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Abstract

Purpose – This paper aims to examine how using lattice Boltzmann method (LBM) aids the study of
the isothermal-gas flow with slight rarefaction in long microtubes.

Design/methodology/approach – A revised axisymmetric lattice Boltzmann model is proposed to
simulate the flow in microtubes. The wall boundary condition combining the bounce-back and
specular-reflection schemes is used to capture the slip velocity on the wall. Appropriate relation
between the Knudsen number and relax-time constant is defined.

Findings – The computed-slip velocity, average velocity and non-linear pressure distribution along
the microtube are in excellent agreement with analytical solution of the weakly compressible
Navier-Stokes equations. The calculated-friction factors are also consistent with available experimental
data. For simulations of slip flow in microtube, LBM is more accurate and efficient than DSMC method.

Research limitations/implications – The laminar flow in circular microtube is assumed to be
axisymmetric. The present LBM is only applied to the simulation of slip flows (0.01 , Kn0 , 0.1) in
microtube.

Practical implications – Lattice-BGK method is a very useful tool to investigate the micro slip flows.

Originality/value – A revised axisymmetric D2Q9 lattice Boltzmann model is proposed to simulate
the slip flow in axisymmetric microtubes.

Keywords Flow, Numerical analysis, Laminar flow, Fluid mechanics, Approximation theory

Paper type Research paper

1. Introduction
Micro-electro-mechanical-systems (MEMS) devices with dimensions ranging from
100 to 1m have found many applications in engineering and scientific researches
(Gad-el-Hak, 1999). The fast development of these devices motivated the study of the
fluid flow in MEMS (Arkilic et al., 1997). MEMS are often operated in gaseous
environments where the molecular mean free path of the gas molecules could be the
same order as the typical geometric dimension of the device. Hence, the dynamics
associated with MEMS can exhibit rarefied phenomena and compressibility effects
(Arkilic et al., 1997). Usually, the Knudsen numberKn are used to identify the effects.Kn
is the ratio of the mean free path l to the characteristic length L. Generally speaking, the
continuum assumption for Navier-Stokes (NS) equations may break down if Kn . 0.01.
For a flow case 0.01 , Kn , 0.1, a slip velocity would appear in the wall boundary. The
value of 0.1 , Kn , 10 are associated with a transition flow regime. In the slip-flow
regime, by introducing a slip velocity at the solid boundary the NS solver can still be
used. In the transition regime, the conventional flow solver based on the NS equations is
no longer applicable because the rarefaction effect is critical (Lim et al., 2002).
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Many analytical studies of rarefied flow in microchannel have been carried out since
the 1970s. An important analytical and experimental study of gaseous flow in
two-dimensional (2D) microchannels was carried out by Arkilic et al. (1997). Through a
formal perturbation expansion of the NS equations under an assumption of 2D
isothermal flow, the study demonstrates the relative significance of the contribution of
compressibility and rarefied effects and good agreements between the analytical and
experimental studies were observed.

There are also some analytical studies about rarefied flow in circular microtubes.
Analytical studies of Prud’homme et al. (1986) and Van den Berg et al. (1993)
demonstrated non-constant pressure gradients but their analysis did not incorporate
rarefied behavior and the analysis is only one-dimensional (1D) perturbation solution
of the NS equations. Based on assumption of isothermal flow, Weng et al. (1999)
obtained the analytical solution for rarefied gas flow in long-circular microtubes. Some
experiments were also carried out to measure the friction constant C ¼ f *Re in
microtubes, which is not equal to 64 as the theoretical prediction for fully developed
incompressible flow (Choi et al., 1991; Yu et al., 1995).

In addition to the above analytical and experimental investigations, there are many
numerical studies on rarefied gas behavior in microchannel. Through introducing a
slip velocity at the solid boundary, Beskok and Karniadakis (1993) presented numerical
solutions of the NS and energy equations for flows with slight rarefaction. For
simulations microflow, the direct simulation Monte Carlo method (DSMC) (Bird, 1994)
are more popular because the approach is valid for the full range of flow regimes
(continuum through free molecular). However, very large-computational effort is
required in the DSMC simulations since the total number of simulated particles is
directly related to the number of molecules.

Besides, numerical solution of NS equation and DSMC, the lattice Boltzmann
method (LBM), which based on meso-scale level and has no continuum assumption,
was also applied to simulate the microflows (Lim et al., 2002; Nie et al., 2002).

For LBM simulation micro flow, the boundary condition and correlating relax time t
with Kn are important. Nie et al. (2002) simulated a 2D-microchannel flow with
bounce-back boundary treatment. However, in the study, a parameter to define Kn was
obtained empirically. Lim et al. (2002) simulated microchannel flow and obtained good
results with specular and extrapolation boundary treatments. They linked the t with
the molecular free-mean path l by an assumption of l ¼ tdx. Succi (2002) and Tang
et al. (2004) showed that a slip velocity on the wall can be captured by using a
combination of the bounce-back and specular-reflection conditions. Although the value
of the slip velocity may be highly dependent on the choice of the bounce-back
probability b, the boundary condition is easy to implement. For simplicity, in our
study, this boundary condition is applied to capture the correct velocity slip at the wall.

