grid can be constructed 

based on Eq. (3.87). Repeating this process can lead to a more accurate 

solution on a finer grid. It was shown that this technique could improve 

the computational efficiency greatly [Dupuis and Chopard, 2003]. 

In the grid-refinement methods, a coarse grid is first generated to 

cover the flow region, and some finer patches are then put at certain 

regions. The refined regions are covered by both the coarse and fine 

grids, and information exchanges on all common nodes. As shown 

previously, the information exchange needs special treatments and may 

lead to some undesired artifacts. An alternative technique that employs 

grids with different resolutions is the multi-block method, as developed 

by Yu et al. [2002]. In this method, the flow domain is first decomposed 

into several blocks, and the flow in each block is solved by a LBE using 
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a grid with an independent resolution. Information between different 

blocks exchanges only on nodes at block interfaces. In Yu’s method, the 

strategy used in the FH method was suggested for this purpose.  

Guo et al. [2003] proposed a more flexible multi-block method, i.e. 

domain decomposition method. In this approach, the flow domain is 

decomposed into several sub-domains that may overlap or not. On each 

sub-domain, an independent LBE with an independent lattice runs. An 

extreme example is that the D2Q9 LBE is used on a sub-domain while 

the D2Q7 LBE is used on another one. The ghost boundaries of the sub-

domains are treated by the non-equilibrium extrapolation method as 

described in Chapter 2, and the information exchange is realized through 

the equilibrium parts where the fluid density and velocity are interpolated 

from the sub-domains involved.  

Recent development in grid-refinement method in LBE is the use of 

adaptive grids. The first attempt towards this direction was attributed to 

Crouse et al. [2003]. In their method, a sensor variable � , which is based 

on heuristic expressions for primary or derived quantities of the flow 

field, is used to detect the location of new refinement zones. An example 

of the sensor is 	��
"� � �  that measures the errors with respect to mass 

conservation. The adaptive refinement starts with an initial grid. After a 

preliminary solution is achieved, the sensor is evaluated in each cell 

surrounded by some neighboring nodes. If the value of the sensor in a 

cell exceeds a critical value, the cell will be marked for refinement. The 

unknown distribution functions on the new refined grid nodes can be 

constructed from the parent cells using certain interpolation schemes as 

used in the FH method, and simulation process continues then on the 

improved grid. Crouse’s method was developed based on LBGK models, 

and recently it was generalized for MRT-LBE models [Tölke et al., 

2006]. A similar approach was also proposed based on the volumetric 

formulation of LBE [Yu and Fan, 2009]. 

More recently, Wu and Shu [2011] presented a stencil adaptive LBE 

for two-dimensional problems. It incorporates the stencil adaptive 

algorithm developed by Ding and Shu [2006] for the solution of  

Navier–Stokes equations into the LBE calculation. Based on the uniform 

mesh, the stencil adaptive algorithm refines the mesh by two types of  
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5-points symmetric stencils, which are used in an alternating sequence 

for increased refinement levels. The two types of symmetric stencils can 

be easily combined to form a 9-points symmetric structure. Using the 

one-dimensional second-order interpolation along the straight line and 

the D2Q9 model, the adaptive LBE calculation can be effectively carried 

out. Unlike other works, where the FH scheme is usually used, and  

the relaxation parameters and time step sizes are used differently on  

different grid levels, in the work of Wu and Shu [2011], the same 

relaxation parameter and time step size are used at every mesh point. The 

stencil adaptive LBE has been effectively applied to simulate the lid-

driven cavity flow and the flow around a circular cylinder [Wu and Shu, 

2011]. 

3.3.2   Interpolation methods 

He et al. [1996] pointed out that the computational mesh of LBE can  

be separated from underlying lattice associated with the discrete velocity 

set. Based on this understanding, they proposed an interpolation 

supplemented LBE method (ISLBE) that uses an arbitrary computational 

mesh. The procedure of ISLBE is similar to the standard LBE except for 

an additional interpolation step, and can be described as follows. 

(1) Initializing the distribution functions �����

� on each node � of the 

computational mesh (denoted by ); 

(2) Collision: � ��� � � � � � % � � � � � �&��
� � � �� 	 � 	 � 	 � 	��� � � �� � � � ; 

(3) Streaming: � � � � � �� 	 �� 	 � 	�� �� �� � , where � � 	�� �� � �� , which does 

not locate at the mesh  in general. Actually, all of these points 

constitute a new mesh  which is a translation of the original 

mesh  along ci , i.e. .  

(4) Interpolation: construct the distribution functions at nodes of  

from those at  using some interpolation schemes, � � �� 	� 	 �� ��  

� � �� 	� 	 �� �� � where P is an interpolation operator.  

(5) Calculating the fluid density and velocity at : � � �		� �� ��  

� � �� 	�
� 	 ��� � , � � �		� ��� � � � �� � 	�

� 	 �� �� �� . 

(6) Repeat (2)-(5) until some stop criterion is satisfied. 
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It should be noted that the time step in ISLBE should satisfy  

the Courant-Friedrichs-Lewy (CFL) condition, which means that the 

lattice spacing �"
���	 should be smaller than the minimum of the mesh 

spacing of  (denoted by 
(�
$( ), so that the particles can only move to 

neighboring cells. Furthermore, interpolation schemes with at least 

second order accuracy should be used in the interpolation step in order to 

reduce the numerical dissipation. In practical applications, second order 

upwind schemes are usually adopted. It can be shown that interpolations 

with second order accuracy do not influence the viscosity of the ISLBE. 

However, linear analysis indicates that such interpolations will influence 

the hyper-viscosities in the spectral space, and may influence the 

Galilean invariant property [Lallemand and Luo, 2000]. 

Another advantage of ISLBE in addition to the use of non-uniform 

meshes is that the simulated Reynolds number can be increased. For the 

standard DnQb LBGK models, the Reynolds number can be expressed as 

 )�
� � � ��"

�% ��

�� �
� �

�
, (3.88) 

where � and % are the characteristic length and velocity of the flow. This 

indicates that a larger )� can be achieved by increasing the Mach number 

� or decreasing � or �". However, numerical instability will appear if � 

is large or � is close to 0.5, while a small �" means high computational 

costs. On the other hand, the lattice spacing �" is independent of the 

computational mesh, which means that a coarse mesh can be used with a 

finer underlying lattice in ISLBE. Actually, the local Reynolds number 

of ISLBE is 
�)� )�&( (� , where (��$ "& �� ( , and )� �� "� � �( �  is the 

grid Reynolds number of the standard LBE. So, the ISLBE can increase 

the simulated Reynolds number by & times under the same conditions as 

the standard LBE [He et al., 1997].  

3.3.3   Finite-difference based LBE methods 

As shown in Chapter 1, the LBE can be viewed as a special numerical 

scheme of the continuous Boltzmann equation. Specifically, LBE is an 

upwind finite-difference scheme of the following discrete velocity model 
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(DVM) obtained from the Boltzmann-BGK equation, 
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� �� ��
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�

�
� � � �

	 �

� � �� �  � ) � � �	 
�
� .   (3.89) 

The discrete velocity set � �� � � � *�+ � � �� �� �  is determined by the 

requirements of velocity moments of the distribution function ����
��
	� 

[Shan et al., 2006]. Particularly, the following quadratures should be 

evaluated exactly,  

 � � � �� � � � � � � �� �� ��
� �

�

� 	 ' � 	� � � � �� � ,
�
≤
�≤(,  (3.90) 

where the '�’s are the weights and ( is an integer, and � ����  is an 

expansion of the Maxwellian-Boltzmann distribution, 

 � �
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� � � �
)

�� �
�

�

� 	
�

� ��� � �� , (3.91) 

where the coefficient ��
is a rank-� tensor and the dot product represents 

full contraction. The expansion can be a Taylor or Hermite expansion. In 

terms of the Chapman-Enskog analysis, the above quadratures determine 

the accuracy of the DVM as an approximation to the original Boltzmann 

equation. For example, in order to make the DVM (3.89) match the 

Boltzmann equation at the Navier-Stokes order (i.e. the 	� time scale) for 

isothermal flows in the low Mach limit, it is necessary to choose )≥
� in 

the expansion (3.91) and ( ≥
 	 in Eq. (3.90), which means that a 

quadrature formula of at least 5 degree of precision should be used. For 

the full thermal Navier-Stokes equations, the expansion must be up to )

≥
	 and the moments with (≥
� should be evaluated using a quadrature 

formula of degree of greater than 6.  

The discrete velocity set together with the discrete 

EDF � � � �� � � � � � ��� ��
� � �� 	 ' � 	�� � �  are determined in such a way that the 

hydrodynamic equations are ensured to have the desired rotational 

invariance, and this feature is called physical symmetry by Cao et al. 

[1997]. A concept related to the physical symmetry is the lattice 

symmetry, which means that the number of links at a node is the same as 

the discrete velocities. In LGA, these two symmetries are identical 

because the particles resident on the lattice. But in the LBE framework, 
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they are not required to be coupled. Once this fact is recognized, the 

discretization of the spatial space x can be done independently from the 

discrete velocities. Actually, the ISLBE has made use of this knowledge. 

More general numerical methods for partial differential equations, such 

as finite-difference, finite-volume, and finite-element schemes, can also 

be applied to the DVM (3.89), which lead to different non-standard LBE 

methods. 

The first attempt to discretize Eq. (3.89) using certain finite-

difference schemes was attributed to Cao et al. [1997]. In their method, 

the spatial gradient is first discretized,  

 *
� �� � �  , (3.92) 

where ∇*
 is a discrete gradient operator depending on the coordinate 

system and computational mesh. For example, the central difference 

scheme on a uniform mesh in the Cartesian coordinate system can be 

expressed as  
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(
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where ∆"� is the mesh spacing in the direction of "� . For general 

coordinate systems, the gradient can be discretized on a regular 

computational mesh which is constructed from the physical mesh using 

some transformations. For example, in the polar coordinate system �&+�� 

the spatial gradient is expressed as  
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� �
�

� �
�� ,  (3.94) 

where �& and ���are the unit vectors for the polar coordinates. Then the 

derivatives with respect to & and ��can be discretized using some standard 

finite-difference schemes. 

For the temporal derivative in the DVM (3.89), Cao et al. suggested 

the second-order Runge-Kutta method so that the evolution of the 

distribution functions ��
follows the following procedure, 

 � � � �� � � � � � �
�

� � �

	
� 	 	 � 	 � 	

(
� ( � �� � � ,  (3.95) 
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 � � � � � � � � � ��� � �� 	 	 � 	 	� 	 	� ( � � ( � (� � � ,  (3.96) 

where � �*
� � � �� � � �� �� � � � ) , and ∆	 is the time step that obeys the  

CFL condition (!� , ,� � ���	 "( * (� . The above method was used to 

discretize a thermal DVM which was then successfully applied to the 

heat conduction between two plates with a large temperature difference 

[Cao et al., 1997].  

Instead of using the Runge-Kutta method, Cao et al. [1997] also 

suggested an semi-implicit scheme to solve the DVM (3.89), where the 

convection term is discretized by an explicit downwind scheme while the 

collision term is treated implicitly, 
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(3.97)
 

Mei and Shyy [1998] further generalized the semi-implicit scheme to 

curved coordinate systems later. In a general coordinate system 

� � 	� � � �� � ���  the DVM (3.89) can be expressed as 
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where  

 � � 	� "�-, , � �, ,�

,

� �
�

�
� � � +

�
�

�
�� � � . 

For example, in the polar coordinate system, Eq. (3.98) can be written 

out explicitly as 
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One can further assume that &
�
&���
and Eq. (3.99) becomes 
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where *&����&���. Another special case supposes the two dimensional 

Cartesian coordinates x and y are functions of two independent variables 

��and �, respectively, viz. "
�
"����
#
�
#���, then Eq. (3.98) reduces to  

 � �� �� ��� �" � �& �
� �

" # �

� � � � �
� �

	 * *� � �

� � �
� � � � �

� � �
, (3.101) 

where *"����"���� �and *#����#���. It is apparent that the DVM in a general 

coordinate system is much simpler in comparison with those of the 

Navier-Stokes equations due to the absence of second order derivatives. 

The generalized DVM (3.98) can be easily discretized using standard 

finite-difference schemes. For instance, Mei and Shyy (1998) suggested 

to discretize the convection term in Eq. (3.100) using a second-order 

upwind scheme,  
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� , � � , � � , � �
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�
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� � �
�

� � �
�

� �

� �

��� � � ,��� (� � �� �� � � -���� (

 (3.102) 

where (� is the increment in �. The upwind scheme for ���#�� is similar. 

The collision term was treated implicitly in the original Mei-Shyy 

method, i.e. it is discretized as  

 � �� ��� �� ��
� � �

�

� �
�

��� �) � � �� �	 
 , (3.103) 

where the superscript � denotes the time step. Because the unknowns  

���� and ���� are involved in � �� ��� �
��

� , the following approximation was 

suggested [Mei and Shyy, 1998],  

 � �� � � �� � �� ���� � �� � �� �
� � �� � �� �� � . (3.104) 

Therefore, the final FD-LBE for the DVM (3.100) developed by Mei and 

Shyy [1998] can be written as  

� �� �� � �� ��� � �
��

�
�� ��� �

�
�� � �� �� � �&� * � * �

� � � � �

&

� � 	 � 	
� � � � �

& *

�
� �

�

� � �

�� ( (
� � � � �  (3.105) 

where �� 	� �� ( . Similar methods can also be derived for the DVM in 

other coordinate systems.  
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The implicit treatment of the collision term in the Mei-Shyy method 

is advantageous to the numerical stability. On the other hand, the 

extrapolation used in the EDF may have a negative effect on the stability. 

Furthermore, the Mei-Shyy method is a three-time-level scheme, which 

requires more computational memory. Guo and Zhao [2003a] later 

proposed an alternative semi-implicit FD-LBE, which is free of such 

disadvantages. First, integrating Eq. (3.89) in the time interval %	��
 	���& 

leads to, 

 � � �� �� � � � �
� � � � � �� � 	 � 	 � �� �� �� � (  � ( ) � � )� 	 
� , (3.106) 

where �
≤
�≤
�. Apparently the scheme is fully explicit as ��
� and 

fully implicit as �
�
�. However, only as �
�
��� the discretization of the 

collision term is of second-order accuracy.  

In order to remove the implicitness, Guo and Zhao [2003a] 

introduced a new type of distribution functions, 

 � ���
� � � � � �� � 	� � � � �� � �� � ( ) � �� �	 
� , (3.107) 

where � �	� �� ( . In terms of the new distribution functions, Eq. (3.106) 

can be rewritten as 
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 (3.108) 

or  

 � � � ��� �� � �� �� �� �� �
� � � � �� 	 � � � � �� � �� (  �� �� � �� � � , (3.109) 

where  

 � ���

�

�� �� �
� � �� � ��

�
�

�
� �� �� �	 
�

. (3.110) 

Once the spatial gradient is discretized, the values of ��
at 	��� can be 

obtained, and the fluid density and velocity can be calculated by 

 �� � �

� �

��� �� �� �� � . (3.111) 
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The explicit scheme (3.108) is identical to the implicit one (3.106), 

and both share the same accuracy and numerical stability. But it is 

obvious that the former is more efficient than the latter. Actually, the 

trick that transforms an implicit scheme to an explicit one by introducing 

a new type of distribution functions can serve as a common strategy for 

designing efficient LBE methods. With this FD-LBE, Guo and Zhao 

[2003a] have successfully simulated the cavity flow and the flow around 

a cylinder at different Reynolds numbers with non-uniform meshes.  

3.3.4   Finite-volume based LBE methods 

The first finite-volume based LBE was developed by Nannelli and Succi 

[1992] when they introduced coarse-grained distribution functions over a 

control volume ) 

 
�

� � � � � �
�

� �

�

� 	 � 	 �
. )

�  � � � ,  (3.112) 

where � is the center of the cell and .� is its volume. Applying this 

coarse-graining projection operator to the DVM (3.89) and discretizing 

the time derivative with the explicit Euler rule lead to  
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(3.113)

 

where � is the outward unit normal vector of the cell, and � ���
��  is the 

coarse-grained EDF. The original distribution function ��
in the numerical 

flux should be reconstructed from the coarse-grained distribution 

functions, which can be achieved by using certain interpolation schemes. 

Later some alternative FV-LBE methods were developed based on 

more advanced finite-volume techniques. An example is the series of 

cell-vertex models developed by Peng et al. [1998,1999] and Xi et al. 

[1999a, 1999b]. In these models the computational domain is covered by 

some irregular polygonal or polyhedral meshes, on which the cell-vertex 

control volumes are defined. In Fig. 3.2 a two-dimensional control 

volume (the dashed polygon ���…) around a node � on a triangular 
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mesh is sketched. Here � and � are the centers of the triangles ��1�2 and 

��2�3 respectively, and � is the midpoint of the edge ��2. It is clear that 

the control cell can be decomposed into some sub-triangles like ���, 

���, etc., and the integration of Eq. (3.89) over the cell is just the sum 

of those over these sub-triangles. In what follows we will focus on the 

triangle ���.  

The integration of the temporal term of Eq. (3.89) over ��� can be 

approximated as 

 
� ���

���
���

� ��
� /
	 	

��
�

� � � ,  (3.114) 

where /��� is the area of the triangle ���, and ����� is the value of �� on 

node �. Here it is assumed that �� is constant over ���.  

The fluxes across the edges ��, ��, and �� can be obtained by 

integrating the convection term on ���, 

 � �� � � �� �� � �
���

� � � � �� 0 � �� � �� � � ,  (3.115) 

where ��� is the outward unit normal vector of the edge ��, and ��� is the 

length of ��, while 0� is the total fluxes through the internal edges �� 

and ��, which will cancel out over the whole control volume. fi(CE) is 

the average value of �� on ��, and Peng et al. suggested a linear 

interpolation,  
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� . (3.116) 
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Fig. 3.2.  Diagram of finite volumes sharing a common node P. The dashed polygon 

around P is its control volume. 
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In the collision term, if �� and � ���
�� are both assumed to be linear 

functions, the integration of this term can be approximated as 
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� � � �

� � � � � � � �
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 �
 (3.117) 

where ����� and ����� are approximated as 

       � � �� � � � � � � � � �
� � � � �

	 �

� � � � �
� �

� � � � � � � � � �
� � � �

� � �
� � . (3.118) 

The EDFs � �� ���
�� � and � �� ���

�� � can be approximated similarly.  

Integrations over other sub-triangles can be obtained similarly. 

Therefore, the update of �����
 can be obtained by summing up these 

integrations over the control volume and discretizing the temporal 

derivative using the Euler forward method, 

  � � �� � � � % � � �&� � �� � 	 � � 	 	� � � 	� � � ( , (3.119) 

where  
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� �� � �� �	 
� � . (3.120) 

Here ��� and ��� represent the contributions from the streaming and 

collision, respectively. It can be verified that these two matrices satisfy 

the following properties, 

 �� ���� ��

� �

� � �� � .� � . (3.121) 

It should be noted that the FV-LBE (3.119) is of first-order accuracy 

in time, although the spatial accuracy is second-order. In order to 

improve the time accuracy, Uberttini and Succi  [2005] proposed a 

fourth-order Runge-Kutta FV-LBE,  

 � � 	

�
� � � � � � � � � ��

�
� �� � 	 	 � � 	 � � � �� ( � � � � � , (3.122) 

where  

 � % � � �&�� 	� � � 	� ( , � �% � � � � �&�� 	� � � 	 �� ( � ,  

 	 �% � � � � �&�� 	� � � 	 �� ( � , � 	% � � � &�� 	� � � 	 �� ( � . 
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On the other hand, Stiebler et al. [2006] proposed a least-square-linear-

reconstruction (LSLR) method in evaluating the numerical flux after 

noticing that the approximations in Eqs. (3.116) and (3.118) may lead to 

some numerical instability. They assume that the distribution function is 

linear in the cell around node �,  

 � � � � � �� � �� � �� � � �� � � � , (3.123) 

where �������∇�����, which is obtained by solving the following 

minimization problem, 
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where �
�� � �' ��� �=‖ ‖ . After obtaining the solution by solving a linear 

algebra system, the average value of ��
 on the edge �� can be 

approximated by 
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Recently, Patila and Lakshmisha [2009] further introduced the total 

variation diminishing (TVD) approach in evaluating the numerical flux, 

and Rossi et al. [2005] and Succi and Ubertini and Succi [2006] have 

made some theoretical discussions about several fundamental issues of 

FV-LBE, such as temporal and spatial accuracy and boundary conditions.  

3.3.5   Finite-element based LBE methods 

The finite-element method has also been used to solve the DVM (3.89). 

Lee and Lin [2001] made the first contribution toward this direction 

when they proposed their characteristic Galerkin (CG) FE-LBE. First, 

integrating Eq. (3.89) along the characteristic line leads to 

− −� � � �� �� � �� � �� � �� � � � � �� � �� ��� �� � � � � � � � � � � �� 	 	 � 	 	 � 	 	 	 � 	 	 	� � � �( ) ( )� � � �� � � � , 

 (3.125) 

where � �	�� is the trajectory of the particle moving with velocity �� ,



�
≤
�≤
�
 is a free parameter. The terms on the right hand-side are the 
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approximation of the collision term, which is similar to that in the semi-

explicit FD-LBE given by Eq. (3.106). The distribution function on the 

trajectory, � � �� �� � �� 	 	�� , is approximated as  
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(3.126)

 

and the EDF is approximated similarly. Substituting these results into  

Eq. (3.126) and setting �
�
��� lead to  
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The distribution function at 	����� can be approximated with the 

Crank-Nicolson scheme, i.e., ��� �� � � �� � �
� � �� � �� �� � ; but such treatment 

will involve the unknown fluid density and velocity at 	���, which will 

bring some difficulties. One can use the extrapolation method as used  

in the FD-LBE proposed by Mei and Shyy [1998], or using the 

transformation approach to construct an explicit one as done in the FD-

LBE by Guo and Zhao [2003a]. In the CG FE-LBE of Lee and Lin, this 

was achieved by using a second-order prediction-correction method,  

 
� �

� �

� ��

�
� ��

�$

�
�

�

$ �� �� �
� � � � � �

�

�� �� �
� � � � �

�

� � 	 � �

	
� � �

�
�

�

� �
� �� ( �  � �
� �	 


� �( � �� �  �  � �
	

�

� �


�

� �

 
(3.128)

 

 
� �� � �� $$ �� � ��� �

� � � �� � �� �� � � �� �� �	 

, (3.129) 

where � � � �$ $$� � ��� ��
� �� � �� �  with  

 $$ �

�

�� � � ,   $$$ �

�

��� � �� � . 

In finite-element method, the flow domain is decomposed into a set 

of non-overlapping elements, i.e., )
�
0�)� , where the number of vertex 

nodes of element )� is )�.. The Galerkin method assumes that the 

distribution function
 ��
 can be projected onto a set of localized basis 
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functions which are generally piecewise polynomials associated with the 

elements, 

 
�
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�)
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� � 1 )�� �� � �� � , (3.130) 

where ���
 �������
 ��
'�
)�� are the basis functions on )� and ��� is the 

distribution function at the �-th node of )�. Substituting *
�� into Eqs. (3.128) 

and (3.129), and multiplying the equations by ���
as a test function, and 

then integrating over the element Ω�, we can obtain the CG FE-LBE,  
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where �,
��,
��, and ��
are
)�×)� matrices,  
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Here the inner product is defined by �� � ���2 3 �  � � Equations (3.131) 

and (3.132) constitute the basic process of the CG FE-LBE by Lee and 

Lin [2001]. Based on the similar strategy, Min and Lee [2011] developed 

a spectral-element discontinuous Galerkin (SEDG) method for solving 

the DVM (3.89). Several other FE-LBE methods based on SEDG were 

also proposed by independent groups [Shi et al., 2003; Düster et al., 

2006]. 

Another kind of FE-LBE was developed by Li et al. [2004] based on 

the least-squares finite-element (LSFE) method, in which the time 

evolution of DVM (3.89) is first discretized as  
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where � is again a parameter like that used in the FD-LBE and FV-LBE. 

Obviously, Equation (3.133) reduces to the Crank-Nicolson scheme as  
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� �
���, which can be expressed as  
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where  
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The spatial gradients in Eq. (3.134) can then be discretized by the 

finite-element method. As before, the flow domain is also decomposed 

into some elements, and the distribution functions are approximated 

by *
�� defined by Eq. (3.130). Generally, the populations *

�� do not satisfy 

Eq. (3.134), and the residual is  

 � �* � *
�� �� ��� � . (3.136) 

The LSFE aims to minimize the squares of the residual,  
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which is equivalent to the following set of linear algebra equations, 
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or 
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where the elemental matrix � and vector ��
are defined by 
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with  
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It is noted that in Eq. (3.135) the computation of
� �� ��� �

��
�

requires the 

unknown density and velocity. In LS-FELBE, this was achieved by 

extrapolation as done in the Mei-Shyy FD-LBE method. Then the nodal 

distribution functions can be obtained by solving Eq. (3.139).  
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3.3.6   Taylor series expansion and least square based methods 

In this part, we will introduce a new version of LBE (refereed to as 

TLLBE) with nonuniform meshes, which was developed by Shu and his 

coworkers [Chew et al., 2002; Niu et al., 2003; Shu et al., 2001; Shu  

et al., 2002]. This method is based on the conventional LBE, the well-

known Taylor series expansion, the idea of developing Runge-Kutta 

method, and the least squares approach. The final form of the method is 

an algebraic formulation, in which the coefficients only depend on the 

coordinates of mesh points and lattice velocity and can be computed in 

advance. Furthermore, the method is also free of lattice models. 

Taylor series expansion-based method 

Without loss of generality, we consider a two-dimensional (2D) case. As 

shown in Fig. 3.3, point / represents the grid point �"/�
#/� at time 	, and 

/′ represents the position �"/�����"�	�
 
 #/�����#�	�
 !-
 -(�
 	����	, and � 

represents the position �"��
 #�� with "����"/����" and #����#/����#. The 

LBE gives that 

 � ��
� � � � � � � � � � � ���
� 	 � � �� / 	 � / 	 � / 	 � / 	�

�
� �� � � � �� �	 
 . (3.141) 

For general cases, /′ may not coincide with the mesh point P. We first 

consider the Taylor series expansion with truncation to the first order 

derivative terms. Then, � � �� 	� / 	 �� �  can be approximated by the 

corresponding function and its derivatives at the mesh point P as 

 

P

A

B

C

D

E

A'

B'

C'

D'

P'

E'

 
 

Fig. 3.3.  Configuration of particle movement along ci . 
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where / / �" 	 �" " � "�( � � � , / / �# 	 �# # � #�( � � � . Note that the above 

approximation has a truncation error of second order. Substituting 

equation (3.142) into equation (3.141) gives 
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(3.143)

 

It is indicated that equation (3.143) is a first order differential 

equation, which only involves two mesh points / and �. When a uniform 

grid is used, ("�
(#�
�, then Eq. (3.143) reduces to the standard LBE. 

Solving equation (3.143) can provide the density distribution functions at 

all of the mesh points. An explicit formulation to update the distribution 

function was developed by Shu et al., which is inspired by the Runge-

Kutta method. As we know, the Runge-Kutta method is developed to 

improve the Taylor series method in the solution of ordinary differential 

equations (ODEs). Usually the Taylor series method involves evaluation 

of different orders of derivatives to update the functional value at the 

next time level. For a given ODE with a complicated expression,  

this application is very difficult. To improve the Taylor series method, 

the Runge-Kutta method evaluates the functional values at some 

intermediate points and then combines them (through the Taylor series 

expansion) to form a scheme with the same order of accuracy. 

With this idea in mind, we now look at Eq. (3.143). Notice that the 

distribution function and its derivatives at the mesh point � are all 

unknowns at the time level 	���	 . So Eq. (3.143) has three unknowns in 

total. To solve for the three unknowns, three equations are required. 

However, Eq. (3.143) provides only one equation, and two additional 

equations should be provided to close the system. As shown in Fig. 3.3, 

the particles with velocity �� at two mesh points � and � at time 	will 

stream to the new positions � ′ and � ′at	���	. The distribution functions 
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at these new positions can be computed through the standard LBE, which 

are given below, 

 � ��
� � � � � � � � � � � ���
� 	 � � �� � 	 � � 	 � � 	 � � 	�

�
� �� � � � �� �	 
 ,  (3.144) 

 � ��
� � � � � � � � � � � ���
� 	 � � �� � 	 � � 	 � � 	 � � 	�

�
� �� � � � �� �	 
 . (3.145) 

Using Taylor series expansion with truncation to the first order 

derivative terms, � � �� 	� � 	 �� � and � � �� 	� � 	 �� � in the above equations can 

be approximated by the function and its derivatives at the mesh point �. 

As a result, Eqs. (3.144) and (3.145) reduce to 
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where � �" 	" � �( � , � �# 	# � �( � , � � �" 	 �" " � "�( � � � , and � �# #( �  

�# 	 �� #�� � . 

Equations (3.143), (3.146), and (3.147) form a system to solve for the 

three unknowns. The solution of this system gives 

 � � � �� 	 �� � 	 �� � ( ( , (3.148) 

where  
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� � � � � � � � � ���
� 2 � � �� � 2 	 � 2 	 � 2 	�� � �� � �� �	 
 , 2
�
��
/�
�. 

It should be noted that �� �� , �� /� , and �� ��  are actually the post-

collision state of the distribution functions ��
at time 	 and the mesh point 

�, /, and �, respectively. Equation (3.148) has the second order of 
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truncation error, which may introduce a large numerical diffusion. To 

improve the accuracy of numerical computation, the Taylor series 

expansion can be truncated to the second order derivative terms. For the 

two-dimensional case, this expansion involves six unknowns, that is, one 

distribution function at the time level	���	  , two first order derivatives, 

and three second order derivatives. To solve for these unknowns, six 

equations are required to close the system. This can be done by applying 

the second order Taylor series expansion at 6 points. As shown in  

Fig. 3.3, the particles at six mesh points �, /, �, �, �, �  at 	 will stream 

to positions � ′, /′, � ′, � ′, � ′, � ′ at	���	.. The distribution functions at 

these new positions can be computed through the standard LBE. Then by 

using the second order Taylor series expansion at these new positions in 

terms of the distribution function and its derivatives at the mesh point �, 

we can obtain the following equation system 
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� � � � �
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+ * + *

� � � � � � � , � ,

,

� � . � .
�

� � � ,  � � � � �� � / � � � �� ,  (3.149) 

where  
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. 

Here �� ��  is the post-collision state of the distribution function ��
at the  

�!th point and the time 	, �+ *
� ��  is a vector with six elements formed by 

the coordinates of mesh points, + *�. is the vector of unknowns at the 

mesh point P and time	���	., which also has six elements, � �� � ,�  is the ,-th 

element of the vector �+ *
� ��  and �� ,.  is the ,-th element of the vector 

+ *�. . Our target is to find its first element �� � � �� � 	. � � 	 �� � . Equation 

system (3.149) can be put into the following matrix form 

 % &+ * + *� � �� . �� , (3.150) 
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where  

 � � � � � �+ * + � � � � � *
� � � � / � � � � � � � �� � � � � � �� , 
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 � � �" 	 �" " � "�( � � � , � � �# 	 �# # � #�( � � � , 

 � � �" 	 �" " � "�( � � � , � � �# 	 �# # � #�( � � � , 

 � � �" 	 �" " � "�( � � � , � � �# 	 �# # � #�( � � � . 

The expressions of �"( , �#( , /"( , /#( , �"(  and �#(  have been 

given previously. Since %��& is a 6×6 matrix, it is very difficult to obtain 

an analytical expression for the solution of equation system (3.150), and 

a numerical algorithm can be used to obtain an approximated solution. 

Note that the matrix %��&
only depends on the coordinates of the mesh 

points, which can be computed once and stored for the application of  

Eq. (3.150) at all time steps.  

Improvement by least square method 

In practical applications, it was found that the matrix %��& might be 

singular or ill-conditioned. To overcome this difficulty and ensure that 

the method is more general, Shu et al. [2002] suggested making use of 

the least squares approach to optimize the approximation by Eq. (3.149). 

This equation has 6 unknowns (elements of the vector +.�*). If  

Eq. (3.149) is applied at more than 6 mesh points, the system will be 

over-determined. For this case, the unknown vector can be decided from 

the least squares method. For simplicity, let the mesh point P be 

represented by the index �� � , and its adjacent points be represented by 

index ��
 �� ��
'�
), where ) is the number of neighboring points 

around � and it should be larger than 5. At each point, an error in terms 
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of Eq. (3.149) can be defined,  
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The square sum of all the errors is  
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To minimize the error �� , we need to set �� �� � ,� .� � � , which leads to 

 % & % &+ * % & + *
 

� � � � �� � . � �� ,  (3.153) 

where %��& is a � �� �) � +  dimensional matrix, which is given as 
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, 

and �� �� �+ * + � � ��� � *
� � � � )� � � �� ; The �"� and �#�
values in the matrix
%��& 

are given by  

� �" 	" � �( � , � �# 	# � �( � , �� � �" 	" " � "�( � � � ,  �� � �# 	# # � #�( � � � , 

for �
�
��
 ��
…�
). Clearly, when the coordinates of mesh points are 

given, and the particle velocity and time step size are specified, the 

matrix %��& is determined. Then from Eq. (3.153) we can obtain 

 � � �
+ * % & % & % & + * % &+ *
 


� � � � � � �. � � � � / �
�

� � . (3.154) 

Note that %/�& is a �×�)��� dimensional matrix. So Eq. (3.154) suggests 

that 
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where ���� ,-  are the elements of the first row of the matrix %/�&, which are 

pre-computed before the LBE is applied. Therefore, little computational 
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effort is introduced as compared with the standard LBE. Note that the 

function � is evaluated at the time level
	� So Eq. (3.155) is actually an 

explicit form to update the distribution function at the time level 	
�
�	. 

In the above process, there is no requirement for the selection of 

neighboring points, or in other words, Eq. (3.155) is independent from 

the mesh structure, and we only need to know the coordinates of the 

mesh points. Therefore Eq. (3.155) is basically a meshless form.  

Theoretical analysis has shown that the above least square-based LBE 

can recover the Navier-Stokes equations with second order of accuracy, 

no matter whether the mesh is uniform or non-uniform. The TLLBE has 

been successfully applied to a variety of flows with nonuniform meshes. 

An example for the flow around a circular cylinder is shown in Fig. 3.4.  

3.4   Accelerated LBE Methods for Steady Flows  

Steady flows appear in many physical and engineering situations. As a 

time-marching method, however, the LBE may encounter some 

convergence difficulties when applied to steady flows. The slow 

convergence rate is an inherent disadvantage of the standard LBE. As 

shown previously, the LBE is an explicit time-marching method for 

 

 
 

Fig. 3.4.  Flow around a circular cylinder. Top: Computational mesh; Bottom: Streamline 

with )����(left) and ��
(right). 
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compressible fluid flows with low Mach numbers, and can be viewed as 

an explicit artificial compressibility scheme for incompressible Navier-

Stokes equations. In addition to the error due to numerical discretization, 

the finite Mach number effect also introduces a grid independent 

compressibility error. To reduce this error, the Mach number must be 

kept sufficiently small. As the Mach number becomes smaller, however, 

it would become increasingly computational expensive to solve the 

compressible Navier-Stokes equations using the standard LBE [Lai et al., 

2001].  

Some efforts have been made to accelerate the convergence rate of 

the LBE from different viewpoints. In general, the existing accelerated 

LBE models fall into two categories, i.e., time dependent methods and 

time-independent methods. In the former, the LBE still evolves as a 

time-marching process, but the evolution equation is altered. On the 

other hand, in the time independent approach, a linear or nonlinear 

algebra system derived from the time independent form of the steady 

LBE or DVM is solved directly.  

3.4.1   Spectrum analysis of the hydrodynamic equations of the 

standard LBE 

The convergence difficulty of LBE roots in the large disparity between 

the acoustic wave speed and the fluid speed in low Mach number flows, 

as in the classical CFD methods [Turkel, 1999]. Usually, for any explicit 

scheme, the CFL condition should be fulfilled for the sake of numerical 

stability. Therefore, the time step should be chosen such that it is 

inversely proportional to the sound speed of the acoustic wave, during 

which the waves driven by the fluid change slightly. As a result, a large 

number of time steps are needed to reach the steady state of the flow. As 

an explicit scheme, the LBE also suffers from this problem. 

To see this more clearly, we now make a spectral analysis of  

the hydrodynamic equations derived from standard LBGK models (see 

Eqs. (1.69) and (1.70)). For two-dimensional flows, these equations can 

be written in a vector form,  

 + *��
	 " #

� � �
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� �  (3.156) 
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where � represents the vector associated with the viscous terms, and  
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where � and � are the "- and #- components of the fluid velocity �, 

respectively. Equation (3.156) can be further written as 

 + *��
	 " #

� � �
� � �

� � �
� � �

� 
 � �  (3.157) 

where 

� �

� � �

� ��� � �

�� � �

� �
� �� � �� � �� �� � ��� �	 


�
�

�
, 

� �

� � �

� ��

�� � �

� � �

� �
� �� � �� � �� �� � ��� �	 


�



�
. (3.158) 

It can be easily shown that the eigenvalues of the matrices � and 
 

are respectively 

 5 6� � � �� � �	 � 7� ,    5 6� � � �� � �	 � 7
 . (3.159) 

Therefore, the condition number of � is 
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where � is the Mach number. The condition number of matrix � is 

similar. Therefore, ��/� and ���� will be very large as the Mach number 

of the flow is small, which means that the waves in the fluid transfer with 

quite different speeds, and this will make the LBE converge very slowly. 

It is noted the viscous terms also have complex influences on the wave 

speeds, depending on the Reynolds number and the ratio of the Reynolds 

number to the Mach number, and the convergence difficulty can be 

further exacerbated by the magnitude of the diffusion terms [Lee, 1996]. 

3.4.2   Time-independent methods 

At steady state, the standard LBGK equation with a body force � can be 

written as  

� �� � � � � � �
�

���
� � 	 � � � 	 �� �� ��� �

�
� �� � � � � �� �	 
� � � � � , � �� �� �� .  (3.161) 
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This equation can also be rewritten in matrix formulation,  

 � � � � 	� � �� �� �� � �� � � , (3.162) 

where � and � are the local streaming and collision matrices, 

respectively, which are defined by [Bernaschi et al., 2002; Bernaschi and 

Succi, 2003], 
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, 

while �′ is a vector consisting of the forcing terms, � � �% � � � &
�� � � �� �� � . 

For a lattice with ) nodes, Eq. (3.162) represents a nonlinear algebraic 

system of the form  

 % &% & % &/ � �� ,  (3.163) 

where %/&
is a
�)×
�) block matrix consisting of � and �, [f] and [F] 

are two vectors with �) elements. This nonlinear system can be solved 

iteratively. For example, Bernaschi et al. [2002, 2003] suggested a 

Newton-Raphson procedure to linearize Eq. (3.163), which is then solved 

by a generalized method of residuals (GMRES). However, it was found 

that the convergence of this method may be rather slow for high-

Reynolds number flows. In order to release this difficulty, a viscosity 

annealing technique was introduced into the iterative process [Bernaschi 

and Succi, 2003]. This is achieved by letting the relaxation time change 

with the iteration, i.e.,  
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,   �
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'� 

where ��
is the annealing increments at the �-th iteration. This annealing 

technique makes the iteration process start with a low Reynolds number 

and attain the desired one at the final state. 

For Stokes flows with a low Reynolds number, the matrix 

formulation of the steady LBE (3.162) can be simplified. In this case, the 

nonlinear terms in the fluid velocity in the EDF can be neglected, i.e.,  
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If the relaxation time is set to be 1.0, the steady LBE becomes,  

 �

�

� �� � � �
� ,

�
��

� � 	 � 	 �

�

, 	 �

,

� � �� �
�

�� � ��
� ��� ��� �	 


� � � ��
� �

� � � . (3.165) 

With the relation between the conserved quantities �������
 ���, the 

above formulation can be further written as a linear system of these 

variables [Verberg and Ladd, 1999],  

 % &% & % &/ � �� ,  (3.166) 

where %/&
�
	�3
��� and
%�&
�
����
with � being a ���
��)×
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block-diagonal matrix, �
�
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, � is a �)×
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�
�����
���
���#���
��
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A biconjugate gradient algorithm was proposed to solve the above 

algebra system [Verberg and Ladd, 1999]. 

It was found that with the matrix formulation, the accelerated LBE 

methods could be �∼� orders of magnitude faster than the standard one 

[Bernaschi et al., 2002; Bernaschi and Succi, 2003; Verberg and Ladd, 

1999; Noble and Holdych, 2007]. Some methods were also developed to 

solve the steady discrete velocity model (3.89) directly using certain 

finite-difference schemes. For instance, Tölke et al. [2002] proposed an 

implicit second-order finite difference scheme, and introduced a 

nonlinear multigrid method to solve the nonlinear algebra system. 

3.4.3   Time-dependent methods 

Some time-independent acceleration techniques have also been 

introduced to improve the convergence of LBE for steady flows. The 

most straightforward way is employing certain implicit schemes to 

discretize the time-dependent equation (3.89) so that a larger time step 

can be used [Lee and Lin, 2003; Seta and Takahashi, 2002; Tölke et al., 

1998]. On the other hand, Mavriplis [2006] developed a multigrid 

technique which makes use of the non-linear LBE time-stepping scheme 

on each grid level. Although all these schemes can improve the 
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convergence rates, their formulation and implementation are much more 

complicated than the standard LBE. 

Motivated by the precondition method for solving the compressible 

Navier-Stokes equations, Guo et al. [2004] developed a time-independent 

preconditioned LBE (PLBE) with the same structure as the standard one. 

The evolution equation of PLBE without considering the influence of 

body forces is 

 � �� � � � � � �
�

� � � � � � ��
� � 	 	 � � �

�

	� 	 � 	 � � 
�
�

�� � �� � � � � �� �	 
� �� �� , (3.167) 

where �� is a relaxation time to be determined, and the modified EDF 

contains an adjustable parameter 
,  
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The fluid density and velocity in the PLBE are defined as those in the 

standard LBE. Through the Chapman-Enskog procedure, we can derive 

the macroscopic equations from the LBE (3.167) as 

 � � �
	

�
�

�
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�
� , (3.169) 
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where 
� �

�� �
 �� , and 
�� ����� � 	�� 
 � �� � . It is clear that for steady 

flows, Eqs. (3.169) and (3.170) are identical to those derived from the 

standard LBE except for a different equation of state. It is clear that the 

effective sound speed � ��� �� � �� 
� � � �  is decreased as 
�4
�. 

In the presence of a body force �, the PLBE (3.167) should be 

modified by adding a forcing term �	�� on its the right hand side. The 

forcing term can be taken as those described in Sec. 3.2, but with a body 

force scaled by 
. For instance, the scaled LGA forcing scheme can be 

expressed as 
��� � ��� �� 
�� � � . With this forcing term, the resultant 

momentum equation takes the same form as Eq. (3.170) but with a scaled 

body force �
� . 
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The macroscopic equations (3.169) and (3.170) can be interpreted as 

preconditioned Navier-Stokes equations. In fact, the vector form of this 

system is  

 + *�
	 " #

� � �
� � �

� � �
� � �

�� �
 �� � , (3.171) 

where �, �, 
, and �
are the same as defined earlier except that �� is 

replaced by the effective sound speed �
�� . The matrix � �"!���� � �
 
� ���  

is a preconditioner. It can be shown that the eigenvalues of the pre-

conditioned convection matrix �� are now, 

 
�

� � � � ��� � �	



� 7�� , (3.172) 

where  

 � ���� � �� �� � �
 
� � �  (3.173) 

is an effective sound speed. It is clear that ��  reduces to the original sound 

speed ��
as 
��
�. Conversely, as 
�approaches to zero, ��  approaches to 

the fluid speed u. Therefore, one can decrease the disparity between the 

speeds of the acoustic wave and the waves propagating with the fluid 

velocity by adjusting this parameter, and thus accelerate the convergence 

rate of the LBE. It is also noted that for low Mach number flows as  

�→
�, we have �
� � �� � �
� � . 

According to the effective sound speed �
�� , one can define an effective 

Mach number 
��  as 

� �
� � �� % �� . It is clear that 

�� � �
� * as  

�
4�
��≤
�. In practical applications, the parameter 
� can be chosen such 

that ��
is low enough for a given flow condition. This can be done by 

first specifying the value of ��
according to the flow condition and then 

setting � �� � �� ��
 . 

The parameter 
 will influence on the numerical stability of the PLBE. 

In fact, from the relationship between the viscosity and the relaxation 

time, one can obtain that 

 
	

���
)�

�
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� � , (3.174) 

which indicates that the value of ��
3
���
increases with decreasing 
  for 

a given � and )� on a fixed lattice. Therefore, it is expected that the 
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PLBE (3.167) has a better numerical stability range than the standard  

one for small Mach number or high Reynolds number flows. It is also 

noted that 
 can also influence the EDF � ���
�� . The decrease in 
 means an 

increase in the last term in the brackets of the EDF given by Eq. (3.168), 

which may make the EDF become negative, and thus cause numerical 

instability. These arguments indicate that the parameter 
 have 

complicated influences on the numerical stability of the PLBE. 

The stability of the PLBE can be analyzed using the von Neumann 

linear analysis method. To do so, the distribution function � � ��� 	�  is first 

expanded around a constant global EDF ���
�� ,  

 ���
� �� � � �� � � � �� � �� 	 � � 	� �� � ��� , (3.175) 

where ���and �� are the constant density and velocity, respectively,  

and � � ��� 	��  is the fluctuation of �� around ���
�� . With this expansion, the 

linearized PLBE reads 
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where  
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is the Jacobian matrix evaluated at the uniform mean density and 

velocity. It is noted that � does not vary in space or time. Equation 

(3.176) can be rewritten in a compact form as 

 � � � � � �� � 	 	 �, ,� 	 � � 	� �� �� � �� � � , (3.177) 

where the matrix � is defined by 
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��, �, �,

� �

� 3�
� �
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. 

The Fourier transform of Eq. (3.177) gives that  

 � � � ���%  & � � �� 	 � �, ,� 	 � � 	�� � � �� � � � , (3.178) 

where  �� � , � � �,� 	�  is the Fourier transform of � � ��� 	�� , � is the wave 

number in units of �#�" , and ��
������ is the dimensionless discrete 
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velocity. The spatial dependence of the stability of the PLBE is 

determined by the eigenvalues of the matrix �, 

 � � ���%  &�, � �,�8 � � �� � � . 

For the D2Q9 model, the explicit expression of the Jacobian matrix � 

can be written as 
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(3.179)

 

where � ���� �� � . It can be shown that the eigenvalues of � are 1 and 0 

with multiplicities 3 and 6, respectively, which are independent of 
�and 

��� . Accordingly, the eigenvalues of the matrix � are 1 and �−���� . 

It is clear that ����� as �
 �� �, therefore the PLBE (3.167) is 

asymptotically stable if |��−����� |�-��, i.e. ��#
���, which is the same as 

the standard LBE. As �
 ≠� �, the eigenvalues of �  has a complex 

dependence on the parameters 
�, ��� , �, and ��, and hence it is rather 

difficult to give a complete mapping of all the stability boundaries.  

Guo et al. have made an analysis in a special case, i.e. both the wave 

number � and the uniform velocity �� are aligned with ��. In Fig. 3.5 the 

 
 

Fig. 3.5.  The modulus of ΓΓΓΓ vs �s and �0′ for different 
��Guo et al., Phys. Rev. E 70,  

066706, 2004�. 
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modulus of the matrix �, i.e., the maximum magnitude of the 

eigenvalues, are shown as a function of ���  and the relaxation time �� , 

which corresponds to the standard LBE and is related to �� by 

��� � ����� �� 
 �� � � . 

It is observed that for each value of 
, there exists a critical value of 

the velocity, �6 , above which the modulus of � increases dramatically, 

meaning that the PLBE would become unstable. This critical value 

clearly depends on the parameter 
�: the smaller the 
, the lower the ��. It 

indicates that the stable range of PLBE is reduced as compared to the 

standard LBE. Fortunately, for small Mach number flows when LBE 

works, the fluid velocity is usually much lower than ��, and under such a 

circumstance the PLBE is expected to have a stability similar to the 

standard LBE. 

The PLBE has been shown to be able to accelerate the convergence 

rate significantly by adjusting the control parameter 
. In Fig. 3.6, the 

convergence processes of the PLBE and the standard LBE for the lid-

driven flow in a square cavity are presented at )�
�
��� and ���� (based 

on the driven velocity and cavity height), respectively. It is clearly seen 

 
 

Fig. 3.6.  Time histories of PLBE and standard LBE for the cavity flow. ��������. 
Lattice size: ���×���
(Guo et al., Phys. Rev. E 70,  066706, 2004). 
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that the PLBE enhanced the convergence rate greatly for both cases 

compared with the standard LBE. 

It should be emphasized that the acceleration of PLBE is achieved 

without sacrificing the accuracy of the solution. In Fig. 3.7, the velocity 

and pressure distributions along the vertical and horizontal lines through 

the cavity center are presented for )��������, together with the 

benchmark results [Ghia et al., 1982; Botella and Peyret, 1998]. It is seen 

that in all cases the velocity distributions predicted by the PLBE agree 

well with the benchmark solutions, and the difference between these 

results with different 
 is nearly indistinguishable. However, some 

prominent differences are observed among the pressure distributions for 

different values of 
. The differences are small in the central region, but 

become larger near the walls. Also, the differences increase as Re 

becomes larger. The comparison shows that the pressure distributions 

predicted by the PLBE with 
 < 1 agree better with the benchmark 

solutions [Botella and Peyret, 1998] than that by the standard LBE 

(
���"), which demonstrates the desirable properties of PLBE. 

 
 

Fig. 3.7.  Velocity [(a) and (b)] and pressure [(c) and (d)] profiles through the cavity 

center at )�
�����
�Guo et al., Phys. Rev. E 70,  066706, 2004�. 
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It is noted that some oscillations occur during the convergence 

process. This is due to the reflection of acoustic waves on the walls. Such 

oscillations can be damped out by enhancing the bulk viscosity, which 

does not alter the solutions for incompressible flow or compressible flow 

with low Mach number. The suppression of such oscillations can further 

accelerate the convergence process. This technique can be achieved 

straightforwardly in MRT-LBE, and several such methods have been 

developed recently by Izquierdo and Fueyo [2008, 2009]. 