Previous LBM study of microflow is only concentrated in microchannel. Here, we
would like to propose a revised axisymmetric LBM for axisymmetric flows in microtubes.

It is sure that 3D LBM can directly handle the axisymmetric flow problems (Huang
et al., 2006). However, for an axisymmetric flow problem, directly 3D simulation is not
so efficient. To simulate the problem more efficiently, Halliday et al. (2001) proposed an
axisymmetric D2Q9 model for the axisymmetric flow problems and it seems very
successful for simulation steady flow in straight tube. The main idea of the model is
inserting several spatial and velocity dependent “source” terms into the microscopic
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evaluation equation for the lattice fluid’s momentum distribution. However, it is found
that some terms relative to the radial velocity are missing in the axisymmetric D2Q9
model of Halliday et al. (2001) and later-developed model (Lee et al., 2005). Although the
terms may not affect simulations of the flows in straight circular pipe, they would lead
to large error for simulation the constricted or expanded pipe flows.

The main aim of the present paper is to derive a correct D2Q9 axisymmetric model
to numerically investigate the flow in microtubes. We also would like to compare the
accuracy and efficiency between the LBM and the DSMC when simulate the slip flow in
microtubes.

The structure of this paper is as follows. Firstly, a revised axisymmetric LBM is
proposed and the implementation of the LBM and boundary condition is discussed. Then
the LBM is applied to simulate the slip flow in microtubes for cases Kn ¼ 0.1, 0.05, 0.025
with different inlet/outlet pressure ratio. The slip velocity, bulk velocity and pressure
distribution along the tube are compared with analytical solution (Weng et al., 1999) in
detail. The friction factors are compared with the available experimental data. Finally, the
efficiency and accuracy comparisons between DSMC and LBM are carried out.

2. LBM model and boundary condition
2.1 LBM model
In this part, an axisymmetric D2Q9 model is proposed to simulate the axisymmetric
flows in a long microtube. The derivation of our model is illustrated in Appendix 1.

Here, we consider the problems of the laminar internal flow of a weakly
compressible, isothermal flow in circular pipe with an axis in x direction. The geometry
is shown in Figure 1. For the axisymmetric flow, the azimuthal velocity uw and w
coordinate derivatives vanish from the continuity and NS equations. The full 2D
time-invariant constant viscosity NS equations for a compressible fluid, ignoring body
force, are (in the pseudo-Cartesian coordinates (x, r)):
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Geometry of circular tube

and LBM D2Q9 model

x

r

1

2

3

4 8

56

7

Simulation gas
slip flow in long

microtubes

589



The equation of state for an ideal gas is given by:

p ¼ rRT ð4Þ

In above equations, u and v are the stream-wise and wall-normal components of velocity
u,m is the molecular viscosity, r is the density, p is the pressure and R is the specific gas
constant. In equations (1) and (2), we have assumed a Stokes continuum hypothesis for
the second coefficient of viscosity (Landau and Lifschitz, 1987).

Our present axisymmetric D2Q9 model is proposed to simulate the microtube flows
described by above equations. Among different lattice Boltzmann equation (LBE)
models in application, the lattice Bhatnagar-Gross-Krook (LBGK) model is the simplest
one because it only has one scalar relaxation parameter and a simple equilibrium
momentum distribution function. Here, our axisymmetric LBM is derived from LBGK
D2Q9 model. In our axisymmetric D2Q9 model, the nine discrete velocities of our model
are defined as following:

ei ¼

ð0; 0Þ i ¼ 0

ðcos½ði2 1Þp=2�; sin½ði2 1Þp=2�Þc i ¼ 1; 2; 3; 4ffiffiffi
2

p
ðcos½ði2 5Þp=2 þ p=4�; sin½ði2 5Þp=2 þ p=4�Þc i ¼ 5; 6; 7; 8

8>><
>>: ð5Þ

where c ¼ dx/dt, and in our studies c ¼ 1. dx and dt are the lattice spacing and time step
size, respectively.

In our model, fi(x, r, t) is the distribution function for particles with velocity ei at
position (x, r) and time t. The macroscopic density r and momentum ru are defined as:

X8

i¼0

f i ¼ r;
X8

i¼0

f ieia ¼ rua ð6Þ

The equilibrium distribution fi
eq of D2Q9 model (Qian et al., 1992) is defined by equation (7):
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where, cs ¼ c=
ffiffiffi
3

p
;v0 ¼ 4=9; vi ¼ 1=9; ði ¼ 1; 2; 3; 4Þ;vi ¼ 1=36; ði ¼ 5; 6; 7; 8Þ.

The two main steps of lattice BGK model are collision and streaming. In the
collision step, a group of calculations (8) and (9) are implemented:

f ne
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In above equations, f ne
i is the non-equilibrium part of distribution function. fþi is the

post-collision distribution function. hð1Þi and hð2Þi are the “source” terms added into
the collision step, which can be calculated through below equations (10) and (11),
respectively. The brief derivation of the equations is illustrated in Appendix 1:

hð1Þi ¼
2virur

r
ð10Þ
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In above formulas, the relax time constant t and the fluid kinetic viscosity n satisfies
the below equation:

n ¼ c2
sdtðt2 0:5Þ ð12Þ

For the microflow simulation, the t should be related to the Knudsen number.
In the streaming step, the new distribution function value obtained from equation (9)

would propagate to neighbour eight lattices. That procedure can be represented by the
following equation (13):

f iðxþ eix; dt; r þ eir; dt; t þ dtÞ ¼ fþi ðx; r; tÞ ð13Þ

For the velocity derivations in equation (11), the terms ›rux þ ›xur, ›xux and ›rur can
all be obtained through equation (14) with a ¼ x,b ¼ r; a ¼ b ¼ x; a ¼ b ¼ r,
respectively:

rnð›bua þ ›aubÞ ¼ 2 1 2
1

2t

� �X8

i¼0
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¼ 2 1 2
1

2t
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ð14Þ

For the term ›rux in equation (11), it is equal to (›rux þ ›xur) 2 ›xur. Since,
(›rux þ ›xur) can be easily obtained by equation (14), only value of ›xur is left unknown
to determine ›rux. Here, we recourse to finite difference method to obtain ›xur at lattice
node (i, j), which can be calculated by equation (15):

ð›xurÞi; j ¼
ðurÞiþ1; j 2 ðurÞi21; j

2dx
ð15Þ

The values of ›rux þ ›xur,›xux, ›rur, ›rux and ›xur for the lattice nodes which just
on the wall boundary can also be calculated from equations (14) and (15). Obtaining
these values for lattice nodes on the periodic boundary is also easy. However, to
obtain these values for the nodes on the inlet/outlet pressure-specified boundary, these
values are extrapolated from those of the inner nodes.

2.2 Knudsen number and boundary condition
Correlating the parameter t with Kn is important for LBM application in simulation
micro-flows. (Nie et al., 2002; Tang et al., 2004) Here, an expression (Tang et al., 2004)
between Kn and t which based on the gas kinematics is used in our simulation but we
derived it in a simpler way in the following.
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Form the kinetic theory of gases, the density can be determined by:

r ¼
mp

kBT
ð16Þ

where m represents the molecular mass and kB is the Boltzmann constant. On the other
hand, in LBM, the density and pressure have the relationship (Qian et al., 1992):

r ¼
p

c2
s

ð17Þ

Hence, in LBM, we have:

kBT

m
¼ c2

s ð18Þ

For an ideal gas modeled as rigid spheres, the mean free path l is related to the
viscosity n as:

n ¼ 0:5nml ð19Þ

where the mean velocity of the molecular vm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8KBT=pm

p
. Hence, form

equations (12) and (19), we get:

Kn ¼
l

D
¼

2n

vmD
¼

ffiffiffiffi
p

6

r
ðt2 0:5Þ

ND
or t ¼

KnNDffiffiffiffiffiffiffiffi
p=6

p þ 0:5 ð20Þ

where ND is the lattice number in the tube diameter, Kn is local Knudsen number.
Since, the mean free path is inversely proportional to the pressure, the local Kn can be
calculated by:

Kn ¼
Knopo

pðx; rÞ
ð21Þ

where Kno and po are the Kn and the pressure at the outlet. So, in equation (20),
t is variable along the microtube and the corresponding n can be obtained from
equation (12).

Another important issue about using LBM to simulate the micro flows is wall
boundary condition. For wall boundary condition, bounce-back scheme is usually used
to realize non-slip boundary condition when simulate continuum flow. On the other
hand, specular reflection scheme (Lim et al., 2002) can be applied to free-slip boundary
condition where no momentum is to be exchanged with the wall along the tangential
component. For real gas flow in microtubes, a combination of the two schemes is
considered here. To describe boundary condition treatment, a wall ›V is completely
specified. For a point xðx [ ›VÞ, n is the inward unit normal vector of the wall. After
streaming step implemented, the unknown distribution functions of f iðx; tÞ; e i ·n . 0,
can be evaluated by Succi (2002) and Tang et al. (2004):

f iðx; tÞ ¼ bf jðx; tÞ þ ð1 2 bÞf kðx; tÞ ð22Þ

where fj(x,t) is the distribution function in ej direction, where ei 2 ej ¼ 2ei , and f kðx; tÞ
is the distribution function in ek direction, where ei 2 ek ¼ 2n. b is the bounce-back
probability chosen as 0.7.
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For the inlet/outlet boundary conditions, the pressure is specified and the
corresponding velocity value in these boundaries is extrapolated from the next inner
nodes (Fang et al., 2002). Hence, the equilibrium part of distribution function can be
determined and the non-equilibrium part of distribution function can be obtained
through extrapolation (Fang et al., 2002). So, the collision step for boundary nodes can
be implemented normally as inner nodes.