3.5   Summary 

This chapter has presented some improved LBE methods from different 

viewpoints. Particularly, we have focused on the following five special 

topics: 

(i) LBE models with reduced compressibility errors. Because the 

standard LBE simulates the compressible Navier-Stokes equations, 

errors due to the compressibility will arise when applied to 

incompressible flows. In order to reduce such errors, some 

incompressible LBE models have been developed. For steady 

incompressible flows, the models developed in [Zou et al., 1995; 

Lin et al., 1996] can be employed, while for unsteady flows several 

other more elaborated models [Chen and Ohashi, 1997; He and Luo, 

1997; Guo et al., 2000] should be used.  

(ii) LBE models with reduced compressibility errors. Because the 

standard LBE simulates the compressible Navier-Stokes equations, 

errors due to the compressibility will arise when applied to 

incompressible flows. In order to reduce such errors, some 

incompressible LBE models have been developed. For steady 

incompressible flows, the models developed in [Zou et al., 1995; 

Lin et al., 1996] can be employed, while for unsteady flows several 

other more elaborated models [Chen and Ohashi, 1997; He and Luo, 

1997; Guo et al., 2000] should be used.  

(iii) Treatment of body force in LBE with reduced discrete effects. As 

the fluid is exposed to a body force field, it is important to 

incorporate its effect into LBE. Although a variety of methods have 
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been proposed, the analysis indicates that care must be taken when 

implementing these methods because of the discrete lattice effects. 

In this regard, the forcing schemes developed in [He et al., 1998] 

and [Guo et al., 2002] are the most accurate methods, satisfying 

certain necessary constraints required for reproducing the desired 

body force in the hydrodynamic equations.  

(iv) LBE methods with nonuniform grids. The use of a regular lattice as 

the computational mesh limits the applications of the standard LBE 

for flows with irregular geometries. One straightforward extension 

of the standard LBE in this respect is to make use of grid-refinement 

or multi-block techniques [Filippova and Hänel, 1998; Dupuis and 

Chopard, 2003; Yu et al., 2002; Guo et al., 2003; Crouse et al., 

2003; Tölke et al., 2006; Yu and Fan, 2009]. Meanwhile, the 

interpolation supplemented method [He et al., 1996] utilizes the fact 

that the computational mesh can be decoupled from the underlying 

discrete velocity set. It is noted that both of the above methods still 

depend on the standard LBE. On the other hand, after recognizing 

that the LBE can be viewed as a special finite-difference scheme of 

the Boltzmann equation, some LBE methods using nonuniform 

grids have been developed by discretizing the DVM using the finite-

difference, finite-volume, or finite-element methods. The Taylor 

series expansion- and least square-based LBE method developed by 

Shu et al. [2001] provides a meshless- like version.  

(v) Accelerated LBE methods for steady flows. Because of the low 

Mach number limitation, the standard LBE usually suffers from a 

slow convergence rate for steady flows. In order to improve the 

convergence, two types of techniques, i.e., time-independent and 

time-dependent approaches, have been introduced into LBE. In 

general, the time-independent methods involve a large scale linear 

or nonlinear algebraic system which can be solved by iterative 

algorithms. The solution procedure of such methods is quite 

different from the standard LBE. On the other hand, the time-

dependent accelerated LBE is more resemble the standard LBE. 

Particularly, the preconditioned LBE proposed by Guo et al. [2004] 

has the same structure as and shares all of the advantages of the 

standard one. 
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It should be pointed out that the improved methods listed in this 

chapter can be combined with each other to improve the performance of 

LBE further. For example, a nonuniform grid can be used in the PLBE, 

and the convergence rate of LBE can also be accelerated by adding a 

fictitious body force [Kandhai et al., 1999]. 
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Chapter 4 

Sample Applications of LBE for 

Isothermal Flows 

In the previous three chapters we have presented some standard and 

improved LBE models for isothermal flows, and some methods to realize 

certain prescribed initial and boundary conditions were also discussed. 

With these basic ingredients, now we are ready to simulate some simple 

isothermal flows. In this chapter we will first discuss the structure of  

an LBE algorithm, and then present several sample applications to 

demonstrate the implementation details and numerical results.  

4.1   Algorithm Structure of LBE  

The picture of the collision and streaming processes of LBE, in either 

LBGK or MRT-LBE models, is rather clear, and it is straightforward to 

implement both processes. Generally, an LBE algorithm can be designed 

following two kinds of structures, i.e., collision-streaming fashion where 

at each time step the collision is first executed and then the post-collision 

distributions are shifted to their neighbors, and streaming-collision 

fashion which exchanges the above procedure. It can be shown these two 

algorithm structures are identical, and we will follow the former one in 

this book. A typical flowchart of such LBE algorithm is shown in  

Fig. 4.1, but it should be noted that the sequence of the subroutines can 

be adjusted in some cases. In what follows the main subroutines of the 

algorithm will be described. For clarity and simplicity, we will take the 

D2Q9 model as an example, and the code will be written in ANSI-C 

language. The global variables are defined in a header file D2Q9.h: 
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Fig. 4.1.  Flowchart of LBE algorithm. 
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//-----------------------------------------------  

//   ----- Header file of the D2Q9 model -- 

//-----------------------------------------------  

//File name: D2Q9.h 

#include <stdio.h>     

#include <stdlib.h> 

#include <math.h> 

#define  Nx 100 // number of cells in x-direction 

#define  Ny 100 // number of cells in y-direction 

#define Nx1 (Nx+1) 

#define Ny1 (Ny+1) 

#define  Q 9    // number of discrete velocities 

#define rho0 1.0  // initial density 

#define ux0  0.0   

#define uy0  0.0  // (ux0, uy0) is the initial velocity 

int cx[Q]={0, 1, 0, -1, 0, 1, -1, -1, 1}; 

int cy[Q]={0, 0, 1, 0, -1, 1, 1, -1, -1}; 

double f[Ny1][Nx1][Q]; //array of the distribution functions 

double f_post[Ny1][Nx1][Q]; // array of the post-collision  

// distribution functions 

double rho[Ny1][Nx1], ux[Ny1][Nx1], uy[Ny1][Nx1];  

// arrays of  fluid density and velocity 

double tau;  //  relaxation time for BGK model 

double s[Q]; // relaxation rates for MRT model 

double D[Q]={9, 36, 36, 6, 12, 6, 12, 4, 4}; // D = M*MT 

double w[Q]={4.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/36, 

1.0/36, 1.0/36, 1.0/36}; // weights in  EDF 

int rc[Q]={0,3,4,1,2,7,8,5,6};   

//  index of the reversed velocity used in bounce-back scheme 

//---------- end of header file------------------  

Initialization 

As described in Chapter 3, the distribution functions can be initialized  

by either the equilibrium or non-equilibrium methods, or the more 

elaborated iterative method. The following subroutine gives the 

equilibrium initialization method. 
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//-------------------------------------------------------  

//Subroutine: initialization with the equilibrium method 

//------------------------------------------------------- 

void Init_Eq() 

{ 

 int j, i, k;     

  for (j=0;j<=Ny;j++) for(i=0;i<=Nx;i++) 

  { 

rho[j][i]=rho0; 

ux[j][i]=ux0; 

uy[j][i]=uy0; 

for(k=0;k<Q;k++) 

f[j][i][k]=feq(rho[j][i],ux[j][i],uy[j][i],k); 

} 

} 

//-------------- end of initialization ---------- 

The calculation of the EDF is realized by the function feq(): 

//-----------------------------------------------  

// Subroutine: calculation the equilibrium distribution 

//-----------------------------------------------  

double feq(double RHO, double U, double V, int k) 

{ 

  double cu, U2; 

  cu=cx[k]*U+cy[k]*V; // c_k*u 

  U2=U*U+V*V;         // u*u; 

  return w[k]*RHO*(1+3*cu+4.5*cu*cu-1.5*U2); 

} 

//----------- end of equilibrium ---------------  

 

The equilibrium method works well for steady flows. But it may 

introduce some initial errors for unsteady flows. The nonequilibrium or 

the iteration method [Mei et al., 2006] can give more accurate initial 

values. Particularly, the latter can provide the compatible pressure as 
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well as the distribution functions. The codes for these methods can be 

composed with similar structure, and will not be included in this book. 

Collision 

The subroutine for the BGK collision model is given below.  

//-----------------------------------------------  

// Subroutine: BGK collision 

//-----------------------------------------------  

void Coll_BGK() 

{ 

int j, i, k; 

  double FEQ; 

  for(j=0;j<=Ny;j++) for(i=0;i<=Nx;i++) 

  for(k=0;k<Q;k++) 

{ 

// the value of the EDF: 

FEQ=feq(rho[j][i],ux[j][i],uy[j][i],k);  

// the post-collision distribution function: 

f_post[j][i][k]=f[j][i][k]-(f[j][i][k]-FEQ)/tau; 

} 

} 

//---------------- end of BGK collision --------- 

The collision process of MRT model contains three phases: (1) 

transforming the distribution functions from velocity space to moment 

space; (2) performing relaxation in moment space; (3) transforming the 

moments back to the velocity space. With the transformation matrix 

given in Chapter 1, the subroutine for the MRT collision model is 

described as follows. 

//-----------------------------------------------  

// Subroutine: MRT collision 

//-----------------------------------------------  

void Coll_MRT() 

{ 

int j, i, k; 
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  double MEQ;   

  double m[Q];  // moments defined by m=M*f 

  for (j=0;j<=Ny;j++) for(i=0;i<=Nx;i++) 

  { 

   // Transformation from velocity space to moment space: 

m[0] = f[j][i][0]+f[j][i][1]+f[j][i][2]+f[j][i][3] 

+f[j][i][4]+f[j][i][5]+f[j][i][6]+f[j][i][7] 

+f[j][i][8]; 

m[1] = -4*f[j][i][0]-f[j][i][1]-f[j][i][2]-f[j][i][3] 

-f[j][i][4]+2*(f[j][i][5]+f[j][i][6]+f[j][i][7] 

+f[j][i][8]); 

m[2] = 4*f[j][i][0]-2*(f[j][i][1]+f[j][i][2]+f[j][i][3] 

+f[j][i][4])+f[j][i][5]+f[j][i][6]+f[j][i][7] 

+f[j][i][8]; 

m[3] = f[j][i][1]-f[j][i][3]+f[j][i][5]-f[j][i][6] 

-f[j][i][7]+f[j][i][8]; 

m[4] = -2*(f[j][i][1]-f[j][i][3])+f[j][i][5]-f[j][i][6] 

-f[j][i][7]+f[j][i][8]; 

m[5] = f[j][i][2]-f[j][i][4]+f[j][i][5]+f[j][i][6] 

-f[j][i][7]-f[j][i][8]; 

m[6] = -2*(f[j][i][2]-f[j][i][4])+f[j][i][5]+f[j][i][6] 

-f[j][i][7]-f[j][i][8]; 

m[7] = f[j][i][1]-f[j][i][2]+f[j][i][3]-f[j][i][4]; 

m[8] = f[j][i][5]-f[j][i][6]+f[j][i][7]-f[j][i][8]; 

// Relaxation: 

for(k=0;k<Q;k++)  

{ 

  // the equilibrium moment: 

MEQ = meq(rho[j][i],ux[j][i],uy[j][i],k); 

m[k] = m[k]-s[k]*(m[k]-MEQ);  // relaxation 

m[k] /= D[k];                      // rescaling 

} 

   // Transforming back to the velocity space: 

f_post[j][i][0] = m[0]-4*(m[1]-m[2]); 

f_post[j][i][1] = m[0]-m[1]-2*(m[2]+m[4])+m[3]+m[7]; 
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f_post[j][i][2] = m[0]-m[1]-2*(m[2]+m[6])+m[5]-m[7]; 

f_post[j][i][3] = m[0]-m[1]-2*(m[2]-m[4])-m[3]+m[7]; 

f_post[j][i][4] = m[0]-m[1]-2*(m[2]-m[6])-m[5]-m[7]; 

f_post[j][i][5] = m[0]+m[1]+m[1]+m[2]+m[3]+m[4]+m[5] 

+m[6]+m[8]; 

f_post[j][i][6] = m[0]+m[1]+m[1]+m[2]-m[3]-m[4]+m[5] 

+m[6]-m[8]; 

f_post[j][i][7] = m[0]+m[1]+m[1]+m[2]-m[3]-m[4]-m[5] 

-m[6]+m[8]; 

f_post[j][i][8] = m[0]+m[1]+m[1]+m[2]+m[3]+m[4]-m[5] 

-m[6]-m[8]; 

} 

} 

//------------- end of MRT collision-------------  

 

In the subroutine m[Q] is the moment array, and s[Q] is the 

corresponding relaxation rates. � is a diagonal matrix relating to the 

transformation matrix �, i.e. �����. So, the inverse of � can be 

simply expressed as � ��� ��� � � . meq() is the function of calculating 

the equilibrium moments: 

//-----------------------------------------------  

// Subroutine: calculation the equilibrium moment 

//-----------------------------------------------  

double meq(double RHO, double U, double V, int k) 

{ 

  double x; 

  switch(k) 

  { 

   case 0: {x=RHO; break;} 

   case 1: {x=RHO*(-2+3*(U*U+V*V)); break;} 

   case 2: {x=RHO*(1-3*(U*U+V*V)); break;} 

   case 3: {x=RHO*U; break;} 

   case 4: {x=-RHO*U; break;} 

   case 5: {x=RHO*V; break;} 

   case 6: {x=-RHO*V; break;} 
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   case 7: {x=RHO*(U*U-V*V); break;} 

   case 8: {x=RHO*U*V; break;} 

   default: x=0; 

  } 

  return x; 

} 

//----------- end of equilibrium moments --------  

 

Streaming 

The streaming process can be implemented straightforwardly. 

Furthermore, certain boundary conditions such as the bounce-back 

scheme can also be incorporated into this process. The subroutine reads, 

//-----------------------------------------------  

// Subroutine: Streaming 

//-----------------------------------------------  

void Streaming() 

{ 

  int j, i, jd, id, k; 

  for (j=0;j<=Ny;j++) for(i=0;i<=Nx;i++)  

for(k=0;k<Q;k++) 

   { 

 jd=j-cy[k]; id=i-cx[k]; // upwind node 

if(!boundary[jd][id])   // fluid node 

f[j][i][k]=f_post[jd][id][k]; // streaming 

else                   // boundary node 

// bounce-back on the boundary node: 

f[j][i][k]=f_post[jd][id][rc[k]]+6*w[k]*rho[j][i]* 

(cx[k]*uwx[jd][id]+cy[k]*uwy[jd][id]);   

   } 

} 

//-----------------------------------------------  

 

Here boundary[Ny1][Nx1] is a Boolean array that characterizes 

the boundary nodes, and uw=(uwx, uwy) is the velocity of the 
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boundary node. Incorporating the bounce-back scheme into the 

streaming process is efficient for flows with irregular boundaries such as 

porous media. If only simple boundaries, such as flat walls, are involved, 

the code can be improved by separating the boundary condition 

treatments from the streaming process, and the flag boundary 

[Ny1][Nx1] can be deleted in such case. 

Boundary conditions 

Assuming that the boundary is a flat wall located at������, then for the 

standard bounce-back scheme, the first layer of fluid nodes on the lattice 

(�� �� �) locates at ���� �� ; For the half-way bounce-back scheme, the 

location is at ��������. For the modified bounce-back scheme, the non-

equilibrium extrapolation, and the hydrodynamic boundary conditions, 

the location falls on the wall. As an example, in the following we will 

give several subroutines to realize the boundary conditions of the Couette 

flow confined between two parallel plates. The top plate moves with a 

constant velocity ���������� �	, and the bottom plate is kept stationary. 

Periodic boundary conditions are applied to the inlet and outlet.  

The subroutine of the bounce-back rule is given as follows: 

//-----------------------------------------------  

// Subroutine: Bounce-back scheme 

//-----------------------------------------------  

void Bounce_back() 

{ 

  int i; 

  //  j=0: bottom plate 

  for(i=0;i<=Nx;i++) 

{ 

       // bounce-back for particles hitting on the wall: 

f[0][i][2]=f_post[0][i][4]; 

f[0][i][5]=f_post[0][i][7];     

f[0][i][6]=f_post[0][i][8]; 

} 

  //  j=Ny: top plate 

  for(i=0;i<=Nx;i++) 
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{ 

f[Ny][i][4]=f_post[Ny][i][4]; 

f[Ny][i][7]=f_post[Ny][i][5]+6*rho[Ny][i]*w[7]*cx[7]*uw;     

f[Ny][i][8]=f_post[Ny][i][6]+6*rho[Ny][i]*w[8]*cx[8]*uw; 

} 

} 

//-----------------------------------------------  

 

The above bounce-back subroutine is executed after the collision 

process. On the other hand, the modified bounce-back scheme should be 

executed after the streaming process, and the collision is also performed 

on the wall nodes. The subroutine reads as below: 

//-----------------------------------------------  

// Subroutine: Modified bounce-back scheme 

//-----------------------------------------------  

void M_bounce_back() 

{ 

  int i; 

  //  j=0: bottom plate 

  for(i=0;i<=Nx;i++) 

{ 

   // bounce-back for particles hitting on the wall: 

f[0][i][2]=f[0][i][4]; 

f[0][i][5]=f[0][i][7];     

f[0][i][6]=f[0][i][8]; 

} 

  //  j=Ny: top plate 

  for(i=0;i<=Nx;i++) 

{ 

f[Ny][i][4]=f[Ny][i][2]; 

f[Ny][i][7]=f[Ny][i][5]+6*rho[Ny][i]*w[7]*cx[7]*uw;     

f[Ny][i][8]=f[Ny][i][6]+6*rho[Ny][i]*w[8]*cx[8]*uw; 

} 

} 

//-----------------------------------------------  
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Similarly, the non-equilibrium extrapolation scheme [Guo et al., 

2002a] is also executed after the streaming process. The subroutine of 

this scheme is described below: 

//-----------------------------------------------  

// Subroutine: Non-equilibrium extrapolation  

//-----------------------------------------------  

void Noneq_BC() 

{ 

  int i, jd, id; 

  double FMf, FMb; 

  //  j=0: bottom plate 

  for(i=0;i<=Nx;i++) 

{ 

jd=1; id=i; // nearest neighboring fluid node 

   FMb=feq(rho[jd][id],0,0,2);   // equilibrium at the boundary node 

   FMf=feq(rho[jd][id],ux[jd][id],uy[jd][id],2);  // equilibrium  

// at the fluid node 

/***** 

the extrapolation can also be taken from the  nearest neighboring node along the 

discrete velocity, i.e, jd=(Nx1+cy[2])%N1; id = (Nx1+i+cx[2])%Nx1; 

*****/ 

// non-equilibrium extrapolation 

f[0][i][2]=FMb+(f[jd][id][2]-FMf); 

FMb=feq(rho[jd][id],0,0,5);  

FMf=feq(rho[jd][id],ux[jd][id],uy[jd][id],5); 

f[0][i][5]=FMb+(f[jd][id][5]-FMf);     

FMb=feq(rho[jd][id],0,0,6);  

FMf=feq(rho[jd][id],ux[jd][id],uy[jd][id],6); 

f[0][i][6]=FMb+(f[jd][id][6]-FMf);     

} 

  //  j=Ny: top plate 

  for(i=0;i<=Nx;i++) 

{ 

jd=Ny-1; id=i; 

FMb=feq(rho[jd][id],u0,0,4);  
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FMf=feq(rho[jd][id],ux[jd][id],uy[jd][id],4); 

f[Ny][i][4]=FMb+(f[jd][id][4]-FMf); 

FMb=feq(rho[jd][id],u0,0,7);  

FMf=feq(rho[jd][id],ux[jd][id],uy[jd][id],7); 

f[Ny][i][7]=FMb+(f[jd][id][7]-FMf);     

FMb=feq(rho[jd][id],u0,0,8);  

FMf=feq(rho[jd][id],ux[jd][id],uy[jd][id],8); 

f[Ny][i][8]=FMb+(f[jd][id][8]-FMf);     

} 

} 

//-----------------------------------------------  

 

Both the bounce-back schemes and the non-equilibrium extrapolation 

method will introduce some approximation errors in the velocity 

boundary conditions. On the other hand, the hydrodynamic scheme is 

able to give the prescribed velocity exactly. The following subroutine 

realizes the method developed by Zou et al. [1997]. Other hydrodynamic 

schemes can be realized similarly. 

//-----------------------------------------------  

// Subroutine: Hydrodynamic scheme by Zou and He 

//-----------------------------------------------  

void Hydro_BC() 

{ 

  Int i; 

  double rhow; 

  //  j=0: bottom plate 

  for(i=0;i<=Nx;i++) 

{ 

    // the density at wall node: 

rhow = f[0][i][0]+f[0][i][1]+f[0][i][3]+2*(f[0][i][4] 

+f[0][i][7]+f[0][i][8]); 

f[0][i][2]=f[0][i][4]; 

f[0][i][5]=f[0][i][7]-0.5*(f[0][i][1]-f[0][i][3]); 

f[0][i][6]=f[0][i][8]+0.5*(f[0][i][1]-f[0][i][3]); 
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} 

  //  j=Ny: top plate 

  for(i=0;i<=Nx;i++) 

{ 

    // the density at wall node: 

rhow = f[Ny][i][0]+f[Ny][i][1]+f[Ny][i][3]+2*(f[Ny][i][4] 

+f[Ny][i][7]+f[Ny][i][8]); 

f[Ny][i][4] = f[Ny][i][2]; 

f[Ny][i][7] = f[Ny][i][5]+0.5*(f[Ny][i][1]-f[Ny][i][3]) 

-0.5*rhow*u0; 

f[Ny][i][8] = f[Ny][i][6]-0.5*(f[Ny][i][1]-f[Ny][i][3]) 

+0.5*rhow*u0; 

} 

} 

//-----------------------------------------------  

 

Fluid variables 

The fluid variables, i.e., density and velocity, can be calculated from the 

distribution functions directly. This is achieved by the subroutine 

Den_Vel() given below. 

//-----------------------------------------------  

// Subroutine: Fluid density and velocity 

//-----------------------------------------------  

void Den_Vel() 

{ 

  int j, i; 

  for(j=0;j<=Ny;j++) for(i=0;i<=Nx;i++) 

{ 

    // density: 

rho[j][i] = f[j][i][0]+f[j][i][1]+f[j][i][2]+f[j][i][3] 

+f[j][i][4]+f[j][i][5]+f[j][i][6]+f[j][i][7] 

+f[j][i][8]; 

ux[j][i] = (f[j][i][1]+f[j][i][5]+f[j][i][8]-f[j][i][3] 

-f[j][i][6]-f[j][i][7])/rho[j][i]; 
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uy[j][i] = (f[j][i][5]+f[j][i][6]+f[j][i][2]-f[j][i][7] 

-f[j][i][8]-f[j][i][4])/rho[j][i]; 

} 

} 

//-----------------------------------------------  

 

The above subroutines constitute the basic package for a typical LBE 

algorithm. Of course, in practical applications these subroutines may be 

modified to account for the particular situations. With a main() function 

that controls the overall order of computations and operations, one can 

design his own program for specific problems. Furthermore, the codes 

listed above only provide a direct realization of the LBE method without 

optimizations, and one can design more efficient algorithms and codes. 

In the following sections we will demonstrate some sample applications 

of LBE for incompressible flows. 

4.2   Lid-Driven Cavity Flow 

In this section we will simulate a two-dimensional steady flow in a 

square cavity via the D2Q9 LBGK model. This problem is industrially 

important and usually taken as one of the standard benchmark cases to 

test computational schemes. The LBE was also applied to this problem 

by many researchers. For example, Hou and Zou have performed some 

detailed simulations [Hou and Zou, 1995]. The configuration of this 

problem is shown in Fig. 4.2. The flow in the cavity is driven by the top 

lid moving from left to right with a constant velocity ��. The flow is 

characterized by the Reynolds number, 
���������, where ��is the length 

of the cavity and � is the shear viscosity of the fluid. In the simulation, a 

lattice with size of �	����	�×��	����	 is used, so that the lattice spacing is 

�� � 	�� for the standard bounce-back, modified bounce-back, and the 

non-equilibrium boundary conditions, while � � �	� � 	� ��  for the 

half-way bounce- back scheme.  

For convenience, we will take the lattice spacing �� , time increment 


� , and lattice speed �� 
� � � � , as the units of length, time, and velocity, 

and assuming that the average density ��  is the density unit. As such, the 
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viscosity of the Navier-Stokes equations derived from the LBE model is 

 = c�
�

�
�� �
� ��� � �� �� �	 


, (4.1) 

with �� �� � . In the literature, the simulated fluid with the above 

viscosity is termed as lattice Boltzmann fluid (LBF) sometimes. The 

Reynolds number of such fluid flows is then 

 = �

�



�

� ���	 ����

�� �

� � �
�

� �
, (4.2) 

where �� � � ��  is the Mach number. It should be born in mind that the 

LBE is an artificial compressibility method for incompressible fluid 

flows that has a vanishing Mach number. Provided the Mach number in 

LBE is low enough (e.g. �����), the LBE results can serve as a good 

approximation to the solutions of the incompressible Navier-Stokes 

equations. Therefore, the Reynolds number is the only similitude 

parameter between the LBE system and other fluid systems, while the 

Mach number is not.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.2.  Sketch of Lid-driven cavity flow. 
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According to the principle of similitude, one can obtain the 

relationships between the variables of simulated physical system and 

those of the LBE fluids: 

 
� �
�

� �
,  

� �


 



 

� , 

� �

� �

� �
� , 

� �� �
�

� �
, (4.3) 

with 

 �
� � �� ��� , �

� � �� ��� , � � � � 
�
� � � �

� �
� � , (4.4) 

where the variables with a bar represent the dimensional quantities of the 

real system, while those without a bar are quantities in LBE. The 

variables with a subscript “0” are characteristic quantities of the real and 

LBE systems, respectively. With these relationships, one can calculate 

the dimensional quantities of the real system from the LBE solutions.  

In the simulations, the lattice size is taken to be ���×���, and the 

driven velocity �� is set to be ���. The relaxation time � is determined 

from the Reynolds number according to Eq. (4.2). The half way bounce-

back scheme is applied to the stationary and moving walls. An advantage 

of this scheme is that no special treatment is required for the four corners. 

It is noted that the top left and right corners are two singularities due to 

the velocity difference of the side and top walls. We treat the corner 

 

   
 

Fig. 4.3.  Streamline of the cavity flow at 
����� (left) and ���� (right). 
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points as parts of the stationary walls in our simulations. The 

convergence criterion is set to be 

 
� �

�

� � � ����	 � � � 	

��
� � � ����	

� �

� �

� � 
 � � 


�
� � 


�

� �

� �
�

�

�

� �

�
.   (4.5) 

Figure 4.3 shows the streamlines of the cavity flow at 
������� and 

����. It is seen that the fundamental characteristic of this flow is the 

appearance of a large primary vortex in the center and two secondary 

vortices near the two lower corners. These plots show clearly the effect 

of the Reynolds number on the flow pattern. The velocity components, �� 

and����, along the vertical and horizontal center lines for different Re are 

shown in Fig. 4.4, together with the results by Ghia et al. [1982]. It is 

seen that the LBGK results agree well with the benchmark data. Recently, 

a more careful comparative study on the computational performance of 

several LBE models has been made [Luo et al., 2011]. 

The complete program for this test can be found in Appendix A. 

4.3   Flow around a Fixed Circular Cylinder 

Although the flow in the square cavity is complex, the geometry is 

nevertheless simple since only flat boundaries are involved. In order to 

demonstrate the performance of LBE for more general flows, we now 

apply the LBE to the flow past a fixed circular cylinder. This flow has 

been extensively studied both experimentally and numerically, and some 

    
 

Fig. 4.4.  Velocity profiles across the cavity center. Solid: LBGK results; Open circle: 

data by Ghia et al. [1982]. 
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applications of LBE based on uniform meshes [Guo et al., 2000;  

Higuera and Succi, 1989; Wagner, 1994; Wagner and Hayot, 1995] or 

nonuniform meshes [Filippova and Hänel, 1998; He and Doolen, 1997; 

Mei and Shyy, 1998] have also been reported.  

The D2Q9 LBGK model is again adopted in the simulations. The 

flow domain and boundary conditions are sketched in Fig. 4.5. The 

cylinder with a diameter � is put at �� downstream from the entrance, 

and the free-stream velocity � is set to be 0.1. Outflow condition is 

imposed at the outlet, and free-slip boundary conditions are applied at the 

two side boundaries. At the surface of the cylinder, no-slip boundary 

condition is used. The Reynolds number of the flow is defined based on 

the free-stream velocity and the cylinder diameter, 
��������� 
In the simulations, a lattice with size of 	��×	��������×���� is used. 

The non-equilibrium extrapolation scheme for curved walls is used to 

treat the no-slip boundary condition at the cylinder surface, and that for 

flat walls is used to treat the inlet, outlet, and two side boundaries. The 

velocity gradients in the boundary conditions are first discretized to 

obtain the values of velocity at boundary nodes before implementing the 

non-equilibrium extrapolation scheme.  

Another important problem is the calculation of the force exerted by 

the fluid on the cylinder. In classical CFD methods, this is usually done 

by integrating the overall hydrodynamic forces along the surface,  

 � ���
�
� �� � � �� ��� � � , (4.6) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5.  Sketch of the flow around a circular cylinder. 
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where � is the outward unit normal vector to the cylinder surface �Ω, and 

� 	�� � � �� �� ��  is the deviatoric stress tensor. Usually, the velocity 

gradients in the above equation can be discretized as usual with certain 

numerical schemes, as done by He and Luo [1997]. However, because 

the stress is related to the second-order moments of the non-equilibrium 

distribution functions, the calculation of the stress can be simplified in 

LBE [Filippova and Hänel, 1998], 

 � �� 	 � ��
�
�

���
�� � � � � ��

�

� � � ��
� ���� � � �� �� �	 
� 	� �� �

�
, (4.7) 

where � is the spatial dimension. The stress and the pressure on the 

cylinder surface can then be calculated using suitable extrapolation 

schemes based on those at the neighboring fluid nodes, which are then 

used to evaluate the integration of Eq. (4.6) to obtain the hydrodynamic 

force on the cylinder.  

An alternative and more efficient approach for calculating the force 

exerting on the solid body is the so-called momentum-exchange method 

[Ladd, 1994a; Ladd, 1994b]. As shown in Fig. 2.4, after collision the 

momentum carried by the particle moving with 	� is � � 	� � �� 
��	 � , and after 

interacting with the solid wall, the momentum of the particle leaving  

the surface is � � 	 � � 	� 
 �� 
 � 
�� � � �	 � 	 ��ı ı ı ı . Therefore, the momentum 

loss of the particle is � � 	 � � 	�� � � �� 
 � 
� �� �	 � �ı . As a result, the total force 

on the cylinder exerted by all of the particles with velocity 	� in the cell 

around ��  can be calculated as 

 ı� 	 � � � 	 � � 	�
�
�

� � � �




� 
 � 

�

�
� �� �
� � 	 � � , (4.8) 

and the total force on the solid body are the sum of all the forces on the 

wall nodes, 

 ı� � � 	 � � 	�
�

�
�

� � �




� 
 � 

�

�
� �� �� 


�

� 	 � � . (4.9) 

This momentum-exchange method is independent of the schemes for the 

boundary conditions, and can be implemented at the same time with the 

collision process. Mei et al. have compared the above two force 
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evaluation methods, and recommended the momentum-exchange method 

due to its simplicity, accuracy, and robustness [Mei et al., 2002]. This 

method is also employed in the following simulations. 

First, steady flows with 
� = ��� ���� ��, and� �� are simulated. The 

streamlines at steady states are shown in Fig. 4.6. As 
� = 1.0, the 

upstream and downstream flow patterns are almost symmetric, and no 

boundary layer appears around the cylinder surface; As 
� increases to 

Table 4.1.  Flow parameters of the steady flows around a circular cylinder. 

 
�
�
���� 
�

�
�

�
��� 
���

�
���

 ������ θs  ��� ����� θs  �� ����� θs �� 

A 0.474 26.89 3.170 1.842 42.9 2.152 4.490 52.84 1.499 

B 0.434 27.96 2.828 1.786 43.37 2.053 4.357 53.34 1.550 

C 0.68 32.5 —  1.86 44.8 — 4.26 53.5 — 

D 0.542 27.3 2.942 1.895 44.8 2.155 4.43 53.13 1.604 

A: He & Doolen [1997]; B: Nieuwstadt & Keller [1973]; C: Coutanceau & Bouard 

[1977]; D: Present results 

Re=1 Re=10

Re=40Re=20

 
 

Fig. 4.6.  Streamlines of the steady flows around a circular cylinder. 
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10, a boundary layer is formed and the flow becomes detached from the 

surface of the object. A wake containing a pair of vortices appears 

behind the cylinder, and the wake length �� becomes larger with 

increasing Re. The separation angle �� , at which the oncoming flow 

detaches first from the surface (zero shear stress), also increases with Re. 

In Tab. 4.1 both of the flow geometric parameters are presented and 

compared with available data from references. Also, the drag and lift 

coefficients, ���and �� , which are defined by 

 
�

� �
�

�
�

� ��
� ,  

�

� �
�

�
�

� ��
� , (4.10) 

are listed in the table.  

As 
� is above a critical value (around 46), the wake becomes longer 

and longer and starts to oscillate, and finally the two vortices in the wake 

are shed alternatively from the cylinder to form the well-known von 

Karman vortex street. The flow is characterized by the Strouhal number 

 

 
 

Fig. 4.7.  Vorticity of the flow past a circular cylinder at 
�����. Solid line: positive 

value; dashed line: negative value. 

 

 

            
 

 

 

Fig. 4.8.  Time histories of the drag (left) and lift (right) coefficients of the flow past a 

circular cylinder at 
�����. 
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defined as 

 
�

�

� �

�
�

,  (4.11) 

where � is the period of vortex shedding. Figure 4.7 shows the vorticity 

of the flow at 
� = 200. The time histories of the drag and lift coefficients 

are shown in Fig. 4.8. The periodic behavior of the flow is clearly shown 

from these figures, and the Strouhal number can be measured from the 

periodicity of �� . Table 4.2 presents the values of �
 at several Reynolds 

numbers, which are in good agreement with reported values.  

4.4   Flow around an Oscillating Circular Cylinder with a 

Fixed Downstream One 

Flows around multiple structures are frequently seen in many practical 

engineering problems. Similar to the flow around a circular cylinder, 

such flow will become unsteady and vortices will shed alternately from 

the two sides of a structure as the Reynolds number exceeds a critical 

value. Furthermore, the alternate vortex shedding may induce a structural 

oscillation, which may affect the wake formation and impact upon fluid 

dynamics around downstream structures. It is of both fundamental and 

practical importance to study the possible influences of the structural 

oscillation on the downstream flow. The simplest model of such flow is a 

two-cylinder system, where the two cylinders are either in tandem, side-

by-side or staggered arrangements. 

Table 4.2.  Strouhal number of the flow past a circular cylinder. 


�� 140 150 160 185 200 

A —— 0.185 —— — — 

B 0.179 ~ 0.182 — 0.185 ~ 0.188 — — 

C —— — —— 0.195 — 

D —— — —— — 0.202 

E 0.184 0.186 0.188 0.196 0.204 

A: Williamson & Roshko [1988]; B: Williamson [1996]; C: Lu & 

Dalton [1996]; D: Zheng & Zhang [2008]; E: Present results 
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Xu & Zhou [2002] have attempted to examine a two-cylinder system 

in tandem experimentally. It is reported that three flow regimes can be 

identified as the cylinder-oscillating amplitude was fixed at 0.5 cylinder 

diameter while the frequency ratio,�������, varied between 0 and 2, where 

�� is the oscillating frequency of the upstream cylinder and �� is the natural 

vortex shedding frequency of an isolated stationary cylinder. A symmetric 

binary vortex street was observed in the range of ����≤� ������≤� �, and 

     

     

      
 

Fig. 4.9.  Left: vorticity contours from numerical simulation (Re=150); Right: flow 

visualizations in a water tunnel using the LIF technique (Courtesy of Y. Zhou). ������
��������������������������������, and ��� from top to bottom. 
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alternative vortex shedding from both cylinders was seen in the cases of 

����≤������������ and ���������������, although the flow structure correspond-

ing to ����������������� is totally different from that at ���������������. Due 

to the limitation of experiments, many aspects of the physics for this 

flow remain to be clarified. For example, there was insufficient 

information on how the oscillating amplitude of the upstream cylinder 

and the spacing between the cylinders would affect the flow structure, 

the information about the pressure field was not clear, too. Furthermore, 

the dependence on the flow regimes of the drag and lift forces on the 

cylinders was not easy to measure. 

Guo and Zhou [2004] conducted a numerical investigation on this 

flow using the D2Q9 LBGK model. The simulations are carried out in a 

two-dimensional space at the same conditions as [Xu and Zhou, 2002]. 

Two circular cylinders with an identical diameter � are placed in a cross 

flow in tandem, and the center-to-center spacing of them is set to be  

���. The upstream cylinder oscillates harmonically in the streamwise 

direction at a fixed amplitude of ���������. The Reynolds number based 

on � and the free-stream velocity ��is �������� (the flow is essentially 
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(a)                       (b)          (c) 

Fig. 4.10.  Time histories of the drag and lift coefficients of the upstream and downstream 

cylinders with �������������������. (a) �����������, (b) ������������, (c) �����������. 

Dashed line: upstream cylinder; Solid line: downstream cylinder. 
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laminar) and������ ranges between 0.5 and 1.8. The computational domain 

is a ����×���� rectangular area. 

Figure 4.9 compares the calculated flow structure with the 

experimental data [Xu and Zhou, 2002]. The three flow regimes based on 

the distinctive flow patterns identified by Xu & Zhou [2002] are 

reproduced numerically. The excellent agreement in the flow structure 

between the numerical and experimental data provides a validation for 

the present numerical scheme. In all cases, vortex shedding from the 

upstream cylinder is locked on with the cylinder oscillation. 

At �����������, vortices shed from the upstream cylinder are symme-

trically arranged; each structure embraces a pair of counter-rotating 

vortices (binary vortices). The flow behind the downstream cylinder is 

characterized by a binary street, consisting of two inner rows of 

alternately arranged vortices and two outer rows of symmetrically 

arranged binary vortices. The spatial arrangement of vortices about the 

centerline results in a lift coefficient, ���, of no more than ��� on either 

cylinder (Fig. 4.10a). The drag coefficient, ���

, on the downstream 

cylinder is small but very large on the upstream cylinder (Fig. 4.10b). 

Correspondingly, the time-averaged lift coefficient, �� , and root mean 

square value, �� � , are small on both cylinders. On the other hand, the 

time-averaged drag coefficient, �� , and root mean square value, �� � , are 

both very large on the upstream cylinder. Although ��  on the 

downstream cylinder is 0.46, smaller than that (about 1) on an isolated 

circular cylinder, the corresponding �� �  reaches 0.48, one order of 

magnitude larger than its counterpart of a single cylinder. 

As ����� reduces to 1.08, alternative vortex shedding occurs from both 

cylinders. The flow structure behind the downstream cylinder is 

characterized by two rows of vortices: one consisting of single vortices, 

and the other consisting of counter-rotating vortex pairs. The maximum 

���and ���(Fig. 4.10b) on the downstream cylinder increase significantly, 

compared with �����������. While the corresponding ��  is small, and �� �  

increases greatly, exceeding that (0.45~0.75 for 
�������������, Chen 

1978) on a single cylinder, as a result from alternating vortex shedding 

associated with both cylinders. Interestingly, ��  as well as �� �  climbs 

considerably.  
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For �����������, alternative vortex shedding occurs for both cylinders. 

The successive vortices shed from the upstream cylinders will hit the 

downstream cylinder alternatively, forming a single staggered street 

downstream. While the maximum ��� on the downstream cylinder is 

smaller than that at �����������, the maximum ��� increases marginally. 

Accordingly, ��  and �� �  reduce appreciably, and �� �  increases slightly.  

Zdravkovich [1987] classified flows around two tandem stationary 

cylinders into three flow regimes based on the behaviors of the free shear 

layers separated from the upstream cylinder. The free shear layers do not 

reattach on the downstream cylinder and roll up behind it to form the 

vortex street for �������������������, where the upper limit is dependent 

on Re; they reattach on the upstream side of the downstream cylinder for 

�������������������������. When ��� exceeds �������, the shear 

layers roll up alternately, forming vortices between the cylinders, both 

cylinders generating vortices. Evidently, the flow structures at ������

��, shown in Fig. 4.9, fall into the third regime, that is, vortices are 

generated between the cylinders and behind the downstream cylinder, 

irrespective of the ������value. 

Simulations are also performed to investigate the effects of center-to-

center spacing. At ���� �� ���, the shear layers separated from the 

upstream cylinder are expected to have sufficient space to form vortices 

before reaching the downstream cylinder. Therefore, given the same 

���, the flow structures are likely to resemble those at ��������. The 

flow structures (Fig. 4.11) are indeed qualitatively the same as those in 

Fig. 4.9 for the same �����. Nevertheless, there is a slight increase in the 

 

(a)        (b)       (c) 

Fig. 4.11.  Vorticity contours at ���� �� � (���� �� ����� 
�����). (a) ������ �� ���;  
(b)�������������; (c) �����������. 
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maximum spanwise vorticity due to a larger ���. For example, the 

normalized maximum vorticity � � �	  increases from ���� at �������� 

to ���� at ������ � for �������� ���, from ��� at ������ �� to ��� at  

������� for ������������, and from ���� at �������� to ��� at �������. 

As ���������, it is found that at ����������� the shear layers separated 

from the upstream cylinder manage to form two binary structures, 

symmetrically arranged about the centerline, before reaching the 

downstream cylinder. As a result, the flow structure (Fig. 4.12) at ������
��� is qualitatively the same as that (Fig. 4.9) at ���� �� ��. As ����� 

reduces to ����, the rolling-up shear layers separated from the upstream 

cylinder reattach on the upstream side of the downstream cylinder before 

completely forming vortices (Fig. 4.11b). The flow structure between the 

cylinders is thus not quite the same as that at ��������. Nonetheless, the 

flow structure behind the downstream cylinder is qualitatively the same 

(c.f. Fig. 4.9).  

A further reduction in ����� to ��� results in a completely different flow 

structure. The two free shear layers separated from the upstream cylinder 

(Fig. 4.11c) now roll up symmetrically about the centerline and, before 

the complete formation of vortices, reattach on the upstream side of the 

downstream cylinder. As a matter of fact, the free shear layers also tend 

to separate, symmetrically with respect to the centerline, from the 

downstream cylinder. Consequently, the flow structure behind the 

downstream cylinder is rather different from that at ��������.  

 

(a)     (b)     (c) 

Fig. 4.12.  Vorticity contours at ���� �� � (���� �� ����� 
�����): (a)� ������ �� ���;  
(b) ������������; (c)������������. 
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4.5   Summary 

The simplicity in programming has been recognized as an advantage of 

LBE method in simulating fluid flows. In this chapter the algorithm 

structure and basic subroutines of LBE are presented. Several examples, 

including the lid-driven cavity flow, the flow around a fixed circular 

cylinder, and the flow around an oscillating cylinder with a downstream 

cylinder of identical diameter, are presented. The results of LBE are 

compared with other numerical and/or experimental data reported in the 

literature. These results demonstrate that LBE is a viable method for 

incompressible fluid flow simulation.  

It should be noted that the algorithm presented in this chapter is an 

elementary implementation and is not optimized. Some methods to 

improve the performance of LBE have been developed from different 

viewpoints. For example, Pohl et al. [2003] employed a grid 

compression technique to raise cache hit rate. Mattila et al. [2007] 

introduced a swap algorithm to reduce memory consumption. Some 

parallel algorithms were also developed for LBE on different computer 

architectures [e.g., Desplat et al., 2001; Kandhai et al., 1998; Wellein  

et al., 2005]. The most recent trend in this direction is the use of graphics 

processing unit (GPU) architectures, which are ideally suited for LBE 

[Bernaschi et al., 2009; Li et al., 2004; Tölke, 2009; Zhao, 2008].  
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Chapter 5 

LBE for Low Speed Flows with  

Heat Transfer 

The LBE method has achieved great successes for isothermal or athermal 

flows where temperature variations are ignored. In many scientific and 

engineering problems, however, heat transfer is important or may be 

dominant. Many efforts have been devoted to extend LBE to such flows. 

In general, the existing LBE models for thermal flows can be classified 

into three categories, i.e., multi-speed (MS) models, double-distribution-

function (DDF) models, and hybrid models.  

In MS-LBE models, the fluid density, velocity, and temperature  

are obtained from zeroth through second velocity moments of the 

distribution function ��. Usually, in order to obtain the macroscopic 

evolution equation of the temperature, a MS-LBE uses a larger set of 

discrete velocities than that used in the corresponding isothermal model, 

and the lattice can be decomposed into a set of basic sub-lattices (such as 

square, hexagon, or cube), with identical link length in each sub-lattice. 

In addition, the equilibrium distribution function (EDF) of the MS-LBE 

model includes higher order velocity terms which are absent in that of an 

isothermal model. A major shortage of the early MS-LBE models which 

employ certain BGK collision operators is that the Prandtl number is 

fixed. Some later models have overcome this problem, but the viscosity 

appearing in the viscous dissipation in the energy equation may be 

incorrect. Another shortcoming of the MS-LBE models is that the 

numerical stability is not satisfied, which severely limits their applications. 

 In contrast, the DDF-LBE and hybrid models can effectively 

overcome the aforementioned two limitations of the MS-LBE models. In 

the DDF-LBE model, two types of distribution functions are used to 
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describe the evolutions of the velocity and temperature, respectively. The 

LBE for the velocity is usually the same as the isothermal model, and 

that for the temperature solves an advection-diffusion equation with the 

same lattice or a simpler one. It has been demonstrated that the DDF-

LBE has a better numerical stability and can achieve a wider temperature 

range than the MS-LBE. A major deficiency of DDF-LBE model is that 

the equation of state is independent of temperature so that such models 

are intrinsically only suitable for Boussinesq flows. Similar to DDF-LBE, 

hybrid LBE models also treat the energy equation separately, and solve it 

by some standard numerical schemes such as finite-difference method. 

An advantage of this approach is that the pressure can be coupled with 

the temperature explicitly. 

As can be seen, all of the available thermal LBE models have their 

own advantages and disadvantages, so that further developments and 

refinements are still in need. In this chapter, we will present some basic 

thermal LBE models. 

5.1   Multi-speed Models 

Earlier MS-LBE models usually adopt a lattice based on those of 

isothermal models by including some new discrete velocities so that the 

particles can move to farther neighboring grid points. In these models, 

the discrete velocities are coupled with the associated lattices, and so 

such models are also termed as space-filling models. According to the 

terms of velocity expansion in the EDF, MS-LBE models can be 

classified into low-order models and high-order ones. In the former type 

the EDF contains some terms up to �����, while the latter type contains 

terms up to������, where � is the fluid velocity. It can be shown that the 

corresponding macroscopic equations of the low-order models may 

contain some undesirable artifacts, while those of the high-order MS-

LBE models have no such problem. 

5.1.1   Low-order models 

The first MS-LBE model was proposed by Alexander et al. [1993]. This 

is a two-dimensional model (referred to as ACS model) containing 13 
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discrete velocities associated with two hexagons with links of length � 

and ��, respectively:  

� ��� ���� , � ��	
 � 
��� � � �� � � ��� , �� ��� � , � �� � � , �� �� � , 

(5.1) 

where � �� � � �  is the lattice speed and we will assume ���� � in the 

following sections without statement otherwise. The BGK collision 

operator is adopted in the ACS model, i.e.,  

 � ��
� � � � � � � � � � � ��	
� � � � � � �� � � � � � � �� � � � �� �

�
� �� � � � � �� 	
 �� � � � � , (5.2) 

where the equilibrium distribution function is defined by 

� � � � � �� � � � � � � � � � � ��	
� � � � �� 
 � �  � � � �� � � � � � � � � � �� � � �� � � � � � � � . (5.3) 

Here the fluid velocity is still defined by � �� �� � �� ��� , and the 

coefficients 
σ����σ� are functions of the local density �� ��  ���  and  

the internal energy � �

�
� �� ��� �� � � �� ��� . These coefficients should be 

chosen so that the following constraints are satisfied: 
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. (5.4) 

One possible solution is [Alexander et al., 1993]: 
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With the above parameters, it can be shown that the macroscopic 

equations of the ACS model are 

 � � �
�

�
�

�
� � � �

�
� , (5.5) 
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�
� � �� , (5.7) 

where ������, and the viscous stress � and the heat flux � are given by 

 � � �� � ��� � � �� �� ,  ��� �� , (5.8) 

in which the first and second dynamic viscosities and the thermal 

conductivity are given by 

 
�

�
�� � �

� ���� � �� �� �� �
, � �� � � , �� �� . (5.9) 

It is easy to check that the specific heat capacities of the ACS model are 

��	���	������� ���� �������, respectively, which means that the 

Prandtl number is �������������. This limitation is due to the use of the 

single relaxation BGK model for the collision, and other MS-LBGK 

models also suffer from this problem.  

Soon after the emergence of the ACS model, Qian [1993] developed 

a series of MS-LBE models based on the DnQb-LBGK isothermal 

models. The lattice employed in such a model is usually composed of a 

group of sub-lattices� �� , each of which having �� links with length 

��� � . For example, the lattice used in the D2Q13 model is composed 

of 4 sub-lattices with �	��������� and �, respectively (Fig. 5.1). Generally, 

the EDF of Qian’s MS-LBE models can be expressed as 
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 �

�
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�
, (5.10) 

where 
� is the same as that used in the isothermal DnQb-LBGK model. 

The undetermined coefficients 
�	, ��	, and � satisfy the following 
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conservation constraints, 

�� 
� �
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 �� �
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� � , ��
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�
� � �
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� � , (5.11) 

where  is the spatial dimensions. The number of links of the sub-lattice 

(or sub-discrete velocities in ��) �� depends on the model and the spatial 

dimension. For example, for the D2Q13 model shown in Fig. 5.1, �������

and ����������������. Furthermore, the following additional constraints 

must be satisfied in order to obtain correct transport coefficients, 

 � ��� ��� 
  ��� �

�

� � � , � � ��� �   ��� �

�

� � � , (5.12) 

where � is an adjustable parameter. Based on these arguments, Qian 

proposed a set of DnQb MS-LBGK models, which are listed as follows. 