The axisymmetric boundary condition is also applied in most simulations here. In
most simulations, the computational domain is an axisymmetric plane above the axis.
To implement this boundary condition, an extra row of grids below the axis is added.
The variables in the grid of this row can be evaluated from that of its symmetric node.
For example, if j ¼ 2 and j ¼ 1 represents the row index of the axis and the extra row,
velocities in the extra grids can be obtained by ðuxÞi;1 ¼ ðuxÞi;3; ðurÞi;1 ¼ ð2urÞi;3, and
the corresponding source terms in equations (10) and (11) can be evaluated as
ðhÞi;1 ¼ ðhÞi;3. In this way, the collision and streaming steps for lattices in the extra row
can be implemented as that of inner lattices.

3. Results and discussion
3.1 Distributions of pressure and velocity
In our simulation, the radius is represented by 11 lattice nodes (ten lattice space) and
the length of the tube is 20 times of the diameter except for specially noted cases. In all
of cases, the Mach number in tube is very low. Even for case of Pr ¼ 3.0, maximum
Mach number in tube is M ¼ 0.15/cs ! 1, which satisfy the requirement of our
axisymmetric D2Q9 model. The stream-wise momentum accommodation coefficient
s ¼ 1 has been used for almost all engineering calculations (Weng et al., 1999).
Therefore, we take s ¼ 1 throughout the paper.

Figures 2 and 3 show the axial and radial-velocity distribution along the tube
(Pr ¼ 2, Kno ¼ 0.1), respectively. The u, v velocity contour are also shown in Figures 2
and 3, respectively. From the Figure 2, we can see that the axial-velocity profile is
parabolic type and the slip velocity at the wall and the central velocity increase toward
the exit. Owing to the pressure decreasing, the density of gas also decreases along the
tube. To satisfy mass conservation, the average velocity must increase toward the exit.
In Figure 3, the magnitude of the radial velocity is much smaller than that of axial
velocity. These results are consistent with previous studies on microchannel (Arkilic
et al., 1997; Lim et al., 2002).

The pressure distribution along the tube predicted from the first slip boundary
condition is illustrated in equation (23), which is originally given by Weng et al. (1999).
The derivation of present expression is illustrated in Appendix 2:

~pð~xÞ ¼ 28Kno þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8KnoÞ

2 þ ð1 þ 16KnoÞ~xþ ðPr 2 þ 16KnoPr Þð1 2 ~xÞ

q
ð23Þ

In equation (23), ~p is the pressure normalized by outlet pressure, ~x ¼ x=L, L is the tube
length. Pr is the ratio of the inlet and outlet pressure.

The pressure drop along the tube which deviate from linear pressure drop for
different Pr with the same outlet Knudsen number Kno ¼ 0.1 are shown in Figure 4.
When Pr increase, the compressibility effect within the tube is also increase, results in
a larger deviation from the linear pressure distribution. In Figure 4, our results agree
well with equation (23).

Simulation gas
slip flow in long

microtubes

593



The pressure drops along the tube for different outlet Kno are shown in Figure 5.
Compared with the analytical solution equation (23), the results of LBM is quite good.
Figure 5 shows that the larger Kno, the smaller the deviation from the linear-pressure
distribution. It seems that the rarefaction effect (indicate by Kno) can decrease the
curvature in the pressure distribution which caused by the compressibility effect.
Maybe that means the compressibility effect and the rarefaction effect on the pressure
distribution are contradictory.

The Knudsen numbers along the stream-wise direction are shown in Figure 6. Kn is
a function of the local pressure. With the decreasing pressure along the tube, the
Knudsen number increases and reaches its maximum value at the outlet. For different
outlet Kno, the slope of Kn curve along the tube is different. For smaller Kno, the slope
of Kn curve is smaller although Pr is same.

In Figure 7, the variation of slip velocity along the microtube wall is shown. Firstly,
we obtained the analytical solution of slip velocity from results of Weng et al. (1999)
(Appendix 2). Equation (B2) is can be normalized by the central velocity at outlet Uoc:

U ðx; rÞ

Uoc
¼

d~p=d~x

ðd~p=d~xÞo

ð0:25 þ Kn2 r 2=D 2Þ

ð0:25 þ KnoÞ
ð24Þ

where d~p=d~x is the non-dimensional pressure gradient and the ðd~p=d~xÞo means the
pressure gradient at exit, which can be referred to equation (B7) in Appendix 2.

Figure 2.
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Figure 3.
Radial-velocity

distributions along the
tube
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Hence, the analytical solution for slip velocity on the wall and average velocity in
microtube are equations (25) and (26), respectively:

U slipðxÞ

Uoc
¼

d~p=d~x

ðd~p=d~xÞo

Kn

ð0:25 þ KnoÞ
ð25Þ

Figure 5.
Pressure distribution
along the tube for different
Knudsen number (Pr ¼ 2)
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Figure 6.
Local Kn distribution
along the tube for different
Kno (Pr ¼ 2)
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U avðxÞ

Uoc
¼

d~p=d~x

ðd~p=d~xÞo

ð1=8 þ KnÞ

ð1=4 þ KnoÞ
ð26Þ

From equation (25), we can see that since the local Knudsen number increases and the
slope of pressure drop also increases along the tube, the slip velocity on the wall would
increase along the microtube. Figure 8 shows the average velocity variations along the
stream-wise direction. The average velocity increases as the flow proceeds down the
tube since density decrease along the microtube. In Figures 7 and 8, both the slip

Figure 8.
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velocity on wall and local bulk velocity along the microtube agree well with the
analytical solution equations.

3.2 Mass flow rate and normalized friction constant
The effect of rarefaction on mass flow rate is investigated by comparison of the LBE
result with analytical predictions. The non-dimensional mass flow rate ~Q can be
expressed as a function of pressure ratio (Appendix 2):

~Q ¼
_q

ð_qÞcontinuum

¼ 1 þ
16Kno

Pr þ 1
ð27Þ

In Figure 9, the non-dimensional mass flow rate computed by the LBE method for
Kno ¼ 0.1 is compared with the first order analytical prediction equation (27). For all
cases, slip effects become less pronounced with increasing pressure ratio. The LBE
results agree well with analytical results and the deviation is less than 4 percent.

Then in Figure 10, the friction factors predicted by present LBM simulations are
compared with experimental results of Kim et al. (2000). The theoretical friction constant
(C0 ¼ f *Re ¼ 64) for fully developed incompressible flow is used to normalize friction
constant C ¼ f *Re. The microtubes used in the experiment are also shown in Figure 10.
Here, our numerical data were taken from results of cases Kno ¼ 0.013 with different
inlet/outlet pressure ration. In these cases, for Kn ¼ l/D ¼ 0.013, the corresponding
simulated diameters D of microtubes for Nitrogen, Argon and Helium are listed in
Table I. The diameters of our simulation are all close to that of corresponding
experimental facility. Hence, our numerical results are valid to compare with the
experimental data. In Figure 10, the normalized friction constant C* obtained by LBM
ranges from 0.80 to 0.86, which agree well with the experiment data.

Besides, experiment of Kim et al. (2000) and Choi et al. (1991) also found that for
nitrogen flow in microtube with diameters smaller than 10mm, C ¼ f *Re ¼ 53.
Another experiment conducted by Yu et al. (1995) concluded that C ¼ f *Re ¼ 50.13

Figure 9.
Mass flow rate normalized
to non-slip mass flow rate
as a function of Pr at
Kno ¼ 0.1
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for laminar nitrogen flow in microtubes with diameter 19mm. In Figure 10, it was
observed that our numerical data are also in consistent with their experimental results
(Choi et al., 1991; Yu et al., 1995).

3.3 Comparison with DSMC
To demonstrate the efficiency of the LBM, we compared the accuracy and efficiency of
the LBM and DSMC. It is well known that DSMC is the most popular model for
simulation of micro flows. DSMC is a particle-based method proposed by Bird (1994).
Unlike the molecular dynamics (MD) method which takes each individual molecule into
consideration, DSMC method assumes that a group of molecules have the same
properties such as velocity and temperature which can be obtained by statistical
analysis. In this way, the computational effort can be greatly reduced compared with
the MD method (Bird, 1976; Bird, 1994). Here, the developed DSMC code (Mao et al.,
2003) was used to simulate the slip flow in microtubes.

In the DSMC simulation, the working gas is nitrogen. The physical geometry is
200mm long and radius of the tube is 2.5mm. The computational region is an
axisymmetric plane divided into 400 £ 30 sampling cells and each cell contains four
subcells. The total number of simulated particles is about 4.8 £ 105. That means
nearly 40 particles in a sampling cell (Mao et al., 2003). In this part, the case of
Kno ¼ 0.0134 and Pr ¼ 2.5 was simulated.

Gas (105 Pa) Nitrogen Argon Helium

Mean free path (nm) 67 72 196
Diameter of tube (mm) 5.2 5.5 15.0

Table I.
Simulated diameter of

microtubes for different
gas flow (Kno ¼ 0.013)

Figure 10.
Normalized friction

constant C * of gas flow in
microtube as a function of
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In the LBM simulation, the uniform square lattices 801 £ 21 is used to simulate the
same microtube flow. For this case, if the computational domain is an axisymmetric
plane and the axisymmetric boundary condition is applied, the calculation is unstable.
However, when the computational domain is a whole plane passing through the axis,
the calculation is stable with the slip wall boundary condition. Hence, here the
computational domain is a whole plane passing through the axis and the diameter is
represented by 21 lattice nodes.

The present DSMC and LBM calculations were performed on a single-CPU of the
computer Compaq ES40 supercomputer. To make the efficiency comparison, the same
convergence criterion was set as:

i

X kuðxi; tÞ2 uðxi; t 2 1Þk

kuðxi; tÞk
, 1026 ð28Þ

The velocity field error is measured by u which is defined as:

u ¼
i

P
ðuðriÞ2 uaðriÞÞ

2

i

P
u2
aðriÞ

ð29Þ

where ua(ri) is the analytical solution obtained by Weng et al. (1999) and ri is the mesh
point at intersection x/L ¼ 0.375 where the microflow is supposed to be in fully
developed region.