(1) D1Q5 model 

The discrete velocities are given by �������±��±��, and the parameters in 

 

Fig. 5.1.  D2Q13 lattice form structure. 
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the EDF are 
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(2) D2Q13 model 

The discrete velocities include those of the isothermal D2Q9 model and 

4 additional velocities along the � and � directions with modulus 2 (i.e. 

the sub-lattice with �	��� in Fig. 5.1), 
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The parameters of the EDF are given by 
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(3) D3Q21 model 

The discrete velocities include those of the D3Q15 model and 6 

additional velocities along the �, �, and � axes with modulus 2, 
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and the parameters of the EDF are given by 
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(4) D3Q25 model 

The discrete velocities include those of the D3Q19 model with 6 

additional ones of modulus 2 along the �, �, and �� axis. The weight 

coefficients and parameters of the EDF are: 
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In the above EDF, the parameter � can be adjusted with some freedom. 

In the original models by Qian [1993], � is set to be 1 in all of the models 

except for the D1Q5 one which takes������. With these parameters, the 

thermohydrodynamic equations derived from Qian’s MS-LBGK models 

through the Chapman-Enskog expansion have the following form, 

 � � �� �� �� �� � � � , (5.13) 
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where ��� � ��  � �� �� �  is the pressure, and the transport coefficients 

are given by 
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  (5.16) 

5.1.2   High-order models 

In the low-order MS LBE models given above, the EDFs only involve 

terms up to� �����. Chen et al. [1994] found that, however, the EDF 

should contain terms of in order to obtain the correct momentum flux and 

heat flux for deriving macroscopic equations, i.e.,  
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(5.17)
 

where the undetermined coefficients 
�����  are quadratic polynomials of 

the internal energy that can be expressed as, 

 �
� � �� �� � � � � �� � � ��� � � . (5.18) 

Furthermore, the following constraints are required [Chen et al., 1994], 

� � � � � �� � ��	 �	 �	
� � � � � �

� � �

� � � �� � � � � �

� � �

� � �� � � �  � � � � �� �  (5.19) 

� � � ���	
� � � �

�

� � �� �� � � ��� �� � � �

�

�   (5.20) 

� �� � �
�� ��

� �� ��	
� � � �

�


� � � �  �� ��



�
� � � � �� � �� �� �� � � �

�

�  (5.21) 

where ��������� and �������	������	��������������. In order to meet the 

above conditions, Chen et al. pointed out that the discrete velocity set 

should have enough symmetry. More specifically, the velocity tensors 

 � ��

�

�
� � �

�

�� � � �� � � �

�������������

�  ,  �������������������� (5.22) 

must be all isotropic (note that the low order models can only give the 

��� th order isotropic tensors). To achieve this purpose, Chen et al. 

chose a composite lattice based on a -dimensional unit cube to define 
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the discrete velocity set, 

 �!�"# � �� �� � �� �� � �� ��$

 �

� ���

�

��

�

� � � �� �� �

���������

� �
��������������	

, (5.23) 

where the operator “Prem(⋅)” represents a set composed of all the 

possible permutations of (⋅), � is a scaling coefficient of the basic lattice, 

and it is clear that � �
�� � ��� � � . For example, for the D2Q13 lattice 

shown in Fig. 5.1, the velocities of the sub-lattices (from top to bottom) 

are � ���� � , � ��� �
��� � , � ��� �

��� � , and � ��� �
��� � , respectively. 

Based on such lattices and EDF, Chen et al. [1994] developed a series 

of 1~3 dimensional DnQb MS-LBGK models, which are listed below. 

(1) D1Q5 model 

Discrete velocities: ��������±���±��. 

Parameters in the EDF: 

�
� �

� � �

� �
� � � � � �

� � �� �

� � � �

 � 
 � 
� � � � � � � �  

� �

� �
� �

� �� �

�
� � �� � � � �  

� � �

� � �
� � � �

� � � �� �

� �
� � � �� � � � � � � �  

� � � �

� � � �� �
� � � � �

� �� �� �� ��

� �
  � �� � � � � � � �  

� � � � � �

� � � � � �
� � � � �

� � �� � �� ��
� � � � � �� � � � � � � � . 

(2) D2Q16 model 

Discrete velocities: 

 � �� ��!"#� ����$� �� � ��� � , � �� ��!"#� �� ��$� �� � � ��� � , 

 � �� ��!"#�� �� ��$� �� � ��� � , � �� ��!"#�� �� ��$� �� � � ��� � . 

Parameters in the EDF: 

 � � � �

� � � � � �
� � � �

� � � �� �� �� ��

� � � �
� � � �

�
� � � � � � � � �  
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� � � �

� � � � � �

� � � �

� � � � � � � �

� � � � � �

 

(3) D3Q40 model 

Discrete velocities: 

� �� � ����!"#� ���� ��$� ��!"#� �� �� ��$� � � �� � � � � �� ��� � � � ,  

� �� � ����!"#� �� �� ��$� ��!"#�� �� �� ��$� � � �� � � � � � � �� �� � � � , 

�� �� ��!"#�� �� �� ��$�� �� � � � ��� �
 

Parameters in the EDF: 
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 � � � � ��

��� ��� ��� �
� � � � ��

���� ���� ���� ��
� � � � �� � � � � � � �  

Chen et al. [1994] have shown that with the above discrete velocity 

sets and EDFs, the MS-LBGK models could give the standard 

compressible Navier-Stokes equations with the following transport 

coefficients 

 
� �

�
�


� � �

� ���� � �� �� �� �
, 

�


� �� � � , 

� �

�


�


� � �

� �� ��� � �� �� �� �
. (5.24) 

It is apparent that these high-order MS-LBGK models give a zero bulk 

viscosity and a unit Prandtl number. 

Chen et al. [1995] have simulated the thermal Couette flow with both 

the high-order MS-LBGK models and Qian’s low-order models. It is 

shown that the difference between the results of the two types of models 

is significant for high Mach number flows, and usually the high-order 

models could give better predictions. This fact indicates that the terms of 

������in the EDF are critical for high speed flows. 

5.2   MS-LBE Models Based on Boltzmann Equation 

The MS-LBE models described above are designed in a top-down 

fashion, i.e. the discrete velocities and the EDFs are determined by 

enforcing the corresponding macroscopic equations to match the 

thermohydrodynamic equations with certain accuracy. The parameters 

determined in this way are somewhat empirical, and it is not an easy task 

to find these parameters by solving the constraint equations. On the other 

hand, it is known that the isothermal LBGK models can be obtained from 

the continuous Boltzmann equation following certain systematic 

discretization techniques. Similar approach can also be used to establish 

MS-LBE models [Philippi et al., 2006; Shan et al., 2006]. 

5.2.1   Hermite expansion of distribution function 

From kinetic theory, it is known that the distribution function � for  

a Maxwell gas can be expanded into a series of Hermite tensor 
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polynomials, which is defined by 

�
�

�

� �
� � � �

� ��
� � � �� !%& !%& � ��

� � � �
�

�
� � �

� �

�
� �

� 
 �
� � 


� �� � � � �� � ��� 	 � 	�� � � � �� ��� 	 � 	�� � �� �
 � 
 �
�  (5.25) 

where ����������� and � �� ���� � !%&� ��� �
 � � � . The first few generalized 

Hermite polynomials can be easily computed from Eq. (5.25), e.g.,  

��� �� � , ���
� �� �� , ���

�� � � ��� � � �� � , ��� � �� � � ������� � � �� � �� , (5.26) 

where � ���� � �� � �� � ��� � � � � �� � ��� . The tensor Hermite polynomials are 

orthonormal with respect to the weight 
���, i.e.,  

 � � ��
� � � � � �� � � � � � � �

 �� � !
 � ��� � � � � , (5.27) 

where � ��
���  is zero unless ������������� � is a permutation of ��������������. 

The Maxwellian distribution function � �� � � ��	� ���  can be expanded in 

terms of Hermite polynomials as [Harris, 1971], 

 � �	� �� � � �� �

�

�
� � � � � � � � � � � �

'

� ��	 "

�

� � � � �
�

�

�

� � � � � , (5.28) 

where the expansion coefficients are functions of time and space, 

 � �	� � � �� � �� � � �� ��	� � !��� � � � � . (5.29) 

In Eq. (5.28), "�  is the local Maxwellian distribution function in the 

form of 

 
�

�
� � � !%&

�� � �
"


�

� �
�

��

� ���� � �� �� �� �
� , (5.30) 

where the parameters � and � can have different choices. Three types of 

�  and �        were suggested by Philippi et al. [2006], 

� A: ��� �� �  and �� � ��� �� . 

� B: � ��  and   ��� � . 

� C: �� ��  
and �� �� � , where � ���� �  and �� is a reference 

temperature.  

In order to determine the discrete velocities and the discrete EDF  

for constructing thermal LBE, first the above expansion needs to be 
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truncated at certain orders, i.e.,  

 � �� � �	� � � � � �� �

�

�
� � � � � � � � � � � � � � � �

'

#

�	 � ��	 "
#

�

� � � � � � �
�

�
�

 � � � � � , (5.31) 

where #�is an integer. Then a numerical quadrature is chosen so that the 

velocity moments of the truncated expansion hold up to a certain order,  

       � � �� � � �

�

� � � � � � � �
�

�	 �	� �
� � �# #

�

� � ! $ � �
�

� � � � � � ,  ����������(��% (5.32) 

where % is an integer, $� and ���are the weights and abscissas of the 

quadrature, respectively. The discrete velocities are then chosen to be the 

abscissas �� . Therefore, the choice of quadrature plays a critical role in 

determining the discrete velocities and the corresponding LBE model.  

Equation (5.28) indicates that 
� ��	
#�  can be expressed as  

 � �� � � � � � ��	 "
##� � &��� � � , (5.33) 

where #&  is a polynomial of degree #. Therefore a natural choice of the 

numerical quadrature in Eq. (5.32) is the Gauss-Hermite formulation of 

degree #���% with the weight function 
���, i.e.,  

 
�

� � � � � �
�

� �

�

! '
 � �
�

� � � � � � , (5.34) 

where �� is a polynomial of degree #���%, '�� and �� are the weights  

and integration nodes, respectively. From Eqs. (5.32) and (5.34) we can 

identify that  � � �"
� � �$ ' �� �� � , and �� can be obtained from    �� . The 

discrete EDF is obtained by setting � � � �� � � ��	 �	
� � �#� $ � �� �� .  

The continuous distribution function �����������can also be expanded in 

the tensor Hermite polynomials [Shan et al., 2006], from which we can 

define the discrete distribution functions �����$�������������.  The evolution 

equation of �� , which is usually called as discrete velocity Boltzmann 

equation (DVBE), can be deduced from the Boltzmann equation,  

 � ��
) �	�
� � � �

�

�
�

�
� �

�
� ��

�
� � � �� 	
� �� . (5.35)  

Further discretizations in time and space will lead to MS-LBE models. 
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The order of the truncated expansion of � ��	� , #, and the highest  

order of the velocity moments required in Eq. (5.32), %, determine the 

consistency between the DVBE (and the resultant LBE) and the 

continuous Boltzmann equation. In what follows we will discuss the 

resultant DVBE models corresponding to the three different choices of  �"�

given by Eq. (5.30). 

5.2.2   Temperature/flow-dependent discrete velocities 

In the first choice, the local Maxwellian distribution function uses � ��  

and �� � �� �� � , which means that � �� � � � ��	 "� � ��� � . Therefore the 

coefficients of its Hermite expansion are (����� and � � ��
� �	 (��*��), i.e., 

&#����. Consequently, for a given K one can just choose the Gaussian 

quadrature of degree K, and the discrete EDF is simply as 

 � � � � ��	 "
� � � �� $ � '� �� �� . (5.36) 

It is obvious that 
� ��	
��  is independent of the fluid velocity. However, in 

this case the discrete velocities are functions of both the fluid velocity 

and temperature, 

 � �� � �� � � . (5.37) 

This means that the particle velocity changes locally with the 

temperature and fluid velocity, which may bring many difficulties in 

practical applications. Sun [1998] has proposed one LBE model based on 

this idea, but the implementation is rather difficult. 

5.2.3   Temperature-dependent discrete velocities  

The second kind of Hermite expansion sets � �� and  �� � �  in the 

local Maxwellian distribution function, and so � �� � � �� � � �+�	 "� � �� � �� ��  

with + �� � � . The expansion coefficients are then 

 � � �	 ��� � � � � ��
+� � � � � � � � �+� � �"� � ! � !� 


�
� � � �� �� � � � � � , (5.38) 
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and the first few coefficients can be expressed as 

        ��� �( � , ��� +� �( �� , ��� + +�� � ��( �� , ��� + + +� � ���� �( � �� , ��� ++ + +� )�) ��� ��� �( �� . (5.39) 

On the other hand, in order to make Eq. (5.34) hold exactly, we should 

choose a Gaussian quadrature of degree �����	at least. Then the discrete 

velocities are set to be �� ��� � , and so the discrete equilibrium 

distribution function can be expressed as 
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� � � �

�
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� � �
� �

�

��	 �	
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��� $ � � ' �
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�
�

� �

� �� � � � � �
 �
� ���� 	� � � �� 	
 �

�

�
 (5.40) 

It should be noted that although the quadrature nodes �� are some 

constants, the discrete velocities ��  can change in both time and space 

through the local temperature. Consequently, the particles may not arrive 

at lattice nodes during the propagation, which means that interpolations 

or other techniques should be adopted in the computation [Pavlo et al., 

2002]. However, this numerical difficulty is not the main problem of 

such DVBE (and LBE) models. A more serious problem is the coupling 

between ��� and� �� and �, which should be independent as that in the 

continuous Boltzmann equation. As a result, in the DVBE (5.35) ��  is 

non-commutative with the temporal and spatial derivatives, i.e.,  

 � �� �
� � � � � �� �� ! �� � ,  � �� �

� � � �� �� ! �� � . (5.41) 

Consequently, even though the discrete velocity moments can match the 

continuous ones up to the required order, the macroscopic hydrodynamic 

equations from the DVBE (5.35) may still be incorrect. For example, 

although the discrete velocities can ensure that � ��	
�� �� �� �� � � � �� , 

the continuity equation on the ��  time scale in the Chapman-Enskog 

expansion is 

 � � ��

� ���� � � � �� �� � �� �
��

� �
�

, (5.42) 

or 

 
� � �

�
� � ,� �

�
� � � � �� � � � � � � !� � , (5.43) 
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which indicates that the DVBE (5.35) is inconsistent with the continuous 

Boltzmann equation even at the Euler level.  

5.2.4   Constant discrete velocities 

The third Hermite expansion method uses �� �� and � ��� �  in  

the Maxwellian distribution function "� . In this case, �  and �  are 

independent of time and space, and "�  is a global equilibrium 

distribution function. The equilibrium distribution function can then be 

expressed as 

    

�

�� � �

�

+� �
� � � � !%&

+�� � �
�	 



�
� �

�� �
�� 


�� � �

�
� �� �� � �� ��� 	� � � �� �� 	 � ��� �
 �

�
�

�
� , (5.44) 

where �
+ �� � � . The expansion coefficients of ����	� are 

    � � �

�
�	� � � � � ��+ +� � �

+
+�

+
� �� � � � ! � !� 
 
 �

�

�
� �� ��� � � �� �� �� �� �
�

� � � � � , (5.45) 

and the first four coefficients can be evaluated as 

��� �( � ,  (5.46) 

��� ++ +� �� � � ��( ! �
 ��� �� � �� 	
 �� � � ,  (5.47) 

��� + ++ + ++� � � �� � � ��+�� � � � � �� � � ����( ! ����
 � � � � �� �� � � � � � �� 	
 �� � � , (5.48) 

���� ++ ++ � ��� �� � � ������ ��( � �� � � � ,  (5.49) 

����� �+ ++ ++ � ��� � � �� � �+� � � ) ���) ���)���) ��( �� � �� � � � �� �� , (5.50) 

where 

 � ����) �� �� �� �) �) ��� � � � � �� � ��� , 

� ����) � � �� � � �) � ) �� � � �) � ) �� � ) ��� � � � � � � � � � � �� � � � � � �� � � � � ��� . (5.51) 

In this kind of expansion, the discrete velocities obtained from the 

quadrature (5.34) are independent of time and space. Actually, the 

discrete velocities � �� ��� �  are some constant vectors depending on 

the selected quadrature. The discrete EDF corresponding to the above 
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Hermite expansion can be written as 
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(5.52)

 

where 
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�
�

� � �
� . (5.53) 

Although the ����%-th order velocity moments of the EDF (5.52) are 

just the same as those of the EDF given by Eq. (5.40), the discrete 

velocity set obtained by this way has the advantage that it is independent 

on time and space so that the DVBE is in consistent with the continuous 

Boltzmann equations more closely than that derived in Subsec. 5.2.3 in 

terms of the Chapman-Enskog analysis. 

Now we discuss how to construct thermohydrodynamic MS-LBE 

models based on the above expansion method. The Chapman-Enskog 

analysis of the continuous Boltzmann equation shows that the 

hydrodynamic equations on the Navier-Stokes level depend on the 

following velocity moments, 

 � ��	� ! ��� � , �� ��	� ! ��� � � , � � ��

�
�	� � ! ���� � , 

 � � ����	� ! ��� ��� � �� � , � � � ����
�

�
�	� � ! � ��� �� � , 

 ��� ���� ! ���� �� , � ��� ����

�
� � ! ��� �� , (5.54) 

where � �� ��  is the peculiar velocity, and 
����  is the first-order 

distribution function, which can be expressed as, 

 
�

��� � � � �
�

�	 �	
� �� � �� � �� � � � � �
 �� . (5.55) 

Therefore, the constraints given by Eq. (5.54) indicate that the zeroth 

through 4th order velocity moments of � ��	�  are all critical for recovering 
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the thermohydrodynamic equations at the Navier-Stokes level. On the 

other hand, since the ����#-th order velocity moments of � ��	
#�  are 

identical to those of 
� ��	� , the Hermite expansion of � ��	�  should contain 

the term of ���
�
 , namely, � ��	

#�  with #�
≥

�� should be used as the truncated 

approximation of 
� ��	� . 

If 
� �
�

�	
�  is used as the approximation of the EDF, the degree of the 

quadrature used in evaluating the moments given by Eq. (5.54) should be 

at least 8. In general, in order to ensure that the ����#*th-order velocity 

moments of � ��	� can be accurately evaluated, � ��	
#�  should be used and a 

quadrature of degree at least 2# should be adopted [Shan et al., 2006]. 

The above analysis shows that the discrete EDF 
� ��	
��  must include 

terms of order ������for thermal flows, which is consistent with Chen’s 

arguments about the high-order MS-LBE models. An advantage of the 

Hermite expansion method is that the discrete velocity set and the 

associated EDFs can be deduced systematically.  

5.2.5   MS-LBGK models based on DVBE with constant 

discrete velocities 

The most efficient quadrature in Eq. (5.32) is the Gauss-Hermite type 

with unknown weights and nodes. The discrete velocities �� obtained this 

way do not coincide with a regular lattice in general, i.e., the velocity set 

is off-lattice or non-space-filling [Shan et al., 2006]. An alternative 

method is to define some lattice vectors � associated with a regular 

lattice first, and then determine the weights 
� and discrete velocities 

� �+� � (i.e �� �+ ���  ) according to some Gaussian quadrature rules 

so that the velocity moments are accurately evaluated. Several two-

dimensional models of this kind have been developed [Philippi et al., 

2006; Siebert et al., 2007], in which the EDFs given by Eq. (5.52) are 

used. Three MS-LBE models of this type are listed below (discrete 

velocities are expressed as �� �+ ���  ).  

(1) D2Q25a model 

The discrete velocities are generated from the lattice vectors � ��� ��� , 

Prem#��±�����$, and Prem#��±��� ±��$ (���� ��� ��� �) (see Fig. 5.2), and  
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the parameter +��� 0.834659, while the weights in the EDF are given  

by 

�

�

��������� � ����

��������� � �� ��
�

������� �� � � ����

������� �� � � ��� ��

�

�

�

�

�

'
�

�

"######$# %#### %#&









and  

�

�

�

������� �� � � ����

� ������� �� � � ��� ��

������� �� � � ����

�

� �

�

'

�

�

�

" %#### %$### %#&







 

(2) D2Q25b model 

The discrete velocities are generated from the lattice vectors � ��� ��� , 

Prem#��±��� ��$� ��� �� ��� ��� ��� ��, and Prem#��±��� ±�� �$� ��� �� ��� ��  

(Fig. 5.2.), the parameter + = 1.075607, and the weights in the EDF are 

given by 

�

�

��������� � ����

��������� � ����
�

������� �� � � �� ��

������� �� � � ����

�

�

�

�

�

'
�

�

"######$# %### %##&









 and  

�

�

�

������� �� � � ��� ��

� ������� �� � � ����

������� �� � � ����

�

� �

�

'

�

�

�

"# %### %$### %#&







 

(3) D2Q37 

The discrete velocities are generated from the lattice vectors � ��� ��� , 

Prem#��±�����$��������������, Prem#��±���±��$�����������, and Prem#�±���

±��$ (Fig. 5.3.), the parameter + = 1.196980, and the weights in EDF are 

      
Fig. 5.2.  Lattice vector of D2Q25a(left) and D2Q25b(right). 
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given by 

�

�

��������� � ����

��������� � ����
�

������� �� � � �� ��
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�
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�
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 and   

�

�

�

�

������� �� � � �� ��

������� �� � � ��� ��
�

������� �� � � � ��

������� �� � � �� ���

�

�

�

�

�
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�
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It is noteworthy that for low Mach number thermal flows, the  

terms of ������can be neglected in both the expansion of � ��	�  and the 

velocity moments. Consequently, � ��	�  can be approximated by 
� �
�
�	� , and 

a quadrature of degree 7 can be used to determine the discrete velocity 

set and the EDFs [Philippi et al., 2006; Shan et al., 2006; Siebert et al., 

2007]. Two examples are given below. 

(1) D2Q17 model 

The discrete velocity set is � �+��   with +��� �������, and the lattice 

vectors include ���������), Prem#��±�����$�����������, and Prem#��±���±���

����������. The corresponding weights in EDF are given by 

 
�

��������� � ����

� ��������� � ����

������� �� � � ����

�

� �

�

'
�

"####$### %#&







 and 
�

�

������� �� � � � � ��

�������� �� � � � ��

�

�

�

'
�

�

"# % �##� $# % �##&




 

(2) D3Q37 model 

The discrete velocity set is ��� ���  , and the lattice vectors include  

������������Prem#�±���±���±��$, Prem#��±���±�����$, and Prem#��±��������$�

 

Fig. 5.3.  Lattice vector of D2Q37. 
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�������������. The weights in EDF are 

 

�  ��� � � ��

�  ��� � � ��

�  ��� � � ��

�
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�
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5.3   Off-Lattice LBE Models 

Due to the coupling between the discrete velocities and the underlying 

lattices, the MS-LBE models described so far usually involve a large 

discrete velocity set in order to satisfy the necessary moment constraints. 

On the other hand, off-lattice LBE models can release this problem by 

decoupling the discrete velocity set and the lattice. But due to this 

decoupling, the particles do not evolve on the lattice any more in such 

LBE models, and some special treatments such as interpolation must be 

employed. 

The first off-lattice LBE may be attributed to Pavlo et al. [1998], who 

developed a D2Q17 model based on a lattice consisting of two composite 

octagons, where the discrete velocities are given by 

� ��� ���� , � � �	
� ��� 
��� ��� �� � � �� ��� �
� 	
 �� � , � � - �� , � �� �� . 

(5.56) 

In order to make the computational mesh match these discrete velocities 

as much as possible, Pavlo et al. employed the square lattice used in the 

standard D2Q17 for spatial discretization (see Fig. 5.4). As such, in the 

streaming step, only those particles with velocities �� , ���� , ���� , ..., ����  

can reach the lattice nodes, while the others will fail. Pavlo et al. [1998] 

suggested using a second-order interpolation scheme as a supplemen-

tation. It was shown that such interpolation method did not cause serious 

numerical diffusion, and the stability analysis indicated that this model 

has a better numerical stability than the aforementioned D2Q13 models 

based on hexagon and square lattice as well as the standard D2Q17 

model based on the composite square lattice. A three-dimensional 

D3Q53 model was also constructed following a similar approach. 
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Watari and Tsutahara [2003] proposed a similar MS-LBE model (WT 

model), which uses a composite lattice with four octagons. The discrete 

velocities are given by ）� ��� ��� , �	
� ��� 
��� ���� �� � �� �� �� � 	
 �� , � �� � � , � �� � � , (5.57) 

where the ��’s are undetermined parameters. The EDF of the WT model 

is given as, 

   

�� � � �
� �

� �

� �

� �

� �
� � �

� � � � �

� � � �
�

� ��

�� ���	
�� �

�� ��

� � � �
�

� � � � � �

� �


 �
�� � � � � �� �� � �� � ��� � � � � � � � � �� � �� � �� � �� � � �� � � � � �


�� 	� � 	
�

�

� � � �

� � � �
 
(5.58)

 

where the weights 
� depend on the magnitude of the discrete velocities. 

With the consideration of numerical stability, Watari and Tsutahara 

[2003] suggested setting� �����������������= (1, 1.92, 2.99, 4.49), and the 

corresponding 
� can be determined accordingly. To discretize the DVBE 

(5.35) with these discrete velocities, an explicit scheme was suggested 

[Watari and Tsutahara, 2003], 

 
� �

.
� � � � � �

� � � �

�� ��

�� �� ��� ���

�	
�� ��

�

� �
� � � � � � � �

�
� � �

�

�

� �

� �

� ��� �� ' � �' �� �� ��� �
' � �� �� 	
 �

� �

�

 
(5.59)

 

where the spatial derivatives were discretized by upwind schemes. 

 

Fig. 5.4.  Discrete velocities and computation mesh of the D2Q17 based on octagons. 
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Recently Gan et al. [2008] developed another finite difference 

scheme based on the WT model. Instead of solving DVBE (5.35) directly, 

they suggested solving the following modified DVBE with an additional 

dispersion term and an artificial viscosity term, 

 � � � ���� �	
�� �� �� �� �� �� �� ��

�

�
� � � 
 � � �

�
� �

�

� � �� � � � � � � � � �� 	
 ��
� , (5.60) 

where ��
 � ����� ��� �  are functions depending on the discrete velocity ���. 

Gan et al. [2008] used the Lax-Wendroff (LW) scheme to discretize the 

left hand side of the equation and the central difference scheme is used to 

the right hand side. Numerical results showed that this LW-LBE has 

good numerical accuracy and stability. 

Shan et al. [2006] also developed some off-lattice models based on 

the Gauss-Hermite quadrature. A few examples for low Mach number 

flows, in which � �
�
�	�  and the 7th-degree Gaussian quadrature are used, 

are given below (discrete velocities are given by �� ����   and the �’s 

are the corresponding lattice vectors ). 

(1) D1Q4 model 

The lattice vectors are , and the corresponding weight 

coefficients are  given by �� ��  ���' � � . 

(2) D2Q12 model 

The lattice vectors are defined by Prem#�±+�� ��$, Prem#�±��� ±��$, and 

Prem#�±��� ±��$, with �+ � , , and . The 

weight coefficients are  

 

���� � � �
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�

� �

�

+

' �
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"# �####� � �$### � �##&







 

(3) D2Q16 model 

The lattice vectors consist of Prem#�±+����$��Prem#�±�����$, and Prem#�±+��

±��$, with  and . The weight coefficients are 
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(4) D3Q27 model 

Lattice vectors consists of ��������, Prem#�±+�������$, Prem#�±���±�����$,�

and Prem#�±��� ±��� ±��$, with , , and 

. The weight coefficients are 

 

���� � �������� � � ��

���� �� ��������� � � �

���� �� �������� � � � �

���� ��� ��������� � � � �

�

�

�

�

�

+
'

�

�

"# � �#### � �##� $# � �#### � �##&









 

Based on the above discrete velocities and the corresponding EDFs, 

one can solve the corresponding DVBE (5.35) using certain numerical 

schemes, which will lead to non-standard MS-LBE models for thermo-

hydrodynamic problems. 

5.4   MS-LBE Models with Adjustable Prandtl Number 

The low-order, high-order, and kinetic-theory-based MS-LBE models 

presented above all give a fixed Prandtl number, which severely limits 

their applications. This difficulty can be resolved by introducing some 

additional parameters. For example, Chen et al. [1997] developed a two-

relaxation-time model, 

 ı� � � � � �� � � � � �� � � �� �� � � � ( � (� � � , (5.61) 

where 

 � � � �ı ı ı

� � � �

� �

� �
��	 �	

� � �� � � �
� �

( � � � ( � � � , (5.62) 

where ı �� �� � . It is easy to verify that the collision process satisfies 

conservation laws due to the symmetry of the lattice. 
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The Chapman-Enskog analysis shows that the recovered macroscopic 

equations of LBE (5.61) are 

 � � �
�

�
�

�
� � � �

�
� , (5.63) 

 
� �

� � �
�



�
�

�
� � � � �� � � �

�
�

�� � , (5.64) 

 
� �
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�

� � �
�

�

�
� �

�
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�
� � �� , (5.65) 

where 

 � � �� � � �� � � � �� �� ,  � � �� �� � �� � � � �� �� , (5.66) 

and the transport coefficients are given by 

 
� �

�
� ��


� � �

� ���� � �� �� �� �
,  

�

� �

�
� ��


� � �

� ���� � � �� �� �� �
, (5.67) 
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�
� ��


� � �

� ���� � �� �� �� �
,  

�

� �

�
� ��


� � �

� ���� � � �� �� �� �
,  (5.68) 

 
� �

�
�


�


� � �

� �� ��� � �� �� �� �
, (5.69) 

where 

 
� �

� � �

�� � �
� � ,  

� �

� � �

�� � �
� � . (5.70) 

Accordingly, the Prandtl number is 

 
� �

��
� �

� � �

�

�� �

� �

�
� �

�
, (5.71) 

which means that the Prandtl number can be adjusted by changing the 

values of the two relaxation times �� and ��. However, it is noted that the 

viscous stress in the dissipation term in the energy equation is �� , which 

is inconsistent with that appeared in the momentum equation (i.e. �). 

Recently Prasianakis and Boulouchos [2007] proposed a similar two-

relaxation-time model, which starts from the following DVBE, 

 � �/ /

� �

� � �	�
� � � � � �

�
� � � � �

� � �
� �� �� � � � � � � �� 	
 � 


�
� �� , (5.72) 
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where 
/
��  is an intermediate state. The physical meaning of this collision 

model is that the non-equilibrium state first relaxes to the intermediate 

state 
/
��  with a time scale ��, and then to the local equilibrium state 

� ��	
��  

with another time scale ��. It is clear that the model reduces to the 

standard BGK model as �������. In the above model, the intermediate 

state plays a key role. In general it can be assumed that 

 � �/ /�	
� � �� � ��� � , (5.73) 

where the correction 
/
���  can be determined by projecting the DVBE onto 

the moment space and then transforming back to the velocity space. For 

example, the correction terms of D2Q9 model can be expressed as 

 
/ / / / / / / / /

/ / / /

�
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�
� �
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� � � �

�� �� �� �� �� �� �� �� ��

�� �� �� ��

�� � � � �

�� � � �

 
(5.74)

 

where 

 / � � � �� � ��	 �	� , ,� � � � �� ���� � �� � � � , �
� � �

�

� � �� �� �  ,  � � �

�

, � � �� � ��  , 

 � �� � � �	�	
� � �

�

� � �� �� � ,  � �� � �	�	
� � �

�

, � � �� � �� . (5.75) 

The corresponding macroscopic equations of the DVBE (5.72) can be 

obtained by the Chapman-Enskog analysis, in which the viscosity 

coefficients and thermal conductivity are 

 � �� � ��� ,  � �

�

�
� � ��� . (5.76) 

Therefore the Prandtl number of this model is ����������, which can be 

adjusted by changing �� and ��. The LBE model can be obtained by 

discretizing the DVBE (5.72) with certain numerical schemes. But 

unfortunately the consistency of the viscous stress in the momentum and 

energy equations was not discussed by Prasianakis and Boulouchos [2007]. 

Some more general two-relaxation-time LBE models were also 

developed [Chen et al., 1997; Teixeira et al., 2000]. For instance, with 

discrete velocities based on composite lattices, the collision operators can 

be written as, 

� � � �� � � �

�
� � �

� � �
� ��	 �	

�� �� �� �� �� �� ��

�� ��


� � � �

� �� � �

� ���( � � � � � � � �� �� �� �  � � , (5.77) 



 LBE for Low Speed Flows with Heat Transfer 171 

where ���is the number of links of the sub-lattice �. The hydrodynamic 

equations recovered from this LBE are again those given by Eqs. (5.63)

~(5.65), with the following viscosity and thermal conductivity, 

 �

� �

�
� �


� � �

� ���� � �� �� �� �
,  �

� �

�


�


� � �

� �� ��� � �� �� �� �
. (5.78) 

Similar to the two-parameter model of Chen et al. [1997], the Prandtl 

number of the above LBE can be adjusted by changing the values of ��  

and ��, but the viscous stress in the momentum equation is still 

incompatible with that in the energy equation. It is argued by some 

researchers that for any collision operators such inconsistency will 

appear, given that the moments corresponding to the viscous tensor and 

the heat flux relax with different rates [McNamara et al., 1995; Shan  

et al., 2006; Teixeira et al., 2000]. This also indicates the inherent 

deficiency of MS-LBE models. 

To overcome this disadvantage, McNamara et al. [1997] constructed 

a MS-LBE model (referred to as MGA model) in which the collision 

process is carried out in moment space. Clearly, this feature is similar to 

that of the multi-relaxation-time model developed by d�Humères [1992]. 

But with a larger discrete velocity set, the MGA model is able to produce 

the correct thermohydrodynamic equations. An example is a D3Q27 

model which uses 27 discrete velocities, whose collision process can be 

expressed as 

 � ��� � � � � � �	
� � �� � �

�

� � � � � �� � � ( �� � . (5.79) 

This process is achieved by relaxing different velocity moments in the 

moment space. Specifically, the five low-order velocity moments, �������
��, and ��, are conserved variables and do not change in the collision 

processes. The high-order velocity moments associated with viscous 

stress and heat flux are relaxed as follows, 

 � � � �� �� �

� �
� � � �� � ��� ��
� � � � � � � � �

� �

� � � � � � � �� � �� � � ��� � ��� � � �  , (5.80) 

 � � � �� �� ���� ��
� � � � � �

� �

� � � ���� � � � � , (5.81) 

where ��������� are the eigenvalues of the collision operator (. It can be 

shown that the transport coefficients corresponding to this collision 
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operator are 

 
� �

� �
� ��� � � �

� ���� � � �� �� �� �
,  

� �

� �
� ��� � � �

� ���� � � �� �� �� �
. (5.82) 

Because the third-order velocity moments are relaxed in the frame 

moving with the fluid rather than a fixed one, the viscous stress in the 

momentum equation is now compatible with that in the energy equation. 

However, practical simulations indicate that the MGA model suffers 

from serious numerical instability [McNamara et al., 1997], and the 

recent linear analysis also shows that the momentum and energy modes 

in MS-LBE models have an unphysical coupling, which seriously affects 

the numerical stability [Lallemand and Luo, 2000]. 

5.5   DDF-LBE Models without Viscous Dissipation and 

Compression Work 

The multi-speed LBE models are a straightforward extension of 

isothermal models. As mentioned above, the MS-LBE models usually 

involve a large discrete velocity set which requires high storage and 

computational costs. Furthermore, the numerical stability of such models 

is also not satisfactory.  

In many problems, the compression work and viscous dissipation can 

be neglected. In such cases, the temperature can be regarded as a scalar 

which is governed by a convection-diffusion equation. Consequently, the 

velocity and temperature fields can be solved separately, which means 

that we can simulate the velocity field with an isothermal LBE and the 

temperature field with another one for convection-diffusion equation. 

This idea was first adopted in a model by Bartoloni et al. [1993], where 

the temperature was treated as a pure passive scalar that has no effects on 

the velocity field. Since then, a variety of LBE models with double 

distribution functions (DDF-LBE) have been developed from different 

ways.  

5.5.1   DDF-LBE based on multi-component models 

Based on a multi-component LBE model, Shan constructed a DDF-LBE 

model which treats the temperature as a component of fluid mixture 
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[Shan, 1997]. The effect of temperature on the velocity field is modeled 

following an approach similar to that in LBE for binary mixtures. 

Specifically, this model uses the following multi-component LBE  

model: 

        �� ��
� � � � � � � � � � � ��	

� � � � � � �� � � � � � � ��� � �

�

� �
�
� �� � � � �� 	
 �� � � � � ,  (5.83) 

for ����������…��-, where - is the number of components in the mixture, 

��
�  is the distribution function of the component �, and �� ��	

��
�  is the 

corresponding EDF, 
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, (5.84) 

in which 
� �
� ��� �  and � ��� �

� �� ��� � �  are the density and velocity 

components of �, respectively, and � ��	
��  is the equilibrium velocity that 

is not necessarily equal to ��; In the absence of internal interactions and 

external forces, it is assumed that the equilibrium velocities of all 

components share a common one, 
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� �
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�	 �	

� �

� � �

� �
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� �

� �� �

� �  
�

� � . (5.85) 

On the other hand, if the component � is subject to a body force �� , the 

equilibrium velocity is given by 

 � � � � ��	 �	 � �
�

�

� �

�
� ��

�
� . (5.86) 

Shan suggested using the above LBE model for binary mixtures  

(-� �� �) to model thermal flows: the fluid motion is simulated by 

component 
, while the temperature is simulated by component �, under 

the assumption that the two components share a common velocity. If 

only the gravity is considered, 
 
 �� ��� �  will be used in the EDF, and 

the density, velocity, and temperature of the fluid are defined as, 
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The corresponding macroscopic equations can be obtained via the 

Chapman-Enskog expansion,  

 � ���
�

�
�

�
� � �

�
� , (5.88)  
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� � , (5.89)  
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� �
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�� �
�

� � �
�

�� , (5.90) 

where �
�� � �� ,  and � are the kinematic viscosity and thermal diffusivity, 

respectively, 

 � �

�
�
�� � �

� ���� � �� �� �� �
, � �

�
����� � �

� ���� � �� �� �� �
. (5.91) 

Therefore, the corresponding Prandtl number of this model is ���������

���
	−����)������−���, which can be adjusted by changing �
 and ��. 

5.5.2   DDF-LBE for non-ideal gases 

Palmer and Rector [2000a, 2000b] proposed another DDF-LBE model 

which can be used to simulate thermal flows of non-ideal gases. The 

model adopts a velocity distribution function ��  and an internal energy 

distribution function �.  to simulate the velocity and temperature fields 

respectively, 
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� � � � � � �� � � � � � � �� �
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� �� � � � �� 	
 �� � � � � , (5.92) 
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 �� � � � � , (5.93) 

where the two EDFs are defined by 
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� � � ��	 �	
� �. ��� .  (5.95) 
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Here the parameters �� and � are related by � � ���
� 
 � 
� � , or 

� � ��� �� � �
 
� � � . The fluid density, velocity, and temperature are 

defined as 

 �

�

�� �  , � �

�

�� � � � , �

�

� .� � . (5.96) 

It is obvious that � �
�
�	�  is the EDF of the standard isothermal LBE as 

�	��*. The Chapman-Enskog analysis shows that the recovered 

macroscopic equations of this LBE are just as those given by Eqs. (5.88) 

to (5.90) (without the body force) with the same viscosity and thermal 

diffusivity. As �!� , however, some errors exist in the momentum 

equations, which can be ignored if the time step is sufficiently small. 

Meanwhile, the equation of state of the LBE is also related to � , 
�
�� � ��� , which means that an equation of state for non-ideal gases can 

be obtained by selecting an appropriate formulation of� . 

5.5.3   DDF-LBE for incompressible flows 

DDF-LBE models, which treat the velocity and temperature fields 

separately, make use of an intrinsic assumption that the temperature 

variations have little effects on the fluid motion. This assumption is valid 

only for small Mach number flows, in which the fluid can be regarded as 

incompressible and the fluid density can be considered to be constant 

except in the buoyancy term (Boussinesq assumption). Under such 

circumstances, the governing equations for the velocity and temperature are 

 ��� � � , (5.97) 
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� , (5.98) 
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� , (5.99) 

where ,� �� ��� is the reduced dynamic pressure, � is the thermal 

expansion coefficient, and ���is a referenced temperature. 

In order to solve the above equations, Guo et al. [2002] constructed a 

type of DDF-LBE models based on incompressible LBE models. For 

example, the D2Q9 model of this type can be written as, 
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for � �� � � , and 
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 �� � � � �  (5.101) 

for � �� � � . Here � ��	
��  are given by Eq. (3.16), and the EDF for the 

temperature distribution function is defined by 
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The velocity, pressure, and temperature, are defined as 
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where � is the parameter in � ��	
��  (see Eq. (3.16) in Chap. 3).  

In the original model, the forcing term �� is suggested to take the 

following form, 
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 (5.104) 

It can be verified easily that ���� � , �� �� �� � � �� � � �� � � , and 

�� � �� � � � � . Therefore, the zeroth through second velocity moments of 

�� defined in this way are the same as those of �� � � �� �� �� ��
 . As 

discussed in Chapter 3, the forcing term defined this way will produce 

some artifacts. However, if the Mach number and temperature variations 

are small, the error due to this forcing term is not significant. In such 

cases it can be shown that Eqs. (5.97)-(5.99) can be recovered from the 

above DDF-LBE, with the following transport coefficients, 
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. (5.105) 

The corresponding Prandtl number is therefore �
� ��

�� � � ����� ����� �� � .  

The above incompressible DDF-LBE model can also be extended to 

three-dimensional flows. A small advantage of such models is that the 

LBE for the energy equations uses only 2 discrete velocities, which 
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needs less computational memory than the aforementioned DDF-LBE 

models. Furthermore, compressibility errors in such models can be 

reduced, as their isothermal counterparts. 

5.6   DDF-LBE with Viscous Dissipation and Compression 

Work – Internal Energy Formulation 

The DDF-LBE models presented in the above sections all neglect the 

viscous dissipation and the compression work, which may be important 

in some cases. The first DDF-LBE with the consideration of these two 

factors is due to He et al. (HCD model) [1998], which introduces an 

internal energy distribution function based on the continuous Boltzmann 

equation. 

5.6.1   Internal energy distribution function 

The HCD model starts from the continuous Boltzmann equation, 

 � �
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�
�

� , (5.106) 

where � � � �� � ��� �  is the velocity distribution function. For monatomic 

gases, the density �, velocity �, and internal energy e, are determined as 
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If we introduce an internal energy distribution function, 
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the internal energy can then be defined as, 

 � .!� � � � .  (5.109) 

According to the Boltzmann equation (5.106), the evolution equation 

for the international energy distribution function . can be deduced, 
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where 

 � �
�
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 �
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� �� � .  (5.111) 

He et al. suggested using the BGK models with different relaxation 

times to approximate the collision operators ���� and ��.�, 
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where � ��	�  is the Maxwell distribution, and .��	� is defined by 
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Using the Chapman-Enskog expansion we can obtain the following 

thermohydrodynamic equations from Eqs. (5.112) and (5.113), 
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where �� �� ��� is the pressure, ��� �� is the viscous stress with 

��� �� , and � �� � �� � �� �  is the thermal diffusivity. These 

equations are similar to those corresponding to the continuous 

Boltzmann-BGK equation, but the Prandtl number now can be tuned  

to be consistent with that of the Boltzmann equation by adjusting �� . 

Furthermore, the viscous dissipation in the energy equation is also 

consistent with that in the momentum equation. 

In the above discussions no body forces are considered. In the 

presence of a body force �, a forcing term � should be included in  
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Eq. (5.112), 
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where 
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5.6.2   Lattice Boltzmann equations 

The HCD model is obtained by discretizing the kinetic equations (5.112) 

and (5.113). In order to discretize the velocity space, the two EDFs are 

first expanded into their Taylor series up to �����, 
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Because � ��	.  contains terms of �� , a Gaussian quadrature of degree 

greater than 2 should be used in order to obtain the desired 

thermohydrodynamic equations, as discussed in Sec. 5.2. However, He  

et al. found that this can be simplified by regrouping � ��	. , in which some 

terms do not affect the final macroscopic equations and can be omitted. 

The final simplified � ��	.  can be written as  
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Now � ��	�  and � ��	.  only contain terms of �� �� � , and so the Gaussian 

quadrature of degree 3 can be employed to obtain the discrete velocities 
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satisfying the necessary conditions. The velocities determined in this way 

depend on the local temperature, i.e, ��� �� ����� �. With this discrete 

velocity set, the HCD LBE can be obtained by discretizing the discrete 

velocity kinetic equations corresponding to Eqs. (5.118) and (5.113),  

 � �� �� � � � � � �	
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 � 
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where � ��� �� � � �
 � � �� �  and � ��� �� � � �
 � � �� � , and the discrete 

EDFs are given by 
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The discrete forcing term in Eq. (5.123) is defined as 
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and ��  and 	��in the last term on the right hand of Eq. (5.124) are given 

by 
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where �	  is obtained from Eq. (5.111) and the momentum equation.  

The fluid density, velocity, and internal energy in the HCD LBE 

model are defined by, 
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Although the DDF-LBE described by Eqs. (5.123) and (5.124) are 

discrete versions of the discrete velocity equations (5.112) and (5.113), 

the corresponding hydrodynamic equations of the LBE are different from 
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those given by Eqs. (5.115)-(5.117). As mentioned previously, if the 

discrete velocities change locally with temperature� �, the discrete 

velocity model will not lead to valid thermohydrodynamic equations. 

Furthermore, the variation of ��  in both time and space also leads to 

difficulties in implementation. In order to avoid these problems, He et al. 

suggested replacing the local temperature � in the discrete velocities and 

the EDFs with the averaged temperature ��. As shown later, however, 

this replacement will lead to a different equation of state, transport 

coefficients, and Prandtl number. 

5.6.3   Some simplified models 

The original HCD model involves a source term 	��which includes the 

calculations of the gradients of velocity and viscous stress, the 

calculation of these terms may introduce additional errors and may lead 

to some numerical instabilities. In order to improve the original HCD 

model, some simplified versions have been developed by different 

groups. 

As the fluid is incompressible (so the compression work is absent) 

and the viscous dissipation is negligible, He et al. [1998] proposed an 

incompressible DDF-LBE model based on the full HCD LBE, where the 

LBE for the internal energy distribution function is the same as that in 

the original HCD model, while the LBE for the velocity field is changed 

to be the incompressible one [He and Luo, 1997], in which the EDF is 
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where �+� is the constant density, while the pressure � and velocity ��are 

defined as 
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The term 	� can also be simplified since the fluid is incompressible and 

the viscous dissipation is ignored, i.e.,  
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It is seen that even as the compression work and viscous heat 

dissipation are neglected, the simplified version of the HCD model still 

involves the term 	� that contains pressure and velocity gradients, which 

is more complicated than the incompressible DDF LBE developed by 

Guo et al. [2002]. 

On the other hand, Peng et al. [2003] proposed to abandon the source 

term 	� in the LBE for the internal energy distribution function as the 

compression work and viscous dissipation are neglected. The evolution 

equation of .��then reduces to 
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which leads to the following energy equation 
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It is clear that this model is very close to that developed by Palmer and 

Rector [2000a, 2000b]. 

For low Mach number flows, although the compression work can be 

ignored, the viscous dissipation may be important in some cases. For 

such flows, Shi et al. [2004] developed another simplified model (SZG 

model) based on the original HCD one. The SZG model adopts two 

strategies in the simplifications. First, the term �	 is decomposed into 

three parts, � � ��	 � � ��� � , where 
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It is easy to verify that ���and �� do not change the energy equation for 

low Mach number flows and thus can be ignored, and so the evolution 

equation for the internal energy distribution function can be simplified as 
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� �
� �

�
. � �
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�. � �
� � � (

�
�

� �� . (5.137) 

The second simplification strategy adopted in the SZG model is about 
� ��	
�. . Regrouping the Taylor expansion of � ��	

�. , Eq. (5.121), and omitting 

the terms which have no effects on the final energy equation, one can 
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obtain the following simplified EDF, 
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 �

�� ��
. (5.138) 

The SGZ model is then constructed based on Eqs. (5.137) and (5.138), in 

which the LBE for the energy equation is, 

 � �� �
�� � � � � � �	

� � � � � � � � �. � . � . . �� � 
 �� � � � � �� � � , (5.139) 

where � � � ��	 �	
� �. ��� , and 

� ��	
��  used in SGZ model is the same as that in the 

HCD model. 

5.7   DDF-LBE with Viscous Dissipation and Compression 

Work – Total Energy Formulation 

The HCD model is able to include the effects of compression work and 

viscous dissipation, and the Prandtl number can be adjusted by tuning the 

two relaxation times. However, the model involves some terms of 

gradients of pressure, velocity, and stress, which need additional 

discretizations. Furthermore, the model is limited to monatomic gases 

with a fixed specific capacity ratio, and cannot be applied to polyatomic 

gases with internal freedoms. To overcome these difficulties, Guo et al. 

[2007] proposed a DDF-LBE based on the concept of total energy 

distribution function. 

5.7.1   Total energy distribution function 

The total energy E is defined as, 
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� � �
�

�
� � � � � � !

�
� � � �

� ���� � � � � �� �� �� � � � , (5.140) 

where �� is the specific heat capacity at constant volume. Therefore, we 

can introduce a total energy distribution function, 

 
�

� � � � � � � �
�

& � � �
�

�� �� � . (5.141) 
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Then the total energy can be defined by 

 � � � �� & � !� � � � � � . (5.142) 

From the continuous Boltzmann equation with a body force ��� 	 , 

 ��
�

�
�� � � � � � � (

�
�

	 �� , (5.143) 

we can derive the evolution equation for &,  

 &

&
� & �

�

�
� � � � � � (

�
� �	 �� � , (5.144) 

where � �& �( � (� . 

In order to establish a simple kinetic model for the total energy 

distribution function &, we first examine the properties of the collision 

operator &( . Physically, this operator reflects the energy change due to 

particle collisions, and the contribution includes two parts, i.e., 

 & �  ( � ( � ( , (5.145) 

where the first and second terms on the right side represent the changes 

of internal energy and mechanical energy, respectively, 
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 � �� /� �� �( � � � ( � (
 � , (5.146) 

where ��/ �� � ��� . If �(  is modeled by a BGK operator,  

 � �� ��
�	

�

�

� �
�

( � � � , (5.147) 

 (  can then be approximated by 

 � �� ��	
 

�

/
� �

�
( � � � . (5.148) 

Now we consider the internal energy part. According to the theory of 

Woods [1993], the relaxation times of momentum and internal energy 

changes during the collision are different, so we can model �( as  

a relaxation process of the internal energy distribution function 
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. & /�� �  with a different relaxation time, i.e., 

 � � � � � �� �
� ��	 �	 �	

�

& &

. . & & / � �
� �
� � � �( � � � � � � � �
 � 
 � , (5.149) 

where � � � � �  ��	 �	& ��� , and &�  is the relaxation time for internal energy. 

Therefore, the collision operator of the total energy can be expressed as 

 � � � ��
�	 �	

&

& &�

/
& & � �

� �
� � � �( � � � � �
 � 
 � , (5.150) 

where 

 
� � �

&� & �� � �
� � . (5.151) 

Obviously the second term of &(  is 0 as �&������, and the above collision 

model reduces to the standard BGK model. Otherwise, the second term 

should be considered as a correction to the BGK model. Actually, 

without this term the viscous stress in the derived momentum equation 

will be inconsistent with that in the energy equation, although the Prandtl 

number can be tuned.  

In summary, by introducing the total energy distribution function one 

can obtain the following two-relaxation-time kinetic model that is 

consistent with the Boltzmann equation, 
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	 �� , (5.152) 
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The Chapman-Enskog analysis shows that the thermohydrodynamic 

equations corresponding to the kinetic model are 

 � � �
�

�
�

�
� � � �

�
� , (5.154) 
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where p = �RT and �� � � � �� �� � � � �� �� , and the viscosity and 

thermal conductivity are given by 

 � �� �� , 
� ��

�
& � &

 �
� � �� � �

�
� � .  (5.157) 

Therefore, the Prandtl number of the above kinetic model is 

��� � � � &�� � � � . It can be found that the above thermohydrodynamic 

equations are the same as those of the continuous Boltzmann equation 

with the full collision operator or Woods’ model [1993].  

The above kinetic model can also be extended to polyatomic  

gases which exhibit internal degrees of freedom such as rotation or 

vibration. The distribution function � can take account of the internal 

motions as well through a vector variable � �� � � � � �%� �� � � , namely, 

� � � � � �� � �� �� , where K is the number of internal degree of freedoms. 

The evolution equation of � can also be described by the Boltzmann-

BGK equation as 
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, (5.158) 

where 
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The fluid variables for polyatomic gases are defined as 
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In order to eliminate the explicit dependence of the internal variable �, 

we can introduce two reduced distribution functions, 

 � �!� � � , 
� �

�
& �!
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� � � , (5.161) 
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whose evolution equations can be obtained from the generalized 

Boltzmann-BGK equation (5.158),  
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where 
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The fluid variables can be calculated from these two reduced distribution 

functions,  

 � !� � � � , � !� � �� � � , � &!� � � � . (5.166) 

Obviously, the kinetic equations (5.162) and (5.163) for polyatomic 

gases have similar structures as those for monatomic gases given by  

Eqs. (5.152) and (5.153). Furthermore, the Chapman-Enskog analysis 

shows that the hydrodynamic equations derived from this kinetic model 

are the same as Eqs. (5.154) ~ (5.156), except that now the two specific 

heat capacities depend on the degree of freedom %, i.e.,����������%�

��� 

and ���������%�������. In what follows we will only consider the case 

of polyatomic gases and will omit the overbar symbols on the variables. 

5.7.2   Discrete velocity model 

(1) Hermite expansions of the EDFs 

In the HCD model, the EDF in polynomial form is obtained by making 

use of the Taylor expansion of the continuous Maxwellian distribution 

function. Alternatively, we can also employ the Hermite expansion. For 

isothermal flows, the final formulations of these two expansions are 
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identical up to second-order, but the expressions for non-isothermal flow 

will be different. Here we will adopt the latter method since the first few 

moments of the expanded EDFs could be the same as the continuous 

ones with suitable truncations. 

The EDFs defined by Eqs. (5.164) and (5.165) can be expanded into 

the Hermite polynomials, 
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where 
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The expansion coefficients are given by 

 � � � � � � +� �� �	 �
 � � !	 	 � �� � , � � � � � � +� �� �	 �� & � !	 	 � �� � . (5.170) 

In the Chapman-Enskog expansion, in order to obtain the desired 

hydrodynamic equations at the second-order (i.e. Navier-Stokes) level, 

the third-order term should be retained in the expansion of � ��	� , as well 

as the second-order term in the expansion of � ��	& . For low Mach number 

flows, it is enough to truncate the expansion of � ��	�  up to the second 

order. The first few expansion coefficients can be easily evaluated,  

 ���
 �� , ��� ��� � , ���� ��� �� , (5.171) 

���� ��� , ��� � �� ��� �� � , ��� �� ���� � ��� � �� � �� . (5.172) 

As such, the second-order Hermite expansions of � ��	�  and � ��	&  can be 

explicitly written as 
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(5.174)

 

Accordingly, the terms associated with the body force, �� �	 �  and 

&� �	 � , can also be expanded into Hermite polynomials, which should 

retain the terms up to second and first orders, respectively, 
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It is easy to verify that the thermohydrodynamic equations with the 

above expanded EDFs and forcing terms are the same as those with the 

original ones after neglecting the terms of �� �� "  (" is the Mach 

number). 

(2) Discretization of the velocity space 

The expanded EDFs given by (5.173) and (5.174) depend on the local 

temperature �, which will lead to temperature-dependent discrete 

velocities and some unphysical problems as mentioned previously. In 

order to avoid this difficulty, Guo et al. suggested replacing ��with a 

reference temperature �0 , 
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where � �
� � �� � � �� � !%&� � �� �� ��� �� �
 � �  and � �� ���� . But it should 

be noted that the temperature in the total energy E is still the local one, 

i.e., ���� � � �� � . In the two forcing terms the local temperature � is 

also replaced by the reference one ��. 

From the expressions of the expanded EDFs we can show that 

 � � � �
�� � � ��	 �	� � ! � � !�� �� �� � ,  (5.179) 

 � � � �
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 � � � �
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But the high-order moments of 
� �

�� ��	� �  and 
� �

�� ��	& �  are different from 

their counterparts of � �� ��	� � and � �� ��	& � , 
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These differences will lead to some differences in the hydrodynamic 

equations, which will be discussed in more detail later. 

Based on the velocity moments of  
� �

�� ��	� �  and 
� �

�� ��	& � , we can choose 

the Gaussian quadrature of degree 5 to obtain the discrete velocities ���

and weight coefficients '� , with which the following discrete distribution 

functions can be defined, 
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The fluid variables can then be calculated as 
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The following discrete velocity model (DVM) can be obtained from 

the kinetic equations (5.162) and (5.163),  

 � �� �	�
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where ��� �/ ��� �� � , and  
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���and 	��are the two forcing terms, 
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With these expressions, the thermohydrodynamic equations corres-

ponding to the DVM (5.188) and (5.189) can be derived through the 

Chapman-Enskog analysis, 
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where ��� ��  with �� �� �� , and the thermal conductivity is �������&���. 

Although the macroscopic equations (5.193)∼(5.195) are similar to 

those given by Eqs. (5.154)∼(5.156), which are derived from the original 

kinetic model, some differences should be noted. 
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• The equation of state and transport coefficients in Eqs. (5.154)∼(5.156) 

are functions of the local temperature �, while those in Eqs. (5.193)∼ 

(5.195) are independent of �, and ���behaves as a dynamic pressure 

rather than a thermodynamic one. Therefore, the temperature field 

does not affect the velocity field through the equation of state and the 

viscosity coefficient, which means that the energy equation is 

decoupled from the momentum equation. In this regard, the DVM 

described by Eqs. (5.188) and (5.189) is a decoupling model. 

• The Prandtl numbers in the two systems are different. In Eqs. (5.193)

∼(5.195), the thermal conductivity is �	�����&���and the Prandtl number 

is ��������������&, where �������� is the specific heat ratio. On the 

other hand, in Eqs. (5.154)-(5.156) � &� �� �� and �������)�&�. 

5.7.3   Lattice Boltzmann equations 

Integrating Eqs. (5.188) and (5.189) along the characteristic line and 

applying the trapezoidal rule to the collision terms lead to following 

kinetic equations 
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where � �� ��	
� � � �� �( � � �  and � � � &� �- / 	� ( �� . In order to avoid the 

implicit computation of the terms on the right hand sides, two new 

distribution functions are introduced, 
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Then Eqs. (5.196) and (5.197) can be rewritten as 

� � �
� � � � � � � � � � � � ��

�

�	
� � � � � � �

�

� � �� � � � � � � � �



� � 
 �
�

� � � � � �� � � � � , (5.199) 
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(5.200)

 

where � �� �� � � �
 � � �� � , � �� �& � & �
 � � �� � , � � ��	
� � � � �� � � �/ � � � , 

and 	� is rewritten in terms of the new distribution function as 
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With Eq. (5.198) and the conservative properties of the collision operator, 

it is easy to show that 
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Equations (5.199) and (5.200) then constitute the DDF-LBE model 

with total energy distribution function. The Chapman-Enskog analysis 

shows that the thermohydrodynamic equations of this model are just  

Eqs. (5.193)-(5.195). Compared with the DDF-LBE model with internal 

energy distribution function, this model does not involve gradient 

discretizations, which simplifies the computation greatly. Furthermore, 

the specific heat coefficient cv in this model is an adjustable parameter, 

which is useful for thermal flows with a variable specific heat ratio. 

The DDF-LBE model with total energy distribution function was 

validated by simulating several typical thermal flow problems [Guo  

et al., 2007]. For example, Fig. 5.5 shows the temperature distribution  

in a thermal Poiseuille flow between two flat plates at different  

Prandtl numbers and different Eckert numbers, �
� ��� � � �� ' , where 

�
� �� (&�   is the maximum velocity along the channel centerline,�(�is 

the driven force, & is the distance between the two plates, and �'  is 

temperature difference between the top ( &� ) and bottom ( �� ) walls. The 

numerical results are found to be in good agreement with the analytical 
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solution, 
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. (5.203) 

5.8   Hybrid LBE Models 

It was shown that there are some unphysical mode-couplings in the MS-

LBE models, which may lead to serious numerical instability [Lallemand 

and Luo, 2000]. The DDF-LBE models can improve the numerical 

stability by treating the energy equation and velocity equation separately. 

On the other hand, some hybrid LBE models that combine an isothermal 

LBE for velocity field and a finite-difference scheme for the energy 

equation, have also been developed [Filippova and Hänel, 2000; 

Mezrhab et al., 2004; Verhaeghe et al., 2007]. But unlike the 

conventional CFD methods, the solver for the energy equation in hybrid 

LBE models usually employs some special finite-difference schemes on 

the regular lattice of the isothermal LBE model for the velocity field. 

The velocity field can be solved by either a LBGK model or a MRT-

LBE. Without loss of generality, here the hybrid MRT-LBE model 

developed in [Lallemand and Luo, 2000]. will be presented. Assuming 

   

Fig. 5.5.  Temperature distribution of thermal Poiseuille flow (4!�����&	����). Left: 

���������, (a) ~ (d): �c = 0.1, 20, 50, 100. Right: �� = 10, (a) - (d): ���= 0.1,1.0, 2.0, 

4.0. The solid lines are the analytical solutions, the symbols are numerical results  

(Guo et al., Phys. Rev. E 75,  036704, 2007). 
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that the compression work and viscous heat dissipation are negligible, 

the temperature equation can be expressed as 

 ��
� �

�
� � � �

�
�

�
� . (5.204) 

In the hybrid MRT-LBE, this equation is discretized using the following 

scheme, 

 �� � � � � � � � � � � �� & &� � � � � �  � ��� � � � � � � �� � � � � , (5.205) 

where &�  and �
&�  are the discrete gradient and Laplace operators 

depending on the lattice of the isothermal LBE for the velocity field. For 

example, if the D2Q9 MRT model is employed, these operators are 

defined by 
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  (5.208) 

where � � ��� � �� � � ��  and � �� � �& & � & �� � � � . 

The local temperature T is coupled with the velocity field by 

modifying the equilibrium distribution function of the MRT-LBE. For 

instance, the moment associated with the energy, e
(eq)

, is changed to be 

 � �� � ��	 ��' �	� � �� � � , (5.209) 

where �  is a coupling parameter. With an appropriate choice of � , the 

correct momentum equation can be derived from the hybrid LBE 

[Lallemand and Luo, 2000]. 

A variety of applications of hybrid LBE models can be found in the 

literature, such as the natural convection in a square cavity, Rayleigh-

Bénard convection, convection between concentric cylinders, double-

diffusive convections, and combustion [Filippova and Hänel, 2000; 

Mezrhab et al., 2004; Verhaeghe et al., 2007]. 
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5.9   Summary 

Thermal flows with heat transfer are frequently seen in scientific and 

engineering problems. This chapter presents several types of LBE 

models for such flows, including multi-speed models, double-

distribution-function models, and hybrid models. These models all have 

some advantages and disadvantages. In multi-speed models the energy 

and velocity fields are coupled naturally, which is necessary for high-

speed flows. Unfortunately, this type of LBE model usually involves a 

large set of discrete velocities, and may suffer from serious numerical 

instability. On the other hand, DDF-LBE models, as well as the hybrid 

LBE models, solve the momentum equation and the energy equation via 

different schemes. This decoupling is helpful to improve the numerical 

stability, and the algorithm structure is also simple. However, although 

such decoupling methods work well for low-speed flows, it is still 

difficult to simulate high-speed flows with these models.  

In summary, fully thermohydrodynamic LBE schemes represent a 

challenge to LBE research. Despite several brilliant attempts, a 

consistent thermodynamic LBE scheme working over a wide range of 

temperatures remains to be developed, and this is still one of the most 

challenging issues left with LBE research. 
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Chapter 6 

LBE for Compressible Flows 

In the previous chapters, it has been shown that LBE has a wide 

application in simulation of various incompressible flows. In contrast, its 

application to simulate compressible flows is quite limited. The major 

cause is due to the equilibrium distribution functions used in LBE. As 

required by the Chapman-Enskog expansion to recover the Navier-

Stokes equations, the equilibrium distribution functions in LBE should 

be in the polynomial form of particle velocity. Thus, the Maxwellian 

distribution function of Boltzmann equation, which is in the exponential 

form of particle velocity, cannot be directly applied in LBE. In fact, the 

equilibrium distribution function in LBE is derived by applying the 

truncated Taylor series expansion to Maxwell function in terms of Mach 

number. This process inevitably limits the range of applied Mach 

number. Nevertheless, there are some attempts to apply LBE for 

simulation of compressible flows.  

In the attempt to apply LBE to simulate compressible flows, the 

equilibrium distribution functions from truncated Maxwell function have 

to be changed. There are several ways in the literature to construct new 

equilibrium distribution functions and form compressible lattice 

Boltzmann models. These models will be described in this chapter. The 

compressible models are usually complicated, and may encounter 

numerical instability when the streaming-collision process is performed. 

To get a stable solution, they often need to solve the discrete velocity 

Boltzmann equation (DVBE). This may degrade the efficiency of LBE 

computation. To overcome this difficulty, the lattice Boltzmann flux 

solver is proposed, in which the one-dimensional compressible LBE 

model is applied to the local Riemann problem to find its exact solution 
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so that the flux at the interface can be simply evaluated. This kind of 

work will also be presented in this chapter. 

6.1   Limitation of Conventional LBE Models for 

Compressible Flows 

As shown in the previous chapters, the lattice Boltzmann equation  

 � ��
� � � � � � � � � � � ���
� � � � � � �� � � � � � � �� �

�
� �� � � � � �� �� 	� � � � � ,  (6.1) 

can be derived from integration of the following DVBE with the BGK 

collision model 
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where ��  is the distribution function, � ���
��  is its corresponding function at 

equilibrium state, � is the number of particles in a lattice Boltzmann 

model. ��  and �� ��� � �  are the particle velocity and the non-

dimensional relaxation time respectively. The equilibrium distribution 

function 
� ���
��  used in LBE can be derived from the Maxwellian 

distribution function 
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where � is the dimension of space. At a lattice velocity of �� , using 

Taylor series expansion, the Maxwellian distribution function can be 

expanded in the small Mach number limit as 
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All the conventional LBE models with the BGK collision take the form 

of Eq. (6.4). Thus, they are only applicable for incompressible or weak 

compressible flows. For compressible flows where the Mach number is 

usually not small, the form of Eq. (6.4) cannot be directly employed. One 

has to revise this form or use other appropriate forms. This will be 

discussed in the following sections. Another limitation of conventional 
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lattice Boltzmann models for compressible flows is the fixed value of 

specific heat ratio, �. For an incompressible flow, only continuity 

equation and momentum equations are solved, and we are only interested 

in the macroscopic variables � (density), � (velocity) and � (pressure). 

They are given from mass conservation, momentum conservation, and 

equation of state, respectively, 
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�� ��� . (6.5) 

However, for a compressible flow, we also need to solve energy equation. 

In other words, the macroscopic variable of energy density, ��, should 

also be calculated from the density distribution function. According to 

the definition, ���is computed by 
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where � is the total energy of the mean flow. For a perfect gas, the 

energy density can also be written as 
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where 	� is the specific gas constant, and 
� is the temperature of the 

mean flow. By comparing Eq. (6.6) and Eq. (6.7), we can get the 

expression of the specific heat ratio as 
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�
�

�
� . (6.8) 

Obviously, � is fixed for a designated dimension. In Eq. (6.8), it can be 

found that the specific heat ratio with a clear and definite physical 

meaning is only for monotonic gases in three-dimensions (����
).  

The major reason of fixed specific heat ratio is due to the definition of 

energy density in Eq. (6.6), which only contains the contribution of 

kinetic energy from translational velocity. For the real compressible flow, 

the rotational velocity also plays an important role. The contribution of 

rotational velocity to the energy density is served as the potential energy. 

Thus, the compressible lattice Boltzmann model should also include the 

potential energy in the calculation of energy density and energy flux. 
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6.2   Conventional Equilibrium Function-based LBE Models 

for Compressible Flows 

The initial work of extending the application of LBE for compressible 

flows is based on the existing work for incompressible flows. The form 

of equilibrium distribution functions derived from the Maxwell function 

is still used, but the coefficients are adjusted to consider the energy 

conservation. Besides, the basic configuration of lattice velocity model 

for isothermal flows is also adopted.  

The early attempts for simulating compressible and thermodynamic 

flows were made by Qian [1993], Alexander et al. [1993] and other 

researchers, as discussed in Chapter 5. However, these works are only 

limited for weak compressible flows and the specific heat ratio is fixed. 

To derive a compressible lattice Boltzmann model with flexible specific 

heat ratio, Hu et al. [1997] and Yan et al. [1999] developed two two-

dimensional models by introducing the energy level into the definition of 

energy density. One model has 13 lattice velocities (the so-called 13-bit 

model), and the other has 17 lattice velocities (the so-called 17-bit 

model). Take the 17-bit model as an example. As shown in Fig. 6.1, this 

model also uses a square lattice (D2Q9 model) as the basic configuration 

for lattice velocity distribution. Different from the conventional D2Q9 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1.  A square lattice with 9 lattice velocities. 

 

1 

2 3 4 

5 

6 7 8 

0 



 LBE for Compressible Flows 201 

model, this model introduces 3 energy levels. One energy level is for the 

static particle, while the other two energy levels are for the 8 moving 

particles. So, in total there are 17 lattice particles at a physical position. 

For simplicity, let ���������� be the particle energy for energy levels �, � 

and � respectively. �� and ��, are for the moving particles while �� is for 

the static particle. ���  and ���  � �������� �� �  are respectively the density 

distribution functions at energy level �� and ��. According to the 

conservation law, the macroscopic density, velocity and energy can be 

computed by 
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Note that Eq. (6.11) is different from Eq. (6.6) in the calculation of 

macroscopic energy. In order to recover the Euler equations from LBE, 

the equilibrium distribution function 
� ���
���  should also satisfy the flux 

conditions of momentum and energy, that is, 
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As indicated in Sec. 6.1, the form of equilibrium distribution functions is 

critical for the simulation of compressible flows. In the work of Yan et 

al. [1999], the form of equilibrium distribution functions for the standard 

D2Q9 model (used for incompressible flows) is adopted, but the 

coefficients for different energy levels are taken differently. The 

polynomial form of 
� ���
���  can be written as 
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for �������
������ and 
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for��������������, where ����� and �. 

There are 18 coefficients in Eq. (6.14). In principle, these coefficients 

could be determined from the relationships given by Eqs. (6.9)∼(6.13). 

However, the number of unknown coefficients is still larger than that of 

given equations. To close the system, some assumptions or introduction 

of free parameters are needed. The process is quite tedious. This greatly 

limits the application of this model. Another drawback of this model is 

the specification of particle energy for the 3 energy levels. Although Sod 

and Lax shock tube problems are successfully simulated by this model 

with the streaming-collision process, there is no clear way to specify the 

particle energy for a given physical problem.  

To overcome the drawback of above model, Shi et al. [2001] and 

Kataoka and Tsutahara [2004a, 2004b] proposed some new models, in 

which the particle energy is defined as the sum of kinetic energy and 

particle potential energy. These models are equivalent to subjoin the 

internal degrees of freedom to achieve the goal of adjusting the specific 

heat ratio. In the following, the details of the model proposed by Kataoka 

and Tsutahara [2004a, 2004b] will be presented. 

The conservation forms of moments utilized in the work of Kataoka 

and Tsutahara [2004a, 2004b] are given by 
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where ����	  is the particle potential energy which is introduced to adjust 

the specific heat ratio, � is a constant related to the specific heat ratio. 

Note that the tensor notations have been used in Eqs. (6.15)∼(6.21) for 

the subscripts ������and�
, i.e., two repeated subscripts mean summation. 

Equations (6.15), (6.16), and (6.18) are used to define the density, 

momentum and total energy of the mean flow. Equations (6.17) and 

(6.19) are respectively used to recover the convective flux in the 

momentum and energy equations, while equations (6.20) and (6.21) are 

to recover the viscous flux in the momentum equation and diffusive flux 

in the energy equation. When the inviscid flow is considered or the Euler 

equations are solved, we only need to use Eqs. (6.15)∼(6.19).  

By means of the Chapman-Enskog analysis, one can get 

 
��

�
�

�
� , (6.22) 

 	
� � �� , (6.23) 

 
� �

�



� 	

�

� � �
� ���� � �� �� �� �

, (6.24) 

 
� �

�

�
� 	 
� �

�
� , (6.25) 

where, �����, and � are the dynamic viscosity, bulk viscosity, and thermal 

conductivity of the Navier-Stokes equations, respectively. � is actually 

the total number of degrees of freedom which includes degrees of 

translation, rotation, vibration, etc. In other words, � is equal to the 

summation of space dimension and internal degrees of freedom. For 

example, ��=�
 is for monatomic gases, and ��=�� is for diatomic gases. It 

can be seen from Eq. (6.24) that, in the model of Kataoka and Tsutahara 

[2004a, 2004b], the bulk viscosity is zero only for monatomic gases. In 

addition, the Prandtl number of this model is fixed as 
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This is a drawback of Kataoka and Tsutahara’s model.  
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Like other compressible LBE models, the form of equilibrium 

distribution functions is also the key in the model of Kataoka and 

Tsutahara [2004a, 2004b]. Basically, it also takes the form of existing 

LBE models for incompressible flows, but the expressions of coefficients 

are quite different. Even within the framework of Kataoka and Tsutahara 

[2004a, 2004b], the expressions of the coefficients are also quite 

different for the Navier-Stokes equations and the Euler equations. In the 

following, we only list some formulations for the Euler equations. 

D1Q5 model 

This model has 5 lattice velocities. Its lattice velocities and particle 

potential energy are defined as 
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Its equilibrium distribution function takes the following form, 
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Substituting Eqs. (6.27)∼(6.29) into Eqs. (6.15)∼(6.19), the coefficients 

in Eq. (6.29) can be determined as 
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D2Q9 model 

This model has 9 lattice velocities. Its lattice velocities and particle 

potential energy are defined as 
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 (6.33) 

The equilibrium distribution function of this model takes the following 

form, 

  �� � ���
� � � � � � �� � � � � � � � � �� � � � � ��� � �  (6.34) 

The coefficients in Eq. (6.34) are given by 
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D3Q15 model 

This model has 15 lattice velocities. Its lattice velocities and particle 

potential energy are defined as 
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  (6.38) 
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  (6.39) 

The equilibrium distribution function of this model takes the same form 

as for the two-dimensional case, that is, 

 �� � � ��� �������������
� � � � � � �� � � � � � � � � � �� � � � � ��� � � �  (6.40) 

The coefficients in Eq. (6.40) are given by 
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  (6.42) 
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  (6.43) 

Note that for all the above 3 models, ����������≠����, and 	� are nonzero 

constants. When two-dimensional viscous flows are considered, one can 

use the D2Q16 model, and the details can be found in Kataoka and 

Tsutahara [2004a].  

When the conventional streaming-collision process is applied, the 

model of Kataoka and Tsutahara [2004a, 2004b] often encounters 
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numerical instability. To overcome this difficulty, one has to solve the 

DVBE (6.2). The solution of DVBE will be discussed in Section 6.6.  

Another drawback of the model of Kataoka and Tsutahara [2004a, 

2004b] is that the Prandtl number is fixed as 1. To develop a 

compressible lattice Boltzmann model with variable Prandtl number, Li 

et al. [2007] proposed a coupled double-distribution-function lattice 

Boltzmann model for the Navier-Stokes equations, in which the specific 

heat ratio and Prandtl number can be chosen freely. In this model, a 

density distribution function based on a multi-speed lattice is used to 

recover the compressible continuity and momentum equations, while the 

compressible energy equation is recovered by an energy distribution 

function. The energy distribution function is then coupled with the 

density distribution function via the thermal equation of state. Some test 

cases with a range of specific heat ratio and Prandtl number were 

successfully simulated by this model [2007]. 

Moreover, to develop a compressible lattice Boltzmann model with 

better stability than single-relaxation-time model, the multiple-relaxation-

time lattice Boltzmann models for simulation of compressible flows also 

received attention in recent years. In the work of Chen et al. [2010, 

2011], a multiple-relaxation-time lattice Boltzmann model with flexible 

specific heat ratio and Prandtl number is proposed for solving the Navier-

Stokes equations. Numerical experiments showed that compressible flows 

with strong shocks can be well simulated by this model.  

There are some other works in this category. The common feature of 

these models is that they use the same form of equilibrium distribution 

functions as for the incompressible flows, but the coefficients are 

determined by conservation of mass, momentum, energy, and flux 

conditions of momentum and energy. The resultant coefficients are not 

constants. They are the functions of particle velocity and macroscopic 

variables.  

6.3   Circular Function-based LBE Models for Compressible 

Flows 

As shown in the above sections, the equilibrium density distribution 

functions in LBE are derived from the Maxwell function, which is in an 
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exponential form. In order to use isotropic properties of the lattice 

tensors in the application of Chapman-Enskog expansion, one has to do 

Taylor series expansion to the Maxwell function in terms of Mach 

number. This process limits the application of LBE to flows with a low 

Mach number. To release this limitation, one may take other functions as 

the basic form of equilibrium distribution functions for LBE. One of such 

attempts was made by Qu et al. [2007a, 2007b], who developed several 

compressible LBE models by means of a circular function. The basic 

process of this development is shown below. At first, the Maxwellian 

distribution function is replaced by a circular function and the integral in 

the infinite domain of velocity space is reduced to the line integral along 

the circle. After that, the continuous circular function is distributed to 

discrete points in the velocity space in such a way that the conservation 

of moments is kept when the line integral is replaced by the weighted 

sum of functional values at discrete points. The functional value at the 

discrete velocity point is in fact the equilibrium distribution function. 

The details of circular function-based lattice Boltzmann model will be 

shown as follows. 

6.3.1   Definition of circular equilibrium function 

It is well known that the Maxwellian distribution function satisfies the 

following 7 conservation forms of moments, 

� ���� � ��� � ,  (6.44) 

� ���� � �� �� ��� � ,  (6.45) 

 �  �� � ���
�� � � � � �	
� � � �� � �� � �� � , (6.46) 

� ���� � � � �� � � � ��� � � �� �� � ,  (6.47) 

 �  �� � � ���
�� � � � � � 	
 �� � � � � �� � � � � �� � � �� 	� � , (6.48) 
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where �� , �� , and 
�  are the components of the lattice velocity in the  

�, � and 
 directions, respectively. Similar to Eqs. (6.15)∼(6.21),  

Eqs. (6.44)∼(6.46) are used to define the macroscopic density, momentum, 

and total energy, and Eqs. (6.47) and (6.48) are applied to recover the 

convective flux in the momentum and energy equations, while Eqs. (6.49) 

and (6.50) are used to represent the viscous flux in the momentum 

equation and the diffusive flux in the energy equation respectively. The 

integral domain in Eqs. (6.44)∼(6.50) is from −�∞ to ∞. When the above 7 

equations are applied, the Navier-Stokes equations can be recovered. 

However, when the Euler equations are concerned, we just need to solve 

Eqs. (6.44)∼(6.48). Note that different from Eqs. (6.15)∼(6.21), the 

particle potential energy ��� in Eqs. (6.44)∼(6.50) is independent of the 

direction of the lattice velocity. 

For two-dimensional cases, the circular function is defined as 
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Fig. 6.2.  Configuration of the circle and lattice points in the velocity space. 
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where e is the potential energy of the mean flow, which is defined as  

��������− ��. The physical meaning of Eq. (6.51) is that all the mass, 

momentum, and energy are concentrated on a circle as shown in Fig. 6.2. 

The particle velocity on the circle can be written as 

 � �� �� .  (6.52) 

Thus, the integral over the infinite domain of velocity space in  

Eqs. (6.44)∼(6.50) reduces to the line integral along the circle, i.e., 

 � �� ���� �� . (6.53) 

Substituting Eqs. (6.51)∼(6.53) into Eqs. (6.44)∼(6.50), one can get 
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(6.60)
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By comparing Eqs. (6.54)∼(6.60) with Eqs. (6.44)∼(6.50), it can be found 

that only Eq. (6.60) has a little difference from Eq. (6.50) for the 

coefficient of the first term on the right-hand side, which only affects the 

heat conductivity.  

6.3.2   Distribution of circular function to lattice points in 

velocity space 

It has been shown above that the circular function can satisfy the 

constraints to recover the compressible Navier-Stokes equations. 

However, the circular function cannot be directly applied in the LBE. 

Although the circular function is greatly simplified as compared to the 

Maxwellian distribution function, it is still a continuous function and the 

integral in the velocity space is performed along the circle. In the context 

of LBE, the discrete lattice velocity is specified, and the integral in the 

relevant constraints is replaced by a summation over all lattice velocity 

directions. It is expected that the equilibrium distribution function in a 

lattice model can be obtained by distributing the circular function into 

lattice points in the velocity space in such a way that the conservation 

forms of moments (6.54)∼(6.60) can be satisfied in the context of LBE 

when the integral is replaced by summation.  

Suppose that in the ��−��� space, there are N lattice points, ��. As 

shown in Fig. 6.2, the discrete velocity ���and the original velocity � have 

the following relationship 

 � �� �� �� . (6.61) 

The continuous circular function is needed to be distributed to all 

discrete points ���. For any �� on the circle, it has a contribution � �� �� ��  

at the discrete point ���, where � ��� �  is the assigning function. Thus, the 

contribution of the whole circle to ei can be written as 

 � � �� � �� � � ���
� � �� � � ��� � � � ��� �� �� �� � , (6.62) 

where � ���
��  is the equilibrium distribution function in the ���direction. At 

a physical position, the macroscopic density is the summation of all � ���
�� , 

����������#���� that is 
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Equation (6.63) requires 
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In a similar way, we can get the relationships 
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Equations (6.64)∼(6.67) are actually the constrains for the assigning 

function � ��� � . It was found that when the third-order Lagrange 

interpolated polynomial is taken as the assigning function � ��� � , the 

constraints (6.64)∼(6.67) can be satisfied. It is shown in [Qu et al., 2007a] 

that, when 13 lattice points as shown in Fig. 6.3 are taken in the ��−���

plane, the assigning function � ��� �  can take the following form, 
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��� � � ��� ��� ��� ���� � � � � �� � � � � � , (6.68j) 
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� � � ��� ��� ��� ���� � � � � �� � � � � , (6.68m) 

where � and � are lattice velocity components in the �� and ���directions 

respectively. Once the assigning function is obtained, the equilibrium 

distribution function at the �-th lattice point can be evaluated as 

 � � ��� � � � � ���� �� �� ��� � �
��
� �� � �� �� � ��� ��� � . (6.69) 

Substituting Eq. (6.68) into Eq. (6.69) gives 
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Fig. 6.3.  Configuration of 13 lattice points in the $� �� �  plane. 
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where � and ��are the velocity components of �. 

Note that Eq. (6.70) is formed in the ��−���plane. No particle potential 

energy has been considered. Next, we will use the same distribution 

process to assign the potential energy to each lattice point. As �� is 

linearly appeared in Eqs. (6.54)∼(6.60), it means that only two energy 

levels are needed. As shown in Fig. 6.4, two energy levels, �����������

���%���� are assigned. At each energy level, there are 13 lattice points (the 

configuration of these lattice points is shown in Fig. 6.3). So, there are  

26 lattice points in total, and this lattice model is termed as D2Q13L2 

model.  

ξξξξy

ξξξξx
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Fig. 6.4.  Configuration of lattice points on two energy levels. 
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With the particle potential energy ��������������at two energy levels, 

the summation form of Eq. (6.56) can be written as 

 �  �  �
�

� � � �

� � �

� �
� �

�� ��
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� � �

� � �	
 � � � � � � �� � � � � �� �
� � �

� � � � �� ��  (6.71) 

where � �
�
��

��  and � �
�
��

��  are the equilibrium distribution functions associated 

with energy levels of �����������. By unwrapping Eq. (6.71), one can get 
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 (6.72) 

Thus, the final expression of the equilibrium distribution function � ���
���  

can be written as 
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 (6.73) 

As �������������� can be taken as 1 from normalization, Eq. (6.73) can be 

finally simplified to 
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  (6.74) 

Note that the above D2Q13L2 model is only applicable for simulation 

of inviscid flows. It also encounters numerical instability when the 

streaming-collision process is applied. Thus, it should be combined with 

the solution of DVBE, which will be discussed in Section 6.6. For 

simulation of one-dimensional inviscid flows such as shock tube 

problems or application of LBE to evaluate inviscid flux at the cell 

interface in the solution of Euler equations, Qu et al. [2007a] also 

presented a one-dimensional model, D1Q5L2, which is shown below. 

For the one-dimensional case, the circular function is reduced to the 

following form 
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 (6.75) 
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The equilibrium distribution functions at 5 lattice points, ���&������������

�������' , are given by 

� � � � � � � � � � � � � �
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� , (6.76a) 
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where ��  and ��  can be taken as ������ and ������. Finally, we can use 

Eq. (6.74) to calculate the equilibrium distribution functions at the lattice 

points of each energy level.  

Qu et al. [2007a, 2007b] successfully applied the above models to the 

one-dimensional shock tube problems, the two-dimensional shock 

reflection on the wall, and the double Mach reflection as well as shock 

wave propagation in an enclosure. After initial work of Qu et al. [2007a, 

2007b], Li et al. [2009] further improved the model, where a three-

dimensional circular function (spherical function) is used to construct a 

D3Q25 model for simulation of inviscid compressible flows. 

6.4   Delta Function-based LBE Models for Compressible 

Flows 

Also aiming at the simulation of compressible flows, Sun [1998, 2000a, 

2000b] and Sun and Hsu [2003, 2004] developed an adaptive lattice 

Boltzmann model. Unlike the compressible lattice Boltzmann models 

shown above, the adaptive lattice Boltzmann model is based on a simple 
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delta function. The pattern of the lattice velocities of this model varies 

with mean flow velocity and internal energy. The adaptive lattice 

Boltzmann model contains several discrete velocity vectors which are 

symmetrically located around the mean velocity in the velocity space. 

And density is equally distributed on all the discrete velocity vectors. 

Let � be an arbitrary node of a lattice, � � � � � � �� � ��� � �  be the density 

distribution function for the particle with the migrating velocity �, 

moving to �� "� �  during �" , and transporting the mass �, velocity �, 

and energy �. Let & ' & '� �� #�  be a set of the phase velocity �, and 

phase energy �, & '� � �  be a set of migrating velocity. Then the 

macroscopic conservative variables can be defined as 

  �� � � � �
�

�

�� � � ��� �� � �
$

% ��
�

� � � � , (6.77) 
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If we define 

 � �� �� �% � 	�ηηηη , (6.80) 

 ��� �� � � ��� �� � � � �� � � � ��%η ξη ξη ξη ξ , (6.81) 

 ( � � �� � �� �% � 		 , (6.82) 

Eqs. (6.77)∼(6.79) can be written in a compact form as 

  �( � � �
�

�

� � �
$

% ��
�

� �η η ηη η ηη η ηη η η . (6.83) 

As shown in Fig. 6.5, suppose that we consider a hexagonal lattice with 

lattice velocity set as 

 &� ) �������� �� ���'�� �� � �& � � � . (6.84) 

In the adaptive LBE model, the total mass, momentum and energy are all 

transported by the particle velocity, ����, which is defined as,  

 ��� � ��
&� �� 	 � , (6.85) 
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where 	� is the approximated fluid velocity at a mesh point. Consider an 

arbitrary node �, where its fluid velocity is 	. As shown in Fig. 6.6, the 

node � should fall into one of triangles. We note this triangle as �ABC. 

The approximated fluid velocity at nodes A, B and C are noted as 	���	��

and�	
. The particle velocity at � and the approximated fluid velocity 	� 

are defined as  

 �� ��
&� �� 	 � , (6.86) 

 � �
&� �	 	 	 . (6.87) 

In the adaptive LBE model, all the particles are concentrated at 

����� � , ���� �� , ����ξ ξξ ξξ ξξ ξ , ���� �� , and the equilibrium distribution 

function can be written as 
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 (6.88) 

where ��is the delta function, � � �� ��  for ��≠�'; � � � �� � � � ����� ��� � �� �� � � � . 

���  is a function of macroscopic variables. With Eq. (6.88), the 

macroscopic variables can be determined as 
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��Y = ηηηη , (6.89) 

where * � � +��� ��� ��� ���� �% �ηηηη . Sun [2000a] proposed two models to compute 

the particle mass, velocity, and energy. Model I gives 

 ��
���� � , (6.90) 
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Fig. 6.5.  Configuration of fluid velocity and a symmetric set of velocities. 
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where ( is the particle potential energy,  
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Model II introduces corrections to Model I, and it is given as 
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where � ��� � � ���� � �� �� �
 �& & &� �� 	 . With the introduction of density portion, 

�� �� � �� , ���  can be taken as 

 �� � �� ��� . (6.99) 

As shown in Fig. 6.6, with the given location �, it is not difficult to 

calculate the density portion. For the hexagonal lattice, there are two 

levels of �
&� . Then �� and��� in Eq. (6.99) can be determined by  
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In order to ensure the positivity of �� and��� , �� &  and �� &  are required to 

satisfy � �
� �� ��� � � ��& &) � ) . In practice, �� &  is set to be the integer part 

of � ��� �� � , and � � �� �& &� � . When � ��& � , the correction parameter 

in Eqs. (6.95)∼(6.97) should be modified to 
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The pressure in the adaptive LBE can be computed by  

 ��
� � �

�

� � � �
�

&� � . (6.103) 

In the application of adaptive LBE, the relaxation parameter � is usually 

set as one due to huge requirement of computer memory and 

computational effort for other cases. When �����, the lattice Boltzmann 

equation is reduced to 

 � �� � � � � � � � � ���� � � � � �� " � " �� � � � �η ηη ηη ηη η . (6.104) 

Some compressible flows with weak or strong shock waves were 

simulated successfully by the adaptive LBE. Note that since the viscosity 

cannot be adjusted by changing �, the model can only be used to simulate 

inviscid flows if the viscosity terms are regarded as numerical 

dissipation. 

6.5   Direct Derivation of Equilibrium Distribution Functions 

from Conservation of Moments 

All of the LBE models described above are based on a given form of 

equilibrium distribution functions. On the other hand, it was found that 

the equilibrium distribution functions can also be derived from the 

 

Fig. 6.6.  Illustration of fluid velocity at x and its approximated velocity at apexes of a 

triangle. 
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conservation forms of moments. The initial work was made by 

McNamara et al. [1995] and Dellar [2008]. In the work of McNamare  

et al. [1995], a system of 21 moment conservation equations is used to 

determine the distribution functions of thermal lattice Boltzmann model. 

Later, Dellar [2008] derived two one-dimensional models, unsplit 7 

velocity model and split 4+3 velocity model, by solving a linear system 

of 7 moment conservation equations. In the following, the unsplit 7 

velocity model is briefly described.  

This model chooses 7 lattice velocities as ����� ��� �������±���±���±
. 

With the introduction of a particle potential energy ����, the 7 

conservation forms of moments can be written as  
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where � is proportional to the temperature 
, and ���	
. Note that 

although different notations are used, Eqs. (6.105)∼(6.111) are actually 

the one-dimensional forms of Eqs. (6.15)∼(6.21). By taking ���������������

�����������, equations. (6.105)∼(6.111) can be put in the following matrix 
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form,  
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. (6.112) 

The solution of equation system (6.112) can be obtained analytically. For 

example, the equilibrium distribution function of static particle is 
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. (6.113) 

Recently, Yang et al. [2012] did a systematic study on derivation of 

one-dimensional lattice Boltzmann models from conservation forms of 

moments in order to simulate compressible inviscid flows. As discussed 

in the previous sections, for the inviscid flow, only 5 conservation forms 

of moments are needed. Their one-dimensional forms can be written as 
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where � is defined by Eq. (6.22), and � is the particle potential energy. 

Note that different from other LBE models [Kataoka, T. and Tsutahara, 

2004a, 2004b; Dellar, 2008], the particle potential energy in Eqs. (6.117) 

and (6.118) is independent of the lattice velocity direction i. This is 

reasonable as the particle potential energy reflects the contribution of 
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kinetic energy in the rotational velocity space, which is independent of 

translational velocity space. Unlike the previous work [Kataoka, T. and 

Tsutahara, 2004a, 2004b; Dellar, 2008], the particle potential energy � in 

Eqs. (6.114)∼(6.118) cannot be arbitrarily specified. In fact, it can be 

determined from the equation system. By substituting Eqs. (6.114) and 

(6.116) into Eq. (6.117), one can get the expression of � as 
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 �
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� �
� �

� �
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. (6.119) 

Due to the use of Eq. (6.119), only 4 equations of (6.114)∼(6.118) are 

independent, which can be written as  

� ���
�

�

�� � � ,  (6.120) 

� ���
� �

�

� �� �� � ,  (6.121) 
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� � �� � � �� � � ,  (6.122) 
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 �
 ��
� � � �

�

� �� �� � � � �� � � ,  (6.123) 

where � is the peculiar velocity of particles defined as � ��� � ��� � . 

When the lattice velocities are taken as ����&���±����±��', where d1 and  

d2 are constants, there are 5 unknowns, � �� � �� �� ���� ���
�� � � . As equation 

system (6.120)∼(6.123) only has 4 equations, we have to regard one of 
� ���
��  as given in order to obtain a well-posed equation system. If we set  
� �
�
���  as known, we can get the solution of equation system (6.120) ∼ 

(6.123) as  

 �� � � �
� � � ��� ��� � � ��� ,  (6.124) 
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In fact, if we take � �
�
���  as the following form, 
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we can get exactly the same results as D1Q5L2 model of Qu et al. [2007] 

given by Eq. (6.76). Furthermore, when 4 lattice velocities are taken, that 

is, ��� �&±���� ±��', the equation system (6.120)∼(6.123) gives the 4 

equilibrium distribution functions as 
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The equation system (6.120)∼(6.123) is a useful platform to derive 

various one-dimensional LBE models for compressible inviscid flows. 

6.6   Solution of Discrete Velocity Boltzmann Equation 

The application of lattice Boltzmann models for simulation of compress-

ible flows often encounters numerical instability. To obtain a stable 

solution, very few of existing models such as those of Yan et al. [1999] 

and Yu and Zhao [2000] can be applied with normal streaming-collision 

process. Most of existing models have to be applied with the solution of 

DVBE (6.2). In fact, in the literature, there are many works [Chew et al., 

2002; Gan et al., 2008; Li et al., 2007; Li et al., 2009; Mei and Shyy, 
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1998; Mezrhab et al., 2004; Peng et al., 1999; Watari, M. and Tsutahara, 

2003] available to address the solution of DVBE for problems with 

complex geometry, thermal flows, and compressible flows. Some 

techniques for solving the DVBE for compressible flows are described in 

this section.  

To apply their compressible LBE models, Kataoka and Tsutahara 

[2004] solved the DVBE by the following Crank-Nicolson scheme, 
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, (6.134) 

where "� is the time step. The spatial derivatives �� ��
 
 can be 

approximated by the following second-order upwind scheme, 
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Kataoka and Tsutahara [2004] found that the application of Eqs. (6.134)∼ 

(6.135) with � �" �  and � 	
�" �  can obtain stable solutions with 

the second-order of accuracy. The DVBE can also be solved by some 

powerful flux solvers such as MUSCL which are often used to solve the 

Euler equations. For a two-dimensional case, Qu et al. [2007] wrote  

Eq. (6.2) into the following conservative form 
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where 
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As i will be used as the index to indicate �-coordinate, we have used � in 

Eqs. (6.136) and (6.137) to replace � in Eq. (6.2). Using the explicit Euler 

scheme for temporal discretization and finite volume method for spatial 

discretization, Eq. (6.136) can be discretized as 

� � � �
� � � �

� � �
� �

" "
" " " " "

� �� � � � � � � �

� �
  ! !

� � �

� �
�� � � �

� � � � �
� � � �
� � � � � �� � � � � � � � � � � �� � � �� 	 � 	

�
� � � � .

" " "
,  (6.138) 



 LBE for Compressible Flows 227 

where ���
"
� � �� � �  and ���

"
� �!�� � �  are the numerical fluxes at the interfaces of a 

cell ���� ��. In order to compute the numerical fluxes, the 3-rd order 

MUSCL (Monotone Upstream-centered Scheme for Conservation Laws) 

scheme [van Leer, 1982] with van Albada limiter [1982] is applied to 

evaluate the functional value on two sides of an interface 
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where ������
, and � is the van Albada limiter given by 
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Here ��is a small number (usually set as ���� �� ) preventing division by 

zero in region of null gradient and  

 �� ��
� �

� ��� �� ��� � �� �" � � ,     �� ��
� �

� ��� �� ��� � �� �" � � . (6.141) 

With ���� �# �� �  and ���� �	 �� � , the numerical flux at the interface�������� can 

be computed with a Riemann solver. For Eq. (6.136), the exact Riemann 

solution can be found since it is a linear hyperbolic system. The solution 

is 
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���
"
� �!�� � �  can be evaluated in the same way.  

Note that when the DVBE is solved by the upwind schemes, the 

artificial dissipation comes from two parts. One is the model dissipation 

which is from the collision term. This part is usually very small. The 

other is the numerical dissipation resulted from spatial discretization. 

Numerical results have shown that the solution of the DVBE by upwind 

schemes with associated compressible LBE models can well capture both 

the shock waves and contact discontinuities without oscillation.  
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6.7   Lattice Boltzmann Flux Solver for Solution of Euler 

Equations  

As shown in previous sections, the developed lattice Boltzmann models 

for compressible flows are usually very complicated, especially for two- 

and three-dimensional cases. And the compressible LBE models are 

often associated with the solution of DVBE, which may encounter 

numerical instability. To overcome these drawbacks, some efforts  

[Ji et al., 2009; Joshi et al., 2010; Yang et al., 2012] have been made to 

combine one-dimensional compressible LBE models with the solution of 

the Euler equations by the finite volume method (FVM). In other words, 

the one-dimensional models are used to the local Riemann problem at the 

cell interface to evaluate the inviscid flux. The work is actually an 

inviscid flux solver by the lattice Boltzmann method. In this section, we 

will briefly describe how to apply the one-dimensional LBE model to 

evaluate the inviscid flux at a cell interface for one-dimensional and two-

dimensional problems.  

For simplicity, we first consider the one-dimensional case, for which 

the Euler equations can be written as 
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Using FVM, Eq. (6.143) can be discretized as 
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Fig. 6.7.  Configuration of a D1Q4 lattice Boltzmann model. 
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Here ������ is the inviscid flux at the cell interface �������. Conventionally, 

������ can be evaluated by certain upwind schemes such as the Roe 

scheme [Roe, 1981]. In the following, we will show that ������ can also 

be evaluated by the compressible LBE model.  

For illustration, we consider a D1Q4 lattice Boltzmann model as 

shown in Fig. 6.7. This model will be applied to a local Riemann 

problem at the interface, which is shown in Fig. 6.8, where the flow 

variables are constants at the left and right sides.  

Now, at the interface, suppose that there are two neighbouring points 

# and 	 located respectively at the left and right sides of the interface. 

We apply the D1Q4 model to the points #�and 	 at the time �. Since 

macroscopic variables at points # and 	 are known, we initialize the 

computation by using their equilibrium distribution functions. After a 

time step "�, the particles 1 and 3 from point #�and particles 2 and 4 

from point 	� will stream to the interface. The streaming process is 

demonstrated in Fig. 6.9.  

 

 

 

 

 

 

 

 

 

Fig. 6.9.  Streaming process of D1Q4 model near the interface. 

 

 

 

 

 

 

 
Fig. 6.8.  Sketch of a local Riemann problem. 
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From the streaming process, we have the density distribution 

functions at the interface as follows, 
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With Eqs. (6.146), (6.115)∼(6.118), the inviscid flux � at the interface 

can be calculated by 
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where � is taken as 4 in Eq. (6.147) for the D1Q4 model. When multi-

dimensional problems are considered, the above 1D model needs to be 

applied along the normal direction of interface. For example, for the 2D 

case, as shown in Fig. 6.10, we can use the normal velocity $" to replace 

� in the 1D model (6.147). Suppose that the unit normal vector at the 

interface is �"�%� "�� for the 2D case, we will have the following 

relationships, 

� ����" � � � �$ " � " � $ " � " �� � � �� , (6.148) 

 � ���� " � � � "� " $ " $ � " $ " $� �� � � � , (6.149) 

where $"�and $���are the normal and tangential velocity components at 

the interface, and � and ��are the velocity components in the � and � 

directions, respectively. The two-dimensional Euler equations can be 

 

 

 

 

 

 

 

 

 
Fig. 6.10.  Illustration of normal and tangential velocities at an interface. 
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written as 
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Integrating Eq. (6.150) over a control volume I gives 
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where 
� is the vector of conservative variables for the control cell ���&����

������ are the volume and the number of faces of the cell, respectively, 

and Si is the area of the �-th face of the control cell. The flux vector at the 

interface is given by 
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Using Eq. (6.149), equation (6.153) can also be written as 
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Note that in the last component of the flux vector in Eq. (6.154), we have 

used the relationship of � � � �
"� � $ $ �� � �  (velocity magnitude does not 
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change). If we define � �
�

" � �� $ � ��� � �� , and apply the one-dimensional 

results of Eq. (6.147) to the normal direction, the flux vector at the 

interface (Eq. (6.154)) can be finally written as 
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In the above equations, the tangential velocity $�� is still unknown. One 

feasible way to calculate the terms of � ���  and �
� $ ��  is given by 
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where #$ �  and 	$ �  are the tangential velocities at the two sides of the 

interface. �
#  and �

	  denote the mass fluxes calculated by the 

equilibrium distribution functions (only consider the components 

pointing to the interface) at the two sides of the interface. When  

the D1Q4 model is applied, we have � �� �
� ��

��
� 


�� # ## ��� � � � ��  and 
� �� � ��
� �� � �
�� 	 �	 � 	� � � � �� � . Once the flux vector at the interface is obtained 

from Eq. (6.155), we can simply solve Eq. (6.152) by multi-stage Runge-

Kutta methods. The above process can also be easily extended to the 

three-dimensional case. 

6.8   Some Sample Applications 

In the previous sections, a number of LBE models have been described 

for compressible flows. In this section, we will show some sample 

applications of these models. 

One-dimensional case 

Almost all the compressible LBE models introduced in the previous 

sections can be used to simulate the one-dimensional shock tube 
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problems. Here, we only show some results of Qu et al. [2007] by using 

their developed D1Q5L2 model. The initial condition of the Sod shock 

tube problem is 
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For the simulation, Qu et al. [2007] set ��������������, 
�, ��� �
�� � . The 

reference density and length are taken as ��������#�����, and the reference 

internal energy is chosen as �������/�-�����������. Here, �
  
is the internal 

energy. The mesh size is taken as ∆��������� and the time step size is 

chosen as ∆�������. Before the waves propagate to the two boundary 

points, the distribution functions at the boundary are set as the 

equilibrium distribution functions computed from the initial value of 

macroscopic variables. The computed density, velocity, pressure, and 

internal energy profiles (symbols) at �������� together with the exact 

solutions (solid lines) are displayed in Fig. 6.11. Clearly, the numerical 
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Fig. 6.11.  Density (left up), pressure (right up), velocity (left bottom) and internal energy 

(right bottom) profiles of Sod shock tube problem. 
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results obtained by the compressible LBE model agree well with the 

exact solution.  

Two-dimensional case 

In the literature, the compressible LBE models shown in the previous 

sections can be well employed to simulate two-dimensional shock 

reflection on the wall and double Mach reflection problem. The 

computational domain of these problems is rectangular. For application 

of compressible LBE models on irregular domains, the process is quite 

tedious. However, the lattice Boltzmann flux solver shown in Section 6.7 

offers a promising way to simulate compressible flows around a curved 

boundary. The compressible flow around airfoils is a good example. 

Consider a flow around the RAE2822 airfoil with free stream Mach 

number of 0.75 and angle of attack of 3
0
. In the simulation, a 225×65  

C-type grid is used. The D1Q5L2 model of Qu et al. [2007] is applied to 

evaluate the inviscid flux at the cell interface in the solution of the Euler 

equations by FVM. The pressure coefficient distribution along the  

airfoil surface [Qu, 2009] is presented in Fig. 6.12, in which the results 

computed from the Euler solver of Jameson’s scheme [Jameson et al., 

1991] are shown as symbols. Clearly, the two results agree very well.  
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Fig. 6.12.  Pressure coefficient distribution of flow around the RAE2822 airfoil ('∞��
��������� 
� � � ). 
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Three-dimensional case 

Due to the complexity, very few work is available in the literature for the 

simulation of three-dimensional compressible flows by using LBE 

models. Qu [2009] managed to incorporate the lattice Boltzmann flux 

solver developed in Section 6.7 into an existing FVM Euler/NS solver in 

order to simulate the transonic flow around an aircraft. Figure 6.13 

compares the pressure coefficient contours computed by the central 

difference scheme with artificial dissipation [Jameson et al., 1981], the 

flux vector splitting (FVS) scheme [van Leer, 1982], and the lattice 

Boltzmann flux solver. In the simulation, the free stream Mach number 

of 0.8 and angle of attack of 2° are selected, and a 3D multi-block 

structured grid with about 310,000 mesh points is used. 

We can see clearly from Fig. 6.13 that the three results agree very 

well, especially between the results of the FVS and present lattice 

Boltzmann flux solver. Indeed, the present results are closer to those of 

the FVS. The lift coefficients computed by the central difference scheme 

[Jameson et al., 1981], the FVS scheme [van Leer, 1982], and the lattice 

Boltzmann flux solver, are respectively 0.2303, 0.2384, and 0.2375. This 

example shows that the lattice Boltzmann flux solver could become an 

effective way for simulating compressible flows around complex 

geometries. 

6.9   Summary 

This chapter presents several LBE models for compressible flows. As 

compared to the incompressible LBE models, the compressible models 

have two major differences. One is about the equilibrium distribution 

functions. Although some compressible models still adopt the same form 

of incompressible models, the coefficients are determined differently. 

Generally they are not constants in the compressible models, which are 

determined from conservation of moments and are functions of particle 

velocity and macroscopic flow variables. This chapter also shows that the 

equilibrium distribution functions can be directly derived from the model 

of Yan et al. [1999], where the particle energy is introduced to calculate 
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the total energy and the energy flux. Its difficulty lies in the specification 

of the particle energy for different problems. This difficulty can be 

overcome by the model of Kataoka and Tsutahara [2004a, 2004b], where 

the particle energy is considered as the sum of particle kinetic energy and 

potential energy. Although different values of potential energy are 

 

Fig. 6.13.  Surface pressure coefficient contours computed with FV-LBE (top), Van Leer 

FVS (middle) and Jameson’s central scheme (bottom). Contour levels are from –0.6 to 

0.5 with increment of 0.05. 
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assigned to different lattice directions, the model in fact only assigns the 

potential energy to the static particle. In contrast, the model of Qu et al. 

[2007a, 2007b], which is based on the circular function, takes the same 

particle potential energy for different lattice directions. This is reasonable 

as the potential energy reflects the contribution of kinetic energy from 

the rotational velocity, which is independent of the translational velocity. 

The particle potential energy of Qu et al. [2007a, 2007b] cannot be 

chosen arbitrarily. It is calculated from the internal energy of the mean 

flow. The adaptive model of Sun [2000b] is different from other 

compressible models in the way that the particle mass, momentum and 

energy are all transported along a streaming velocity, which is the sum of 

the mean flow velocity and the lattice velocity. In general, the position 

after the streaming is not on the mesh point. Thus, interpolation is 

necessary. Another drawback of the adaptive model is that the relaxation 

parameter ��is usually fixed as 1. 

The compressible LBE models often encounter numerical instability 

when the normal streaming-collision process is applied. To get a stable 

solution, they are usually applied with the solution of discrete velocity 

Boltzmann equation (DVBE). As upwind schemes are needed to solve 

DVBE, the numerical stability of compressible models with solution of 

DVBE is actually enhanced by artificial dissipation.  

As compared to the incompressible models, the form of equilibrium 

distribution functions is much more complicated for the compressible 

models, especially for two- and three-dimensional cases. To overcome 

this difficulty, this chapter presents a lattice Boltzmann flux solver, 

which applies a one-dimensional LBE model to the local Riemann 

problem at the cell interface. The flux evaluated by LBE at the cell 

interface can be used in the solution of Euler equations by the finite 

volume method. Numerical experiments showed that this solver can be 

effectively applied to complicated two- and three-dimensional 

compressible flows, indicating that this solver has a great potential for 

real application.  

In summary, the work for compressible flows is far behind that for 

incompressible flows. More research efforts are needed to tackle the 

challenging issues occurred in the application of LBE for compressible 

flows. 
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Chapter 7 

LBE for Multiphase and  

Multi-component Flows 

In the natural world and industrial processes, fluids usually contain 

impurities more or less, and so most flows, strictly speaking, are 

multiphase and/or multi-component ones. A multi-component system is a 

mixture comprised of different fluid species, while a multiphase fluid 

system involves obvious phase interfaces (e.g. gas-liquid mixture). 

Furthermore, a multi-component fluid can be either miscible (e.g., air) or 

immiscible (e.g., air-water), and a multiphase system can contain one or 

more components.  

The macroscopic dynamics of a multiphase or multi-component flow 

is usually very complicated due to large scale disparities and the 

coupling between mass transfer, phase segregations/separations, and 

even chemical reactions. Traditional fluid dynamical models and 

numerical methods may encounter difficulties for these systems. For 

example, an equation of state is required in order to model two-phase 

flows, which is usually difficult to obtain in the interfacial region. On the 

other hand, it is well understood that the macroscopic behaviors of 

multiphase and multi-component flows are the natural consequences of 

microscopic interactions among fluid molecules. Therefore, in principle, 

multiphase flows can be simulated by numerical methods based on 

realistic microscopic physics such as molecular dynamics (MD). 

However, such methods are usually very computational expensive and 

consequently become impractical for simulating macroscopic flows. In 

recent years, there is a trend to construct numerical methods for such 

flows based on mesoscopic theories that connect the microscopic and 

macroscopic descriptions of the dynamics, among which the LBE has 

received particular attentions. Thanks to the kinetic nature of the LBE, 
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inter-molecular interactions can be incorporated into a LBE model in a 

straightforward way so that it can be used to simulate a multiphase or 

multi-component system effectively. This feature is also recognized as 

one of the main advantages of LBE that distinguishes it from other 

numerical methods. 

A variety of LBE models for multiphase and multi-component flows 

have been established from different viewpoints, and in this chapter 

several typical kinds of such models will be presented. 

7.1   Color Models 

7.1.1   LBE model for immiscible fluids 

The first LBE model for multiphase flows is put forward by Gunstensen 

et al. [1991], which is an improved version of the multiphase LGA 

model of Rothman and Keller [1988]. In this model, phases are denoted 

by different colors, and inter-particle interactions, which are responsible 

for phase separations and segregations, are modeled by local color 

gradients associated with density differences between two phases. 

Taking a two-phase system as an example, the color-gradient model 

uses two types of distribution functions, ����������� , to represent the red 

and blue fluids, respectively. The total distribution function for the 

mixture,� ����� ������ ����, evolves as [Alexander et al., 1993; Gunstensen  

et al., 1991] 

 � � 	 � � 	 ��
� � � � � � �� � � �� �� � � � � � �� � � , (7.1) 

where �
��  denotes the collision effects and �

��
 
means the perturbation 

aroused by interfacial tensions. The densities and velocities for each fluid 

and the mixture are defined as 

 
� �




� �

�

		 	� 	 � 	�

� �

� � � � � �

� � 	 � �� �

� � � � � �

� � �

� � � �

� ��

� � �

�

 (7.2) 

In the model of Gunstensen et al., the collision term is constructed 

from the MZ collision model [McNamara and Zanetti 1988], which 

originates from LGA collision rules. As mentioned in Chapter 1, such a 
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model may encounter some numerical instabilities and the computational 

efficiency is not satisfactory, either. Later Alexander et al. [1993] proposed 

a BGK model for �
�� . In order to determine �

�� , an order parameter is 

introduced first to describe the phase difference, 

 � � 	 � � 	 � � 	� �� � �� � �� �� � � . (7.3) 

A local color gradient is then defined as 

 � � 	 � � 	� � �

�

� ��� �� � �� � �� , (7.4) 

from which �
��  is defined, 

 � ����� 	�
� �
�� �G , (7.5) 

where �� is the angle between ���
and ���
�is a parameter that controls the 

surface tension �, i.e., ��∼�
��, where � is the eigenvalue of the collision 

operator �
��
 
related to the viscosity. Obviously, the color gradient is 0 in 

bulk regions, and so is �
�� . In other words, surface tension only takes 

effects in the interfacial region, which is physically sound. 

After obtaining �
��  and �

�� , the total distribution function can be 

calculated according to Eq. (7.1), and the red and blue distribution 

functions are then obtained by a re-coloring step, which solves the 

following maximum value problem 
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�� ��
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�� ��

� �
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� �
� � , (7.6) 

subjected to the following constraints, 

 �� �� � �� �� �

�

� � � �� ��� �� �� ��� � � �� , (7.7) 

where 	�� ��  is the distribution function after the re-coloring, �� and ���are 

the density and distribution function before the collision step. The 

essence of this re-coloring step is to enforce the direction of the color 

flux ��≡�ρ����−�ρ��� to match that of the color gradient �. During this 

process, the fluid is driven to the bulk region with the same color, and 

phase separation is then induced. 



242 Lattice Boltzmann Method and Its Applications in Engineering 

In summary, the color-gradient model of Gunstensen et al. can be 

realized by the following four steps: 

• Collision: �
�� ��� �� � � ; 

• Perturbation: �
� � �� ��� �� � � ;  

• Re-coloring: Compute ��� �� and ��� ��  from Eq. (7.6); 

• Streaming: � � 	 � � 	�� � � � ��� � � �� � ��� � �� � � , � � 	 � � 	�� � � � ��� � � �� � ��� � �� � � . 

In the original model, the collision process is made for the total 

distribution function of the mixture. Grunau et al. [1993] presented a 

slightly modified color-gradient model in which collisions are also 

carried out for the distribution functions of different fluids,  

 � � 	 � � 	 �
�� � � � �� �� ��� � � �� �� � � � � � �� � � , (7.8) 

 � � 	 � � 	 �
�� � � � �� �� ��� � � �� �� � � � � � �� � � , (7.9) 

where ���
 
and ���

 
are the collision operators for the red and blue fluids, 

respectively, 
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� � . (7.10) 

Here the equilibrium distribution function depends on the density �	 and 

the mixture velocity �. As an example, the equilibrium distribution 

function of the D2Q7 model is defined by 
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where 	��������and �	�denotes the ensemble average value of the static 

particles of phase 	
 When the velocity is zero, in order to obtain a stable 

phase interface, it requires  
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. (7.12) 

The additional terms �
	��  in Eqs. (7.8) and (7.9) represent the 

perturbations caused by the surface tension,  
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with 
	� being a parameter related to surface tension and �� a model-

dependent constant. For example, �������� for the D2Q7-FHP model. 

The model of Grunau et al. also needs the re-coloring processes. 

Specifically, the direction of the momentum of the red fluid is enforced 

to match that of the color gradient by maximizing the function 

� 	� � �� � �� , which can give the new value of ����; then the distribution 

function of the blue fluid is calculated as ���������−�����. Theoretical analysis 

shows that the surface tension in the color model of Grunau is related to 


���and 
��. Particularly, when 
����
����
, the coefficient of surface 

tension in the D2Q7 model is  

 � ��� 	� �
 � � �� �� � � , (7.14) 

where � �� 	� � � �� �� � � � �
 
is the average relaxation time at the phase 

interface. 

In the above color-gradient models, the solution of the maximum 

value problem in the re-coloring process is usually computational 

expensive. Some simplified versions have been developed later. For 

example, d’Ortona et al. [1995] proposed an alternative re-coloring 

method based on Gunstensen’s model, 
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�� ��� � , (7.15) 

where the parameter���≤���≤�� is related to the interface width: a larger 

value of ��  will give a thinner interface. Specifically, the above color 

model can be applied to miscible fluids as 
��	�	����. Further 

improvements in color models can also be found in [Tölke et al., 2002]. 

7.1.2   LBE model for miscible fluids 

Although the color-gradient models can be used to simulate miscible 

fluids by adjusting the model parameters, the main aim of these models 

is to capture the interfacial dynamics in multiphase systems. Flekkøy 

[1993] established an alternative kind of color model for miscible fluids 

directly. Instead of describing the distribution function of each fluid, this 

model adopts the sum and difference of the distribution functions as the 
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new basic variables,  

 �� �� �� � �� ��� � � � � �� � � � . (7.16) 

The corresponding evolution equations are  
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where �
 and �	� are the corresponding dimensionless relaxation times, 

and  � ���
��  has the same form as that of the standard DnQb-LBGK model, 

while 
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where � � �� �� � � �� � �
 
is the density difference, and �� �� �� and 

� �� �� �� ��
 
are the density and momentum of the mixture. 

The evolution equation of ���is the same as that in single component 

LBE models. As a result, the corresponding hydrodynamic equations of 

the mixture are also the Navier-Stokes equations. On the other hand, the 

Chapman-Enskog analysis of Eq. (7.18) gives the following convection-

diffusion equation, 
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where the diffusion coefficient  is 
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. (7.21) 

Dimensional analysis shows that the ratio of the second term over the 

first one on the right hand side of Eq. (7.20) is in the order of  
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where ���and �� are the characteristic velocity and length, respectively. 

This result indicates that for flows with a small Mach number, the second 

term can be neglected and thus Eq. (7.20) becomes a standard 

convection-diffusion equation. As a result, this LBE model can capture 

the hydrodynamics and diffusion process of a miscible fluid. 

Remark: The color models are the earlier LBE methods for 

multiphase/multi-component systems. These models have been 

successfully applied to complex interfacial flows such as multiphase 

flows in porous media [Tölke et al., 2002] and the spinodal 

decomposition [Alexander et al., 1993]. However, LBE models of this 

type also suffer from several limitations, such as the anisotropy of 

surface tension, the spurious currents in the vicinity of interfaces, and 

the difficulty to include thermodynamics. 

7.2   Pseudo-Potential Models 

7.2.1   Shan-Chen model 

The key point of the color models is to redistribute the fluid particles 

based on the color gradient. Actually, the interaction force in such 

models comes from the difference between the averaged molecular 

forces on the two sides of the interface. Shan and Chen [1993] presented 

a LBE model (referred to SC model) which could depict the interaction 

between fluid particles more accurately and straightforwardly by 

introducing a pseudo potential.  

For a fluid composed of � components, the SC LBE model can be 

written as 

  � 	�
� � 	 � � 	 �
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where � 	 � 	� � 	�� �
� 		� 	� � �� �

 
is the equilibrium distribution function of the 

	-th component, 	 	�� �� �� is the density of the 	-th component, and 
� 	�
	� is the equilibrium velocity to be determined. The formulation of �� 

depends on the choice of the lattice model. For the FHP or FCHC lattice,  
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(7.24)

 

where ��	�  
is a constant. The SC model employs a non-local interaction 

which comes from a potential,  

 � � � � � �� � 	 �� �	 � 	 � 			 		 	 	� � � �� �� � � , (7.25) 

where 		� is a Green function which controls the interaction intensity 

between component 	 and 	 ; 	�  denotes an effective density of the 

component 	 and is usually a function of �	�. Generally, the SC model 

considers only the nearest neighbour interactions, and the function 

		� can be modelled as 
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In the above model, the modulus of 		�  
decides the interaction 

intensity between component 	 and 	 . The sign of 		�  
determines whether 

the interaction force is attractive (negative) or repulsive (positive).  

The 		�  
forms a symmetric �	×�� interaction matrix �. According to  

this pseudo potential, the total force acting on the 	-th fluid can be 

expressed as 
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� � �� � �� �� . (7.27) 

Obviously, when ��� →� �, � � 		 			��� �� ��� � �� . As mentioned in 

Chapter 3, there are several approaches to include the interaction force 

into LBE. In the original SC model, this is achieved through the 

equilibrium velocity �� 	�
� , 
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where � is the velocity of the mixture defined by 
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where 		� �� �
 
is the density of the mixture. This approach will 

introduce some discrete lattice errors as described in Chapter 3. After 

neglecting such errors, the macroscopic equations derived from the SC 

model for a single component system (i.e. �����) can be expressed as 

 � �� �
�
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, (7.30) 
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where � is the viscous stress, the same as the standard LBGK models; 

the pressure � now depends on the interaction force, 
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where ���� �  is the internal interaction among the fluid. Obviously the 

equation of state is one for non-ideal gases. When the potential � is 

properly chosen so that p is a non-monotonic increasing function of the 

density �, phase separation can appear. For the potential with the form 

(7.25), phase separation can be initiated by choosing a strong �  

with a nonlinear potential function � . Shan and Chen suggested using 

the following effective density function, 

 ��
� � 	 	

	 	 � � �� � �� �� �� �  , (7.33) 

where �	� is a reference density of the k-th component. On the other hand, 

Qian et al. [1995] proposed a fractional form for the density function. 

7.2.2   Shan-Doolen model 

Soon after the Shan-Chen model, Shan and Doolen [1995] developed an 

improved version (denoted by SD model) to reduce some of the artifacts. 

First, the definition of the equilibrium velocity � �
u

�

	 is changed to  

 
�

� �
� 	�

	 �	

	

� �
�

��� , (7.34) 
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where ��  is required to satisfy momentum conservation in the case of no 

forces, i.e., 

 �
� � 	� � 	 ���

	� 		�

	 � 	

� � �
�

� ��� �	 
� ��� , (7.35) 

which gives that 

 
�

� �	 	 	

	 		 	

� �

� �
� � � � . (7.36) 

In the presence of the interaction force, particle collisions do not 

conserve the momentum locally. But the overall momentum of the 

system is conserved as the interaction matrix � is symmetric. In the SD 

model, the velocity of the fluid is redefined by the average of pre-  

and post-collision momenta, ��	 � 				� �� �� � �� � � , which can reduce 

the discrete errors significantly. 

The Chapman-Enskog analysis shows that the SD model leads to the 

following continuity equation for each species, 

 � �� 		
	 	

�

�
�

�
� � � � �� �

�
, (7.37) 

where � � �� 		 	 	�� �
 
is the diffusive mass flux of the 	-th component, 

which is related to the pressure, interaction force, and species 

concentrations. For the FHP  and FCHC models, it can be shown that 

�� 	�

�
�
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(7.38)

 

where �	����	�� is the mass fraction of the 	-th species. The pressure is 

similar to that of the SC model, 

 
�

�
�� 	

�
	 	 		 	 	

	 	 	

�
� �

�
� ��

� �
	 
� � �	 
� �
� �� . (7.39) 

It is noteworthy that when �		 �� , the pressure should obey an equation 

of state of ideal gases, i.e. 		� �� � .
 
This leads to �� �	 � 	� �� �� � , 

where ���
is the sound speed in the fluid mixture, and �	�

is the molecular 

mass of the 	-th component. 
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The mass diffusive flux �	 can be decomposed into two parts, 
� 	 � 	� �

	 	 	� �� � � , where 

 � 	

� � �

� 	 �
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  , (7.40) 
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� ��  , (7.41) 

where the coefficients are given by 
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(7.42)
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�
.  (7.43) 

The coefficient before the concentration gradient in Eq. (7.40) is just the 

mutual diffusivity. 

It can be proved that �		 �� � . Then the mass conservation equation 

of the mixture can be obtained by summing up Eq. (7.37) over 	 , 

 �� 	 �
�

�
�

�
� � � �

�
. (7.44) 

The momentum equation can also be derived based on the Chapman-

Enskog expansion, which is similar to that of the SC model except with a 

viscosity defined by 

 
� �

� �
�	 	

	

�
�


 �
� ���� � �� �� �� �� � . (7.45) 

7.2.3   Numerical schemes for interaction force 

In either the SC model or the SD model, spurious velocities often appear 

in the vicinity of a phase interface [Hou et al., 1997]. Recently, Shan 

[2006] found that the isotropy of the force discretization schemes has 

significant influences on the spurious velocities, and the use of  
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high-order isotropic schemes can reduce the magnitudes of spurious 

velocity greatly. 

Consider a single component fluid with long distance interactions. In 

this system the force on a particle located at � exerted by a particle 

located at �′ can be written as 

 � � � � � � � �� � 	 �� �	 � 	 � 	 	��� � �� � � �� � � �F . (7.46) 

Then the total force experienced by the fluid particle can be expressed as  

 � � � � � � � � �� 	 � 	 �� �	 � 	� 	� �� �� � � �� � � �" . (7.47) 

Assuming that � ��� � 	� � �
 
is isotropic, the above integral can be 

evaluated by the discrete values at the neighboring nodes, 

 � � � � � ��

�

� 	 � 	 � 	 � 	
�

� � �

�

� �� �
�

� � ��� , (7.48) 

where � � ���� � �� � �� �� � �
 
are � nodes surrounding �, �� 	�� � is the 

weight coefficient of the integral. Take Taylor expansion of � �� 	�� � , 

���	 can be approximated as 

 � 	 � �	

�

�
� 	 � 	 � � 	� �

�
� �

� �
�� �

#
�

�

� � ��� � �� 	 , (7.49) 

where 

 � 	 �

�

� 	
�

�
� � � �

� �

� �
�

� � �	 � � �
���������

. (7.50) 

The symmetric properties of the lattice lead to 

 E� 	
� 	

�� �� �� ��

�� � �� �  
�

� �
� �

�

� ��

 ���� �� $ ���

�

�
 (7.51) 

where ���is a constant and � 	�$ is an �-th order symmetric tensor. 

Since the interaction force ���	 is isotropic, Eq. (7.49) holds only 

when all the 	��	  are so. But due to the finiteness of the discrete velocity 

set, this condition cannot be fulfilled. However, 	��	 can achieve  

high-order isotropy by properly choosing the weight coefficients �� 	�� � . 

Table 7.1 gives several isotropic tensors 	��	 and the corresponding 

weights for two- and three-dimensional lattices. Numerical results of a 
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static droplet show that high-order isotropic schemes can decrease the 

spurious velocity greatly [Shan, 2006]. 

Remark: In pseudo-potential LBE models, the microscopic interactions, 

which reflect the physical nature of the multiphase/multi-component 

flows, are modelled directly. Due to this clear picture and the simplicity, 

such models are widely used in many fields. However, theoretical 

analysis shows that the pseudo-potential models are consistent with 

thermodynamic theories only when the effective density function takes a 

special exponent form [Shan and Chen, 1994]. 

7.3   Free Energy Models 

The color and pseudo-potential LBE models are both phenomenological 

models. Swift et al. [1995, 1996] developed an alternative type of LBE 

models for multiphase/multi-component systems based on free energy 

theory. The basic idea is to devise a suitable equilibrium distribution 

function based on some free energy functions, in which the 

thermodynamic pressure tensor is incorporated.  

7.3.1   Models for single component non-ideal fluid flows 

For a one-component non-ideal fluid, the van der Waals theory shows 

that the free energy of the system can be expressed as 

 � � 	� � 		 � � 		� � �� � � �� �� � �� �" � � � � , (7.52) 

Table 7.1.  Weight coefficients and isotropic ���	 (Shan, Phys. Rev. E 73, 047701 2006). 

 � 	��      � ��� �� �
 

   

 n  1 2 3 4 5 6 8 

 4  1/3 1/12      

2D 6 �� 4/15 1/10  1/120    

 8  4/21 4/45  1/60 2/315 1/5040  

 4  1/6 1/12      

3D 6 �� 2/15 1/15 1/60 1/120    

 8  4/45 1/21 2/105 5/504 1/315 1/630 1/5040 
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where � 	� �
 
is the free energy density in the bulk phase, and � 	� ��

 
is 

the free energy related to surface tension. One common free energy 

formulation is 

 �� �
�

� � �
�
� , (7.53) 

where the parameter � is related to the surface tension. For example, for 

a flat interface located at  ����, the surface tension is defined as 

 

�

 
� 

�
� �

�

�

� ���� �� ��� �" . (7.54) 

According to the free energy �, a non-local pressure can be defined as 

 � �
�� 	 � �

�
� �

�� �
� � �� � �
��

� � � � � � �� ,  (7.55) 

where � � 	 � 	� �� � � ��� �  is the equation of state. Then the thermo-

dynamic pressure tensor, which considers the contribution of the 

interface, can be written as 

 ! �
� �

� �

 �

� �
� �

� �� � �
� �

. (7.56) 

Note that 
′ is different from the pressure tensor � ��% � �"P CC P
 

in kinetic theory. 

In order to obtain a LBE model which is consistent with the  

above thermodynamical theory, Swift et al. suggested using an 

equilibrium distribution function with the density gradient in the LBGK 

model, 

 � �� 	�
� � 	 � � 	 � ��

� � � � � � �� � � � � �� �
�

� �� �� � � � � �	 
� � �� �� � , (7.57) 

where � 	�
��  are constructed to enforce the following constraints, 

 � 	 � 	 � 	� �� � �
� � � � � �

� � �

� � � �� � � �� � �� �� 
 ��� � �c . (7.58) 
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Similar to the standard LBGK model, the equilibrium distribution 

function � 	�
��  

is also a polynomial of the fluid velocity �. For example, in 

the FHP model � 	�
��  

can be expressed as 

 � 	 � �� 	 � 	 � � ��
� � � � �� 
 " #� � � �� � � � �� ��� �� ��� , (7.59) 

 � 	 �
� � �
�� 
 # �� � . (7.60) 

According to the conditions given by Eq. (7.58), the coefficients in � 	�
��  

can be obtained as 

 � �� �
 
 #� �� � � � , (7.61) 
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�

� �
� 	� � �

� � � �

 � " # �

� � �
�� �� � � � � � � , (7.62) 
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� �� �� � � � � � �� �	 
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� �
. (7.63) 

Equation (7.58) also indicates that the collision operator of the free-

energy model conserves both mass and momentum locally. 

With the above equilibrium distribution function, together with the 

definition of fluid velocity as � �� �� �� �� , the hydrodynamic equations 

recovered from the free-energy model are  
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� , (7.64) 
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(7.65)

 

where 

 �� � � �
�
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� �

�
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�

� � � �� ��� � �� � �� � � � � � � �� � �� � �� � �� � �� � � �� ��
. (7.66) 

The last term on the right hand side of the momentum equation is zero in 

the bulk phase, where the equations reduce to the standard Navier-Stokes 

equations. But in the vicinity of phase interface where density gradient is 

large, this term should be considered. 
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7.3.2   Model for binary fluid flows 

Free-energy LBE model for non-ideal fluid flows with two components 

was also developed [Swift et al., 1996]. This model uses two distribution 

functions to simulate the overall system, which is similar to the miscible 

model presented by Flekkøy [1993] as described in subsection 7.1.2.  

The difference between these two models lies in the equilibrium 

distribution functions � 	�
��  and � 	�

�� : the free-energy model considers the 

in-homogeneity of the fluid. Specifically, � 	�
�� still satisfies the 

constraints given by Eq. (7.58), except that the density � and velocity � 

are for the mixture; on the other hand, � 	�
��  now are enforced to satisfy 

the following constraints, 

� � �� � ��� 	 � 	 � 	� �� � �
� � � � � �

� � �

� � �� � � �� � � &$ �� � � , (7.67) 

where �$
 
is the chemical potential difference between the two 

components, and Γ is the mobility. Here the thermodynamic pressure 

tensor 
′ and the chemical potential difference �$
 
can be obtained 

according to certain free energy models for two-phase systems. Swift  

et al. [1996] considered the following free energy, 

 � �

� �
� � � 	 � � � �� �� �� � � � �� �" �� �� � � � � � , (7.68) 

where the bulk free-energy density is given by 
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(7.69)

 

where � denotes the interaction strength. As %�������, phase separation 

will occur. Furthermore, from this free-energy, one can derive the 

chemical potential difference and the thermodynamic pressure tensor, 
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, (7.70) 
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, (7.71) 
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where 

 � �� � � �� 	 � � � �
�

� %�� � � � � � � ��
�

� � � � � � � � . (7.72) 

With these expressions, the coefficients in � 	�
��  

can be written as 

 � �� �
 
 #� �� � � � , (7.73) 
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. (7.76) 

Similarly, � 	�
��  

reads 

 � � ��� 	 � �� 	 � 	 � ���
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�� & ( �� � , (7.78) 

where 

 � �� �& & (� �� � � � , (7.79) 
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With the above expressions, the recovered hydrodynamic equations of 

the FHP free-energy model read 
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where 
 and � is given by Eq. (7.66). The transport coefficient in  

Eq. (7.82) is 

 
�

�
� �� � �

� ���� � �� �� �� �
, (7.84) 

where ��� is the relaxation time in the evolution equation of ���. 

7.3.3   Galilean invariance of the free-energy LBE models 

Although the free-energy LBE model is constructed from thermo-

dynamic theories, it still has some undesirable features, one of which is 

the violation of the Galilean invariance. In the recovered momentum 

equation, the density in the viscous stress appears in the first order 

derivative, i.e. 

 � ��� 	 � � 	�
 � � �� � � � � �� . (7.85) 

In bulk region the density is nearly constant and Eq. (7.85) is Galilean 

invariant approximately. However, in the vicinity of an interface where 

the density gradient is large, the Galilean invariance of Eq. (7.85) will be 

broken and nonphysical phenomenon will appear. Actually, it has been 

reported that a droplet with an initial sphere shape will become an elliptic 

one in a uniform flow field [Inamuro et al., 2000; Kalarakis et al., 2002]. 

The lack of Galilean invariance of the free-energy model was first 

found by Swift et al. [1996]. They proposed a method to remedy this 

problem, which enforces the second-order moment of the equilibrium 

distribution function to satisfy the following condition, 
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where �� and ���are two parameters that can be adjusted to recover the 

Galilean invariance partially. For the aforementioned FHP model, the 

Chapman-Enskog analysis shows that the viscous stress is now, 
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(7.87)
 

In order to recover the Galilean invariance, the last three terms in  

Eq. (7.87) should vanish. However, since the viscosity 
 is always 

positive, these three non-Galilean invariant terms cannot be completely 
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removed by choosing��'�and��( . On the other hand, by choosing 

�'��	��−�(
 and �'��	�, we can eliminate the last two terms so that the 

Galilean invariance is partially recovered. 

Inamuro et al. [2000] built another D2Q9 free-energy model with 

improved Galilean invariant properties. The equilibrium distribution 

function of this model is 
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(7.88)
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where � ����� � , ��� is the weight coefficient which is the same as that in 

the standard D2Q9 model, � is an adjustable coefficient aiming at 

eliminating the Galilean variance. The second-order tensor � in  

Eq. (7.88) is defined by 
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Asymptotic analysis shows that the parameter � should be chosen as 
�� �
�	� ��� 
 � �� � �

 
in order to recover the Galilean invariance. 

Based on the FHP model developed by Swift et al., Kalarakis et al. 

[2002] developed another free-energy model satisfying the Galilean 

invariance by modifying the equilibrium distribution function. The basic 

idea is to absorb the non-Galilean terms into the pressure tensor. The 

correction method is similar to that by Swift et al., i.e. introducing two 

adjustable terms into the thermodynamical pressure tensor P �  as given 

by Eq. (7.86). The two free parameters are chosen as 

 � � �  
�

� � 

�

� �� ��� � � �� �� �� ��
. (7.91) 

Obviously, this correction method is identical to that of Inamuro if 

��� ��
 
is neglected. 
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Recently, Zheng et al. [2005, 2006] presented an improved free-

energy LBM, in which the D2Q5 lattice velocity model is used to capture 

the interface for the 2D case. It can recover the macroscopic Cahn-

Hilliard equation with the second order of accuracy. All of the above 

improved free-energy models are shown to be able to reduce the non-

Galilean invariant effects. Numerical results demonstrated that the shape 

of a single droplet or bubble in a uniform flow could be maintained. On 

the other hand, it seems that the free-energy models for multiphase and 

multi-component flows have some intrinsic limitations which require 

further investigations. 

Remark: The main difference between the free-energy models and the 

pseudo-potential models lies in the force treatments: in the pseudo-

potential models, the effects of the interaction force are reflected in the 

first-order moment of the equilibrium distribution function, while in the 

free-energy models the effects are reflected in the second-order moment 

of the equilibrium distribution function. From the microscopic point of 

view, the inter-particle interactions should influence the momentums of 

the flow (i.e., the first-order velocity moment). But at mesoscopic scale, 

the overall effects from the microscopic interactions can be reflected in 

the thermodynamic pressure tensor. Therefore, as a mesoscopic method, 

the free-energy LBE model is also an effective approach. 

7.4   LBE Models Based on Kinetic Theories 

As shown in Chapter 1, the LBE for simple fluids can be derived from 

the Boltzmann equation. Similarly, it is also possible to construct LBE 

models for multiphase/multi-component flows based on corresponding 

kinetic theories. An advantage of the LBE models obtained in this way is 

that they will have a solid physical foundation. Recently, some of such 

models have been developed successfully following this approach. 

7.4.1   Models for single-component multiphase flows 

Kinetic model for dense gases 

The evolution of the single-particle distribution function of a dilute gas 

can be well described by the Boltzmann equation. In a dilute gas, the 
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mean free path is fairly larger than the molecular diameter. As a result, 

the singlet distribution function can be treated to be independent from 

others, and the molecular volume can be ignored during the collision 

process. However, for a dense gas these assumptions do not hold 

anymore, and the Boltzmann equation will fail to work. In such cases, 

the Enskog equation [Chapman and Cowling, 1990] should be used 

instead, which can be expressed as 

 � �

�
� �

�

�
� � � � � � � �

�
�� , (7.92) 

where � is the acceleration due to an external force, �� is the Enskog 

collision operator, 
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(7.93)
 

Here � is the diameter of the molecule,  is the unit vector directed from 

the molecule with velocity ��� to that with velocity � along the line of 

centers of the two colliding molecules. �
 

and �′
 

are the molecular 

velocities before and after the collision, � is the radial distribution 

function (RDF) of two molecules at contact, which is evaluated at 

location ���� � . It depends only on the distance between the molecules 

and is independent of its velocity. Actually, the function � reflects the 

increase in the collision probability in a dense gas. Usually, it is a 

monotonic increasing function of the number density � or the parameter 
� �� �� �� �� 	� � �% �� �� �� � . It is clear that b� is just one half of the 

total volume of the gas molecules in a unit volume, � ��� ��� �� . As 

such, � �
���) ) . Generally � is inversely proportional to �� � 	*��� for 

hard sphere gases (here * is a positive integer). For instance, the 

Carnahan-Starling model [Carnahan and Starling, 1969] gives 
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�
. (7.94) 

For a dilute gas ����� as ���→��, and � increases gradually as the gas 

becomes denser. Particularly, when the gas is so dense that the molecules 

cannot move, we have ���→�0.5 and � = ∞. 
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The Enskog collision operator �� reflects the finite volume effect in 

dense gases, and it is a nonlocal operator. The collisions between the 

finite-size molecules will induce momentum and energy transfer 

(collisional transfer), which is not considered in the Boltzmann equation. 

The Chapman-Enskog analysis of the Enskog equation leads to the 

following hydrodynamic equations 
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, (7.95) 
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, (7.97) 

where 
� and� � are the pressure tensor and heat flux including the 

collision transport,  

 
 � � � �



� � 	�� � �� � � � � � �S� ϖ , � � ��� � � , (7.98) 

where ϖ is a parameter from the collision transport, 

 ϖ
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��� �

� 	 � 	� � %�� �

� �
� . (7.99) 

The pressure is related to the density and temperature through the 

equation of state, 

 �� � 	�� %� �� �� �� � . (7.100) 

The transport coefficients are given by 
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where �"�and �" are the dynamic viscosity and thermal conductivity for 

dilute gases corresponding to the Boltzmann equation. Equations (7.101) 
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and (7.102) show that the term ���  
plays an important role in the 

Enskog theory. For a real non-ideal gas, Enskog suggested specifying 

���  according to the measured equation of state [Chapman and Cowling, 

1990],  

 �
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� �
�

� �
��

�
� �

�
, (7.103) 

where ��� %���
 
is the equation of state for ideal gases. 

Luo’s model based on the Enskog equation 

The first non-ideal gas LBE model based on the Enskog equation was 

attributed to Luo [1998, 2000]. In this model, both the distribution 

function f and the RDF � in �� were expanded into their Taylor  

series around � and truncated at the first order, which gives that 
��	 ��	��	 �
� � � 	� ( ( ( + �� � � � � , where  

���	
� � �� � � �	( � � �� " � � �� � �� �� �� �� �" � � , (7.104) 
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where � 	� �� �% � , � �� 	� �� �% � . Obviously, the zeroth-order collision operator 

(��	 is similar to the Boltzmann one, and can be modeled by the BGK 

collision model,  
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where � 	�
��  

is the usual Maxwellian distribution function. The two  

first-order terms, ��	
�(  

and ��	
�( , can be simplified by assuming � 	�� �*  

and noticing that � 	 � 	
�� 	 � 	� �� �� �� � = � 	 � 	

�� 	 � 	� �� �� � , i.e., 
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262 Lattice Boltzmann Method and Its Applications in Engineering 

where 
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Here %�� � ,� �� �� . For isothermal flows, the last term of r is zero 

and it can be shown that,  

 �� ��� ��� �" "� � � . (7.110) 

This means that � does not affect the mass and momentum conservations. 

As such, neglecting it in 
� ��
�(

 
does not change the final formulation of the 

hydrodynamic equations, but the transport coefficients may change. As a 

result, the first-order collision term can be simplified as 

 ���	 ��	��	 � 	 �
� � !�� 	�( ( ( � ��� ��% � � � � � . (7.111) 

This approximation leads to the following kinetic equation for isothermal 

dense gases, 
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It is clear that the term (��	 acts like a body force in this simplified 

Enskog model. Actually, this term originates from the volume-exclusion 

effect, and it can be easily verified that 

 ��	 �� 	 �( � �� ��� �� �" � � . (7.113) 

Following the procedure of constructing a standard LBE model from 

the Boltzmann equation, Luo developed a non-ideal LBE model from the 

modeled Enskog equation (7.112), 
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where the equilibrium distribution function � 	�
��  

is the same as that of 

standard LBGK model, the discrete first-order collision term and forcing 

term are defined by 
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The fluid density and velocity in Luo’s model are defined by 

 �

�

�� � � ,  � �� �
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�� � � . (7.116) 

It is noted that the definition of the velocity ��is not modified according 

to the external force �
���

. If neglecting the errors from the total force due to 

discrete lattice effects, the derived hydrodynamic equations from the 

LBE (7.114) will have the same formulation as given by Eqs. (7.95), 

(7.96), and (7.97), except that the viscous stress tensor becomes 

� �� � �� , with 
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, (7.117) 

which is different from that from the continuous Enskog equation. 

However, by adjusting the relaxation time � the viscosity can be made to 

be fully consistent with that of the Enskog theory. The pressure in the 

derived momentum equation is 

 � �� 	�� � �� ��� � , (7.118) 

with �
�� %�� .  

He-Shan-Doolen model based on modified Boltzmann equation 

He et al. [1998] presented another kinetic-theory-based LBE model  

for non-ideal gases (referred to as HSD model). But unlike Luo’s model, 

the starting point of the HSD model is a modified Boltzmann-BGK 

equation, 
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where �� is the acceleration due to the total force including both the 

external force and internal force, 

 � ��!�� 	� � ���� ��� �� � � � , (7.120) 

where � is the acceleration due to external body force, and � is a 

potential related to the attractive force among fluid molecules, 

 ��� -� � �� � � � . (7.121) 
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Here the two parameters -�and � depend on the attractive potential �- ,  
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The second term of the total force stems from the repulsive force due to 

volume-exclusion effects, which is similar to (��	 in Luo’s model. 

It should be noted that Eq. (7.119) is physically different from the 

Enskog equation in several aspects. First, in the Enskog theory, the inter-

particle interactions (including both attractive and repulsive forces) are 

included in the collision operator, which means that it takes effects 

during the collision process. But in the modified Boltzmann equation 

(7.119), both the internal and external force act on the particles in the 

streaming process. 

Based on Eq. (7.119), He et al. proposed the following LBE model, 
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where � 	�
��  

is identical to that in the standard LBE model, and the forcing 

term is  
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The fluid density is defined the same as in Luo’s model, but the velocity 

is defined by 
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As mentioned in Chapter 3, this definition of the velocity � can result in 

the valid hydrodynamics equations, in which the momentum equation is 

 
�

�� 
 �
� 	

� 	
�

�
� �

� �� � � � �� � � � � �
�

�� , (7.126) 

where the viscous stress is the same as that in Luo’s model, while the 

thermodynamic pressure tensor 
� is 
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where 
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In the momentum equation (7.126), the term �� �
  can be rewritten in a 

more compact formulation, 
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is the equation of state, while the 

second term is the surface tension force. In this way the momentum 

equation can be rewritten as 
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where the total effective force is 

 � � �� �� � �� � �� � �� � � , (7.131) 

with �
� � ��� �� � , and �

 
is a function related to equation of state, 

 � �
� ��� � � %� -� � � �� � � � . (7.132) 

It should be noted that the force formulation and numerical discretization 

schemes of the gradient can affect the numerical stability and the 

spurious currents in the vicinity of interfaces, although they are identical 

mathematically. 

The pressure tensor given by Eq. (7.127) is similar to that used in the 

free-energy model. As a result, 
� is consistent with thermodynamic 

theories, and the viscous stress in the hydrodynamic equations, meaning 

that the model is Galilean invariant. These properties of the HSD model 

also demonstrate the advantages of constructing LBE models from 

kinetic theories. 

He-Chen-Zhang model for incompressible multiphase flow 

In Luo’s model and the HSD model, the large density gradient in the 

vicinity of interfaces may lead to numerical instability in computations. 

To overcome this difficulty, He et al. developed a LBE model for 

incompressible multiphase flows (denoted by HCZ model). This model 
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introduced the following new distribution function based on the original 

distribution function �,  

 � 	 � � �	� �%� � � �� � � , (7.133) 
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Then the evolution equation of � can be obtained from the Boltzmann 

equation, 
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where ���≡�∂������⋅∇�����⋅∇� . For incompressible flows where ∂������⋅�
∇�����, it can be shown that, 

 � �� 	 � 	 � 	 � 	� �

� �
� �

� �
� � �

� �
� � �

� �
� � � � � � � � �� � . (7.136) 

Therefore, Eq. (7.135) can be re-expressed as  
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where 
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Here the forcing term is approximated as 

 � 	 � 	
� 	 �� �

� �� � �
%�

�
� * � �

�
� ��

�
�

�
�� �

�
. (7.140) 

Based on Eq. (7.133), the pressure and velocity can be defined from the 

new distribution function �, 
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The Chapman-Enskog analysis shows that the hydrodynamic equations 

corresponding to Eq. (7.137) are 
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In order to obtain the density �, an index function ��is introduced to 

track the interface and its evolution is described by the kinetic equation 

of � . Because the external force and surface tension do not have effects 

on mass conservation, they can be neglected and the simplified equation 

for � is 
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where �� 	 � � 	�� ��� �
 
and the index function is defined by � ��� "� . 

Discretizing Eqs. (7.144) and (7.137) leads to the HCZ LBE model 

for incompressible multiphase flows, 
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The flow variables are computed as  
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The density and viscosity of the mixture are determined from the index 

function, 
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where �*� and
�
�. 

are the densities of the light and heavy fluids, 

respectively, 
*�and
�

.� 

are the corresponding viscosities, while �*�and
�
�. 

 

are the minimum and maximum values of the index function. The 

relaxation time � is connected with the index function through the 

viscosity, 
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An advantage of the HCZ model is that it has improved numerical 

stability in comparison with the HSD model. This is because the 

coefficient before ��
 
(which may be rather large near the interface  

due to the density gradients) in the term � defined by Eq. (7.139), 

� � 	 � � �	 �� �� *�� � , is small for low speed flows so that the stiffness of 

Eq. (7.146) is effectively reduced. The model has been applied to ��  

[He, Chen and Zhang, 1999] and �� Rayleigh-Taylor instability [He and 

Zhang et al., 1999] and the interfacial dynamics has been successfully 

captured.  

7.4.2   Models for multi-component flows 

Kinetic model for gas mixtures 

The Boltzmann equation for a dilute gas mixture is [Chapman and 

Cowling, 1990], 
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where ���
 
denotes the collision effect between species � and � , 

 � 	 � �� �	�� � � � � � �� �� � � � � " � � ��� �� �� � �� �" � � �V . (7.153) 

Here � 	� � �� �� �� � , � 	� � �� �� �� � , and �
��  and �

��
 
are the corresponding 

velocities before and after collision, 
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where  is defined as before, while ��
 
and ��

 
are the molecular mass  

of species � and � , respectively. The collision operators satisfy mass, 

momentum, and energy conservations, 

�

� � �

�� �� � 	 ��� �� ��

� � � � � �

� � � ��� � � � � � �� � �" " "� � � � . (7.155) 

The number density, mass density, fluid velocity, and internal energy of 

each component are defined respectively as 

� �

�
� � � � � � � 	�

� � � � � � � � �

�

� � � � � � � � �
�

� � � �� �" " "�
�

� � � � . (7.156) 

In addition to these conservative variables, the following conceptions are 

also important for a mixture, i.e., the partial pressure of each species, 

� � � � "� %� � 	 ��� � , the partial pressure tensor, � �� � ��" �
 � , species 

heat flux ��

�� �# � ��� "� � , and the total pressure � "�� � �	 ��� � , 

total pressure tensor � �� �
 
 , and total heat flux � �� �� � . Another 

conception in gas mixture is the so called diffusion velocity, which is 

defined as �� �% �� � � , and � � � ���% �"�� �� is known as diffusion 

flux of species �. 

The Chapman-Enskog analysis shows that the hydrodynamic 

equations from the Boltzmann equation (7.152) are 
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�
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�
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, (7.157) 
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, (7.158) 
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�� ��� , (7.159) 
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� � �� � � � �� , (7.160) 

where the viscous stress is given by 


�� � �� , the same as that for a 

single-component gas. However, the heat flux is quite different from the 

single-component counterpart,  
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�

�
� 	 � ��

�
� � � � �� �� � , (7.161) 
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where � is a function of temperature and concentration. In this book we 

concentrate mainly on isothermal gas mixtures, and will not discuss 

about thermal flows any further here. Interested readers can refer to  

Refs. [Chapman and Cowling, 1990; Harris, 1971]. 

Similar to the kinetic theory for a single-component gas, an &-

function can also be defined for a mixture, 

 !�� � �

� �

& & � � � �� �� �" �� . (7.162) 

It can be shown that �&���� ≤� �, and when the system reaches to its 

equilibrium state the distribution function � 	�
��  is a Maxwellian one 

[Chapman and Cowling, 1990], 
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. (7.163) 

It is seen that the collision operator in the Boltzmann equation (7.152) 

is quite complex. Some simplified collision models, such as the BGK 

one, have been developed [Harris, 1971], 
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� �� � � �	 
� �� , (7.164) 

where 
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� 	
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� 	
�� � � 	 %�&

�� 	 �
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�
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�
, (7.165) 

with ��� and ���
 
being two adjustable parameters which are not 

necessarily identical to the temperature and velocity of the mixture. The 

choices of these two parameters will result in different kinetic models 

[Andries et al., 2002; Gross and Krook, 1956; Hamel, 1966; Morse, 1964; 

Sirovich, 1962; Sirovich, 1966]. 

LBE model based on Sirovich’s theory 

Luo and Girimaji [2002, 2003] proposed an isothermal LBE model for 

binary mixtures based on Sirovich’s BGK model, in which the self-

collision operator between molecules of the same species is 

 � �� 	 � 	�
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� � � � ��
�

� � � � � � , (7.166) 
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where �� is a temperature parameter, and for isothermal flows we can 

assume ������. For the cross-collision operator for different species, ���
 

is not modelled by the BGK operator directly, but is expanded around the 

equilibrium distribution function � 	�
��  to obtain 

� 	
�

� �� 	 � 	 � 	
�

�
�� � � � � � � �

� �

�

 � � 
 � �

%�
�

�
� � � �� � � �� ��� � � � , (7.167) 

where ��, 
�, and 
� are three parameters to be determined. For 

isothermal flows we can assume that � �� ��
 
and 
�����, then ���

 
can 

be expressed as 
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�� � �

� �
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� �
� � � � � �� � �� , (7.168) 

where �� is an adjustable parameter. 

Based on the above simplified Sirovich model, an isothermal LBE 

model was developed following the standard discretization procedure by 

Luo and Girimaji [2002, 2003]. First the equilibrium distribution 

function � 	�
��  is expanded in terms of � up to second order, 
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Now we turn to � 	�
���  

given by Eq. (7.166). Note that 
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(7.170)

 

where � 	� �� � �� � � . As � � ��� �� ,  
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therefore � 	�
���  

can be approximated as 
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%�

�� �� � �	 
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. (7.172) 

Based on this formulation, the velocity space can be discretized by 

choosing certain proper quadrature rules. It is noteworthy that, however, 

the discrete velocity ���� is related to molecular mass, and can be 

expressed as �� � �%��� � , where��� 
is the dimensionless lattice vector. 

With these discrete velocities, a LBE model for binary mixture can 

then be obtained, 

 � � � �c � ���� � �� �� ��� �� �� ,�� �� � � �� ��� � , (7.173) 

where ,��� is a forcing term related to ��� , and the discrete collision 

operator is 
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where 
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Note that 
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, (7.177) 

which can be used to rewrite the collision operator, 
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(7.178)

 

It can be shown that the hydrodynamic equations of the above LBE 

model are 
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where � � �� %��� , and the mass flux and viscous stress are 
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. (7.181) 

From the expression of����and the momentum equation (7.180), we can 

obtain the diffusion coefficient,  
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�� . (7.182) 

It is noteworthy that the discrete velocity ����of the two species are 

different if they have different molecular masses, which means that 

special treatments must be adopted during the computation. Therefore, 

the original model developed by Luo and Girimaji [2002, 2003] is 

limited to binary mixtures with identical molecular masses. Recently, 

McCracken and Abraham [2005] proposed two methods to implement 

the above LBE model for general mixtures. The first one employs one 

lattice and interpolations are required to obtain the distribution function 

on the lattice nodes. The second approach employs modified equilibrium 

distribution functions for the species. For example, in the D2Q9 model, 

the modified equilibrium distribution functions are 
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where ���
is the discrete velocity independent of species. The parameters 

in the equilibrium distribution functions satisfy the following relation, 
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and 
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� "
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A set of parameters satisfying these conditions is 
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With these parameters, it can be verified that,  
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where �%�
 
is the sound speed of species �, and ���� 	� �%� �� � . It is 

obvious that these moments are identical to those of the original 

equilibrium distribution function given by Eq. (7.175), but the third-order 

moments are different since 
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where ����  is a 4-th order tensor, which equals to 1 when � � � � � � , 
and 0 otherwise. Obviously, this term vanishes only when������ , and the 

third-order moment is identical to that of the original one. 

LBE model based on Hamel’s theory 

Based on another BGK model (Hamel’s model), Asinari [2005, 2006] 

developed a new LBE model for isothermal binary mixtures. In Hamel’s 

model, the self-collision term is identical to that in Sirovisch’s model, i.e. 

Eq. (7.166). However, the cross-collision term is modeled by a BGK 

model which employs the mixture velocity in the equilibrium distribution 

function, and the model can be expressed as 
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where 

� 	� � � � 	�
�� � �� � ��� , � 	� � � � 	�

�� �� � ��� , ��	 � 	 � 	� �� 	 �� �
� � � � ��� � ��   , (7.190) 
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with ���������������	�������������������������	. Note that �� 
is species-

independent, and so the cross-collision term conserves mass and 

momentum, 
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For the forcing term, Asinari used the following approximation: 

 

��	

� 	 � 	
� 	 � 	

� 
� 	

� �

� �

�� � �

� � �� �
� �� � ��

� �

� �

� �
%� %�

� �% � � � * � � �
� � � �

� � �

� �

� � � � � �

�

 
 (7.192) 

Based on the above BGK model Asinari [2005] constructed the 

following LBE model for binary mixtures, 
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with ��� given by Eq. (7.175). The fluid velocity of each species is 

defined as 
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where �� � ��� � � . It is noted that in this model the discrete velocities 

are also related to the species masses, and so special treatment is required 

in the streaming process. 

Asinari [2006] and Asinari and Luo [2008] also developed several 

MRT-LBE schemes based on Hamel’s BGK model, 
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�� � �� � �� � �/ �� �� � ,�� � �� �� � �� � � , (7.195) 

where two formulations have been adopted for the collision terms. The 

first one treats the self-collision and cross-collision separately [Asinari, 

2006], 

 � 	 � 	�� ��� ��
�/ �/ �/ ��/ �/ �/ ��/� � � �� �� � � �� � � � �	 
 	 
� � � � . (7.196) 



276 Lattice Boltzmann Method and Its Applications in Engineering 

Another formulation uses only one BGK operator which contains the 

self-collision and cross-collision effects [Asinari and Luo, 2008], 

 ��	��
�/ �/ �/ �/� �� � �� � �	 
� � . (7.197) 

Here, ��� , ��� , and ��  are the corresponding collision matrices. The self- 

and cross-collision matrices can be expressed as 

 � ���� ��
� � � � � �� � � � � �� �� � � �� � ,  (7.198) 

where ��� is the transformation matrix from velocity space to moment 

space that defines the corresponding moments ����������; ���and ���are 

the relaxation matrices. Similarly, the effective collision matrix ��  can 

be written as 

 �� � ���� �� , (7.199) 

which means that both the collision matrix and the relaxation matrix are 

species-independent. Due to this property, this MRT-LBE model is only 

applicable to mixtures of two gases with an identical viscosity [Asinari 

and Luo, 2008]. 

LBE model based on quasi-equilibrium state theory 

In a quasi-equilibrium system, when the distribution function � � � 	� ���  

approaches to the equilibrium distribution function� ��

��	, it can be 

assumed that it relaxes to a quasi-equilibrium state ��0 quickly, and then 

relaxes to ��

��	 slowly. This means that the collision operator can be 

modeled as  
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The relaxation times characterizing the two stages satisfy ���≥���, and the 

model reduces to the standard BGK model as �������. Arcidiacono and 

coworkers [2006, 2007] applied this idea to mixtures of multi-component 

gases, and developed a quasi-equilibrium LBE model, 
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where � �� �
��
� � �� � � and � � � ��� ��� � � � .  
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Unlike the standard LBGK model, the equilibrium distribution 

function in the quasi-equilibrium model is constructed by minimizing the 

following discrete & function 

 !�� � 	�� �� �

� �

& � �% �� � , (7.202) 

where �� 
is the weight coefficient related to the lattice and is similar to 

that in the standard LBGK model. Under the constraints,  
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the equilibrium distribution function obtained in this way is 
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where ���� 	�%� ��� �� and ���� 	� �� �%� ��� �
 
are lattice vectors which are 

species-independent. Because � 	�
���  is obtained from the discrete entropy, 

this model is also called Entropic LBE (ELBE) model. The formulation 

of the quasi-equilibrium distribution function in the model is identical to 
� 	�
���  except that the velocity is taken as that of the species, i.e., '

��� �  

� � 	� � �� �� . 

The Chapman-Enskog analysis of Eq. (7.201) shows that 

hydrodynamic equations for each species and the mixture are 
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where �	���	"��������������−��	� and the viscosity is �� �
� 	� "�	 �� � �� � . 

Furthermore, from the Chapman-Enskog analysis one can derive the 

expression for���
�

, 

 � � 	 !�� � � �� $ � � �� �� � � � �� �� � , (7.208) 
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where $�������/��������������/�
 On the other hand, the Maxwell-Stefan 

diffusion law gives that  
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from which we can identify the diffusion coefficient as 
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For spatial discretization, Arcidiacono et al. [2006, 2007] suggested 

using two lattices with spacing ratio � ��� �� � �� ��� � . It is obvious that 

this discretization requires that �� �� �  is a rational number, and for 

more general cases interpolations should be used. 

7.4.3   Models for non-ideal gas mixtures 

Enskog theory for dense gas mixtures 

The Enskog theory for a simple gas can also be generalized to mixtures 

[Chapman and Cowling, 1990; van Beijeren and Ernst, 1973a; van 

Beijeren and Ernst, 1973b; Piña et al., 1995]. Specifically, the Enskog 

equation for a binary mixture of dense gases can be expressed as 

 � �
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�
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� , (7.211) 

where 
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(7.212)
 

with ��
0

�� 0� � �  and � 	���� � �� �� �� � � , while ��� � is the radical 

distribution function between species ��and �′, ���� � is the collision space 

 �
� �� � � �	 � 	� 	�� �� ��

� " � � � � �� � � � 	 �� � �� � 1 � ��  �   �V , (7.213) 

where������'�−����is the relative velocity between two collision molecules 

of species ��and �′ (with velocities ��
 
and �'�, respectively), � is Heaviside 

step function, i.e. &��	���� as ��>�� and 0 otherwise.  is the unit vector 
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directing from the center of molecule � to that of �′. ��  and ���  are the 

corresponding post-collision velocities. In the early Enskog theory, the 

RDF ��� �  is a function of the homogeneous number density �	�of each 

species. In the later extended Enskog theory, on the other hand, ��� � is a 

functional of �	�, which depends not only on �	�but also on the gradients. 

The density, velocity, and internal energy of each species and the 

mixture in the Enskog theory are defined similarly to those in the 

Boltzmann equation for ideal gases. The hydrodynamic equations are 

also similar to Eqs. (7.157)~(7.160), except that the equation of state 

is ��� �� �  where 

 �� � " �� �� ��

�

� � 	 � � � �� � �
�

� ���� � �� ���� �� . (7.214) 

The viscosity and thermal diffusivity also depend on ��� � . 

Similar to the Enskog equation for simple dense gases, the collision 

operator (
�
���

 
can also be simplified for isothermal systems and 

approximated by the BGK model as proposed by Guo and Zhao [2003b]. 

In this simplified model, the RDFs are set to be � � � � �	�� 	�
0

� �� ��  

� ��	�� ��� �0 �� � . With the first-order Taylor expansions of � and ��� �
 

in 

the collision term �
�� �� , i.e. 
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  (7.215) 

the collision operator can be approximated as 

 ��	 ��	 ��	
�� ��

�
�� �� �� ��( ( (� � � �� � � � , (7.216) 

where 

�
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� �� �� �� �" � � � � , (7.217) 
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 ��	
� ��� � 	 � 	 � 	 � 	�� �� � � � � ����

( � � � � �� � � �� � � � ��
� �� �� � �� � ��"  μ� � . (7.219) 

The Boltzmann part ��	

��
( �  can be modeled by the BGK model,  
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� � , (7.220) 
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where � 	 � � � 	�
�� �� ����

� � �� � �� � �� . In the model by Guo et al., the parameters 

in the equilibrium distribution functions are set to be �� � �� �  and 

��� �� � , where � and � are the velocity and density of the mixture. With 

these parameters, � 	�

��
� �  

is independent of species �′� explicitly, and the 

interactions between species are reflected by the mixture velocity �. So 
� 	 � 	 � � � 	� �

� ���
� � � �� � % ��  and  
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where 
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For the two first-order terms ��	
����

( �  
and ��	

����
( � , if we approximate ��� �  

with � 	�

��
� � , they can be expressed as 
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�� � � ����
( � � �� � �� � � � � ��� � , (7.223) 
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(7.225)

 

Here � �� 	�� � � �� � � �� �� , � �� � " � �� 	 � %�� � . � ��� �� �� � �� � �  is the second 

virial coefficient, where ���� �
�� � ��
� ��� ��  with ��� � � 	 � �� ��	�

�� �& ��  

being the volume of the �-dimensional unit sphere. It can be shown that 

 ���% �� �" � , ���% �� �" � � . (7.226) 

Thus ��% � can be neglected to obtain 

 ��	 ��	 ��	 � 	 �
�� �� � 	 !�� 	�

�� � �� � ���� �� �� �
( ( ( � � �� � � �� � � �% � � � � ��� � � � . (7.227) 

Based on the above approximations, Guo and Zhao [2003b] obtained 

a simplified Enskog model for isothermal binary dense gases,  
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where 
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with �!�� 	� �� � �� ����
� � � � ���� ��� � � � � . Therefore, we can define an effective 

total force that contains both internal interactions and external force, 

 � � � �% � ��� �� . (7.230) 

In order to enforce mass and momentum conservations, the relaxation 

time ��	should take the same form, i.e. ��	�	�. It is noted that this choice 

does not mean that � is independent of the species. Actually, it can be a 

function of the species concentrations.  

Discrete velocity model for the Enskog equation 

Based on the simplified Enskog model (7.228), one can obtain a discrete 

velocity model, 
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The Chapman-Enskog analysis shows that the hydrodynamic equations 

of the above discrete velocity model are 
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where the total pressure is ��� �� �  with �� 	� � � �� � ���� � � � ��� � �� � � � , 

and the viscosity is������	"� . 
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From Eq. (7.233) one can derive the following convection-diffusion 

equation for each species, 

 � �� � � �1 1� � � �� � ��� �� , (7.236) 

where 1��������� is the mass concentration. The flux ���can be obtained 

from the Chapman-Enskog method, � " ��	 �� �� �� , where �� is the 

diffusion force 
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with �� being the chemical potential of species � that satisfies the 

following relationship, 
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The diffusion force derived above is consistent with the result in 

phenomenological theories. In the absence of external force and pressure 

gradient, i.e. as �� �� � �� , it can be shown that 
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Therefore, in this case � �� �� 1� � �� � , where the binary diffusion 

coefficient is 
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Obviously, ���
 
is a complex function of the fluid density, molecular 

diameters, species concentrations, and the RDFs.  

LBE model for binary dense gases based on the Enskog theory 

Guo and Zhao [2005] proposed a LBE model based on the discrete 

velocity Enskog equation (7.218). In order to deal with species with 

different molecular masses, the model was developed following a time 
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splitting approach, which solves the following collision and propagation 

equations, 
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Applying the explicit Euler scheme to the first equation leads to the 

collision step, 
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where the forcing term *��,
 
is related to ,���that will be given later. For  

Eq. (7.242) the second-order Lax-Wendroff scheme is adopted, which 

gives the following streaming method, 
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Here ��������� is the discrete velocity independent of species, and 

�� �� � � �
 
is the lattice speed. The parameter 
�� is chosen such that 

�� � �
�� � . In order to remove the discrete lattice effects, the forcing term 
*
��,  and the fluid velocity are defined respectively as 
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The Chapman-Enskog analysis of Eqs. (7.243) and (7.244) shows that 

the corresponding hydrodynamic equations are the same as Eqs. (7.234) 

and (7.235).  

The above time-splitting LBE model adopts only one grid and needs 

no interpolations in the computation, regardless of the difference 

between molecular masses. However, the streaming process requires 

slightly larger computational resources than the standard one. Guo and 
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Zhao [2003b] presented another model which also uses one lattice but 

adopts a modified equilibrium distribution function, 
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where ����%� is the reference temperature related to the lattice speed, 

and �� �� � � � .  

7.5   Summary 

Multiphase and multi-component flows involve complicated interactions 

among the fluids, and the key point for modeling and simulating such 

flows is to describe the basic physics of the interactions appropriately. 

The particle nature of LBE enables it to serve as an efficient method to 

model the effects of the micro-interactions. The color-gradient in the 

color models, the pseudo-potential in the potential models, the pressure-

tensor used in the equilibrium distribution function in the free-energy 

models, and the effective force in the models based on kinetic theory, all 

serve as effective models for the inter-particle interactions among the 

fluids. The capability of modeling the interactions at mesoscopic scale 

has been recognized as one of the main advantages of LBE over the 

traditional CFD methods, and a variety of applications of LBE in 

studying fundamental phenomena and mechanisms of multiphase as well 

as multi-components flows have been reported in the literature, which 

are not included in this book. 

Although the LBE method has gained much success in modeling and 

simulating multiphase/multi-component systems, there are still some 

common fundamental problems to be revealed. For instance, most of the 

available LBE models suffer from the spurious velocities, which appear 

in the vicinity of phase interfaces. Some efforts have been attempted to 

reduce or eliminate such unphysical artifacts from different viewpoints 

[Cristea and Sofonea, 2003; Lee and Fischer, 2006; Shan, 2006; Wagner, 

2003], and recently it was shown that the spurious currents are due to the 
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force imbalance between the pressure and intermolecular force [Guo, 

Zheng and Shi, 2011]. It was also found that checkerboard effects exist 

in two-phase LBE models and may have significant influence on the 

velocity field [Guo, Shi and Zheng, 2011]. Another difficulty in 

multiphase LBE is the numerical instability when dealing with systems 

with large density and/or viscosity ratios, and studies on this issue are in 

progress [e.g., Inamuro, 2004; Lee and Lin, 2005a; Mukherjee and 

Abraham, 2007; Zheng et al., 2006]. In a word, developing and 

applications of efficient LBE models for flows with multiple phases 

and/or comments are still an active topic in the field.  
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Chapter 8 

LBE for Microscale Gas Flows 

8.1   Introduction 

The LBE methods described in the preceding chapters are mainly 

developed for flows at macroscopic scales where the fluid is treated as a 

continuum. Now we turn to flows with at least one dimension being in 

the micro/nanometer scale. With the rapid development of micro/nano 

technology in recent years, the study of such microscopic flows has 

become one of the current research hotspots in fluid mechanics 

[Darhuber and Troian, 2005; Ho and Tai, 1998;  Karniadakis and Beskok, 

2002]. The hydrodynamics of such flows can differ significantly from 

that of macro-scale flows in that some factors such as surface force, 

roughness, and electrostatic force, which are generally ignored in 

continuum flows, become important and start to dominate the flow 

behaviors. Consequently, some nontrivial phenomena, which are difficult 

to explain by conventional hydrodynamic theories, will arise in micro-

scale fluid systems.  

At macroscopic scale, there will be no difference in the 

hydrodynamic behaviors between a liquid and a gas provided they have 

the same characteristic dimensionless numbers such as the Reynolds 

number and Rayleigh number. At microscopic scale, however, a liquid 

flow may be quite different from a gas flow due to the size effects. 

Usually, a liquid can still be treated as a continuum, and the Navier-

Stokes equations, with inclusion of some additional forces, such as 

electrostatic force, still works at microscale scales. Subsequently, the 

LBE methods described in previous chapters can still be applied to such 

micro flows. On the other hand, gaseous flows at microscopic scale are 

mainly affected by the rarefaction effect due to the finite Knudsen 
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number, and the continuum assumption may break down such that the 

Navier-Stokes equations fail to work. Consequently, the LBE models 

designed for solving the Navier-Stokes equations cannot be applied to 

such flows any longer, and modifications or new models are required in 

order to simulate micro gaseous flows. In this chapter we will focus on 

this topic. 

The rarefaction of a gas in a confined geometry can be characterized 

by the Knudsen number, �� ��� � , where ��is the mean free path of the 

gas molecules, and L is the characteristic length of the flow domain. 

According to the magnitude of ��, four flow regimes can be identified, 

i.e., continuum flow (���≤������), slip flow (�����������≤����), transition 

flow (���������≤���), and free molecular flow (���	���). Continuum 

flows can be well described by the Navier-Stokes equations together with 

the no-slip boundary condition. In the slip regime, some weak rarefaction 

effects will appear, but are confined in the vicinity of wall surfaces, and 

the Navier-Stokes equations with certain slip boundary conditions can be 

employed to describe the bulk flow. In the transition regime, rarefaction 

effects become more important and take effect in the whole flow field, 

and continuum models are not applicable any more. For free molecular 

flows, rarefaction effects dominate the overall flow behaviors, and 

microscopic models, such as molecular dynamics, or kinetic methods 

such as direct simulation Monte Carlo (DSMC) [Bird, 1994], discrete 

velocity model [Wagner, 1995], and discrete ordinate method [Yang and 

Huang, 1995], should be adopted.  

As a mesoscopic method originated from kinetic theory of gases, the 

LBE has been employed to study microscale gaseous flows recently 

(Agrawal et al., 2005; Guo et al., 2006; Guo et al., 2007; Guo et al., 

2008; Kim et al., 2005; Lee and Lin, 2005b; Lim et al., 2002; Nie et al., 

2002; Niu et al., 2004; Sofonea and Sekerka, 2005;Toschi and Succi, 

2005; Zhang et al., 2005; Zhang et al., 2006, to name a few). Some 

results show that LBE is successful in modeling slip flows, but there also 

exist some works indicating that the results of LBE are not satisfactory 

for flows even with small Kn [Luo, 2004; Shen et al., 2004]. These 

studies imply that more careful investigations on LBE for micro gas 

flows are necessary despite of its superiority over the methods based on 

continuum models.  
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8.2   Fundamental Issues in LBE for Micro Gaseous Flows 

Two fundamental issues should be considered in the applications of LBE 

for micro gas flows. The first one is to build up the relationship between 

the relaxation time(s) in the collision operator of LBE and the Knudsen 

number of the gas, and the other is to treat the wall velocity slip that is a 

common feature of micro gaseous flows. 

8.2.1   Relation between relaxation time and Knudsen number 

As shown in Chapter 1, the shear viscosity � depends on the relaxation 

time ���in LBGK models or the relaxation times �� associated with the 

moments of shear stress in MRT-LBE models. Therefore, if the relation 

between the viscosity and the mean-free-path is known, the relationship 

between the relaxation time(s) and �� can be established. The initial 

attempt to apply LBE for simulation of micro channel flows was made 

by Lim et al. [2002], in which a relationship between �� and �� is 

established by assuming that the streaming and collision processes 

happen simultaneously. Later, it was found that the relationship between 

� and �� can also be derived from the kinetic theory [Niu et al., 2004; 

Guo et al., 2006]. The kinetic theory gives that for a hard sphere gas, the 

mean-free-path is [Chapman and Cowling, 1970], 
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where � is the number density of the gas and � is the diameter of the 

molecule. On the other hand, the Chapman-Enskog analysis shows that 

the viscosity of the hard sphere gas is [Chapman and Cowling, 1970],  

 



�
�����

��

� ��
� ��

� �
, (8.2) 

where � is the molecular mass. Approximately, � and � satisfy the 

following relationship,  
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290 Lattice Boltzmann Method and Its Applications in Engineering 

where �������is the pressure with ���	
��� the gas constant and ��the 

temperature. This relation was generalized by Cercignani for general 

gases [Cercignani, 1988]. An advantage of this definition of the mean-

free-path is that the physical quantities on the right hand side of Eq. (8.3) 

can all be measured experimentally so that � can also be determined 

from experimental data. 

On the other hand, it is known that the relaxation time � in the LBGK 

model is related to the dynamic viscosity �  as follows, 
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Therefore the following equation can be obtained, 
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Meanwhile, it is known that in LBE the lattice velocity � is also related to 

the temperature �  
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, (8.6) 

where 
 is a constant associated with the model. For instance, 
���� in 

the D1Q3, D2Q9, D3Q15, and D3Q19 models. Therefore, the ���� 

relationship in LBGK models can be expressed as 

 
� 
 � 


��

 
�

��  � 
� 
 


�
	 � �

, (8.7) 

where �����	��is the grid number along the characteristic length. This 

relationship is also valid for the relaxation times ����in MRT-LBE models. 

It is noted that some other ���� relationships have also been proposed 

in the literature, which can be expressed generally as,  

 ��

 
�

�
�

� �
�  � 
� � �

�
	

, (8.8) 

where �  is a certain microscopic velocity relating to the mean molecular 

velocity. For the parameter �, two values are usually set, i.e. � = ��
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or������. Apparently, the latter should be used in LBE due to the  

discrete effects. Regarding the microscopic velocity � , equation (8.7) 

indicates that it should be ��
� � 
�� ��� � . However, the choice of �  is 

rather diverse in the literature. For instance, the lattice speed ���	���	��, 
the mean molecular velocity ��
�� � ��� � , and the root-mean-square 

velocity ��
�� ��� , have all been adopted in existing studies. Some other 

formulations of �  as a function of �� were also proposed [Guo et al., 

2006; Zhang et al., 2006]. Anyway, the ���� relationship should satisfy a 

consistency requirement [Guo et al., 2006], namely, in the continuum 

limit (��� →� �), the relationship should give ��� ���. Apparently the 

lattice speed does not satisfy this requirement. 

8.2.2   Slip boundary conditions 

A common knowledge about micro gas flows is that the velocity is 

discontinuous at a solid surface, or velocity slip occurs. To resolve this 

discontinuity, slip boundary conditions should be used. For example, we 

can use a first-order slip boundary condition,  

 � �� � � �

����

� � � �
�

�
� 	 �

�
�

� , (8.9) 

or 

 � �

����

�
�

�
�

�
�

� , (8.10) 

where ������is the tangential velocity at the wall extrapolated from the 

bulk region, and ���is the tangential velocity of the wall, �� is termed as 

the slip length, and � is the distance normal to the wall; ������ is the 

dimensionless distance to the wall, while ��������
��� and ��������

��  are the 

dimensionless slip velocity and slip length, respectively, with u0 being a 

characteristic velocity. Generally ������ and thus �������. Therefore, for 

continuous flows ( �� �� ) the slip velocity at the boundary can be 

neglected. As �� is finite, however, the slip velocity must be considered. 

Under such circumstances, the bounce-back scheme for no-slip boundary 

conditions is not applicable any more, and a proper scheme which is able 

to reflect the velocity slip should be devised. 
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In kinetic theory, the boundary condition for the particle distribution 

function at a solid wall can be expressed as [Cercignani, 1988], 

 
�

� � � � � � � � � � � ��� � � �
�� �

� � � �� � � � � ��
�

� � �
�

� � � � �� � � , (8.11) 

where � is the normal unit vector pointing from the wall to the fluid, 

� �� � �� �  is the probability distribution function (scattering kernel 

function) for gas molecules which collides on the wall with the relative 

velocity �′ first and then re-enters the gas with a relative velocity �. If the 

wall is not penetrable and does not adsorb the gas molecules, � satisfies 

the normalization condition, 

 
�

� � �� �
�

� � �
� �

� � ��
�

. (8.12) 

In this case, the relative velocity normal to the wall is zero 

 � � �� �� � � ��� � �� � � . (8.13) 

Maxwell introduced two simple types of gas-wall interactions, i.e., 

the specular reflection and full diffuse reflection early in 1879 [Chapman 

and Cowling, 1970]. The former supposes that 

 � � � �� 
 � � � ���� �� �� 	 � �� �� � �� � � � � � , (8.14) 

which means that a gas molecule is specularly reflected after colliding 

the wall with a relative velocity �′, and so the scattering kernel function 

of the specular reflection is 

 � � � 
 � � � �� ���� � � 	  �� � �� � �� ��� �� �	� � � � � � � , (8.15) 

where 	 is a generalized delta function. It is easy to prove that there is no 

energy exchange between gas and the wall with this boundary condition, 

and the shear stress is zero at the wall. On the other hand, the full diffuse 

reflection assumes that the gas molecule will be redistributed into the gas 

with a random velocity after striking the wall, satisfying the following 

equilibrium distribution, 
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where ���is the density of gas at the wall, ���is the wall temperature, and 

� is the relative velocity of gas molecules. The mass conservation 

requirement, Eq. (8.13), indicates that 

 



�
�

��
� �	 � � �

�
, (8.17) 

where ��

− and �
�

� are the flow rates of the incident molecules towards the 

wall and those departing from the wall, 
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� � � . (8.18) 

The scattering kernel function of the full diffuse reflection can thus be 

expressed as 
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A more general gas-wall interaction model is to assume that part of  

the molecules are reflected specularly while the others are reflected 

diffusely, i.e.,  

 � �  �� � � � � � �� �� � �� � � � � �	� � �� �→ → → , (8.20) 

where �� � ��  and �� � � �� , and ���≤�����≤��� is termed as tangential 

momentum accommodation coefficient.  

Theoretical analysis of the molecular dynamics reveals that the 

diffuse reflection produces a velocity slip at the wall [Chapman and 

Cowling, 1970], 
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, (8.21) 

which means that the full specular reflection will lead to an infinite slip 

velocity while the full diffuse reflection produces a finite one. 

In 2002 Ansumali and Karlin [2002] developed a discrete version of 

the full diffuse reflection as a boundary condition for LBE, 

 � �� � �� � � ���
� � � � � �� ��� 	 � �� � ��� , (8.22) 
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where 
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The scheme was also generalized for partially diffuse walls (diffuse 

reflection, DR) [Tang et al., 2005], which can be written as 

 � ��� � � � �� � � ���
� � � � � � � � �� � �� �� ��� 	  	� � �� � � , (8.24) 

where ����is the discrete accommodation coefficient, �� �  is the distribution 

function with velocity � �� 	 % �� � �� � � � � � , and the parameter � is 

defined as 
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, (8.25) 

which is slightly different from that defined by Eq. (8.23).  

Succi [2002] presented another type of discrete kinetic boundary 

condition (BSR) for LBE. This scheme is a combination of the bounce-

back scheme for no slip and the specular reflection scheme for free slip, 

 �� �� ��  �  � ��  	ı ,   (8.26) 

where � ı  is the distribution function with �� 	� �ı , and the parameter 

��≤� �≤�� is the combination coefficient representing the bounce-back 

portion. Obviously as  �����, the BSR scheme defined by Eq. (8.26) 

reduces to the specular reflection scheme, which is also the case of the 

DR scheme with �����. However, as  ����� the BSR scheme reduces to 

the bounce-back scheme and the slip velocity is zero, while as ����� the 

DR scheme still produces a finite slip velocity. These facts indicate that 

the two popular discrete kinetic boundary conditions are closely related 

but not identical. Further discussions will be given in more detail later. 

Finally, it is noteworthy that both the DR and BSR schemes are 

implemented for the post-streaming distribution functions, and thus the 

collision step should be carried out on the boundary nodes. In this regard, 

these two schemes are similar to the modified bounce-back scheme 
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described in Chapter 2. In addition, several half-way versions of the DR 

and BSR schemes were also employed in some studies, which are similar 

to the half-way bounce-back scheme. Owing to the clear picture of the 

half-way approach, our discussions will be based on this approach in the 

subsequent sections of this chapter. 

8.3   LBE for Slip Flows 

In the slip region, the Navier-Stokes equations still hold in the bulk 

region far away from the walls provided that suitable slip boundary 

conditions are imposed. Therefore, the standard LBE models for the 

Navier-Stokes equations can still be used to simulate slip flows, but the 

relaxation time(s) should be related to the Knudsen number as given by 

Eq. (8.7), and some kinetic boundary schemes for slip velocity should be 

employed.  

8.3.1   Kinetic boundary scheme and slip velocity 

For slip flows, the boundary conditions reflect the effective interactions 

between gas molecules and the solid wall. As such, the kinetic boundary 

scheme plays an important role for simulating such flows with LBE. 

Recently Guo et al. [2007] made a detailed theoretical analysis on the 

popular DR and BSR schemes, which will be presented below briefly. 

Without loss of generality, we take the isothermal D2Q9 LBGK 

model as an example, 

� ��
� � � � � � � � � ���

� � � � � � � � �� � � � � � ! �� �  	 � 	 	  �! "� � �	 	 	
�

. (8.27) 

The expression of the EDF � ���
��  can be found in Chapter 1, and the 

forcing term is given by, 
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where���is the acceleration. The density and velocities are defined by 
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In the D2Q9 model ��
�� �� ��� , and so the relaxation time can be related 

to the Knudsen number as (see Eq. (8.7)), 

 
� � ��
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&
�

�
 (8.30) 

where ∆�������	���. 

For a flat wall, the half-way versions of the DR and BSR schemes are 

sketched in Fig. 8.1. The boundary is located at "����
, where "�is the 

subscript of the lattice nodes located at �"�����"�−������	��� For simplicity the 

flow is assumed to be unidirectional, i.e., the density � is a constant, the 

velocity component in � direction is zero, and ��� �� for any flow 

variable �' In the implementation of the LBE, the collision step is first 

carried out for all nodes, 

 � ��
� ���

� � � � � �� � � � !� �  	  	
�

. (8.31) 

Then the streaming step is performed  

 � � � � � �� � � � �� � � ��  �� �� 	 	  (8.32) 

for all lattice points of "�	��. At a node at the first layer ( "���), ���
�� , ���

�� , 
���

�� , ���
��  and ���

��  are known after the streaming step, while ���

� , ���

��  and 

 
Fig. 8.1.  Lattice and boundary arrangement in D2Q9 model. 
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���
��  should be provided by the kinetic boundary condition. For this flat 

wall the BSR and DR schemes can be written as, 

BSR: 
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� � � �
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DM: 
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where �� is the wall velocity and � is the normalization factor to ensure 

the mass conservation, 
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. (8.35) 

It is noted that the BSR scheme given by Eq. (8.33) is an extension of the 

original one proposed by Succi which is designed for static walls. As  �#�

�, i.e. the full bounce-back scheme, equation (8.33) is just the half-way 

bounce-back scheme proposed by Ladd for moving boundaries. 

From the definition of the flow velocity and the streaming step, we 

have  

 ��� ��� ��� ��� ��� ������
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where a variable with superscript " denotes its value on nodes ". From 

Eqs. (8.36)∼(8.38) and the boundary conditions (8.33) and (8.34), the 

following relations between ���� and ��
� can be found:  
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 (8.40) 

It is apparent that as  �����
, Eqs. (8.39) and (8.40) are totally identical, 

indicating that the BSR and DR schemes are equivalent under this 

condition. However, it is noted that both   and ����are required to take 

values in [0, 1], so the applicable range of BSR scheme is larger than that 

of the DR scheme. An example is that the BSR scheme can realize the 

no-slip boundary condition while the DR scheme cannot. 

Now we discuss the slip velocity at the solid wall. At an inner nodes 

( "�	��), the neighboring distribution functions are related as follows, 
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Based on these relationships and the definition of the fluid velocity, we 

can obtain  
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� , (8.42) 

which is a second-order finite-difference scheme for the following 

equation, 
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� . (8.43) 

This means that the LBE is just a second-order finite-difference scheme 

for the Navier-Stokes equations. 

Another boundary condition should be supplied in order to solve  

Eq. (8.42). When considering the force-driven Poiseuille flow between 

two parallel plates, the boundary condition at the wall located at ���� 

takes the same formulation as Eq. (8.33) or (8.34). The solution of the 

difference equation (8.42) can be expressed as, 
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where 
���� ��� �  and ���is the slip velocity dependent on the boundary 

condition. Substituting Eq. (8.44) into Eqs. (8.39) and (8.40) leads to 
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With the ����� relationship (8.30), the above results can also be 

expressed in terms of ��, 
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The above results indicate that the slip velocity from the BSR and DR 

schemes includes three parts, i.e., the first-order part (in terms of ��), 

second-order part, and grid-dependent part (&). For flows in slip regime, 

the linear part dominates the slip velocity since the second-order part is 

much smaller for small ��, while the numerical part depends on the 

mesh size and can be neglected as the resolution is fine enough. Equation 

(8.45) or (8.46) also indicates that the BSR scheme with ���� �≤���� is 

completely equivalent to the DR scheme with � ��� ,� . A special case 

is that the BSR scheme reduces to the standard half-way bounce-back 

scheme as  ������. In this case Eq. (8.45) shows that there is a slip 

velocity ��� �
�

&
 on the boundary, which is consistent with the result 

found in Ref. [He et al., 1997]. It should be emphasized that this slip 

velocity is due to discretization errors and is unphysical. 

8.3.2   Discrete effects in the kinetic boundary conditions 

Equation (8.46) shows that in the Poiseuille flow the DR scheme with a 

discrete full diffuse condition (�������) yields a slip velocity, 
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On the other hand, the solution of the linearized BGK model with full 

diffuse walls (����) gives a slip velocity [Cercignani, 1988], 
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where �������� , Apparently �%
� �� �- , which means that using the 

physical accommodation coefficient � as the numerical one (i.e., ���) in 

the DR scheme will lead to some errors. It is noted that in some available 

studies ���was set to be ��intuitively.  

This difference between Us and �%
��  is due to the discrete effects in 

the kinetic boundary condition, which is similar to that in the forcing 

term discussed in Chapter 3. The key problem now is how to eliminate 

such unphysical effects. For gaseous flows in slip regime, a widely used 

slip boundary condition is the following second-order scheme, 
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where &� and &
 are two parameters dependent on the gas-wall 

interactions. For instance, &���
��
� −��


�� �
������, and &
�����
�


������

��"����for a full diffuse wall. With the boundary condition (8.49), the slip 

 

Fig. 8.2.  Velocity profiles of the force-driven Poiseuille flow between two full diffuse 

walls (��  ��
). Solid line: analytical solution from Ref. [Cercignani, 1988]; Symbols 

with dashed line:  �����, and ∆ =1/4 (--�--), 1/8 (--�--), 1/32 (--�--); Symbols:   is 

determined by Eq. (8.51) and ∆ =1/4 (+), 1/8 (×), 1/32 (�) (Guo et al., Phys. Rev. E 76, 

056704, 2007). 
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velocity of the Poiseuille flow can be obtained by solving the Navier-

Stokes equations,  

 

� 
� �� � ���� & &�  . (8.50) 

Therefore, from Eq. (8.46) and (8.50) one can conclude that r and ��  

should be chosen as follows in order to realize the second-order slip 

boundary condition (8.49): 
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Obviously, the parameters  �� �� � in the BSR (DR) scheme depends not 

only on &� and &
, which characterize the gas-wall interactions, but also 

on the Knudsen number and the grid size.  

The force driven Poiseuille flow between two full diffuse walls was 

simulated by the D2Q9 LBGK model together with the BSR scheme 

with  ����%�and  �����
, where �� is calculated from Eq. (8.51). The 

velocity profiles are shown in Fig. 8.2. It is clear that the LBGK results 

with   ����%� are grid-dependent and deviate from the analytical solution 

of the Navier-Stokes equations with the slip boundary condition (8.49), 

while those with  �defined by Eq. (8.51) are in excellent agreement with 

the theoretical one. 

8.3.3   MRT-LBE for slip flows 

The analysis for the LBGK model shows that the control parameter in the 

BSR or DR scheme depends not only on the gas-wall interactions, but 

also on the Knudsen number and the grid size, which is somewhat 

unphysical. Such defects can be solved in MRT-LBE models due to the 

additional freedoms in the parameter selection. Such attempts have been 

made recently in Ref. [Guo, Zheng & Shi., 2008]. 

Again we take the D2Q9 model as an example. Following an analysis 

similar to that for the LBGK model described in the above section, we 

can obtain the slip velocities in the BSR and DR schemes, 
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or 
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where �� is the relaxation time for the shear stress moments ����and ����, 

and �� is for the moment associated with the heat flux �, while 

���� ����� ���� ��� �� 	 	 	� �ϖ . 

In Eq. (8.52), the terms relating to ∆
 depend on ���and ���, where �� is 

related to the Knudsen number �� and cannot be adjusted freely. 

Another relaxation time �� is, however, an adjustable parameter, which 

provides the possibility to realize a prescribed boundary condition. In 

fact, Ginzburg and d’Humieres [2003] have pointed out that the pure 

bounce-back scheme can achieve the complete no-slip boundary 

condition by adjusting ���. This strategy can also be used to realize the 

second-order slip boundary condition (8.49).  

Comparing Eqs. (8.53) and (8.50), one can identify that  
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 . (8.54) 

Clearly   and �� depend only on the gas-wall interaction parameter &�, 

which is more reasonable than that in the LBGK model. However, it is 

noteworthy that even in the MRT-LBE model, the BSR and DR schemes 

still contain some discrete effects. An example is as  ������
����� the 

slip velocity given by Eq. (8.53) is not that for a full diffuse wall as 

shown by Eq. (8.48). 

8.4   LBE for Transition Flows   

8.4.1   Knudsen layer 

As a gas flows over a solid surface, a kinetic boundary layer, also known 

as Knudsen layer, will appear (see Fig. 8.3). The thickness of the 

Knudsen layer is of the order of the mean-free-path of the gas, within 
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which the inter-molecular collisions are very rare and the quasi-

thermodynamic-equilibrium assumption, on which the Navier-Stokes 

constitution is based, will break down. In the usual macro-scale systems 

the thickness of the Knudsen layer can be ignored and thus the Navier-

Stokes equations can be applied to the entire flow field. On the other 

hand, for flows in the transition regime, the Knudsen layer takes a large 

portion and has significant effects on the flow behavior. For instance, 

Lockerby et al. [2005] pointed out that in the plane Poiseuille flow, the 

contribution of the Knudsen layer with �������� to the overall mass 

flow rate is over ��#. 

Combined with appropriate kinetic boundary conditions, the 

Boltzmann equation can be used to describe the flow within Knudsen 

layer. A variety of studies have been made to investigate the velocity 

structure within the Knudsen layer by solving the Boltzmann equation or 

simplified model equations, which show that the velocity profile is 

highly nonlinear in this region. As sketched in Fig. 8.3, the solution of 

the Boltzmann equation also gives a slip velocity 


�� , which is different 

from the usual macroscopic slip velocity �'

��  obtained by extrapolating 

the solution of the Navier-Stokes equations in the bulk region.  

For flows in slip regime, the Knudsen layer takes a relatively small 

portion of the whole flow domain, and its effects on the bulk flow can be 

 
Fig. 8.3.  Schematic of the Knudsen layer. 
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well modeled by a suitable slip boundary condition for �'

�� , such as the 

first order one (Eq. (8.9)) and the second-order one (Eq. (8.49)). For 

transition flows, however, the portion of the Knudsen layer is much 

larger and simple slip boundary conditions are not adequate to reflect its 

effects. If one still wants to describe such flows within the framework of 

continuum fluid dynamics, non-equilibrium hydrodynamic models 

beyond the Navier-Stokes equations, such as the Burnett equations, 

super-Burnett equations, and Grad moment equations, should be 

employed. 

8.4.2   LBE models with Knudsen layer effect 

Most available LBE models are designed for the Navier-Stokes equations, 

and so they are not suitable for transition flows in principle. Several 

attempts to extend LBE to transition flows have also been made, which 

can be classified into two types. The first type is high-order models, 

which is an extension of the standard LBE models for the Navier-Stokes 

equations. By employing a large set of discrete velocities, high-order 

LBE models can match the continuous Boltzmann equation at higher 

levels beyond the Navier-Stokes in terms of the Chapman-Enskog 

expansion. The second type is effective-relaxation-time models, which 

still employ the framework of standard LBE but the effects of gas-wall 

collisions are incorporated. In what follows we will present a brief 

introduction of both types of LBE models. 

High-order models 

As discussed in Chapter. 1, LBE is a discrete scheme of the continuous 

Boltzmann equation, and the accuracy depends on the discretizations in 

velocity space �, physical space �, and time space �� With a finite set of 

discrete velocities $��� �������
��…���(%, one can obtain a discrete velocity 

model (DVM) from the Boltzmann equation, 

 �
� � �

�

�
�

�
� 1

�
 � 2�  , (8.55) 

where � � � �� � �� � � �� � �  is the discrete velocity distribution function and ���

is the weight coefficient. The approximation accuracy between the DVM 
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(8.55) and the continuous Boltzmann equation can be estimated by 

comparing the moment equations at each time scale in the Chapman-

Enskog analysis. Generally, the discrete velocities ��&' are chosen as the 

quadrature nodes so that certain velocity moments at some time scales 

can be evaluated accurately, 

� � � �� � � � � � � �� �� � �	 � 	 �
� � �

�

� � � ) � � 	 � � *� � � � � �$� � � � � � � , (8.56) 

where ������is the distribution function at scale � in the Chapman-Enskog 

expansion, i.e.,� ��� ��� 
 �
�� � � �� ��   � , � and * are two non-

negative integers which determine the accuracy or physical symmetry in 

the velocity discretization [Cao et al., 1997; Guo et al., 2006; Shan et al., 

2006]. In general, if the equation for the 	-th order discrete velocity 

moment of the DVM is required to match that of the continuous velocity 

moment, the �	����-th order moment should be accurately evaluated. For 

instance, for isothermal flows the conservative variables are the density 

(zeroth-order moment) and momentum (first-order moment), in order to 

obtain the correct equations for these variables, � should be chosen to be 

not less than 2; If the energy (second-order moment) is also considered, 

� should be 3 at least. The parameter * determines the level at which the 

moment equations of the DVM (8.55) are the same as those of the 

continuous Boltzmann equation in the Chapman-Enskog analysis. For 

example, if *����, only the velocity moments of the equilibrium 

distribution function are accurately evaluated, and the DVM is then 

consistent with the continuous Boltzmann equation at the ���(Euler) level; 

if *��� then both are consistent with each other at the ���(Navier-Stokes) 

level. If * takes further larger values, the DVM can match the 

Boltzmann equation at higher-order levels (e.g., Burnett, Super-Burnett, 

etc.). A systematic discussion about high-order DVM through Hermite 

expansion of the distributions has been made in Ref. [Shan et al., 2006].  

After determining the discrete velocity set and the DVM, standard 

numerical schemes can be used to discretize the temporal and spatial 

terms in Eq. (8.55), which lead to different high-order LBE models. If 

the time and space steps in the discretizations are small enough, the 

corresponding LBE model will be a good approximation to the DVM 

(8.55) and can be readily employed to simulate transition flows. 
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Essentially, high-order LBE models share much with the discrete 

velocity or discrete ordinate methods for solving the Boltzmann equation. 

A difficulty in such LBE models is that the required accuracy in the 

velocity discretization is usually not known a priori, and the number of 

discrete velocities required in high-order LBE models is generally very 

large, which means expensive computational costs. 

Effective-relaxation-time models 

Unlike the high order LBE models, the effective-relaxation-time LBE 

models for transition flows employ the same discrete velocity sets as 

used in the models for the Navier-Stokes equations, but the Knudsen 

layer effects are incorporated through effective relaxation time(s). 

First, it is known from kinetic theory that the mean free path of a gas 

molecule follows an exponential distribution [Woods, 1993], 

 � � ���
  

�  
� ���� 	 �� �� �
 �� �

,   (8.57) 

where � is the mean free path of gas molecules without boundaries. 

Actually, the overall mean free path of gas molecules is 

 
�

� � �  � 
3

�� � .  (8.58) 

As the gas is bounded by a solid wall, the free flight paths of some 

molecules will be cut off by the wall, and consequently the overall mean-

free-path of the gas will decrease. In such cases the overall effective 

mean free path of the gas, �� , can be expressed as,  

 ����� �� �� , (8.59) 

where �  (termed as correction function) is a decreasing function of �� 

and satisfies  

 
�

()* � � �
�

�
�

�� . (8.60) 

Stops [1970] derived a complicated expression for � for a gas between 

two parallel plates, which can be approximated as [Guo et al., 2006],  

 ���

� � +,+�� 
 �� �	��

�
. (8.61) 
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The numerical profile of this new expression is very close to that 

obtained by Stops in a large range of �� [Guo et al., 2006]. 

The function defined above reflected the overall effects of the gas-

wall interaction on the total mean-free-path of the gas, and the effective 

mean-free-path �� is independent of the distance to the wall. Alternatively, 

a local effective mean-free-path for the molecules located at position � 

can also be derived following the approach of Stops,  

 � �� � � �� �� �� �� � ,  (8.62) 

where the correction function � � ��� �  has the following properties, 

 
� � � �
()* � � � �� ()* � � �� �

��3 ��
� �

� �

� �

�
� � � � ,  (8.63) 

which imply that �����for molecules far away from the wall or as the 

gas can be considered as a continuum. Some formulations for the 

correction functions have been proposed from different view points. For 

instance, Zhang et al. [2006] proposed a formulation based on the idea of 

wall function, 
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�
� � �

� ��
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� +�
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�	
�
 �

� � , (8.64) 

where�� is the distance to the wall and +�	�� is an empirical parameter. 

Alternatively, Guo et al. derived another formulation following Stops’ 

theory [Guo, Shi & Zheng, 2007], 

 
� � � � � ��� � �	�  	 	�� � � � ,  (8.65) 

where ������ , and ,���� is the exponential integral function defined by 
�

�
� � ��
�, � � � ��

3 	 	� � . 

Based on the relationship between the relaxation time and mean free 

path, an effective relaxation time for the shear mode with gas-wall 

collision effects can be obtained, 
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�
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	� ���� �� �� �
 �

�
� � .  (8.66) 
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With the relaxation time determined in such way, some LBGK models 

for transition flows have been developed [Guo et al., 2006; Zhang et al., 

2006].  

MRT-LBE models with effective relaxation times were also proposed 

[Guo et al., 2008]. An example is the D2Q9 model,  

   � ��� � � � � � � � �� ���
� � � � � �" " " � �

"

� � � � * '* � � !	  	 � 	 	 $� � �	 	 	 ,  (8.67) 

in which the moments corresponding to the distribution function are 

given by 

 � � � � � � � �� � ��� � � � �� ��* � " � " � � �� � �� 	 � � , (8.68) 

and the corresponding diagonal matrix consisting of relaxation times is 

 �-)+.� � � � � � � � � �� � " � " � � �' 	� � �� � � � � � � � � ,  (8.69) 

where the two relaxation times �� are determined from the mean free  

path, which can be expressed in terms of the Knudsen number as 
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� � ��  �� � �
�

. (8.70) 

Like the MRT-LBE for slip flows, the relaxation time �� also depends 

on the prescribed boundary conditions. A generalized second-order slip 

boundary condition with the effective mean free path was proposed for 

transition flows [Guo et al., 2008], which can be expressed as, 

 � 
�



�
� � �

�� � ��
� & &

�� �� ��

� ���� 	 �� �� �
 �
�

� �  , (8.71) 

where the gas-wall interaction parameters &� and &
 are defined by 
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,  (8.72) 

in which � is the momentum accommodation coefficient. The BSR 

scheme can be used in order to achieve this boundary condition, in which 

the combination parameter   and the relaxation time �� are given by  
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[Guo et al., 2008], 
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, (8.73) 

where ��
� ����� � , ���� �� 	�� �  and �� �� ��� �� � . It is easy to check 

that as �� is a constant, both   and �� defined above reduce to those of the 

MRT model for slip flows (Eq. (8.54)). 

The predicted velocity profiles, normalized by � ���$�
������
 with 

� the acceleration of the driven force, are shown in Fig. 8.4 at several Kn 

    

    
 

Fig. 8.4.  Velocity profiles of the force-driven Poiseuille flow between two diffuse walls. 

Solid line: MRT-LBE with effective relaxation times; Open circle: Solution of the 

Boltzmann equation [Ohwada et al., 1989]; Dashed line: MRT-LBE with the slip 

coefficients given in [Cercignanni, 1988]; Dash-dotted line: MRT-LBE with slip 

coefficients in [Hadjiconstantinou, 2003] (Guo et al., Phys. Rev. E  77, 036707, 2008). 
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in the transition regime. For comparison, the solution of the Boltzmann 

equation [Ohwada et al., 1989] was also presented. Also shown in  

the figure were the results of the MRT-LBE for slip flows described in 

the above section, where the classical second-order slip boundary 

conditions with the coefficients given in Ref. [Cercignani, 1988] and  

in Ref. [Hadjiconstantinou, 2003] were employed, respectively. As 

demonstrated, the MRT-LBE model with effective relaxation times  

gives better predictions than the standard MRT-LBE. The dimensionless 

mass flow rate -, normalized by ��$
��
�����
� , was also measured  

(see Fig. 8.5), which clearly demonstrates good agreement with both 

theoretical results and experimental data [Dong, 1956]. Particularly, the 

Knudsen minimum appearing at ������ is successfully captured by the 

effective MRT-LBE. 

8.5   LBE for Microscale Binary Mixture Flows 

8.5.1   General  formulation 

Most of available LBE methods for micro-flows focus on single 

component gases, and much less attention has been paid to gas-mixture 

 
 

Fig. 8.5.  Dimensionless mass rate of the Poiseuille flow against the Knudsen number. 

Solid line: MRT-LBE with effective relaxation times; Open circle: experimental data 

[Dong, 1956]; Dashed line with ×: solution of the Boltzmann equation [Ohwada et al., 

1989]; Dashed line: MRT-LBE with the slip coefficients given in [Cercignani, 1988]; 

Dash-dotted line: MRT-LBE with slip coefficients given in [Hadjiconstantinou, 2003] 

(Guo et al., Phys. Rev. E  77, 036707, 2008). 
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flows with a finite Knudsen number except for a few attempts. 

Arcidiacono et al. [2007] applied a LBE model based on the Hamel to 

the micro Couette flow, while Szalmás [2008] made a theoretical 

analysis of a similar LBE model and proposed a slip boundary condition. 

These studies were based on certain kinetic models of BGK formulation, 

which have some limitations for gas mixtures [Andries  et al., 2002]. On 

the other hand, Guo et al. [2009] developed a LBE with a MRT collision 

operator for binary gas mixtures. The evolution equation of this model is 

 � ��� � � � � � � � � ���
� � � � � �" " "

"

� � � � * '* � �	  	 � 	 	$� � �� � � �	 	 , (8.74) 

where ��� is the discrete distribution function for species � ���or�(� and 
� ���
���  is the corresponding EDF, * is the transformation matrix and ' is 

the diagonal matrix of the relaxation rates. It is noted that both * and ' 

are assumed to be independent of the species in the model. Furthermore, 

the EDF for each species only depends on the individual density, 
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where �� is the species mass density, � is the mixture velocity, and the 

model parameter 

�� ���  with ���	
�� �is the gas constant with 	
 the 

Boltzmann constant, while � ��*)�������(� is the reference mass (�� is 

the molecular mass), and � is the temperature. Additionally, �
��  is a 

parameter dependent on the molecular mass mσ and the particle velocity�

���

. For example, �
�� �������� ��� for ��≠� � and �

�� ���45�	�6����� in the 

D2Q9 model,. The mass density � and velocity � of the mixture and 

those of the species (�� and ��) are defined respectively as 
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(8.76) 

where �� is the relaxation time relating to the diffusion flux. The number 

densities of each species and the mixture are defined as ���������.and 

the����������(�. 

For the D2Q9 model with the collision matrix given in Chapter 1, the 

relaxation matrix for the velocity moments �σ���4ρσ�7��σ�7��σ�7�"σ��7��σ��7��"σ��7  
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�σ��7 ��σ���7��σ���8
�  is  

 �-)+.� � � � � � � � � �� � � � � � �' 	� � �� � � � � � � � � . (8.77) 

Because �� is a conserved variable, ���can take any value while the other 

relaxation times should be chosen according to the transport coefficients 

or boundary conditions, as will be shown later. In the incompressible 

limit, the hydrodynamic equations corresponding to the above MRT-

LBE include 

 � � ���  1 � ��� � �� � , (8.78) 

 � � ���  1 � ��� � , (8.79) 

 � � � �� ��  1 � � 	1  1 �� �� 
� � , (8.80) 

where the first equation is the mass conservation equation for each 

species, and the other two are the Navier-Stokes equations for the 

mixture. The total pressure ��is the sum of the partial pressures, ��������

�(���	
�, and the stress tensor 
 is  

 ' � �� �� � �! "�� � � � �� , (8.81) 

where the dynamic viscosity of the mixture is  
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and the bulk viscosity of each species is given by  
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On the other hand, the diffusion coefficient is related to the relaxation 

time �� ,  
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Therefore, the Schmidt number of the mixture is 
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which can be tuned by changing ��  and �� .  
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8.5.2   Extension to micro flows 

In order to simulate microscale flows of binary mixtures using the above 

MRT-LBE, two fundamental problems similar to those in the LBE for 

simple gas flows should be addressed first, i.e., (i) incorporating the 

Knudsen effect into the LBE, and (ii) prescribing a suitable kinetic 

boundary condition. These two topics will be discussed in order next. 

First we discuss the relationship between the relaxation times and the 

mean-free-paths of the individual species and the mixture. From the 

Chapman-Enskog analysis of the Boltzmann equation, it is known that 

the dynamic viscosity and mutual diffusivity of a binary mixture can be 

expressed as [Cercignani, 1988], 
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where ���������(������������ is the concentration, and 
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with 
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The parameter & and , depend on the inter-molecular potential. For 

instances, for a binary mixture of hard-sphere molecules, they are given 

by [Cercignani, 1988], 
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where ��(���������(��
 with �� being the molecule diameter of species �' 
It is clear that the viscosity and diffusivity of the mixture are both 

complicated functions of the individual viscosities and concentrations.  

On the other hand, the mean-free-path of each species and the 

mixture, ����and�� , are related to the individual and mixture viscosities,  

 




	 �

� �
� �

�

� �

� �
� , 







�

	 �

� �
�
� �

� , (8.90) 



314 Lattice Boltzmann Method and Its Applications in Engineering 

where ������������������(��( . Therefore, the relaxation time �� can be 

determined from the mixture viscosity. For the D2Q9 model, the 

expression is 
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The relaxation time �� can be related to the mean-free-path through 

the diffusivity. For instance, for a binary mixture of hard sphere gases, 

the mean-free-path of each species is 
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and the mutual diffusivity is 
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Therefore, from Eq. (8.84) we can obtain that 
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Based on the definition of the Knudsen number, �� and �� can also be 

recast in terms of the Knudsen numbers of the mixture and/or species. 

Now we come to the kinetic boundary conditions for the binary 

MRT-LBE. A BSR scheme was designed to specify the slip boundary 

condition by Guo et al. [2009]. The formulation is similar to that for the 

single component LBE models. Again consider the flat surface case as 

sketched in Fig. 8.1, the BSR scheme is expressed as 
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 (8.95) 

where �� �
�  is the post-collision distribution function, and  � represents the 

bounce-back portion, which can vary for different species. For the half 
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space shear flow over a stationary wall (i.e., the Kramers problem) where 

the wall is located at ���� and the gas is sheared by imposing a constant 

velocity gradient at ���∞, the velocity profiles of each species and the 

mixture can be obtained from the MRT-LBE:   


�
�� � � 	 �	�  � �� , �� � ��  � , 
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where �������� ���� ��� →� ∞� is the applied constant velocity gradient,  

us is the slip velocity at the wall, and 	��is a constant that satisfies 

� � ( (	 	� � �� .  

Both �� and 	� are complex functions of the relaxation times (�� , �� 

and ���), the mass concentrations, the parameters  ��and� (, and the lattice 

spacing [Guo et al., 2009]. However, under the assumption that  ��� (��

 , the expression can be simplified as: 
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On the other hand, the slip velocity for the Kramers problem can be 

obtained from the solution of the linearized Boltzmann equation for 

binary mixtures [Ivchenko et al., 1997],  

 � �� �� �� ,  (8.98) 

where the parameter �� depends on the molecular properties and gas-wall 

interactions,  
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where �������≤�� is the accommodation coefficient of the gas-wall 

interaction for � species, and *����������; (� is related to the inter-

molecular potential of the gases [Chapman and Cowling, 1970], 
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The two parameters ���and �
 in Eq. (8.99) are given by 
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Comparing Eqs. (8.97) and (8.98), we can see that if the control 

parameter  �in the BSR scheme is chosen as 
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the slip velocity of the MRT-LBE with the BSR scheme matches that of 

the Boltzmann equation for the Kramers’ flow. In the limiting case of  

�����(�, the above result is consistent with that for a simple gas, i.e.,  

Eq. (8.54).  

The above LBE model together with the BSR boundary condition 

was used to simulate the Kramers flow of some binary mixtures, where 

the gases were modeled as hard-sphere molecules [Guo et al., 2009]. The 

accommodation coefficients of the wall are assumed to be 1 for both 

species. In Fig. 8.6 the simulated velocity slip coefficients (VSC) are 

shown as a function of the mole fraction of species a, and the results are 

compared with those of the linearized Boltzmann equation [Ivchenko  

et al., 1997] for Lennard-Jones gases. It is clearly observed that in each 

    
 

Fig. 8.6.  Velocity slip coefficient as a function of concentration of the first species 

(���(). Solid line: LBE results; Symbol: results of linearized Boltzmann equation 

[Ivchenko et al., 1997] (Guo et al., Phys. Rev. E  79, 026702, 2009). 
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case the simulated VSC is in good agreement with the results of the 

Boltzmann equation, and its nonlinear dependence on the mole 

concentration is also clearly shown. The discrepancies can be attributed 

to the different treatments of the intermolecular interactions in the two 

methods.  

8.6   Summary 

The study of fluid flows at micro-scales is a demanding research topic in 

modern fluid mechanics. The traditional continuum methods suffer from 

many limitations for such flows, while the LBE method exhibits some 

appealing features in modeling and simulating such kind of flows due to 

its kinetic nature. In this chapter, the recent advances of LBE for micro 

gas flows have been presented. Contrary to the intuition about LBE, the 

analysis shows that attention should be paid before applying this method 

to such flows even in the slip regime. Particularly, the ���� relationship 

and the discrete effects in the boundary conditions should be taken into 

account carefully. It was also shown that the Knudsen layer takes an 

important role in gaseous micro-flows. For flows in the slip regime, the 

effects of the Knudsen layer can be well modeled by a suitable slip 

boundary condition, while in the transition regime, the effects of the 

Knudsen layer should be captured by high-order LBE models which 

employ a large set of discrete velocities, or by effective LBE models in 

which the Knudsen layer effects are incorporated. LBE for micro flows 

of binary mixtures was also discussed, but it is still a challenging topic to 

devise LBE model for mixtures with more species.  

LBE methods for micro flows with heat transfer, micro liquid flows, 

and micro two-phase flows are not discussed in this chapter. But a 

variety of studies on these topics have been reported, and interested 

readers can refer to relevant literatures. 
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Chapter 9 

Other Applications of LBE 

In the last chapter of this book, we will talk about some applications of 

LBE in several other complex fluid systems, particularly particulate 

flows, flows in porous media, and turbulent flows. In addition, a hybrid 

method that combines LBE with the immersed boundary technique will 

be presented for flows with solid objects. 

9.1   Applications of LBE for Particulate Flows 

Particulate flows arise in many engineering applications. In such flows 

the fluid and solid particles interact with each other complicatedly. In 

numerical simulations, the particles can be treated in two different 

manners. One approach that is widely adopted in engineering 

applications is to treat a particle as one “mass point” without considering 

its size and shape. The fluid-particle interactions are usually described by 

some empirical relationships, and the motion of each particle can be 

tracked following the Lagrangian method. Usually, in this approach the 

coupling between the fluid phase and the particulate phase can be 

described in a “one-way” fashion or a “two-way” fashion. In the former 

case, only the effects of fluid on the particles are considered while the 

influences of particulate phase on the flow are neglected; in the latter 

case, on the other hand, the interactions between the fluid and particulate 

phase are considered from both sides.  

The other approach is the finite-size particle method, where the shape 

and size of each particle are considered, and the particle surface is just 

treated as a boundary immersed in the fluid on which a suitable boundary 

condition is imposed. In this approach the translation motion and rotation 

of each particle are both tracked, where the hydrodynamic force and 



320 Lattice Boltzmann Method and Its Applications in Engineering 

torques exerted on the particle by the fluid are obtained from the particle-

fluid boundary conditions. The advantage of the finite-size method is that 

the details of the flow around the particles can be captured, which is 

important in the study of the fundamental mechanisms in particulate 

flows. 

As an efficient numerical model, the LBE method has been used to 

simulate particulate flows following both point-source and finite-size 

approaches, which will be discussed in the next sections. 

9.1.1   LBE method with finite-size particles 

The first application of LBE to particulate flows with finite-size particles 

was attributed to Ladd [1994a, 1994b]. In this method the fluid flow is 

governed by the LBE, while each particle is treated as a moving object in 

the fluid. The particle shape and size are described based on the lattice 

employed by the LBE (see Fig. 9.1), where the boundary of the particle 

is represented by the mid-points of the lattice links. This approximation 

 
 

Fig. 9.1.  Representation of a solid particle. ● Fluid node; ■ boundary node; thick solid 

line: real boundary; thin dashed line: kinematic boundary. 
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introduces an error of order ��������, where �� is the radius of the particle 

and �� is the lattice spacing. This error usually makes the estimated radius 

a little larger than the real one. For instance, for a spherical particle  

the estimated radius is about �� � � , with � �� � � � . The magnitude of 

∆ depends on the relaxation time � and the particle radius ���

, but is 

independent of the particle shape and the Reynolds number [Ladd and 

Verberg, 2001]. Apparently for a fine mesh this error can be ignored. In 

simulations we can use the corrected radius to improve the numerical 

accuracy. 

It is noteworthy that in Ladd’s method, the inner of a particle is also 

filled with a fluid of which the density is the same as the outer one while 

the viscosity can be different. Therefore, in this method the solid particle 

is actually represented by a solid shell, and during the motion of the 

particle both the inner and outer fluids can pass the shell freely. An 

advantage of this treatment is that the local mass and momentum are 

exactly conserved and no special technique is required as the fluid passes 

through the shell. However, the motion of the inner fluid will lead to 

some errors that depend on a dimensionless frequency 
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where � is the characteristic frequency and �� is the viscosity of the inner 

fluid. Numerical results show that the influence of the inner fluid is weak 

slightly as �� �� . Obviously, this can be achieved by increasing the 

viscosity of the inner fluid. In this way, the LBE can be written as 
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where � ��
��  and � ��

��  are the collision operators for the inner and outer 

fluids of the particle domains, respectively. 

The dynamic equation of each solid particle is 
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where ��� and ��� are the effective mass and moment of inertia of the 

particle, respectively, �� and ���are the respective translational velocity 

and angular velocity, while��� and ���are the respective total force and 

torque on the particle, and �� is the mass center of the particle. If only 

hydrodynamic force of the fluid is considered, the total force and torque 

can be expressed as 

 �� � � ��
�

� 
��� �� � �� � ,    (9.4) 

 � � � � � � � �� �
�

� 
��� � � ��� � � � �� ,  (9.5) 

where �� �� � ��
 
is the stress tensor and � is the particle surface with 

� being the unit outward normal vector to the surface. The computation 

of Eqs. (9.4) and (9.5) involves velocity gradients and surface 

integrations, which may encounter difficulty for irregular particles. In 

LBE, however, the force and torque can be calculated in a much simpler 

way, as described below. 

In Ladd’s method, the solid-fluid interactions are realized by the half-

way bounce back rule. As shown in Fig. 9.2, at a boundary point � 

where the discrete velocity ��� intersects with the boundary, the post-

collision distribution functions located at �� and 	 � � �� �� � � �  can be 

written respectively as  

 � �� � � � � � � � ��
�	 � 	 � �� � � �� � �ı ı ı ,   � �� � � � � � � � ��

� 	 � 	 �	 � 	 � �� � � � �� � , (9.6) 

where �� �� �ı . After time ����, these fluid particles move to the 

boundary node ��and are bounced back, i.e.,  
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Fig. 9.2.  Half-Way bounce back scheme of Ladd’s LBE. 
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where � � � �  �� � � ��� � �� is the velocity at the particle boundary  

� , and �� is the weight coefficient of the EDF in the LBE model. After a 

time duration of ����, these particles will move to the original locations 

but with an opposite velocity, 
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During the fluid-particle collision process, the momenta of the fluid 

and particle are exchanged. For those fluid particles starting from �	�and�

�� , represented by � �� 		 ��
 
and � ��	 � �ı  respectively, the momentum changes 

before and after with the particle at � are 
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Therefore, the force exerted by these fluid particles on the solid particle 

is 
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The corresponding torque at the location is 
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As a result, the total force and torque experienced by the solid particle 

are respectively 
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The above method for calculating the hydrodynamic force and 

torques on particles is the so-called “momentum-exchange” method, 

which avoids the differentiation and integration calculations in the 

integral method given by Eqs. (9.4) and (9.5). This method can be easily 

realized in the bounce back rule simultaneously, and thus results in only 

a slight increase in computation costs. Furthermore, the influences of the 

particle on the flow also appear naturally during this process, and other 

types of fluid-particle interaction forces, such as Brownian force caused 

by random perturbation, fluid lubrication force among particles, and  

the van der Waals force, can also be incorporated easily into LBE in  

this way. 

After obtaining the force and torque, the dynamic equations of the 

particle can be solved numerically. Ladd suggested a leapfrog-scheme, 

� � � � � �� � � ��� � �� � �� �� � � , �� � � � � � �� � � � � � �� � ��� � � �� 	� �� � � , (9.15) 

 �� � � � � � �� � � � � � �� � ��� � �� � � �� � �� � , (9.16) 

where the force, torque and particle velocity at time � are obtained by 

averaging, 
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The numerical stability of the above scheme depends on the density 

ratio of the fluid and particle [Ladd, 1994b; Ladd and Verberg, 2001]. It 

was pointed out that the leapfrog scheme is stable as 
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where �������������
is the real density of the particle and ��� is the 

volume of the particle. Obviously, a fine mesh should be used to 

approximate the solid particle as  �������.  

The aforementioned approach is the basic LBE for particulate  

flows. Because of the requirement of � �� �� �
 
in this method, some 

improvements have been made later. For instance, Aidun et al. developed 
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a method without fluid inside the particle [Aidun and Lu, 1995; Aidun  

et al.,1998], which can be used for arbitrary density ratios in principle. 

However, when the particle moves some solid nodes covered by the 

particle originally can become fluid nodes at the new time step, and the 

associated distribution functions must be reconstructed. On the contrary, 

some fluid nodes can also become solid nodes during the particle motion, 

which means that some mass and momentum will be lost. Consequently, 

mass and momentum are not conserved in Aidun’s LBE. Alternatively, a 

mass conservation LBE method was developed by Qi [1999] based on 

Ladd’s method, where the inner of the solid particle is also filled with the 

fluid.  

In the both improved LBE methods [Aidun and Lu, 1995; Qi, 1999], 

the force and torque are calculated from the outside fluid,  
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Furthermore, the both improved methods consider the effects of the 

nodes coming from or entering the solid particle. For a new solid node  

�� , it exerts a force and torque on the particle as 

 � � � �� � ��� � � � � �� � ��� � � � � �� �� . (9.21) 

Similarly, a newly generated fluid node coming from the particle will 

also exert a force and torque on the particle, 

 � � � �� � �� � � � � � �� � � ��� � � � �� � �� . (9.22) 

The total force and torque are then obtained by summing up the above 

three parts.  

Some improvements on solving the particle dynamic equations have 

also been developed. For instance, Lowe et al. [1995] presented an 

implicit scheme with improved numerical stability, in which the 

hydrodynamic force on the particle is divided into three parts, 

 �� � � � ��� � � �� �� ς ςς ςς ςς ς , (9.23) 
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where �� depends merely on the distribution function after collision, 
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while �ςςςς and �ςςςς are two matrixes defined by 
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The torque on the particle can be obtained similarly,  

 � � � �
��� � � ��� � ζ ζζ ζζ ζζ ζ , (9.26) 

where ��  and ��  are two matrixes similar to ��  and �� . Then the 

translational velocity and angular velocity can be obtained by solving the 

following equation, 
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where � � ��� ���� � , and ��and�� are the matrix and vector depending 

on 	�� ��� ���

. These algebra equations can be solved implicitly or 

explicitly with good numerical stability. 

In the above LBE methods, the surface of a solid particle is 

represented by some zigzag points defined by the underlying lattice, 

which will introduce certain numerical errors inevitably. Later, some 

methods for curved boundary-conditions were introduced to represent the 

particle surface more accurately. For instance, Inamuro et al. [1995] used 

the boundary nodes � 
surrounding a particle to represent the surface, on 

which the distribution functions were determined by the counter-slip 

boundary condition. A smooth curve surface � was then used to match 

the discrete nodes, from which the force on the particle is calculated by 

Eqs. (9.4) and (9.5) where the stress tensor � is obtained by interpolation 

based on the stress at the boundary node � [Inamuro et al., 2000], 
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Some boundary conditions for curved walls, as presented in Chapter 2, 

were also employed to represent a particle surface. For example, Li et al. 
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[2004] analyzed the difference between the momentum-exchange 

method and the integration method based on the FH scheme, Mei  

et al. [1999, 2002] investigated the force on the particle based on the 

MLS scheme, and found that for a fixed particle the momentum-

exchange method yielded similar results as the integration method, while 

Lallemand and Luo [2003] applied the interpolation scheme to flows 

with moving particles. However, it should be noted that these methods 

are more or less more complicated than Ladd’s method, although they 

can represent a particle more accurately.  

9.1.2   LBE method with point particles 

LBE method with finite-size particles is a true direct numerical 

simulation method for particulate flows, and is advantageous in 

exploring intrinsic mechanism of such flows. However, for flows with a 

large number of particles or when the flow domain is much larger than 

the particle size, the finite-size particle method is inappropriate due to the 

expensive computation costs. In such cases a more efficient approach is 

to treat a particle as a mass point and to describe the fluid-particle 

interactions with some semi-empirical models. Actually, some methods 

based on this idea have been developed, and two typical approaches will 

be presented below. 

LBE-Lagrange method 

In LBE-Lagrange method, the fluid motion is still governed by the LBE, 

but the motion of the particles is tracked by solving Eq. (9.3) in a 

Lagrangian manner without considering the rotation. The total force on 

the particle includes two parts, �����������

, where���� and���� are the 

hydrodynamic force and external force, respectively. Usually,� ���

includes the drag force, Saffman force, added mass force, Basset force, 

and Magnus force, etc., while� ��� usually includes the gravity, 

electrostatic force, and van der Waals force. 

In most applications, only the drag force is considered in �� . For 

example, the drag force of a single spherical particle can be expressed as 
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where Cd is the drag coefficient, which is the function of the particle 

Reynolds number � �� �� �� � ��� �� � � . It is noteworthy that as a large 

number of particles exist in a region, the particle-particle collisions and 

hydrodynamic interactions will affect the drag force significantly, and 

the drag coefficient for a particle should be modified. After determining 

the forces on the particles, the dynamic equations can be solved 

numerically to obtain their velocities and positions. The influences of the 

particles on the flow can be treated following the “one-way” or “two-

way” coupling approach, depending on flow conditions.  

Filippova and Hänel [1997] were the first who made use of the LBE-

Lagrangian method when they simulated the particle deposition process 

in a filter. In their simulation, only drag force was considered and the 

effects of the particles on the fluid were neglected. Later, with this 

method Lantermann and Hänel [2007] further considered the influences 

of the van der Waals force, electrostatic force, and Brownian force on the 

particles during the deposition and transportation processes in the filter. 

LBE-LGA method 

In the LBE-Lagrangian method, the trace of each particle is continuous 

and the particle location at each time step is not on the lattice usually. 

Masselot and Chopard [1998] presented an alternative LBE-LGA method 

in which solid particles also reside on the same lattice occupied by the 

LBE fluid. The evolution of solid particles can include a number of 

dynamic processes such as transportation, sinking, and erosion processes. 

A typical example of the LBE-LGA  algorithm where the solid particles 

undergo the above dynamics can be implemented as follows: 

(1) Transportation: Assume���solid particles exist on a lattice node �, 

with the same speed �����������������

��where ��is the fluid velocity 

and ���is the velocity induced by the gravity. The time step of the 

solid particles�����may be different from the LBE time step����. In next 

time step, one of such solid particles will move to ���������������, 

which is generally not located on the lattice. The particle is then put 

on a lattice node with certain probability. For the D2Q9 model, the 

particle is set on the lattice node � �� �� �� �� � �� � �� � � � �� �� �� �� � � , 

where �� is a random Boole variable which takes value 1 with 
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The computational efficiency can be improved by adjusting the 

particle time step ��� . Dupuis and Chopard [2002] also proposed a 

rule for the FHP model. 

(2) Deposition: As a solid particle moves to a lattice node��	��close to 

the solid wall, the particle will stop moving to sink. If the particle 

number ��on the site exceeds a critical number ������	���ill become a 

solid node, on which the bounce-back rule is implemented for other 

fluid particles. 

(3) Erosion: In some cases, the deposited particles can be picked up by 

the fluid and reenter the flow domain. This erosion process depends 

on a number of factors such as the local flow velocities and particle 

concentration. The process can be implemented as follows: For each 

of the� ��� solid particles deposited on a solid node with some 

neighboring fluid nodes, it is first thrown up with a probability �� , 

then it will stream as usual if the local flow velocity is larger than a 

critical value, or just go back to original solid node otherwise. The 

erosion probability �� usually depends on the particle properties 

such as the size, density, and shape, as well as particle interactions 

like friction and electrostatic force. 

The above LBE-LGA method has been applied to a number of 

particulate flows. For example, Masselot and Chopard [1998] studied the 

effects of wind on snow patterns during transportation, while Dupuis and 

Chapord [2002] explored the scour formation under submarine pipelines. 

These studies show that the LBE-LGA method can reproduce many 

interesting phenomena that are in qualitatively agreement with the real 

world, although it is still difficult to obtain quantitative results due to the 

empirical parameters in the method.  

9.2   Applications of LBE for Flows in Porous Media 

Fluid flows in porous media (porous flows) are special fluid-solid 

systems where the solid matrix is usually fixed. Such flows are involved 
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in many areas such as oil and gas engineering, chemical engineering, and 

environmental science. Generally the velocity of the fluid in porous 

media is very low, and so such flow is also termed as “seepage flow” 

sometimes. Porous flow is a typical multiscale system, which usually 

involves three length scales, namely pore scale, representative 

elementary volume (REV) scale, and domain scale. 

At pore scale, the fluid motion in micro pores are tracked by solving 

the Navier-Stokes equations, together with suitable boundary conditions 

imposed on the solid matrix. Therefore, the pore scale simulations can 

provide detailed flow information within the pores, which is important 

for understanding the fundamental mechanism of porous flows.  

The REV scale is much larger than the pore scale. An REV is a 

control volume in a porous medium that contains many pores, and its 

size is much larger than the dimensions of pore but far less than the 

domain size of interest. At REV scale the porous medium can be viewed 

as a continuum medium, and some medium and fluid properties can be 

defined on REV such that they are constant throughout its volume. For 

example, the porosity at point ��is defined as 
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where ����,��	 ���,� and ����� are the volumes of the control cell, the 

pores in the cell, and the basic REV centered around �, respectively. 

Similarly, we can also define some apparent fluid quantities at the REV 

scale,  
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where � � �	 ����  is a specific fluid quantity (e.g., density and velocity) 

within the pores of the REV. For flows in porous media, the fluid 

variables can be related through some empirical or semi-empirical 

models, and the most widely used model is the Darcy law,  
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where K is the permeability depending on the structure of the medium. 

An example is the well-known Kozeny-Carman relation [Bear, 1972], 
� ��� ��� � , where � is the specific surface area of the medium and ��is 

a structure-dependent constant. 

As an effective numerical method, the LBE has also been 

successfully applied to porous flows. The applications of LBE for such 

flows follow two ways, i.e., pore-scale approach and REV approach. In 

the former approach the flows in the micro pores are described by the 

standard LBE straightforwardly, and the solid matrix is just treated as 

solid boundaries on which the bounce-back rule can be implemented. 

The pore structure is usually extremely irregular and much difficult to 

handle in classical CFD methods; The simple bounce-back rule, however, 

makes LBE an ideal tool for pore-scale simulations. Actually, the LBE 

has been used to study the fundamental mechanisms of porous flows of 

simple fluids as well as complex fluids such as multiphase fluids and 

non-Newtonian fluids. Pore-scale simulations with LBE are helpful for 

understanding the underlying physics of porous flows, which is key for 

developing REV-scale mathematical models. On the other hand, the 

pore-scale LBE approach requires the detailed knowledge of the pore 

structures, and so is limited to media with small dimensions. 

On the other hand, LBE based on REV scale does not solve the flows 

in micro pores, but solve the averaged flows at REV scale. In this 

approach, the interaction between the fluid and the medium is described 

by some empirical models. The main advantage of such LBE is that only 

a few statistical parameters (e.g., porosity and permeability) are required, 

and so the computational efficiency is much higher than the pore-scale 

approach. Consequently, REV-scale LBE can be used for engineering 

problems. However, the accuracy of such simulations relies on the 

porous flow models. In what follows we will briefly describe the pore-

scale and REV-scale LBE approaches.  

9.2.1   Pore-scale approach 

Pore-scale simulation of porous flows is a direct application of LBE, and 

the models described in previous chapters can be employed without 

difficulties. A key question for this approach is how to characterize the 
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pore structures. Generally, the distribution of a porous medium can be 

described by a phase function ����, which takes value 1 if � is in the pore 

and value 0 otherwise. Usually the distribution of micro-pores in a 

porous medium is rather disorder, and so ���� can be viewed as a random 

variable from which some statistical properties of the porous medium can 

be defined. For example, the porosity can be defined as ����������, and 

another useful concept, autocorrelation function, can be defined as 

[Adler, 1992],  
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where the symbol �⋅� represents the ensemble average operator. For an 

isotropic homogeneous medium, ���
� is a one-dimensional function 

dependent on �����
� only. 

In pore-scale simulations the pore structure of the medium should be 

obtained in advance. For most natural porous media such as rocks, soil, 

and fibers, the data can be acquired by imaging devices such as X-ray 

computed tomography. On the other hand, some artificial porous media, 

which are constructed following some rules so that they can satisfy some 

required statistical properties, can also be employed in pore-scale 

simulations. For example, we can randomly select a node on a lattice as a 

solid one with a certain probability, or randomly place some solid objects 

in the domain, until a given porosity is reached. Some more sophisticated 

generating methods that could reflect some other statistical properties of 

the medium have been developed from different viewpoints, such as 

sphere sedimentation method [Pilotti, 1998], hard-sphere Monte-Carlo 

method [Maier et al., 2000], score Brownian motion method [Madadi 

and Sahimi, 2003], random growth method [Zhang et al., 2006], and 

quartet structure generation set method [Wang et al., 2007].  

After obtaining the structure of the medium, the standard LBE 

method can be applied to the fluid in the micro pores. A key issue in 

pore-scale simulations is the data structure arrangement. The most 

straightforward one is the full-matrix structure, which uses a lattice of 

size ���×����×��� to cover the overall domain containing both the pores 

and the solid matrix, and defines a ���×����×��� state matrix to identify 

fluid and solid nodes. The distribution functions 	� �� ��� �� ��(� �� are 
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defined at both fluid and solid nodes, and are stored in a  �×����×����×����
full matrix. In this way, the indices of adjacent nodes are naturally linked 

by the discrete velocities, which makes the realization of LBE easily. A 

major disadvantage of the full-lattice structure is the waste of memory 

and the reduction of computational efficiency due to the large amount of 

solid nodes. A more efficient data structure for implementation is to 

make use of the sparse-matrix technique [Axner et al., 2008; Pan et al., 

2004; Schulz et al., 2001], in which only the data at fluid nodes are 

stored together with an index list to identify neighboring nodes of each 

fluid node. In practical simulations, the data at fluid nodes and the list of 

neighboring nodes can be allocated and sorted before the calculation, 

which makes this technique very flexible and adaptable for pore-scale 

simulations.  

The applications of pore-scale LBE can be dated back to 1989 when 

Succi et al. [1989] tested the Darcy law of a three-dimensional random 

porous medium, and a number of studies have been reported on this topic 

since then. For instances, Heijs and Lowe [1995] studied the Carman-

Kozeny constant for two types of porous media, while Koponen et al. 

[1998] measured the permeability of fiber media and found that the 

permeability is an exponential function of the porosity, which coincides 

with experimental results. Pan et al. [2001] studied the relationship 

between the permeability and the Reynolds number Re for random 

porous media constituted by spheres. They found that the LBE results 

agreed with experimental data well as �� is small, and were consistent 

with the Ergun relation for large values of Re. Furthermore, it was found 

that the relaxation time of the LBGK model affected the convergence 

rates and accuracy due to the artifacts in the bounce-back boundary 

conditions, and they suggested that the problem could be avoided by 

making use of the MRT-LBE models [Pan et al., 2006]. Manz et al. 

[1999] also performed some pore-scale simulations for flows in real 

porous media at different Reynolds numbers, and the numerical results 

were in quantitatively agreement with experimental data. Inamuro et al. 

[1999] studied the relationship between the pressure drop and the 

Reynolds number in a rectangular three-dimensional porous structure 

consisting of nine identical spherical bodies, and the numerical results 
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were consistent with the Blake-Kozeny correlation for low Reynolds 

numbers and with the Ergun correlation for high Reynolds numbers. 

Besides flows of simple fluids, LBE has also been employed to study 

porous flows of complex fluids at pore scale. As early as 1993, 

Gunstensen and Rothman [1993] simulated the two phase flows in 

porous media via the color LBE model, and soon Martys and Chen [1996] 

simulated the two-phase flows in porous media with different wetting 

properties using the Shan-Chen model. In their method, the interaction 

force between component � and the solid matrix is modeled as 

 � � � � � �� � � �

�

! �� � ��� � � � � ��
� �� � , (9.34) 

where the Boolean variable � takes 0 or 1 for a fluid or solid node. By 

adjusting the interaction strength �!
� , the wetting property of the solid 

can be changed. With this method, the relative permeabilities of some 

fluids in sandstones were measured, which were in quantitative 

agreement with experimental results. Hatiboglu and Babadagli [2007, 

2008] also applied the Shan-Chen models to investigate the miscible and 

immiscible flows in oil-saturated porous media, while Psihogios et al. 

[2007] performed some pore-scale simulations of non-Newtonian fluid 

flows. Up to date, pore-scale simulations of flows of simple/complex 

fluids in porous media are still an active topic. 

9.2.2   REV-scale approach 

Unlike pore-scale approach, an LBE at REV scale solves the average 

flow of an effective fluid in porous media. The input data for a REV-LBE 

model are statistical properties of the medium such as porosity and 

permeability rather than detailed pore structures. A variety of such 

models have been devised from different viewpoints, which will be 

briefly presented below. 

LBE based on Brinkman model 

The Brinkman model is an extension of the Darcy model by including an 

viscous term, 
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where 
�� is an effective viscosity that can be different from the fluid 

viscosity. This viscous term is important if a solid wall exists in porous 

media. Several LBE models based on the Brinkman model have been 

developed.  

The first Brinkman-LBE model was constructed based on the pore-

scale LBE by Dardis and McCloskey [1998] who combined the bounce-

back rule with the evolution of LBE, 

 � ��
� � � � � � � � ��

�"
� � � � �� �	 � 	 � 	 	 �� �� � � � � � � �� �� �� � � �� �
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, (9.36) 

where � � �� �� �  represents the effect of the collisions between fluid 

particles and solid matrix, 
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in which #��is a continuous variable between 0 and 1 that represents the 

average scattering density of each solid node. The value of�#��depends on 

the state variable ��of the node (������for a solid node and���for a fluid 

node), and satisfies�#����� if ��������and #������as������. It is obvious that  

�������as������, and in this case Eq. (9.36) describes the fluid flow within 

pores; as �����, the effect of����is similar to the bounce-back rule at a 

solid node. In this LBE model, the average density and velocity are 

defined as those in the standard LBE, 
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The additional collision term ��� in Eq. (9.36) essentially represents 

the resistance of the solid medium. Actually, an analysis of the pressure-

driven flow between the two flat walls shows that the hydrodynamic 

equation corresponding to the above Brinkman-LBE is 
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where � is the flow direction and �� is the corresponding velocity 

component, while �� �� �#�� is the resistance parameters. Comparing  

Eq. (9.39) with the Brinkman model (9.35), it can be identified that  
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These results indicate that the Dardis-McCloskey model (DM-LBE) 

actually solves the Brinkman equation (9.35). 

Spaid and Phelan [1997] also developed a LBE model (SP-LBE) that 

solves the Brinkman equation directly. This model includes the fluid-

solid interaction by modifying the velocity of the equilibrium distribution, 

just as the treatment of the body force in the Shan-Chen multiphase 

model. Thus the SP-LBE can be expressed as  

 � ��
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where the velocity in the equilibrium distribution function � � � �� � ��" �"
�	 ��  is 

defined by 

 � ��" � �
�

� �
�

�
, (9.42) 

where ���� −−−−
��� is the medium resistance. The definitions of the 

apparent density and velocity are still given by Eq. (9.38). As discussed 

in Chapter 3, the inclusion of the resistance force in this way will 

introduce some errors into the recovered equations. After neglecting 

these errors, the macroscopic equation corresponding to the SP-LBE is 

the Brinkman equation for steady flows. With this LBE, Spaid and 

Phelan [1997, 1998] studied some porous flows involving fibber media. 

Martys [2001] developed an improved version of the SP-LBE, in which 

the resistance force was included in the model following the method by 

Luo [1998]. Apparently this approach is still insufficient to overcome the 

artefacts induced by the force.  

LBE based on a generalized model 

For isothermal flows of incompressible fluids in porous media, some 

more general models beyond the Darcy and Brinkman models have been 

developed. For example, Nithiarasu et al.  [1997] proposed a generalized 

model that contains the linear resistance (Darcy) term, the viscous 

(Brinkman) term, and the non-linear resistance (Forchheimer) term. The 

model can be expressed in a formulation of generalized Navier-Stokes 

equations, 

 �' � �� , (9.43)  
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where � is the fluid density, � and � are the apparent velocity and 

pressure, �� is the effective viscosity, � is the total force including both 

the medium resistance and external forces, 
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where � is the fluid viscosity and � is the external body force. The 

structure function $��depends on the permeability � and the porosity �. 

For example, for a porous medium composed of solid particles, the 

Ergun correlation gives [Ergun, 1952], 
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where 
��is the solid particle diameter. It can be found that in the absence 

of porous medium (�����), the generalized Navier-Stokes equation (9.44) 

reduces to the standard Navier-Stokes equations. The second term on the 

right side of Eq. (9.44) is the Brinkman viscous term which is important 

near a wall. In many cases, the boundary layer of porous flows is very 

thin and this term can be neglected. However, for problems involving 

heat and/or mass transfer through boundaries, this term must be included. 

In the total force defined by Eq. (9.45), the first and second terms  

are the linear (Darcy) and nonlinear (Forchheimer) resistance forces, 

respectively. For high-speed flows, the nonlinear resistance must be 

considered, but for low-speed flows it can be ignored and in this case  

Eq. (9.44) reduces to the Brinkman equation.  

Guo and Zhao [2002] constructed a LBE model which can be used to 

solve the generalized Navier-Stokes equations (9.43) and (9.44). The 

evolution equation is 
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where 
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It noted the porosity is included in both the equilibrium distribution 

function and the force term in this model. Particularly, as �����, both 
� ��"
�	  and $� reduce to the standard ones. In addition, with these 

definitions the discrete errors induced by the forcing term are removed. 

 As in the standard LBE, the density and velocity of flow are defined 

as 
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Because the force � also contains the flow velocity ���Equation (9.50) is 

a non-linear equation of the velocity �, which can be solved explicitly to 

give 

 
�

� � �� �� � �
�

� �

�
�

�
, (9.51) 

where � is a temporary velocity defined by 
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and the parameters c0 and c1 are given by 
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The corresponding macroscopic equations can be obtained by the 

Chapman-Enskog analysis of the LBE (9.47), which can be written as 
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where � ��� �� � �  and �� ��"�� � ��� �� � � . In the incompressible limit, the 

above equations become the generalized Navier-Stokes equations (9.43) 

and (9.44).  

The LBE for the generalized porous flows (GLBE) is a unified model 

that can be used for flows in different media by choosing different values 

of porosity and permeability. Particularly, it can be applied to free flows 

and porous flows within the same framework: in the porous medium the 

porosity and permeability are set as those of the medium, and in the free 

flow area we can set ������� and ��→�∞. Furthermore, if we set $�����, the 

GLBE reduces to a simplified LBE model (SLBE) for the Brinkman 

equation (9.35). However, it should be emphasized that even this SLBE 

is different from the previous SP-LBE and the improved version of 

Martys: First, the inclusion of the resistance force in these models are 

different, and the SLBE model can accurately recover the desired 

macroscopic equations; And second, the porosity is included in the 

equilibrium distribution function of the GLBE and SLBE, which reflects 

the characteristics of the media, while those of the two SP-LBE models 

are just the same as that of the standard LBE for free flows.  

9.3   Applications of LBE for Turbulent Flows 

Simulation of turbulent flows is a challenging topic in computational 

fluid dynamics. Generally, numerical methods for turbulence can be 

classified into three types according to the resolved scales, i.e., direct 

numerical simulation (DNS) method, large-eddy simulation (LES) 

method, and Reynolds-averaged Navier-Stokes (RANS) method. The 

DNS solves the Navier-Stokes equations without any turbulence models, 

and the whole range of spatial and temporal scales of the turbulence is 

resolved. Therefore, the resolution of the computational mesh in DNS 

must be fine enough to capture the eddies with sizes ranging from the 

smallest dissipative scale (Kolmogorov scale) up to the integral scale 

(characteristic length of the domain). Turbulence theory shows that the 

number of grid points in DNS of three-dimensional turbulences is about 

����$���, where �� is the turbulent Reynolds number. Therefore the 

computational costs of DNS are rather expensive for high Reynolds 
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number turbulent flows. Unlike DNS, the LES solves only the large scale 

flows by filtering the Navier-Stokes equations with a spatial filter, and 

the unresolved small scale dynamics is modeled using certain sub-grid 

scale (SGS) models. Therefore, the range of resolved scales in LES is 

much smaller than that in DNS, and so the computational costs are 

significantly reduced. The RANS are ensemble averaged equations of the 

Navier-Stokes equations, with certain turbulence models to close the 

additional stress (Reynolds stress) induced by the fluctuations. The 

RANS method solves only the mean flow at macro scales, and is so the 

most economical method for turbulence simulation in engineering 

applications. As a new CFD method, the LBE has also found its 

applications in turbulence simulations following the above three 

frameworks. 

9.3.1   LBE-DNS approach 

As discussed in Chapter 2, the LBE can be viewed as a numerical solver 

for the incompressible Navier-Stokes equations. Therefore, it is natural 

to use LBE as a direct numerical simulation method for turbulent flows. 

The smallest scale that can be captured in LBE-DNS is the lattice unit, 

and the inherent parallelism of LBE enables the DNS to achieve large 

scale computations on high-performance computers. Another advantage 

of LBE as a DNS tool is the better isotropic property than traditional 

second-order numerical schemes. Theoretical analysis has shown that the 

LBE exhibits relatively low numerical dissipations and small numerical 

dispersive effects [Lallemand and Luo, 2000], which are crucial for 

capturing small scale dynamics in turbulence. Actually, soon after its 

emergence the capability of LBE in turbulence simulation has been 

verified by comparing with the results of pseudo-spectral methods for 

two- and three-dimensional decaying homogeneous isotropic turbulences 

(DHIT) [Chen et al., 1992; Martinez et al., 1994]. It was reported that the 

spatial and time distributions of velocities and vortices of both methods 

were in good agreement. The temporal profiles of turbulent kinetic 

energy, mean dissipation rate, and the Taylor microscale of DHIT were 

studied via LBE by Burattini et al. [2006], and the results were in good 

agreement with other simulation data and experimental measurements. 
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The DHIT in inertial and rotating reference frames was further studied 

via LBE [Yu et al., 2005a, 2005b], and the decay exponents of kinetic 

energy, the dissipation rate, and the low wave-number scaling of the 

spectrum, were all found to be in good agreement with the results from 

experiments and spectral method.  

Other than the DHIT, the LBE was also applied to some forced 

turbulences. For instance, Benzi and Succi [1990] studied the enstrophy 

cascade in a two-dimensional forced isotropic turbulence, and Qian et al. 

[1995] also simulated the two dimensional forced turbulence to study the 

energy inverse cascade range. ten Cate et al. [2006] simulated a three-

dimensional forced turbulence and studied the statistical quantities (e.g., 

energy dissipation rate and velocity derivative skewness), and the results 

confirmed that LBE can serve as an accurate method for DNS of 

turbulence Simulation of three-dimensional forced turbulences was also 

performed by Valiño et al. [2010], where some small scale properties, 

such as the energy spectrum, integral length, dissipation rate, velocity 

field, and vorticity structures, were compared with the results of pseudo-

spectral method with excellent agreement. Another prototypical turbulent 

flow, the Kida vortex flow, was simulated using a high-order LBE model 

[Chikatamarla et al., 2010] with extensive comparisons of some global 

and local statistical quantities with a spectral solution. 

Direct numerical simulations of turbulent shear flows with LBE were 

also performed by some researchers. Benzi et al. [1996] studied the 

extended self-similarity of anisotropic turbulence with an applied lateral 

force. The analysis of the structure functions showed that the extended 

self-similarity depended on the applied shear, and was invalid as the 

shear was strong. However, they found that a generalized scaling law 

could be defined so that it held in a wider range of shear. Yu and 

Girimaji [2005] performed a LBE-DNS of a steady homogeneous shear 

turbulence to investigate the dependence of the asymptotic state on the 

initial Reynolds number and strain rate. They found that the initial shear 

has a small influence on the asymptotic values the production-to-

dissipation ratio and the shear stress anisotropy, but affected the normal 

stress anisotropy greatly. In addition, it was shown that the initial Taylor 

microscale Reynolds number had significant effects on the turbulence 

parameters. These results were also compared with experimental data, 
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confirming that the LBE is a reliable method for anisotropic turbulence. 

Yu and Girimaji [2006] further simulated the homogeneous turbulence 

subject to periodic shear to investigate the effects of force frequency  

on the turbulence behaviors. It was reported that a critical frequency 

existed at which bifurcation occurred: the kinetic energy grew at lower 

frequencies but decays at higher ones. They also discussed the 

applicability of some turbulent closures to unsteady shear turbulences, 

and pointed out that the inviscid-rapid-distortion theory could not capture 

the turbulent features, while the second-moment closure models could 

predict the growth at low frequencies and the decay at high frequencies, 

but the critical frequency was underestimated. 

Turbulent flows involving solid walls were also simulated using LBE 

as a DNS tool. Early in 1991, Succi et al. [1991] simulated the turbulent 

channel flow to study the bifurcation of a two-dimensional channel flow. 

It was found that there existed a critical Reynolds  number above which 

the flow exhibited a stable periodic limit cycle, and a secondary 

bifurcation with a smaller amplitude and a higher frequency could be 

induced. Eggels [1996] simulated the fully-developed channel flow with 

heat transfer via a thermal LBE, and the flow statistics obtained from  

the direct simulations by spatial/time-averaging were compared with 

previous DNS results. Amati et al. [1997] performed a high resolution 

DNS of the turbulent channel flow on a parallel computer, focusing on 

the near wall vorticity structure and its effects on the scaling laws. Later 

they further simulated a channel flow with a Reynolds number up to 

3300 [Amati et al., 1999], and the second-order statistics were in 

reasonable agreement with previous database. Toschi et al. [1999] 

studied the intermittency and structure functions of a turbulent channel 

flow via a three-dimensional LBE, and it was found the increase of 

intermittency near the wall was strongly related to the mean shear, while 

the velocity fluctuations at large scales of the channel flow were more 

intermittent than those of homogeneous isotropic turbulences. Lammers 

et al. [2006] simulated a pressure-driven channel flow based on a grid 

with resolution down to the Kolmogorov scale, and the one-point 

statistics compared well with the results of pseudo-spectral method and 

high-quality experimental data. However, some differences in pressure 

fluctuations were observed, which were attributed to the weak 



 Other Applications of LBE 343 

compressibility of the LBE. Spasov et al. [2009] simulated a turbulent 

channel flow with an entropic LBE, where the entropy condition was 

used to render the numerical stability on coarse grids. It was shown the 

entropy stabilized LBE was able to achieve accurate results even on low 

resolution grids. DNS of fully-developed turbulent channel flow was also 

performed by Bespalko et al. [2010], with a comparison with data of a 

spectral method. A two-dimensional decaying turbulence in a square 

domain with no-slip walls was simulated by Házi, G. and Tóth [2010], 

who observed strong small-scale vortices near the no-slip walls, which 

agreed the earlier pseudo-spectral simulations. It was also observed that 

the decay of the enstrophy and kinetic energy could be described by 

some power-laws where the exponents depended on the Reynolds 

number. 

9.3.2   LBE-LES approach 

Like the classical DNS methods based on the Navier-Stokes equations, 

the LBE-DNS approach for turbulence is limited to moderate Reynolds 

number flows due to the need for intensive computational resources. In 

order to improve the capability of LBE for turbulent flows with high 

Reynolds numbers, some LBE methods coupling with large-eddy 

simulation (LES) techniques have been developed. Somers [1993] and 

Eggels and Somers [1995] proposed a collision model for the four 

dimensional Face-Centered- Hyper-Cubic FCHC LBE in which a SGS 

model was incorporated directly. The collision operator drives the 

distribution functions to the desired equilibrium solution,  
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(9.56)

 

where the weight factors %��are the multiplicities of the edges caused by 

the projection to D dimensional space and satisfy ����% �� ; � is the 

kinematic viscosity, and � is the turbulent shear stress given by certain 

sub-grid scale (SGS) models that vanishes at resolved scales. Using this 

model, Somers [1993] simulated the turbulent pipe flow at �����"�����, 
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and the simulated friction was in quantitative agreement with the Blasius 

power law. Eggels [1996] also simulated the turbulent flow in a baffled 

stirred tank reactor, where the effect of the impeller on the flow was 

considered as a spatially and/or temporally varying force. The statistical 

results including the mean flow and turbulence intensities were found to 

be in close  agreement with experimental data, indicating that the method 

could be applied to practical engineering problems. Lu et al. [2002] 

further simulated the turbulent flow in a stirred tank driven by a standard 

Rushton turbine via this method with a nonuniform mesh, and the 

statistical results were in good agreement with previous experimental and 

simulation data. 

The LBE-LES method developed by Eggels et al. implements the 

SGS model directly, which requires the explicit computation of the 

velocity gradients. Hou et al. [1996] proposed an alternative LBE-LES 

approach in which the standard Smagorinsky sub-grid model was 

incorporated to include the energy dissipation induced by the interaction 

between resolved and unresolved scales. In this method the local strain 

intensity and the stress tensor are calculated locally from the moments of 

the nonequilibrium distribution function, which enables the computation 

more efficient. Instead of solving the discrete velocity kinetic equation 

for the original distribution functions, the method solves the a filtered 

discrete Boltzmann equation, 

 � ��
� � � � � � �"
� � � � � � � �	 � 	 � 	 	� � � � � � � �� � �� �

�
,  (9.57) 

where the overline symbol represents a filtered quantity, i.e., 

 � � � � � � �! 
� � �� �� � � � �� � ,  (9.58) 

where !�����′� is a given spatial filter kernel and the integral is over the 

entire domain. The key problem in developing a LBE sub-grid model lies 

in the closing of the averaged nonlinear collision operator. Hou et al. 

assumed that the filtered particle distribution would approach to a local 

filtered equilibrium distribution,  
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where � ��"
�	  has the same formulation as the standard one, �  and �  are 

the filtered mean density and velocity, and �  is an effective relaxation 

time dependent on turbulent eddy viscosity, 
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where ��� is the physical kinematic viscosity, and� ��

�� is the turbulent 

eddy viscosity. For the Smagorinsky SGS model, ��

� is given by 

 �
�

� �� � � , (9.61) 

where ����&��� is a model constant, � is the filter width (which is usually 

set to be the lattice spacing �� in LBE), and   is the large eddy strain rate 

given by 
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while ���� � �� �� �� � �  is the magnitude of the strain rate. 

An advantage of the above LBE-LES is that the local strain rate can 

be calculated from the second-order moments of the nonequilibrium 

distribution [Hou et al., 1996]. It can be shown from the Chapman-

Enskog analysis of LBE that (refer to Eq. (1.58)),  
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and so,  
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Note from Eq. (9.60) that �  is also a function of � � ,  
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Therefore, from Eqs. (9.64) and (9.65) one can obtain 
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The total relaxation time is then 
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� . (9.67) 

In practical applications, we can first compute #�"
�	  from the first 

equation of Eq. (9.63), then obtain its magnitude ∏, and finally compute 

the total relaxation time by Eq. (9.67).  

The above LBE-LES method has been applied to a variety of 

turbulent flows. Hou et al. [1996] studied a two-dimensional driven 

cavity flow at Reynold numbers up to ��% on a �"%� lattice, Yu et al. 

[2005] simulated the decaying homogeneous isotropic turbulence and 

compared the LBE-LES results with those of the LBE-DNS and the DNS 

based on the Navier-Stokes equations. It was pointed out that the LBE-

LES could accurately capture the prominent large scale behaviors. 

Djenidi [2006] studied a grid-generated turbulence, and the results 

agreed quite well with experimental data. He also investigated the 

turbulent flow over a crossbar at a Reynolds number about 1600, and the 

vortex structures at the crossbar and the fingerlike structures induced by 

the intermittent lateral motions, which were observed experimentally, 

were successfully reproduced. Thürey and Rüde [2009] coupled the 

LBE-SGS model with a surface capture technique and simulated several 

free-surface problems such as droplet falling and dam breaking. Mayer et 

al. [2007] studied the flow in a sub-channel of a VVER-440 type fuel rod 

bundle, and the results agreed well experimental data. The LBE-SGS 

model was also extended to turbulent particulate flows by coupling a 

lattice gas method to simulate particle transport problems [Chopard 

Masselot, 1999; Feng et al., 2007]. 

The above LBE-LES method was also extended from BGK 

formulation to MRT formulation [Krafczyk et al., 2003], where the eddy 

viscosity is incorporated into the LBE through the relaxation times for 

the shear modes. An advantage of the LBE-LES with MRT collision 

models is that the small scale oscillations, which may not only lead to 

numerical instability but also compete with the physical turbulent 

fluctuations and degrade the simulation accuracy, can be reduced by 

tuning the corresponding relaxation times. Using this method, Yu and 

Girimaji [2005] and Yu et al. [2006] studied the near field behaviors of a 
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rectangular jet with different aspect ratios and Reynolds numbers. The 

results were compared with experimental data and good agreements were 

observed. They also compared the performances of the MRT- and BGK-

based LBE-LES methods, which showed that the MRT version was 

superior in terms of numerical stability, accuracy, and the reachable 

Reynolds number.  

Recently, Premnath et al. [2009] extended the MRT-based LBE-LES 

for wall-bounded turbulent flows by implementing the van Driest 

damping function for the filter width, 
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, (9.68) 

where� (� is a model constant, and ��� is the dimensionless distance  

from the wall normalized by the viscous length, i.e., ���
��� � �)� �� � � � � , 

where �) is the wall shear stress and � is the distance to the wall. With 

this generalized LBE-LES, Premnath et al. [2009a] simulated a fully 

developed turbulent channel flow at Reynolds number 183.6 and a three-

dimensional cavity flow at �����������. They further extended the 

method by incorporating the dynamic Smagorinsky SGS model into the 

MRT-LBE [Premnath et al., 2009b], which was achieved by setting the 

model constant of the eddy viscosity � in Eq. (9.61) dynamically 

according to two sets of filtered variables, 
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where the operator “�⋅�” denotes spatial/temporal averaging, and the two 

tensors�� and 	�are defined locally by 

  � ( (
�* � * � *�+ � � �� � ,    �� �( ((

�* �* �*� � �� � � �  , (9.70) 

where (�  is the width of a test filter which is larger that �, and the 

symbol “ ) ” represents the filter operator on the test filter. In this method 

a test-filtered quantity can be obtained by applying the test-filter to the 

quantity filtered by the original one [Premnath et al., 2009b]. It should be 

noted that a similar idea was also employed in BGK-based LBE-LES 

method earlier [Menon and Soo, 2004].  
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LBE-LES methods with more advanced SGS models other than the 

Smagorinsky one were also developed recently. For instance, Jafari and 

Rahnama [2011] proposed a LBE-LES method with the shear-improved 

Smagorinsky model, while Dong et al. [2008] incorporated the inertial-

range consistent Smagorinsky model into the LBE, where the eddy 

viscosity is given by 

 � �
� �� � � ��

� �* �*� � �/� � � �� � � � , (9.71) 

where �∞ is the Smagorinsky constant based on infinite Reynolds 

number and�� is a parameter dependent on the filter kernel function. With 

this method Dong et al. [2008] simulated a three-dimensional decaying 

homogeneous isotropic turbulence, and the comparison with the DNS 

and experimental data showed that this LBE-LES was superior to the 

original one.  

Instead of using the concept of eddy-viscosity, Sagaut [2010] and 

Malaspinas and Sagaut [2011] introduced the Approximate De-

convolution Model (ADM) into LBE, which was constructed  directly 

based on the nonlinear Boltzmann equation. This LBE-LES model 

involves no implicit assumption on the sub-grid scale dynamics and is 

therefore more general. The starting point of the ADM-LBE is the 

filtered Boltzmann equation, 
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where � � � �	 	� � � �� , and the filtered quantity is defined by � 0� �� , 

where � is a convolution filter kernel. An approximated inverse filter, �, 

is then defined to reconstruct the unfiltered quantity,  

 � �%� � �0 � �� � , (9.73) 

where � is the identity and � the grid resolution, and %�&� � is the  

order of the reconstruction. The reconstructed distribution function is 

then defined by 	 	0 � 0� , which is an approximation to the unfiltered 

distribution function  	   and it can be assumed that � � �	 	 0� � . Then, the 

ADM-BGK equation is obtained from Eq. (9.72), 
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from which an ADM-LBE-LES can be constructed. Obviously, the 

implementation of this method follows two steps, i.e., (1) Standard 

collision and streaming steps,  
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,  (9.75) 

where the formulation of � ��"
�	  is the same as the standard one, and (2) 

Filtering the post-streaming distributions, 
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(9.76)

 

where the �* � are the D-dimensional Cartesian basis vectors, ���� is the 

number of points of the filter stencil, � and 
# are the strength and 

coefficients of the filter. The ADM-LBE was validated by comparing the 

simulation results of the three-dimensional time dependent mixing layer 

with the DNS measurements [Malaspinas and Sagaut, 2011]. 

Also starting from the filtered Boltzmann-BGK equation, Girimaji 

derived another LBE-LES method [2007]. Instead of using the particle 

velocity � and the distribution function  	
�

������� ��, a new microscopic 

velocity space �� � �� �  and a new distribution function �������
�
�� were 

introduced, where � � �� � �  is the unresolved turbulent velocity. From 

the original Boltzmann equation, a kinetic model for the filtered 

distribution function �  was derived,  
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where the sub-grid stress � �� �  can be modeled with certain SGS models. 

Then suitable discretizations of this kinetic equation can lead to some 

LBE-LES schemes. With the Smagorinsky model, Girimaji [2007] 

simulated the three-dimensional decaying isotropic turbulence and 

compared the results with the DNS data, and it was claimed that this new 

method could produce more accurate results than the one developed by 

Hou et al. [1996]. 

It is noted that LBE-LES methods listed above are designed for 

isothermal turbulences, and extensions to thermal turbulences were also 
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reported in the literature [e.g., Eggels and Somers, 1995; Liu et al., 2006; 

van Treeck et al., 2006].  

9.3.3   LBE-RANS approach 

The RANS describes the mean motion of turbulent flows, in which  

each flow variable is decomposed into a mean and a fluctuating parts, 

e.g., �� �� � �  and � � � �� � , where ���� ��� and����� ��� are the 

mean velocity and pressure, respectively, with �⋅� being the ensemble 

averaging operator. The RANS has the same formulation as the Navier-

Stokes equations but with an extra Reynolds stress � �� �1 2� ��  that 

should be modeled by a turbulence model.  

Some LBE methods based on the RANS have been developed. Succi 

et al. [1995] proposed the first such LBE based on the popular ,-��

turbulence model. Similar to the LBE-SGS model, in this method the 

mean flow was solved by a standard LBE with an effective relaxation 

time,  
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where � �$ 	� 1 2  is the mean distribution function, and the corresponding 

equilibrium distribution function has the same formulation as that of the 

standard LBE, while the effective relaxation time ����&' is determined from 

the total viscosity, 
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in which the eddy viscosity is determined by the turbulent kinetic energy 

, and dissipation rate ��: 
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The transports of the turbulent kinetic energy , and dissipation rate ���are 

governed by the following two equations: 
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where the stress tensor and strain rate are defined from the mean velocity, 
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The parameters �k , �ε , Cε1 , and Cε2 in Eqs. (9.82) and (9.83) are model 

constants. The strain rate S can still be computed from the second-order 

moments of the nonequilibrium distribution functions as in the LBE-LES 

method [Filippova et al., 2001; Premnath and Abraham, 2004].   

The ,�� equations (9.82) and (9.83) are two typical diffusion-advection 

equations with source terms, and can be solved in the LBE framework as 

proposed by Succi et al. [1995]. The LBE schemes can be expressed as 
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where �,�and �ε�are the corresponding relaxation times for the two types 

of distribution functions, respectively, and �,��and �ε� are used to recover 

the source terms in the ,���equations. In the method of Succi et al. 

[1995], a �-dimensional nearest neighbor lattice was used, and the 

equilibrium distribution functions were constructed to satisfy 
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One such choice is  

 
�

�
� �

��"
�

,

� � �

� ��� �� �� �� �

� �
� ,  

�
�

� �

��"
�

� � �

� ��� �� �� �� �

� ��
� . (9.88) 



352 Lattice Boltzmann Method and Its Applications in Engineering 

The two terms �,��and �ε� could also be carefully chosen to recover the 

source terms in Eqs. (9.82) and (9.83). 

An alternative approach that combines the LBE with a finite-

difference scheme for the ,���equations was proposed by Teixeira 

[1998], which was further extended by incorporating a grid-refinement 

technique as well as a turbulent wall-function model. With this approach, 

Filippova et al. [2001] simulated the flow around a NACA 4412 with 

small angles of attack at two Reynolds numbers (��%�and �×��%), and the 

results agreed well with experimental data. The method was also 

employed to simulate the developed turbulent flow across a two-

dimensional periodic array of compressor blades, with satisfactory 

results in comparison with the inviscid solutions. 

Besides the applications of LBE as a numerical tool for turbulent 

flows, there are also increasing interests in developing turbulence models 

based on kinetic theory and LBE. For instance, after noticing the analogy 

between the turbulent fluctuations and molecular thermal fluctuations, 

Chen et al. [2003; 2004] suggested a turbulent BGK equation, 
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where � � � �	 �� �  is the distribution function of the fluid parcels (instead of 

fluid molecules) moving with velocity ��at position � and time �, ���� is 

the turbulent relaxation time associated with the turbulent eddy 

interactions, and 	�

�" is the Maxwellian distribution function centered 

around the turbulent mean velocity � with a half-width of �,�� (,�is the 

turbulent kinetic energy). Similar to the original Boltzmann equation, the 

averaged turbulent variables can be defined as the moments of � � � �	 �� � , 

i.e., 
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	 	 , 	� � � �� � �� � � � � � �� � � . (9.90) 

Furthermore, the Reynolds stress can be defined as  

 � �� � �� . � . 	� � �� �� � �  � . (9.91) 

The turbulent relaxation time in the extended BGK equation could  

be obtained by the renormalization group method [Chen et al., 2003, 
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Chen et al., 2004],  

 �
� � � � � ���� , ��� � 3 �� � � , (9.92) 

where ���is the molecular relaxation time, and � is a measure of the local 

velocity gradient which is related to turbulent time scales. The functional 

form of 3 was suggested to be a harmonic mean of the turbulent time 

scales [Chen et al., 2003], which could be chosen by matching certain 

turbulence models. Some turbulent LBE models can be derived by 

discretizing Eq. (9.89) with certain numerical schemes. In addition to 

developing turbulence models based on kinetic theory, there are also 

some efforts to construct such models based on LBE directly. For 

example, Succi et al. [2000, 2002] discussed the potential role of  

re-summation techniques in LBE for developing sub-grid turbulence 

models, and examined a coarse-grained LBE by incorporating the effects 

of unresolved scales into a renormalized relaxation time. 

9.4   Immersed Boundary-Lattice Boltzmann Method and Its 

Applications 

For simulation of fluid flows by conventional methods, the solution of 

governing equations is strongly coupled with the implementation of 

boundary conditions. Due to this feature, when the flow around a 

complex geometry or a moving object is considered, the computation 

often involves tedious grid generation and complicated solution process. 

To ease the computational process, it is desired to develop an approach 

which can decouple the solution of governing equations and the 

implementation of boundary conditions. The immersed boundary method 

(IBM) is such an approach. IBM was initially proposed by Peskin [1977] 

for simulation of blood flows in the heart. As shown in Fig. 9.3, it uses a 

fixed Eulerian mesh for the flow field, and a set of Lagrangian points to 

represent the solid boundary immersed in the fluid. The basic idea of 

IBM is to treat the physical boundary as deformable with high stiffness. 

A small distortion of the boundary will yield a force which tends to 

restore the boundary into its original shape. The balance of such force is 

distributed into the Eulerian mesh points and the governing equations 
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with a body force are solved in the whole domain including exterior and 

interior of the object. Since the governing equations are solved without 

considering the presence of immersed objects, the computational domain 

is often chosen as a regular shape and the Cartesian mesh is usually used 

for Eulerian mesh points. After the work of Peskin [1977], various 

improvements [Goldstein et al., 1993; Lai and Peskin, 2000; Silva et al., 

2003; Ye et al., 1999] have been made.  

In most applications of IBM, the solution of flow field is obtained by 

solving the incompressible Navier-Stokes equations. As shown in this 

book, the lattice Boltzmann method (LBM) has been proven to be an 

efficient approach for simulation of incompressible flows. Like the  

IBM, the standard LBM is usually applied on Cartesian meshes. Due to 

this common feature, it is desirable to combine these two methods 

together. The first attempt for this combination was made by Feng and 

Michaelides [2004, 2005]. They successfully applied immersed 

boundary-lattice Boltzmann method (IB-LBM) to simulate the rigid 

particle motion. Later, Niu et al. [2006] proposed a momentum 

exchange–based IB-LBM for calculation of restoring force at the 

boundary point. Peng et al. [2006] developed a multi-block IB-LBM for 

simulation of flows around a circular cylinder and an airfoil. Both works 

adopt the MRT-LBE to get the flow field. 

In this section, the basic procedure of IB-LBM and its improvement 

for satisfying no-slip boundary conditions will be described. 

9.4.1   Conventional immersed boundary-lattice Boltzmann 

method 

Basic equations 

For viscous incompressible flows in a two-dimensional domain �  

containing an immersed boundary in the form of closed curve 4, as 

shown in Fig. 9.3, the governing equations of immersed boundary 

method can be written as 

 �' � �� , (9.93) 

 �
�

� �) � � � ' � � ' � � � � �! ")

�
� � � �� 
 , (9.94) 
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 � �� � � � � ��� � � � ���  � . (9.97) 

Here ��� ��� �� and� � are the Eulerian coordinates, fluid velocity, fluid 

pressure and force density acting on the Eulerian mesh point, 

respectively. � and � stand for the Lagrangian coordinates and boundary 

force density. ����−�������� is the Dirac delta function. Equations (9.93) 

and (9.94) are the continuity and momentum equations for flow field. 

Equations (9.95) and (9.96) describe the interaction between the 

immersed boundary and the fluid flow, by distributing the boundary 

force at the Lagrangian points to Eulerian points and interpolating the 

velocity at the Eulerian points to Lagrangian points. Equation (9.97) 

states that the boundary force density on the segment is determined by 

the boundary configuration at time �. 

Under the framework of lattice Boltzmann method, equations (9.93)-

(9.94) can be written as [Feng and Michaelides, 2004, 2005] 

� �� �
� � � � � � � � � � � � �

�

�"
� � � � � � � � � �	 � 	 � 	 � 	 �� �� � � � � � � �� �� �� � � � �� � � �

�
c c  (9.98) 

Eulerian point

Lagrangian point

 

Fig. 9.3.  Immersed boundary illustration. 
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where �� is the external force density at an Eulerian point, and ��� are 

coefficients which depend on the selected lattice velocity model.  

Calculation of restoring force 

As � is computed from the force density at the boundary point, �, by 

using Eq. (9.95), the calculation of � is critical in the application of IBM. 

In the following, we will show three ways to compute �.  

The first way is the original method of Peskin [1977]. At time �, it is 

assumed that the center of mass of the rigid body is at ����� and the 

instantaneous body rotational matrix is ����. So the position of a 

reference point �
*�  can be determined by 

 5 6��� ���� � � � � �� �
* *� � �� � �� � � � � . (9.99) 

For the boundary point �
*�  which is correspondent to the reference  

point �
*� , it is allowed to be slightly deformed by the fluid. When the 

reference point and the boundary point are not at the same position,  

there will be a displacement � �
* * *� �� �� , and a restoring force �� is 

generated that tends to restore the boundary point back to the reference 

point. It can be modeled by a linear spring relation 

 * *,� �� � , (9.100) 

where ,�is the spring constant. 

Equation (9.100) is very simple. However, there is a user-defined 

parameter ,, which may affect the accuracy of numerical solution. To 

overcome this drawback, Fadlun et al. [2000] proposed the direct forcing 

method. The idea of this way is very simple. Since the boundary point is 

also the fluid point, application of Eq. (9.94) at the boundary point 

directly gives 

 �
�

� �) � � � � ' � � ' � � � �! ")
�

� � � �� 
 . (9.101) 

Suppose that at the time level �����#, the velocity and pressure fields are 

known. At the time level �����#�� , the force density at the boundary point 

can be calculated by 

 
�

�
# #
� �# # # # #

� � � � ��
�

�
�

� �� � � � � ' � � ' � � � �! "
� �

� � � �� 

�

, (9.102) 
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where �#��  is the wall velocity. Note that for the application of  

Eq. (9.102), we need to compute the velocity and pressure gradients at 

the Eulerian points first, and then interpolate them and the fluid velocity to 

the boundary points through Delta function interpolation. The calculation 

of derivatives brings inconvenience to the application of IB-LBM.  

The third way to compute the restoring force was proposed by Niu  

et al. [2006]. It is based on Newton’s second law (the momentum 

exchange equals to the impulse). This way is only applicable for  

the lattice Boltzmann method. By using Lagrangian interpolated 

polynomials, the density distribution functions on the boundary point at 

all lattice velocity directions can be calculated by 

 
�� ���

� � � � � �
�%&� *%&�

/ ,* / �%
� / � �*
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	 � 	 �

� � � �� 7 � 7

� �� �� �� �  � ��   � �  � �  � �! "! "
� - -X x , (9.103) 

where �%&��and *%&� are the maximum numbers of the mesh points in 

the ��and � directions, respectively. Note that Eq. (9.103) is applied to all 

lattice velocity directions. If we view the boundary point from the flow 

domain, the lattice velocity directions can be classified as outgoing 

directions (from the flow domain to the boundary point) and incoming 

directions (from the boundary point to the flow domain). On the other 

hand, if we view the boundary point from outside of the flow domain 

(inside the object), the lattice velocity directions can also be classified as 

outgoing directions (from the boundary point to the flow domain) and 

incoming directions (from the flow domain to the boundary point). 

Obviously, incoming directions of one view are outgoing directions of 

another view. Similarly, outgoing directions of one view are incoming 

directions of another view. Therefore, the application of bounce back rule 

at the boundary point is equivalent to exchanging the density distribution 

functions between a pair of opposite lattice velocity directions. By using 

the bounce back rules for the density distribution functions of all 

directions, the no-slip boundary condition is satisfied and we have a new 

set of distribution functions on the boundary points as shown below, 

 
�

� � � � � � � � /
/ � / �

�

	 � 	 �
�

�
� �

�
� � � �

c
ı , (9.104) 

where ı  denotes the opposite direction of ��; �/�� � �/� � � �� � �� ��

is the velocity of the boundary with �����ΩΩΩΩ�representing the translational 
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and angular velocity of the rigid body, and � is the mass center of the 

body, �/ is its boundary position. Consequently, the boundary force 

density can be calculated via the momentum- exchange method, that is, 

 � � � � � � � � �/ / � /� 	 � 	 �� �� � �� ��� � � �c ı ı

ı

. (9.105) 

Note that according to Newton’s third law, the hydrodynamic force 

exerted on the boundary by the fluids and the force exerted on the fluids 

by the boundary have the same magnitude and opposite direction.  

�-function interpolation 

The application of Eqs. (9.95) and (9.96) involves the surface and 

volume integrals, and continuous �-function interpolation. In practice, the 

integral forms are often replaced by the discrete forms. The two-

dimensional discrete forms can be given by 

 � � � � � � � �' '
�* / �* �* / '

'

� � � �� � ��f x F X x X , (9.106) 
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where ∆�'� is the arc length of the boundary element, ∆�� and ∆�� are 

respectively the mesh spacing in the���and���directions����*� is a kernel 

distribution, which can be written as 
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�

� � � �
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There are many ways to define the �-function, and two popular 

formulations are given as follows, 
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For the application of IB-LBM, at first, we need to compute the force 

density at the boundary points and then distribute it onto the Eulerian 

points. After that, we solve the LBE with the force term �  to update the 

velocity field. Then we interpolate the new (corrected) velocity field 

from the lattice (Eulerian points) to the boundary points and re-calculate 

the force density at the boundary point. The process continues until the 

convergence criterion is satisfied. 

It should be noted that in the conventional IB-LBM, the force density 

is pre-calculated. With the known force density �  , the new (corrected) 

velocity field is explicitly determined. In the process, there is no 

guarantee that the velocity at the boundary point obtained from 

interpolation of corrected velocity field at Eulerian points equals to the 

wall velocity. This means that the no-slip boundary condition may not be 

satisfied. This drawback may cause flow penetration to the solid body, 

which can be clearly observed in Fig. 9.4.  

In the following, we will present a boundary condition-enforced  

IB-LBM, in which the force density is considered as an unknown, and is 

determined from the no-slip boundary condition.  

 

Fig. 9.4.  Flow penetration in the results of conventional IB-LBM for flow around a 

circular cylinder (Re = 20). 
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9.4.2   Boundary condition-enforced immersed  

boundary-lattice Boltzmann method 

We start with the LBE. As shown by Guo et al. [2002a], the LBE with 

external force (Eq. (9.98)) cannot properly consider the discrete lattice 

effects to the density and momentum. In order to correctly recover the 

viscous and incompressible Navier-Stokes equations involving the external 

force, the contribution of the force to both momentum �� and momentum 

flux ��� should be considered. To have a better representation of the 

forcing term in LBE, Guo et al. [2002a] proposed a formulation with 

higher-order terms in �. With this scheme, the LBE can be written as 

� ��
� � � � � � � � � � � ��"
� � � � � � � �	 � 	 � 	 � 	 � $� �� � � � � � �� �� �� � � � ��� � �
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, (9.111) 
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It can be seen clearly from Eq. (9.113) that the fluid velocity consists of 

two parts. One is contributed from the density distribution function 

(solution of Eq. (9.111)), and the other is contributed from the force 

density � . If we define the intermediate velocity 0�  as  

 � �

�

	0 � �� �� , (9.114) 

and the velocity correction �� as 

 
�

�
��� ��� � , (9.115) 

then Eq. (9.113) can be written as 

 0� �� � �� . (9.116) 

In the conventional IBM, �  is computed in advance. From Eqs. (9.115) 

and (9.116), we can see clearly that the velocity correction �� and 

corrected velocity � are explicitly calculated. Thus, there is no guarantee 

that the velocity at the boundary point interpolated from � satisfies the 
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no-slip boundary condition. To overcome this drawback, we have to 

consider the force density �  as an unknown, which is determined in such 

a way that the velocity at the boundary point interpolated from � satisfies 

the no-slip boundary condition. Similar to Eq. (9.95), the velocity 

correction �� at Eulerian points is distributed from the velocity 

correction at the boundary (Lagrangian) points. Here, we can set an 

unknown velocity correction vector '
/��  at all boundary points. The 

velocity correction �� at the Eulerian point can be obtained by the 

following Dirac delta function interpolation  

 � � � � � � � � � ��/ / /� � � � 
�
4

� ��� � � � � �� � � , (9.117) 

The discrete form of Eq. (9.117) can be written as 
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/ / �* �* / '

'
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According to Eq. (9.116), the fluid velocity at Eulerian points can be 

corrected as 

 � � � � � � � � ��* �* �*� � �0� �� � � � � �� , (9.119) 

where � � ��* �
0� � is the intermediate fluid velocity obtained from  

Eq. (9.114). Note that the unknowns in Eqs. (9.118) and (9.119) are the 

velocity corrections at the boundary points, '
/�� . To satisfy the no-slip 

boundary condition, the fluid velocity at the boundary points obtained by 

interpolation using the smooth delta function must be equal to the wall 

velocity � � �'

/

'
/ �� �  at the same position. Its mathematical expression is  
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Substituting Eq. (9.119) into Eq. (9.120), we can get the following 

equation system 
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which can be further put as the following matrix form 

 ��� � , (9.122) 
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Here �
�*�  is the element of the transpose matrix of ���*�,�� is the number 

of Lagrangian (boundary) points and � is the number of the adjacent 

Eulerian points around the boundary. Note that the elements of matrix � 

are only related to the boundary points and their adjacent Eulerian points. 

By solving the above equation system (9.122), we can obtain the 

unknown velocity correction at all boundary points. The number of 

unknowns in (9.122) is the same as the number of boundary points and 

the velocity corrections at all the boundary points can be computed 

simultaneously by using a direct method or iterative method to solve 

(9.122). After obtaining the velocity correction at the boundary point, the 

velocity correction and the corrected velocity at the Eulerian points can 

then be calculated by Eqs. (9.118) and (9.119).  

Since the no-slip boundary condition is satisfied in the boundary 

condition-enforced IB-LBM, the problem of flow penetration is avoided 

in its results. This can be seen clearly in Fig. 9.5, which compares the 

streamlines for the flow around a circular cylinder at ������� obtained 

respectively by the conventional IB-LBM and boundary condition-

enforced IB-LBM.  

Another advantage of IB-LBM is the simple calculation of force on 

the boundary point. From Eq. (9.115), we can easily compute the force 

density (force per area) at the boundary point by 

 �' '
/ / ��� ��� � . (9.125) 
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The integration of '

/�  over the whole surface of the immersed object will 

give the total force on the object.  

9.5   Summary  

As an efficient new numerical method for fluid flows, the LBE has found 

wide applications in a variety of complex flows that classical CFD 

methods may encounter difficulties. In this chapter we have presented a 

brief introduction of the applications in particulate flows, flows in porous 

media, turbulent flows, which reveals the potential of LBE in these fields. 

We also presented the development of hybrid LBE with the immersed 

boundary method for flows with complex geometries or moving objects. 

Besides these applications, LBE has also been being employed in many 

other areas with successes, such as electronic kinetic flows [e.g., Guo  

et al., 2005; He and Li, 2000; Wang and Kang, 2010], magnetohydro-

dynamics [e.g., Breyiannis and Valougeorgis, 2004; Chatterjee and 

Amiroudine, 2010; Dellar, 2002], non-Newtonian flows [e.g., Aharonov 

and Rothman, 1993; Boek et al., 2003; Yoshino et al., 2007], soft matter 

systems [e.g., Dünweg and Ladd, 2009], shallow water flows [e.g., Zhou, 

2004], reaction and combustion [Ayodele et al., 2011; Kang et al., 2010; 

Machado, 2012; Succi et al., 1997; Filippova and Hänel, 2000], radiation 

  

Fig. 9.5.  Streamlines for the flow over a cylinder at ��� �� ��. Left: Conventional  

IB-LBM; Right: Boundary condition-enforced IB-LBM. 
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heat transfer [Asinari et al., 2010; Ma et al., 2011; Mishra and Roy, 

2007], relativistic hydrodynamics and quantum mechanics [Dellar et al., 

2011; Mendoza et al., 2010], and so on. Actually, after about two 

decades of rapid development, the LBM has achieved much progress in a 

wide variety of fields, and the applications are spreading rapidly from the 

classical fluid mechanics to other more complex fields. However, there 

are still many challenging problems, and it is now still an active research 

area. 
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Appendix A 

Source Code for 2D Cavity Flow 

This appendix provides the source code (based on the D2Q9 model) for 

the 2D cavity flow described in Chapter 4. The code combines the 

subroutines into one single file, which can be compiled using C or C++ 

compiler. The BGK and MRT collisions can be switched in the code.  

//========================================================= 

//--------------------------------------------------------- 

//         ----- Header file of the D2Q9 model ----- 

//--------------------------------------------------------- 

//File name: D2Q9.h 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#define  Nx 256     // number of cells in the x-direction 

#define  Ny 256     // number of cells in the y-direction 
#define Nx1 (Nx+1) 

#define Ny1 (Ny+1) 

#define L (Ny+1)    // width of the cavity  

#define  Q 9        // number of discrete velocities 

#define rho0 1.0    // initial density 

#define ux0  0.0    // initial velocity component in x direction 

#define uy0  0.0    // initial velocity component in y direction 

#define uw  0.1 

#define Re 400.0 
 

int cx[Q]={0, 1, 0, -1, 0, 1, -1, -1, 1}; 

int cy[Q]={0, 0, 1, 0, -1, 1, 1, -1, -1}; 
 

double f[Ny1][Nx1][Q]; //array of the distribution functions (DFs) 

double f_post[Ny1][Nx1][Q]; // array of the post-collision DFs 

double rho[Ny1][Nx1], ux[Ny1][Nx1], uy[Ny1][Nx1];  

// arrays of fluid density and velocity 

double tau;  //  relaxation time for BGK model 

double s[Q]; // relaxation rates for MRT model 

double D[Q]={9, 36, 36, 6, 12, 6, 12, 4, 4};  // D = M*MT  
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double w[Q]={4.0/9,1.0/9,1.0/9,1.0/9,1.0/9,1.0/36,1.0/36, 

1.0/36,1.0/36}; //  the weights in the EDF 

int rc[Q]={0,3,4,1,2,7,8,5,6}; // index of reversed velocity 
 

void Init_Eq(void);      //Initialization 

double feq(double RHO, double U, double V, int k); 

                         // Equilibrium distribution function 

void Coll_BGK(void);     // BGK collision 

void Coll_MRT(void);     // MRT collision 

double meq(double RHO, double U, double V, int k); 

                         // Equilibrium  momenta 

void Streaming(void);    // Streaming 

void Den_Vel(void);      // Fluid variables 

void Bounce_back(void);  // Bounce-back boundary condition 

double Err(void);        // Difference in velocity field 
double u0[Ny1][Nx1],v0[Ny1][Nx1]; 

void Data_Output(void);  // Output simulation data 

//========================================================= 

 

//========================================================= 

void main() 

{ 

  int k,M2,N2; 

  double err; 

  M2=Ny/2; N2=Nx/2; 

 

  k=0; 

  err=1.0; 

  tau=3*L*uw/Re+0.5; // relaxation time for BGK 

  s[7]=s[8]=1.0/tau;   s[0]=s[3]=s[5]=0.0;  s[4]=s[6]=8*(2-

s[7])/(8-s[7]);  s[1]=1.6;  s[2]=1.8; // relaxation rates for MRT 
 

  Init_Eq(); 

 

  while(err>1.0e-6) 

  { 

    k++; 

    Coll_BGK();    //BGK collision 

//    Coll_MRT();  //MRT collision 

    Streaming();   // Streaming 

    Bounce_back(); // No-Slip boundary condition 

    Den_Vel();     // Fluid variables 

 

    if(k%1000==0) 

    { 

      err=Err();   // Velocity differences between two successive 1000 steps 
      printf("err=%e ux_center=%e  uy_center=%e k=%d\n",err, 
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 ux[M2][N2],uy[M2][N2], k);  // Display some results     

    } 

  } 

  Data_Output();   // Output simulation data 

} 
 

 

//========================================================= 

//------------------------------------------------------------------- 

// Subroutine: initialization with the equilibrium method 

//------------------------------------------------------------------ 

// 
void Init_Eq() 

{ 

   int j, i, k; 

   for (j=0;j<=Ny;j++) for(i=0;i<=Nx;i++) 

   { 

     rho[j][i]=rho0; 

     ux[j][i]=ux0; 

     uy[j][i]=uy0; 

     for(k=0;k<Q;k++) 

f[j][i][k]=feq(rho[j][i],ux[j][i],uy[j][i],k); 

} 

} 

//======================================================== 

 

//========================================================= 

//----------------------------------------------------------------- 

// Subroutine: calculation the equilibrium distribution 

//---------------------------------------------------------------- 

// 
double feq(double RHO, double U, double V, int k) 

{ 

  double cu, U2; 

  cu=cx[k]*U+cy[k]*V; // c k*u 

  U2=U*U+V*V;         // u*u; 
  return w[k]*RHO*(1.0+3.0*cu+4.5*cu*cu-1.5*U2); 

} 

//========================================================= 

 

//========================================================= 

//--------------------------------------------------------- 

// Subroutine: BGK collision 

//--------------------------------------------------------- 
void Coll_BGK() 

{ 

int j, i, k; 

  double FEQ; 

  for (j=0;j<=Ny;j++) for(i=0;i<=Nx;i++) for(k=0;k<Q;k++) 
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  { 

    FEQ=feq(rho[j][i],ux[j][i],uy[j][i],k);  //  EDF 

    f_post[j][i][k] = f[j][i][k]-(f[j][i][k]-FEQ)/tau;    

// Post-collision DFs 
} 

} 

//========================================================= 

 

//========================================================= 

//--------------------------------------------------------- 

// Subroutine: MRT collision 

//--------------------------------------------------------- 
void Coll_MRT() 

{ 

  int j, i, k; 

  double MEQ; 

  double m[Q]; 

  for (j=0;j<=Ny;j++) for(i=0;i<=Nx;i++) 

  { 

   // Transformation from velocity space to moment space: 
m[0]=f[j][i][0]+f[j][i][1]+f[j][i][2]+f[j][i][3]+f[j][i]

[4]+f[j][i][5]+f[j][i][6]+f[j][i][7]+f[j][i][8]; 

   m[1]=-4*f[j][i][0]-f[j][i][1]-f[j][i][2]-f[j][i][3]-f[j] 

[i][4]+2*(f[j][i][5]+f[j][i][6]+f[j][i][7]+f[j][i

][8]); 

    m[2]=4*f[j][i][0]-2*(f[j][i][1]+f[j][i][2]+f[j][i][3]+ 

f[j][i][4])+f[j][i][5]+f[j][i][6]+f[j][i][7]+f[j]

[i][8]; 

    m[3]=f[j][i][1]-f[j][i][3]+f[j][i][5]-f[j][i][6]-

f[j][i][7]+f[j][i][8]; 

    m[4]=-2*(f[j][i][1]-f[j][i][3])+f[j][i][5]-f[j][i][6]-

f[j][i][7]+f[j][i][8]; 

m[5]=f[j][i][2]-f[j][i][4]+f[j][i][5]+f[j][i][6]-

f[j][i][7]-f[j][i][8]; 

m[6]=-2*(f[j][i][2]-f[j][i][4])+f[j][i][5]+f[j][i][6]-

f[j][i][7]-f[j][i][8]; 

    m[7]=f[j][i][1]-f[j][i][2]+f[j][i][3]-f[j][i][4]; 

 m[8]=f[j][i][5]-f[j][i][6]+f[j][i][7]-f[j][i][8]; 

 

// Relaxation in moment space: 
   for(k=0;k<Q;k++) 

   { 

      MEQ = meq(rho[j][i],ux[j][i],uy[j][i],k); 

      m[k]= m[k]-s[k]*(m[k]-MEQ);  // relaxation 

      m[k]/=D[k];                     // rescaling 

   } 

   // Transforming back to the velocity space: 
    f_post[j][i][0]= m[0]-4*(m[1]-m[2]); 

    f_post[j][i][1]=m[0]-m[1]-2*(m[2]+m[4])+m[3]+m[7]; 
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    f_post[j][i][2]=m[0]-m[1]-2*(m[2]+m[6])+m[5]-m[7]; 

    f_post[j][i][3]=m[0]-m[1]-2*(m[2]-m[4])-m[3]+m[7]; 

    f_post[j][i][4]=m[0]-m[1]-2*(m[2]-m[6])-m[5]-m[7]; 

    f_post[j][i][5]=m[0]+m[1]+m[1]+m[2]+m[3]+m[4]+m[5]+m[6] 

+m[8]; 

    f_post[j][i][6]=m[0]+m[1]+m[1]+m[2]-m[3]-m[4]+m[5]+m[6] 

-m[8]; 

    f_post[j][i][7]=m[0]+m[1]+m[1]+m[2]-m[3]-m[4]-m[5]-m[6] 

+m[8]; 

    f_post[j][i][8]=m[0]+m[1]+m[1]+m[2]+m[3]+m[4]-m[5]-m[6] 

-m[8]; 

  } 

}   

//========================================================= 

 

//========================================================= 

//--------------------------------------------------------- 

// Subroutine: calculation the equilibrium moment 

//---------------------------------------------------------  
double meq(double RHO, double U, double V, int k) 

{ 

  double x; 

  switch(k) 

  { 

   case 0: {x=RHO; break;} 

   case 1: {x=RHO*(-2+3*(U*U+V*V));break;} 

   case 2: {x=RHO*(1-3*(U*U+V*V));break;} 

   case 3: {x=RHO*U;break;} 

   case 4: {x=-RHO*U;break;} 

   case 5: {x=RHO*V;break;} 

   case 6: {x=-RHO*V;break;} 

   case 7: {x=RHO*(U*U-V*V);break;} 

   case 8: {x=RHO*U*V;break;} 

   default: x=0; 

  } 

  return x; 

} 

//========================================================= 

 

//========================================================= 

//--------------------------------------------------------- 

// Subroutine: Streaming 

//--------------------------------------------------------- 
void Streaming() 

{ 

  int j, i, jd, id, k; 

  for (j=0;j<=Ny;j++) for(i=0;i<=Nx;i++) for(k=0;k<Q;k++) 

   { 

  jd=j-cy[k]; id=i-cx[k]; // upwind node 
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        if(jd>=0 && jd<=Ny && id>=0 && id<=Nx) // fluid node 

        f[j][i][k]=f_post[jd][id][k]; // streaming 
   } 

} 

//========================================================= 

 

//========================================================= 

//--------------------------------------------------------- 

// Subroutine: Bounce-back scheme 

//--------------------------------------------------------- 
void Bounce_back() 

{ 

  int i,j; 

  //  j=Ny: top plate 
  for(i=0;i<=Nx;i++) 

  { 

    f[Ny][i][4]=f_post[Ny][i][2]; 

    f[Ny][i][7]=f_post[Ny][i][5]+6*rho[Ny][i]*w[7]*cx[7]*uw; 

    f[Ny][i][8]=f_post[Ny][i][6]+6*rho[Ny][i]*w[8]*cx[8]*uw; 

  } 

 

  //  j=0: bottom plate 
  for(i=0;i<=Nx;i++) 

  { 

     f[0][i][2]=f_post[0][i][4]; 

     f[0][i][5]=f_post[0][i][7]; 

     f[0][i][6]=f_post[0][i][8]; 

  } 

 

  //  i=0: left wall 
  for(j=0;j<=Ny;j++) 

  { 

     f[j][0][1]=f_post[j][0][3]; 

     f[j][0][5]=f_post[j][0][7]; 

     f[j][0][8]=f_post[j][0][6]; 

  } 

 

  //  i=Nx: right wall 
  for(j=0;j<=Ny;j++) 

  { 

     f[j][Nx][3]=f_post[j][Nx][1]; 

     f[j][Nx][7]=f_post[j][Nx][5]; 

     f[j][Nx][6]=f_post[j][Nx][8]; 

  } 

 

} 

//========================================================= 
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//========================================================= 

//------------------------------------------------------------ 

// Subroutine: Fluid variables (density and velocity) 

//------------------------------------------------------------ 
void Den_Vel() 

{ 

  int j, i; 

  for(j=0;j<=Ny;j++) for(i=0;i<=Nx;i++) 

  { 

rho[j][i]=f[j][i][0]+f[j][i][1]+f[j][i][2]+f[j][i][3] 

+f[j][i][4]+f[j][i][5]+f[j][i][6]+f[j][i][7]+

f[j][i][8]; 

    ux[j][i]=(f[j][i][1]+f[j][i][5]+f[j][i][8]-f[j][i][3]-

f[j][i][6]-f[j][i][7])/rho[j][i]; 

    uy[j][i]=(f[j][i][5]+f[j][i][6]+f[j][i][2]-f[j][i][7]-

f[j][i][8]-f[j][i][4])/rho[j][i]; 

  } 

} 

 

//========================================================= 

 

double Err()  // Calculating the relative difference in velocity between two steps 

{ 

  int j, i; 

  double e1,e2; 

    e1=e2=0.0; 

  for(j=1;j<Ny;j++) for(i=0;i<Nx;i++) 

  { 

    e1+=sqrt((ux[j][i]-u0[j][i])*(ux[j][i]-u0[j][i]) 

+(uy[j][i]-v0[j][i])*(uy[j][i]-v0[j][i])); 

    e2+=sqrt(ux[j][i]*ux[j][i]+uy[j][i]*uy[j][i]); 

    u0[j][i]=ux[j][i];v0[j][i]=uy[j][i]; 

  } 

  return e1/e2; 

} 

 

 

void  Data_Output() // Output data 

{ 

int i,j; 

FILE *fp; 

 

fp=fopen("x.dat","w+"); 

for(i=0;i<=Nx;i++) fprintf(fp,"%e \n", (i+0.5)/L); 

fclose(fp); 

 

fp=fopen("y.dat","w+"); 

for(j=0;j<=Ny;j++) fprintf(fp,"%e \n", (j+0.5)/L);  

fclose(fp); 
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fp=fopen("ux.dat","w"); 

for(j=0;j<=Ny;j++) { 

  for (i=0; i<=Nx; i++) fprintf(fp,"%e ",ux[j][i]); 

  fprintf(fp,"\n"); 

} 

fclose(fp); 

 

fp=fopen("uy.dat","w"); 

for(j=0;j<=Ny;j++){ 

  for (i=0; i<=Nx; i++) fprintf(fp,"%e ",uy[j][i]); 

  fprintf(fp,"\n"); 

} 

fclose(fp); 

 

fp=fopen("rho.dat","w"); 

for(j=0;j<=Ny;j++){ 

  for (i=0; i<=Nx; i++) fprintf(fp,"%e ",rho[j][i]); 

  fprintf(fp,"\n"); 

} 

fclose(fp); 

} 
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subroutine, 117, 119, 121, 123, 124, 

125, 126, 127, 128, 129, 130, 144 

surface force, 287 

surface tension, 241, 242, 243, 245, 

252, 265, 267 

symmetry 

insufficient, 12 

lattice, 168 

physical, 85, 305 

property, 10 

requirement, 12 

 

Taylor 

expansion, 36, 85, 250, 279 

microscale, 340, 341 

series, 18, 22, 73, 78, 97, 98, 99, 100, 

115, 179, 197, 198, 208, 261 

thermal 

conductivity, 2, 6, 7, 148, 170, 171, 

186, 191, 192, 203, 260 

diffusivity, 174, 175, 178, 279 

thermodynamic 

flow, 200 

LBE, 196 

pressure, 64, 192, 251, 254, 258, 264 

theory, 251, 256, 265 

thermohydrodynamic equation, 151, 

155, 162, 171, 178, 179, 181, 185, 

189, 191, 193 

time increment, 130 

torque, 320, 322, 323, 324, 325, 326 

total variation diminishing, 93 

translational velocity, 322, 326 
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turbulence 

anisotropic, 341, 342 

decaying homogeneous isotropic, 

340, 346, 348 

forced, 341 

model, 339, 340, 350, 352, 353 

shear, 341, 342 

turbulent 

eddy viscosity, 345 

kinetic energy, 340, 350, 351, 352 

relaxation time, 352 

two-way, 319, 328 

 

upwind scheme, 84, 88, 166, 226, 227, 

229, 237 

 

van der Waals 

force, 324, 327 

theory, 251 

velocity slip, 289, 291, 293, 316 

velocity space, 7, 18, 26 

virial coefficient, 280 

viscosity 

bulk, 7, 155, 203 

dynamic, 7, 203, 260, 290, 312, 313 

effective, 335, 337 

kinematic, 24, 40, 62, 174, 343, 345 

viscosity annealing, 106 

viscous dissipation, 145, 172, 177, 178, 

181, 182, 183, 195 

volume-exclusion effect, 262, 264 

von Karman vortex street, 137 

vortex shedding, 138, 139, 141, 142 

 

wetting, 334 

wind, 329 

 

X-ray computed tomography, 332 
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