The efficiency and accuracy comparison is listed in Table II. The mesh or cell number
is comparable for LBM and DSMC simulations. However, since DSMC still has to
simulate 4.8 £ 105 particles, it used much larger memory than LBM in the simulation.
To obtain the well-converged results, DSMC takes more CPU time than LBM.

The velocity profiles at intersection x/L ¼ 0.375 obtained by analytical solution
(Weng et al., 1999), LBM and DSMC are shown in Figure 11. The velocity U is
normalized by outlet Uoc r is normalized by the diameter. Compared with the analytical
solution, the result of LBM seems more accurate than that of DSMC.

4. Conclusion
In this paper, a revised axisymmetric D2Q9 model was applied to investigate gaseous
slip flow with slight rarefaction through long microtubes. With limit of small Mach
number, this axisymmetric LBGK model successfully recovered the weakly
compressible NS equation in the cylindrical coordinates through Chapman Enskog
expansion (refer to the Appendix 1). For the additional source term in our model, most
velocity gradient terms can be obtained from high order momentum of distribution
function, which is consistent with the philosophy of the LBM. For the slip wall boundary
condition, the wall boundary condition combined the bounce-back and
specular-reflection scheme was applied for microtube flows withKno in range (0.01, 0.1).

Method CPU time (s) Mesh or cells Memory (M) u

LBM 4.52 £ 102 1.6 £ 104 9.2 4.31 £ 1024

DSMC 3.22 £ 104 1.2 £ 104 31.4 3.3 £ 1023

Table II.
Efficiency and accuracy
comparison (LBM and
DSMC) (Kno ¼ 0.0134,
Pr ¼ 2.5)
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The distributions of pressure, the slip velocity and the average velocity along the
microtube all agree well with the analytical results. The friction factors are compared
with experimental results and good agreements are also observed. The axisymmetric
LBGK model was successfully applied to simulate the laminar flow in microtubes.

Through comparison, it was found that our LBM is more accurate and efficient than
DSMC when simulate the slip flow in microtube. Although present LBM is only applied
to the slip flow simulation (0.01 , Kn0 , 0.1) in microtube, the LBM may be extended
to study the transition flow or higher Knudsen number cases in the future.
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Appendix 1. Brief derivation of the axisymmetric model
Here, we would show how continuity equation (A1) and momentum equation (A2) in the
pseudo-Cartesian coordinates (x, r) can be recovered from our axisymmetric D2Q9 model:

›r

›t
þ

›rub

›xb
¼ 2

rur

r
ðA1Þ

›rua

›t
þ

›rubua

›xb
þ

ruaur

r
þ

›p

›xa
2 m

›2ua

›x2
b

2 m›að7 ·uÞ ¼
m

r

›ua

›r
2

ur

r
dar

� �
ðA2Þ

where 7 ·u ¼ ›bub þ ur=r. Here, we adopt the Einstein convention that the same index appears
twice in any term, summation over the range of that index is implied. ua, ub is the velocity uxor
ur. a, b is x or r, xa, xb means x or r.

It is noticed that the small discrepancy between equations (1), (2) and equation (A2) is
the coefficient before term 7 ·u, in equation (1) that is 1/3, here in equation (A2) is unit.
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Since, we consider a slight rarefaction in long microtubes, which means the weakly compressible
flow, this term 7 ·u should be very small. The coefficient difference can be neglected. Our
numerical results also verified this opinion.

To recover above equations, the Chapman-Enskog expansion is applied. The evaluation
equation to describe 2D flow in (x, r) pseudo-Cartesian coordinates is illustrated as equation (A3):

f iðxþ eixdt; r þ eirdt; t þ dtÞ2 f iðx; r; tÞ ¼
1

t
f eq
i ðx; r; tÞ2 f iðx; r; tÞ

� 	
þ hiðx; r; tÞ ðA3Þ

equation (A3) is similar to the evaluation equation in 2D (x, y) Cartesian coordinates except that a
source term hi(x, r, t) was incorporated into the microscopic evaluation equation (Halliday et al.,
2001).

Here, we introduce the following expansions (He and Luo, 1997):

f iðxþ eixdt; r þ eirdt; t þ dtÞ ¼
X1
n¼0

1 n

n!
Dnf iðx; r; tÞ ðA4Þ

f i ¼ f ð0Þi þ 1f ð1Þi þ 1 2f ð2Þi þ · · ·

›t ¼ 1›1t þ 1 2›2t þ · · ·

›b ¼ 1›1b

hi ¼ 1hð1Þi þ 1 2hð2Þi þ · · ·

8>>>>>><
>>>>>>:

ðA5Þ

where, 1 ¼ dt and D ; ð›t þ eib›bÞ. In equation (A5), there is no “equilibrium” hi term.
Retaining terms up to O(1 2) in equations (A4) and (A5) and substituting into equation (A3)

results in equations in the consecutive order of the parameter 1:

Oð1 0Þ :
f ð0Þi 2 f eq

i

� �
t

¼ 0 ðA6Þ

Oð1 1Þ : ð›1t þ eib›1bÞf
ð0Þ
i þ

f ð1Þi

t2 hð1Þi

¼ 0 ðA7Þ

Oð1 2Þ : ›2tf
ð0Þ
i þ 1 2

1

2t

� �
ð›1t þ eib›1bÞf

ð1Þ
i þ

1

2
ð›1t þ eib›1bÞh

ð1Þ
i þ

1

t
f ð2Þi 2 hð2Þi ¼ 0 ðA8Þ

The distribution function fi is constrained by equation (6) and the following equation (A9):

X8

i¼0

f ðmÞ
i ¼ 0;

X8

i¼0

e i f
ðmÞ
i ¼ 0 for m . 0 ðA9Þ

Note that E ð2nþ1Þ ¼ 0 for n ¼ 0,1,. . . where E(n) are the tensors defined as E ðnÞ ¼
P

aea1ea2. . .ean
and:

X4

i¼1

eiaeib ¼ 2dab ðA10Þ

X8

i¼5

eiaeib ¼ 4dab ðA11Þ
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X4

i¼1

eiaeibeigeiz ¼ 2dabgz ðA12Þ

X8

i¼5

eiaeibeigeiz ¼ 4Dabgz 2 8dabgz ðA13Þ

where dab and dabgz are the Kronecker tensors, and:

Dabgz ¼ dabdgz þ dagdbz þ dazdbg ðA14Þ

With above properties of the tensor E(n), we have:

X8

i¼0

eiaeib f
ð0Þ
i ¼ r0uaub þ pdab ðA15Þ

X8

i¼0

eiaeibeik f
ð0Þ
i ¼ r0c

2
s ðdjkdba þ djadbk þ djbdakÞuj ðA16Þ

Mass conservation and hð1Þ
i

Summing on i in equation (A7), we obtain at O(1):

›1trþ ›brub ¼
i

X
hð1Þi ðA17Þ

which motivates the following selection of hð1Þi when comparing with the target dynamics
(of equations (A1) and (A2)). To recover the continuity equation (A1), because

P
ivi ¼ 1, the

following selection of hð1Þi is reasonable (Halliday et al., 2001):

hð1Þi ¼
2virur

r
ðA18Þ

Then, we proceed to O(1 2) now. Summing on i in equation (A8) gives:

›2trþ
i

X 1

2
›1t þ eib›1b


 �
hð1Þi 2

i

X
hð2Þi ¼ 0 ðA19Þ

With our target dynamic in view, we obtain the equation (A20):

i

X 1

2
›1t þ eib›1b


 �
hð1Þi 2

i

X
hð2Þi ¼ 0 ðA20Þ

equation (A20) can also be rewritten as equation (A21):

i

X
hð2Þi ¼

1

2
i

X
ð›1t þ eib›1bÞh

ð1Þ
i ¼

1

2
›1t

i

X2virur

r

2
4

3
5 ¼ 2

1

2

›1trur

r

� �
ðA21Þ

HFF
17,6

604



Momentum conservation and hð2Þ
i

Multiplying equation (A7) with eia and summing over i, gives:

›1trua þ ›1bP
0
ab ¼

i

X
hð1Þi eia ¼ 0 ðA22Þ

where, P0
ab ¼

X8

i¼0

eiaeibf
ð0Þ
i is the zeroth-order of momentum flux tensor. With P0

ab given by
equation (A15), using equation (A22) with a ¼ r, and substituting into (A21), we have a
condition on hð2Þi :

X
hð2Þi ¼

1

2r
›b c2

srdrbrubur

 �

ðA23Þ

The error in previous model of Halliday et al. (2001) partly lies in their opinion about equation
(A22). It seems that Halliday et al. simply regarded terms ›1trua þ ›1bðruaubÞ as the terms
Dtrua ¼ ›trua þ ›brubua þ ruaur=r. Unfortunately, that is not true.

Multiplying equation (A8) with eia and summing over i gives:

›2trua þ 1 2
1

2t

� �
›1bP

ð1Þ
ab ¼ 2

1

2
›1t

i

X
eiah

ð1Þ
i þ ›1b

i

X
eiaeibh

ð1Þ
i

0
@

1
Aþ

i

X
hð2Þi eia ðA24Þ

where, Pð1Þ
ab ¼

i

P
eiaeibf

ð1Þ
i is the first-order momentum flux tensor. With the aid of equations (A7)

and (A16), we have:

P
ð1Þ
ab ¼

i

X
eiaeib f

ð1Þ
i ¼ 2t

i

X
eiaeib D1tf

ð0Þ
i þ t

i

X
eiaeibh

ð1Þ
i

¼ 2t
i

X
›1tP

ð0Þ
ab þ ›k

i

X
eiaeibeik f

ð0Þ
i

0
@

1
A

2
4

3
5þ t

i

X
eiaeibh

ð1Þ
i

¼ 2t
i

X
›1tP

ð0Þ
ab þ c2

s ðdab›jruj þ ›brua þ ›arubÞ

2
4

3
5þ t

i

X
eiaeibh

ð1Þ
i

< 2tc2
s 2dabr ›juj þ

ur

r

� �
þ rðdab›juj þ ›bua þ ›aubÞ

h i
2 tc2

sdab
rur

r
þ Oð1 2Þ

¼ 2tc2
s rð›bua þ ›aubÞ
� 	

þ Oð1 2Þ

ðA25Þ

Substituting equation (A25) into equation (A24) and using equations (A22) and (A24), we get:

›rua

›t
þ
›rubua

›xb
þ

›p

›xa
2 m

›2ua

›x2
b

2 m›að7 ·uÞ ¼ ð1 2 tÞc2
s›a

rur

r

� �
þ

i

X
hð2Þi eia ðA26Þ

Compare momentum equation (A26) with equation (A2), to recover the NS momentum equations,
equation (A27) should be satisfied:

ð1 2 tÞc2
s›a

rur

r

� �
þ

i

X
hð2Þi eia ¼

rn

r
›rua 2

1

r
urdra

� �
2

ruaur

r
ðA27Þ
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Solving equation system (A23) and (A27), we can obtain the expression of hð2Þi :

hð2Þi ¼
vi

2r
›b c2

srdrb þ rubur

 �� 	

þ 3vi

rn

r
›rub 2

1

r
urdrb

� �
eib 2

rubur

r
eib

� �

2 ð1 2 tÞvi›b
rur

r

� �
eib

ðA28Þ

The expression of hð1Þi (equation (A18)), hð2Þi (equation (A28)) are successfully derived and the
continuity equation (A1) and NS equation (A2) can be fully recovered. In the model of Halliday
et al. (2001), the mainly missing terms are relative to ur. Although these terms may only slightly
affect results of straight pipe flow, without these terms, the flows in constricted pipes cannot be
simulated correctly.

Appendix 2
The stream-wise velocity profile (first-order slip-flow model) in a long microtube with rarefaction
effect is given by Weng et al.(1999):

U x; r

 �

¼ 2
r2

0

4m

›p

›x
1 2

r

r0

� �2

þ
2l

r0

" #
ðA29Þ

where l is the molecular mean free path, r0 is the radius of the microtube. Since, r0 ¼ D=2 and
local Kn ¼ l=D, using equations (21) and (A29), we have:

U ðx; rÞ ¼ 2
D 2

16m

dp

dx
1 2 4

r

D

� �2

þ
4Kno

~p

� �
ðA30Þ

where ~p ¼ p x; r

 �

=po.
The pressure distribution in a long microtube is given by Weng et al. (1999) as:

S ¼ 2
8ffiffiffiffi
p

p þ
64

p
þ S2

in þ
16ffiffiffiffi
p

p Sin þ S2
out 2 S2

in

� �
þ

16ffiffiffiffi
p

p Sout 2 Sinð Þ

� �
~x

� 1
2

ðA31Þ

where:

S ¼ Kno

ffiffiffiffi
p

p
 �21 ~p; Sin ¼ Kno

ffiffiffiffi
p

p
 �21
Pr; Sout ¼ Kno

ffiffiffiffi
p

p
 �21
;Pr ¼ pin=po;

and ~x ¼ x=L. L is the tube length. Hence, equation (A31) can also be rewritten as:

~pð~xÞ ¼ 28Kno þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8KnoÞ

2 þ ð1 þ 16KnoÞ~xþ Pr 2 þ 16KnoPr

 �

ð1 2 ~xÞ

q
ðA32Þ

From equation (A32) we can see that gas flowing in a long microtube with a significant pressure
drop will also exhibit compressibility effects.

The mass-flow rate is computed by multiplying equation (A29) by the density and integrating
across the tube. The dimensional mass-flow rate is given by Weng et al. (1999):

_q ¼ 2
prr4

0

2m

›p

›x

1

4
þ 2Kn

� �
ðA33Þ

Hence, the dimensional mass flow rate at outlet of microtube is:

_q ¼ 2
proD

4po

16mL

›~p

›~x

� �
o

1

8
þ Kno

� �
ðA34Þ
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The non-dimensional pressure gradient along the tube can be calculated from equation (A32) as:

d~p

d~x
¼

1 2 Pr 2 þ 16Knoð1 2 PrÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8KnoÞ

2 þ ð1 þ 16KnoÞ~xþ Pr 2 þ 16KnoPr

 �

ð1 2 ~xÞ
q ðA35Þ

Hence, equation (A34) can also be written as:

_q ¼
pD 4p2

o

256mLRT
ðPr 2 2 1Þ þ 16KnoðPr 2 1Þ
� 	

ðA36Þ

In addition, the mass-flow rate for the continuum gas (without the rarefaction effect) is:

ð_qÞcontinuum ¼ 2
pD 4

256mRT

›ð p 2Þ

›x
¼

pD 4p2
o

256mRT

ðPr 2 2 1Þ

L
ðA37Þ

Corresponding author
Haibo Huang can be contacted at: g0301108@nus.edu.sg

Simulation gas
slip flow in long

microtubes

607

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints


