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We compute the continuum thermohydrodynamical limit of a new formulation of lattice kinetic

equations for thermal compressible flows, recently proposed by Sbragaglia et al. �J. Fluid Mech.

628, 299 �2009��. We show that the hydrodynamical manifold is given by the correct compressible

Fourier–Navier–Stokes equations for a perfect fluid. We validate the numerical algorithm by means

of exact results for transition to convection in Rayleigh–Bénard compressible systems and against

direct comparison with finite-difference schemes. The method is stable and reliable up to

temperature jumps between top and bottom walls of the order of 50% the averaged bulk

temperature. We use this method to study Rayleigh–Taylor instability for compressible stratified

flows and we determine the growth of the mixing layer at changing Atwood numbers up to At

�0.4. We highlight the role played by the adiabatic gradient in stopping the mixing layer growth in

the presence of high stratification and we quantify the asymmetric growth rate for spikes and

bubbles for two dimensional Rayleigh–Taylor systems with resolution up to Lx�Lz=1664�4400

and with Rayleigh numbers up to Ra�2�1010. © 2010 American Institute of Physics.

�doi:10.1063/1.3392774�

I. INTRODUCTION

Lattice implementations of discrete-velocity kinetic

models have gained considerable interest in the last decades,

as efficient tools for the theoretical and computational inves-

tigation of the physics of complex flows.
1–8

An important

class of discrete-velocity models for ideal fluid flows, the

lattice Boltzmann models �LBMs�,9–11
can be derived from

the continuum Boltzmann �BGK� equation,
12

upon expan-

sion in Hermite velocity space of the single particle distribu-

tion function, f�x ,� , t�, describing the probability of finding

a molecule at space-time location �x , t� and with velocity

�.
4,13–15

As a result, the corresponding lattice dynamics ac-

quires a systematic justification in terms of an underlying

continuum kinetic theory. The state of the art is satisfactory

concerning isothermal flows, even in the presence of com-

plex bulk physics �multiphase, multicomponents�1,2,16
and/or

with complex boundary conditions such as roughness, non-

wetting walls and slip length.
6,17–19

The situation is much less satisfactory when temperature

plays an active role in the flow evolution due to complex

compressible effects which are present even in ideal fluid/gas

or to phase change in multiphase systems, or both. Only a

few years ago, one could frankly admit that not a single

known lattice Boltzmann approach could handle, in a realis-

tic way, thermal problems properly. The main difficulties be-

ing the development of subtle instabilities when the local

velocity increases. In the last years, the situation has started

to improve, with different attempts being made to describe

active thermal modes within a fully discretized Boltzmann

approach.
15,20–27

These studies show that in order to recover

the right continuum descriptions with the correct symmetries

for the internal energy flux, one needs to enlarge the number

of discrete speeds �a possible choice, for space-filling

schemes following a Gauss–Hermite quadrature,
15,26

is 37

speeds in two dimensions �2D� �Refs. 28 and 26� and 107

speeds in three dimensions �3D� �Ref. 29�� or to add ad hoc

counterterms canceling spurious anisotropic operators.
21,22

Otherwise, different hybrid attempts have been proposed,

where temperature evolution is solved using finite-difference

methods
20

or with lattice schemes able to reproduce thermal

van der Waals fluids in the continuum limit.
24

Boundary

conditions
23,30

and stability issues
31

are also much more in-

volved when thermal modes are present. It is fair to say that

not a single model emerged as the optimal choice, and only a

few explorative studies have been performed in order to

check potentiality and limitations of each proposed solution.

The aim of this paper is twofold. First, we intend to

further discuss a recent formulation, proposed by some of us

in Ref. 32 for a new way to incorporate the effects of

external/internal forces in thermal LBM. We provide here the

full explicit Chapman–Enskog expansion, whose results

where only anticipated without proof in Ref. 32, in order to

show the convergence of the model to the Fourier–Navier–
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Stokes equations. We validate the method in a case where

thermal compressible effects play a major role, i.e., the tran-

sition to convection in a compressible Rayleigh–Bénard sys-

tem of height Lz, with an imposed temperature jump,

Tu−Td=�T. For such systems, it is possible to calculate the

critical Rayleigh number analytically
33

at changing both the

stratification parameter �also known as the scale height�,
Z=�T /Tu, and the polytropic index, m=g / �R��−1, where

R is the gas constant, g the gravity acceleration, and

�=�T /Lz the temperature gradient. We show here that our

LBM scheme is able to handle temperature jumps as high as

�T /Tu=2 for both positive and negative values of the poly-

tropic index �stable and unstable density stratifications�.
Such systems are clearly very far from the classical

Oberbeck–Boussinesq approximation.
34,35

Second, we study highly compressible Rayleigh–Taylor

�RT� systems, for the initial configuration where two blobs of

the same fluids are prepared with two different temperatures

�hot, less dense, blob below, cold, denser, blob above�. We

show that the method is able to handle the highly nontrivial

spatiotemporal evolution of the system even in the develop-

ing turbulent phase. In this case, we could push the numerics

up to Atwood numbers At�0.4. Maximum Rayleigh

numbers achieved are Ra�4�1010 for At=0.05 and

Ra�2�109 for At=0.4. We present results on �i� the growth

of the mixing layer at changing the compressibility degree,

including the asymmetry in the quadratic growth of spikes

and bubbles dynamics; �ii� a new effect of stratification

which stops the mixing length growth when a critical width,

Lad is reached. We interpret this as due to the existence of the

adiabatic gradient: when the jumps between the two moving

fronts lead to a temperature gradient, �T /Lad, of the order of

the adiabatic gradient, the dynamics stops and only thermal

diffusive mixing may further acts.

Technically speaking, the main novelty of the thermal-

LBM formulation proposed in Ref. 32 relies on the fact that

it is possible to incorporate the effects of an external and/or

internal force �gravity and/or intermolecular potential� via a

suitable shift of both momentum and temperature appearing

in the local equilibrium distribution of the Boltzmann colli-

sion operator. Doing that, the systems acquire an elegant

self-consistent formulation and a stable spatiotemporal evo-

lution also in presence of compressible effects, as demon-

strated by the examples anticipated before and detailed later.

The paper is organized as follows. In Sec. II we briefly

remind the details of the LBM formulation and we discuss

the first result of this paper: the continuum thermohydrody-

namical limit, given by the Fourier–Navier–Stokes equa-

tions, as obtained from a rigorous Chapman–Enskog expan-

sion of the discrete model. In Sec. III we show first the

validation of the discretized algorithm by studying the tran-

sition to convection in compressible Rayleigh–Bénard sys-

tems and comparing the results with exact analytical calcu-

lations, at changing the scale height and the polytropic index.

In the same section we also present validation of the method

against finite-difference methods, for the same setup but after

the transition, once convective rolls are present and station-

ary. In Sec. IV we show the investigations of another non-

trivial compressible case: RT system, for two different

Atwood numbers At=0.05 and At=0.4. Conclusions and

perspectives close the paper in Sec. V.

II. THERMAL KINETIC MODEL AND CONTINUUM
THEORY

The main goal of this section is to show how to use a

thermal-LBM to discretize continuum thermal kinetic equa-

tions in the presence of internal/external forces and how to

extract via a suitable Chapman–Enskog multiscale expansion

the relative hydrodynamical evolution, given in term of the

forced Fourier–Navier–Stokes equations. The first issue was

already discussed in Ref. 32: here we briefly recall it and

then discuss the second issue in details.

A thermal-kinetic description of a compressible gas/fluid

of variable density, �, local velocity u, internal energy, K

and subjected to a local body force density g is given in

the continuum by the following set of equations �repeated

indices are summed upon�:

�
�t� + �i��ui� = 0,

�t��uk� + �i�Pik� = �gk,

�tK +
1

2�iqi = �giui,
� �1�

where Pik and qi are momentum and energy fluxes �still un-

known at this level of description�.
In Ref. 32 it is shown that it is possible to recover ex-

actly the above set of equations, starting from a continuum

Boltzmann equations and introducing a suitable shift of the

velocity and temperature fields entering in the local equilib-

rium: f �eq��� ;� ,T ,u�→ f �eq��� ;� , T̄ ,u�. The new-shifted-

Boltzmann formulation being

� f

�t
+ � · �f = −

1

�
�f − f �eq�� , �2�

f �eq���;�,T̄,u� =
�

�2�T̄�D/2
e−�� − u�2/2T̄. �3�

Where the shifted local velocity and temperature must take

the following form:

u = u + �g, T̄ = T − �2g2
/D . �4�

The lattice counterpart of the continuum description �2�
can be obtained through the usual lattice Boltzmann

discretization,

f l�x + cl�t,t + �t� − f l�x,t� = −
�t

�
�f l�x,t� − f l

�eq�� ,

where the equilibrium is expressed in terms of hydrodynami-

cal fields on the lattice, f
l

�eq��x ,��L� ,u�L� , T̄�L��, and the sub-

script l runs over the discrete set of velocities, cl. The super-

script L indicates that the macroscopic fields are now defined

in terms of the lattice Boltzmann populations,
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�
��L� = 	

l

f l,

��L�
u

�L� = 	
l

clf l,

D��L�T�L� = 	
l

�cl − u
�L��2f l.

� �5�

In Ref. 32 it was shown that the lattice version of the shifted

fields entering in the Boltzmann equilibrium �see Appendix

A for its detailed form� is

u
�L� = u

�L� + �g, T̄�L� = T�L� +
���t − ��g2

D
+ O��t�2.

As it is known, lattice discretizations induce nontrivial

corrections terms in the macroscopic evolution of averaged

hydrodynamical quantities. In particular, both momentum

and temperature must be renormalized by discretization ef-

fects in order to recover the correct thermal kinetic descrip-

tion �1� out of the discretized LBM variables. Density is left

unchanged, ��H�=�, while the first nontrivial correction to

momentum is given by the pre- and postcollisional

average,
36,37

u
�H� = u

�L� +
�t

2
g �6�

and the first nontrivial, correction to the temperature field

by
32

T�H� = T�L� +
��t�2g2

4D
. �7�

Using this renormalized hydrodynamical fields, one re-

covers by a suitable Taylor expansions in �t the thermohy-

drodynamical equations,
32

�
�t� + �i��ui

�H�� = 0,

�t��uk
�H�� + �i�Pik

�H�� = �gk,

�tK
�H� +

1

2�iqi
�H� = �giui

�H�.
� �8�

The above equations are still unclosed. A closure ansatz

to express the stress tensor P
ik

�H�
and the heat flux q

i

�H�
in

terms of lower order moments is needed. This ends our short

review of the backup material.

We proceed now with a systematic multiscale closure of

Eq. �8� in order to control the long wavelength limit where

the full Fourier–Navier–Stokes equations emerge. The main

added value with respect to previous similar calculations
39

is

the explicit inclusion of the effects of the external force g in

the Chapman–Enskog expansion.

In order to perform the calculations, we need to intro-

duce a hierarchy of temporal and spatial scales, via the in-

troduction of a small parameter �,

�t → ��1t + �2�2t, �i → ��i,

and the corresponding expansion for the Boltzmann distribu-

tions,

f = f �0� + �f �1� + �2f �2� + �3f �3� + �4f �4� + ¯ ,

together with a suitable rescaling of the forcing terms,

g�O���.36
The various rescalings immediately reflect in the

explicit expansion of the equilibrium distribution in terms of

Hermite polynomials H
l

�n�
,

f l
�eq� = wl	

n

1

n!
a0

�n�
Hl

�n�,

where wl are suitable weights.
27,28

The projections on the

different Hermite polynomials a
0

�n�
are explicitly given in

Appendix A.

After a long calculation, fully detailed in Appendix A,

one shows that the leading long wavelength limit coincides

with the continuum Fourier–Navier–Stokes equations of an

ideal compressible gas given by

�
�t� + �i��ui

�H�� = 0,

��tu j
�H� + �ui

�H��iu j
�H� = �g j + �i�ij

�H�,

��te
�H� + �ui

�H��ie
�H� = �ij

�H�� jui
�H� + �i�k�ie

�H�� ,
� �9�

with the ideal gas internal energy given by e�H�= �D /2�T�H�.

The stress tensor is given by

�ij
�H� = − �T�H�	ij + 
��iu j

�H� + � jui
�H�� + 	ij
� −




c
v

��kuk
�H�.

The shear and bulk viscosities are


 = T�H��
� −
�t

2
�, 
� −




c
v

� = −
T�H��

c
v


� −
�t

2
� ,

and the thermal conductivity,

k = cpT�H��
� −
�t

2
� . �10�

These are therefore the equations for a compressible gas with

an ideal equation of state,

p = �T�H�, �11�

and ideal specific heats,

c
v

=
D

2
, cp =

D

2
+ 1. �12�

It is not difficult to show that in the case the external forces

are conservative, written in a potential form depending only

on the density, one may easily incorporate these effects in the

definition of an internal energy, opening the way to discuss

also nonideal equations of state.
32

III. TRANSITION TO CONVECTION
IN RAYLEIGH–BÉNARD COMPRESSIBLE SYSTEMS

A first nontrivial application of the above algorithm can

be found studying the behavior of Rayleigh–Bénard cells

both considering the effects of compressibility and stratifica-

tion to the transition from diffusive to convective

dynamics
33,40,41

or to the case of fully turbulent non-

Oberbeck–Boussinesq convection.
35

Here we concentrate on

the first issue �see top panel of Fig. 1 for a schematic view�;
results on high Rayleigh turbulent convection will be pub-
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lished elsewhere. First, let us rewrite the set of Eqs. �9� in a

more transparent way, dropping for simplicity the superscript

H in all variables and using the explicit expression of the

internal energy in term of the temperature field,

�
Dt� = − ��iui,

�Dtui = − �ip − �g	i,z + 
� j jui + 
1 −
1

c
v

�
�i� ju j ,

�c
v
DtT + p�iui = k�iiT + 

�iu j + � jui −

1

c
v

	ij�kuk��iu j ,
�
�13�

where we have introduced the material derivative, Dt=�t

+u j� j, and we have assumed constant viscous and thermal

conductivity coefficients.
33,42

The equation of state is p=�T,

i.e., it is given in terms of quantities normalized such that the

gas constant is R=1. For a cell of height Lz and with imposed

bottom and top temperatures, Td and Tu, the hydrostatic equi-

librium is easily found in terms of the temperature jump

across the cell, �= �Td−Tu� /Lz=�T /Lz,

�
T0�z� = �Td + Tu�/2 − �z ,

�0�z� = �̃�T0�z�/T̃�m,

p0�z� = p̃�T0�z�/T̃�m+1,
� �14�

where the two integration constants must satisfy p̃= �̃T̃, with

T̃ a reference temperature, T̃= �Tu+Td� /2. In Eq. �14� we

have introduced also the polytropic index: m=g /�−1. At

changing the polytropic index, one changes the hydrostatic

profiles of density and pressure. In order to be unstable, the

profile must obviously verify ��0 �if g�0, as assumed

here�, and therefore the interesting polytropic interval is lim-

ited to m−1. Furthermore, unstable fluctuations may de-

velop only if the hydrostatic temperature gradient � is larger

than the adiabatic gradient, �ad=g /cp, i.e., only when the

adiabatic transformation of a hot/cold spot of fluid moving

up/down induces a temperature variation that does not

exceed the hydrostatic change.
43

This limits the interesting

interval excursion of the polytropic index from above,

m�cp−1, which in our units, for an ideal gas in 2D, means

m�1. The limitation from above is a typical important ex-

ample induced by compressibility/stratification, i.e., by the

fact that a cold/hot fluid spots may contracts or expand dur-

ing their spatiotemporal evolution. Stratification can be also

measured by the scale height, i.e., a typical length scale Lh

built in terms of mean hydrostatic quantities. In our case, the

most natural way to define it is by using the temperature

profile: Lh= �Tu /�T�Lz=Lz /Z. Where we used the dimen-

sionless parameter Z=�T /Tu, which is a direct measurement

of the stratification effects: for Z�1, the cell height Lz is

much larger than the typical stratification length, i.e., the

fluid is highly stratified. On the other hand, the limit Z→0

corresponds to the so-called Oberbeck–Boussinesq approxi-

mation, where both stratification and compressibility are

vanishingly small. The latter is, by far, the most studied con-

vection configuration, even though some important applica-

tions for astrophysics
44,45

and recently also for laboratory

setup
46–48

cannot neglect compressible modes. It is possible

to show
34

that in the Boussinesq approximation, the depen-

dency from the polytropic index disappear �as it must obvi-

ously do� while it remains a possible effect induced by the

adiabatic gradient �usually small on laboratory experiments,

but not necessarily on atmospheric scales�.
We use this complex setup to benchmark the thermal-

LBM algorithm proposed and probe its robustness at chang-

ing compressibility. This can be done directly against exact

results on the emergence of convective instability in the sys-

tem. It is possible to calculate, in a closed form, the stability

problem of the linearized system around the hydrostatic so-

lution �14�, for both slip or no-slip velocity boundary condi-

tions and for any polytropic index:
33

these are just suitable

extensions of the well known Rayleigh calculation made for

the incompressible case.
49

Stratification makes the problem nonhomogeneous �in

〈T (x, z)〉x,〈ρ(x, z)〉x

g

HOT

COLD

TdTu

Lz/2

0

−Lz/2

〈T (x, z)〉x,〈ρ(x, z)〉x

m = +0.5

m = −0.9

g

TdTu

Lz/2

0

−Lz/2

FIG. 1. Upper panel: Rayleigh–Bénard geometry and setup of the initial

configuration given by Eq. �14�; two cases with m=+0.5 and m=−0.9. On

the horizontal axis we show the mean temperature and density profiles as a

function of the z-height �plotted on the vertical axis�. The bold and tiny solid

lines represent the temperature and density profiles, respectively. Lower

panel: RT initial configuration given by Eq. �17�. Bold and tiny lines as in

the upper panel.
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the vertical direction�, and therefore it is not possible to de-

fine in a unique way the Rayleigh number. Anyhow, it turns

out that it is possible to introduce a height-dependent

Rayleigh number which rules the linearized problem,

Ra�z� =
�g/T0�z��Lz

4�� − �ad�

�k/�0�z�cp��
/�0�z��
, �15�

and one can express the whole bifurcation diagram in terms

the value of the Rayleigh number at a given height, say the

middle of the cell z=Lz /2, for example, Rã=Ra�Lz /2�. Dif-

ferent works have been devoted to the calculations of the

critical Rãc at changing the polytropic index, the scale

height, Z and the boundary conditions at the top/bottom

plates.
33,50,51

A result of the stability calculation predicts that

there exists a critical Rayleigh number which depends only

on the polytropic index m, on the stratification parameter Z,

and on the wavelength a of the perturbation, Rãc�m ,Z ,a�.
The hydrostatic solution will therefore become unstable un-

der perturbation of a wavelength corresponding to the mini-

mum possible critical Rayleigh number. Compressibility and

stratification may have different effects, either stabilizing or

destabilizing the systems, depending on the hydrostatic un-

derlying equilibrium. For example, if the hydrostatic profile

has an unstable density profile, m�0, one gets that the criti-

cal Rayleigh decreases at increasing temperature jumps. The

opposite happens when density is stably stratified, m�0.

From the definition of Rayleigh given in Eq. �15�, it is easy

to realize the importance of the adiabatic gradient,

�ad=g /cp, i.e., if ���ad, the control parameter is always

negative and the system will always be linearly stable. In

Fig. 2 we show the result of a numerical search of the critical

Rayleigh number �i.e., the onset of the transition to convec-

tion� using our LBM algorithm, obtained by exploring the

long time behavior of the system, prepared with a small per-

turbation to its hydrostatic equilibrium, and monitoring the

successive temporal growth/decline of the total kinetic

energy �example in the inset�. The LBM has been applied by

imposing no-slip impenetrable boundary conditions for

the velocity field at top/bottom walls, uz�z= �Lz /2�=0,

ux�z= �Lz /2�=0, and with an imposed constant temperature

jump, T�z=−Lz /2�=Td, T�z=Lz /2�=Tu. Lateral boundaries

are fully periodic. Technical details on the way to implement

the given boundary conditions in the LBM algorithm are

given in Appendix B. In the same figure we also report the

critical Rayleigh numbers obtained from the LBM explora-

tion, compared with the exact analytical results obtained by

solving numerically the eigenvalue problem for the linear-

ized equations as given in Ref. 33. As one can see, the agree-

ment is good, even for large temperature jumps, up to

Z�2. Larger values of Z are difficult to reach because of

limitations imposed by numerical stability of the boundary

conditions and by the growth of unstable compressible

modes in the system. In order to overcome such limitation

one should probably extend the Hermite projections to

higher and higher orders.
31

The main error source in the de-

termination of the critical Rayleigh number out of our LBM

method stems from the presence of spurious, small, depar-

ture from the exact linear profile in the mean temperature

close to the boundary walls. This departure goes together

with the existence of small spurious transverse velocity for

two-three grid layers close to the wall and are due to the

existence of discrete velocities which connect up to three

layers in the lattice inducing nonlocal boundary conditions

effects �see Appendix B for details�. Such effects can be

annoying for the investigation of highly turbulent regimes,

where the boundary layer dynamics becomes crucial to drive

the correct thermal exchange with the bulk.
52

This shortcom-

ing can be strongly reduced by moving from LBM algo-

rithms using exact streaming �as done here� to LBM based

on finite-volume schemes.
53

Details in this direction will be

published elsewhere. The small spurious oscillations close to

the boundaries do not prevent to get a very good quantitative

validation of the algorithms also when large-scale convective

rolls are present. For example, in Fig. 3 we make a one-to-

one comparison of the LBM numerics with a numerical

study using finite-difference scheme for incompressible

Rayleigh–Bénard systems.
54,55

Again, the stationary profiles

are perfectly superposing, as shown for both temperature and

velocity in Fig. 3. This ends our validation section. In Sec.

IV we apply the new algorithm to study compressible dy-

namics, as it is the case of RT instabilities in thermal strati-

fied flows. In the latter case, the small spurious oscillations

close to the walls are obviously completely unimportant, be-

ing the bulk the only physically interesting region.

IV. RT SYSTEMS

Superposition of a heavy fluid above a lighter one in a

constant acceleration field depicts a hydrodynamic unstable

configuration called the RT instability
49

with applications on

different fields going from inertial-confinement fusion
56

to

supernovae explosions
57

and many others.
58

Although this
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m=−0.990. Theoretical values are obtained solving the linearized equations

as described in Ref. 33. Inset: time evolution of the total kinetic energy �in
arbitrary units� for Rayleigh numbers lower and higher than the critical one

for the parameter case �c�. The unit of time corresponds to 10 000 LB
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instability was studied for decades it is still an open problem

in several aspects.
59

In particular, it is crucial to control the

initial and late evolutions of the mixing layer between the

two miscible fluids; the small-scale turbulent fluctuations,

their anisotropic/isotropic ratio; their dependency on the ini-

tial perturbation spectrum or on the physical dimensions of

the embedding space.
60,61

In many cases, especially concern-

ing astrophysical and nuclear applications, the two fluids

evolve with strong compressible and/or stratification effects,

a situation which is difficult to investigate either theoretically

or numerically. Here, we concentrate on the large-scale prop-

erties of the mixing layer, studying a slightly different

RT system than what usually found in the literature: the

spatiotemporal evolution of a single component fluid when

initially prepared on the hydrostatic unstable equilibrium,

i.e., with a cold uniform region in the top half and a hot

uniform region on the bottom half �see bottom panel of Fig.

1�. For the sake of simplicity we limit the investigation to the

2D case. While small-scale fluctuations may be strongly dif-

ferent in 2D or 3D geometries, the large-scale mixing layer

growth is not supposed to change its qualitative

evolution.
62,63

A gray-scale coded snapshot of a typical RT

run is shown in Fig. 4 showing all the complexity of the

phenomena. Let us start to define precisely the initial setup.

We prepare a single component compressible flow in a 2D

tank of size, Lx�Lz, with adiabatic and no-slip boundary

conditions on the top and bottom walls and with periodic

boundary conditions on the vertical boundaries. For conve-

nience we define the initial interface to be at height z=0, the

box extending up to z=Lz /2 above and z=−Lz /2 below it

�see Fig. 1�. In the two half volumes we then fix two differ-

ent homogeneous temperatures, with the corresponding hy-

drostatic density profiles �0 verifying
64

�zp0�z� = − g�0�z� . �16�

Considering that in each half we have p0�z�=T�0�z�, with T

fixed, the solution has an exponentially decaying behavior in

the two half volumes, each one driven by its own tempera-

ture value. The initial hydrostatic unstable configuration is

therefore given by

�T0�z� = Tu, �0�z� = �u exp�− g�z − zc�/Tu� , z � 0,

T0�z� = Td, �0�z� = �b exp�− g�z − zc�/Td� , z � 0.

�17�

To be at equilibrium, we require to have the same pressure at

the interface, z=zc=0, which translates in a simple condition

on the prefactor of the above expressions,

�uTu = �bTd. �18�

Because Tu�Td, we have at the interface �u��b. As far as

we know, there are no exhaustive detailed calculations of the

stability problem for such configuration, even though not too

different from the usual RT compressible case.
49,65,66

As said,

this is not the common way to study RT systems, which is

usually meant as the superposition of two different miscible

fluids, isothermal, with different densities.
49,60,65,67

As far as

compressible effects are small, one may safely neglect pres-

sure fluctuations and write—for the case of an ideal gas,

	�

�
� −

	T

T
, �19�

and the two RT experiments are then strictly equivalent.

Moreover, in the latter case, if one may neglect the depen-

dency of viscosity and thermal diffusivity from temperature,
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FIG. 3. Comparison between one-dimensional vertical cut of the stationary

temperature and velocity profiles after transition to a convective two-rolls

configuration. Up: T�x0 ,z� at x0 such that x0=0.69Lx. Circles correspond to

the LBM; solid line corresponds to a finite-difference calculations �FDM�
�Refs. 54 and 55�. Down: the same of above plot but for the streamwise

velocity, ux�x0 ,z�. In the insets we show a gray-scale coded representations

of the convective stationary rolls in the whole 2D domain �up: temperature;

down: streamwise velocity�.

FIG. 4. Spatial configuration for a typical RT run with Lx�Lz=800

�2400, Tu=0.95, Td=1.05 at time t=4�̃ �run A in Table I�.
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the final evolution is indistinguishably from the evolution of

the temperature in the Boussinesq approximation.
61,62

Here

we will study both the case of small compressibility and

small stratification, where pressure is always close to its hy-

drostatic value, p� p0, and the case when compressibility

becomes dynamically relevant, changing the global large-

scale evolution of the mixing layer.

A. RT instability in thermally active flows:
The role of the adiabatic gradient

The main novelty in the setup here investigated is due to

the presence of new effects induced by the adiabatic gradi-

ent, which in our case can be written as in Sec. III,

�ad=g /cp. In order to understand the main physical point, it

is useful to think at the RT mixing layer as equivalent to a

�developing� Rayleigh–Bénard system with an imposed

mean temperature gradient.
68,69

Let us denote with Lml�t� the

typical width of the RT mixing layer at a given time as mea-

sured, for example, from the distance between the two eleva-

tions where the mean temperature profile is 1% lower or

higher than the bottom and top, respectively, unmixed tem-

perature values, Lml=zu−zd, where �T�x ,zu��x=1.01Tu and

�T�x ,zd��x=0.99Td. It is well known that the temperature

tends to develop a linear profile inside the mixing region, the

resulting instantaneous temperature gradient is then given by

��t�= �Td−Tu� /Lml�t�, and it decreases in time inversely to

the growth of the mixing length. As a result, soon or later �if
the box is tall enough� the instantaneous temperature gradi-

ent will become of the same order of the adiabatic gradient,

��t���ad, and the growth of the mixing length will stop.

One can define an instantaneous Rayleigh number, driving

the physics inside the mixing layer, estimated as in Sec. III,

R̃a�t� =
�g/T̃0�Lml

4 �t����t� − �ad�

�k/�̃0cp��
/�̃0�
, �20�

where � · �˜ indicates quantities evaluated at the middle layer.

It is clear that for small times, ��t���ad, the effective in-

stantaneous Rayleigh number is high: the system is unstable,

and the mixing length grows. On the other hand, as time

elapses, the vertical mean temperature gradient decreases,

until a point when, ��t���ad, the instantaneous effective

Rayleigh number becomes R̃a�t��O�1� and the system

tends to be stabilized. We can then identify an adiabatic

length,

Lad = �Td − Tu�/�ad = cp�T/g ,

which determines the maximum length achievable by the

mixing layer, in our configuration. Let us notice that in the

absence of the adiabatic gradient, the Rayleigh number

would continue to grow indefinitely, being proportional to

the third power of Lml�t�, as it is the case for usual RT

systems. If the profile coinciding with the adiabatic gradient

is going to be fully stable depends on the top/bottom bound-

ary conditions imposed on the whole spatial domain. In any

case, when temperature matches the adiabatic profile, the

system strongly feel it, showing a sudden slowing down of

the mixing layer growth. To our knowledge, this effect has

never been predicted before, within this framework. We

show in Fig. 5 the evolution of temperature profiles when

adiabatic effects are important. It is clear how the mixing

layer growth is strongly slowed down when Lml�t��Lad;

afterward only very slow relaxation process happens further,

mainly at the border between the edge of the mixing layer

and the fluids region with homogeneous temperature.

A possible way to estimate quantitatively when and how

the adiabatic gradient starts to play a role in the growth of

the mixing length is to use a simple phenomenological clo-

TABLE I. Parameters for the two sets of RT run. Atwood number, At= �Td−Tu� / �Td+Tu�; adiabatic length,

Lad= �Td−Tu�cp /g �cp=2�; viscosity 
; gravity g; temperature in the upper half region, Tu; temperature in the

lower half region, Td; number of separate RT run Nconf; normalization time, �̃=�Lx / �gAt� �not to be confused

with the relaxation time of the lattice Boltzmann model �2��. Given the parameters here used, the typical

resolution obtained is good enough to get an agreement better than a few percent on the global exact balance

between kinetic energy growth and the sum of dissipation plus buoyancy force.

At Lx Lz Lad 
 g Tu Td Nconf �̃

Run A 0.05 800 2400 4�103 0.001 5�10−5 0.95 1.05 50 1.8�104

Run B 0.4 1664 4400 1.6�104 0.1 1�10−4 0.6 1.4 35 6.5�103

adiabatic gradient

time increasing
z

〈T (x, z; t)〉x

1.061.041.0210.980.960.94

600

400

200

0

-200

-400
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FIG. 5. Temporal evolution of the mean temperature profile, �T�x ,z , t��x at

changing time, t=n	t, with 	t�1.5�ad n=1,2 , . . . ,7. Notice that the profile

approaches more and more the linear behavior dictated by the adiabatic

gradient, �T�x ,z , t��x= �Tu+Td� /2−zg /cp. Time is adimensionalized by using

a reference time based on adiabatic quantities, �ad=�Lad / �g�T /Tu�.
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sure for large-scale quantities in the system. We start from

the self-similar scaling predicted by Refs. 70 and 71 for the

homogeneous not stratified growth,

�L̇ml�t��
2 = 4��L�g At Lml�t� �21�

which has a unique solution �beside the trivial one, Lml=0� in

terms of the initial value, Lml�t0�,

Lml�t� = Lml�t0� + 2�Lml�t0���L� At g�t − t0�

+ ��L� At g�t − t0�2. �22�

Equation �21� offers the advantage to be local in time, i.e.,

one may extract the value of ��L� by a simple evaluation of

the plateau in the ratio �L̇ml�2
/Lml, time by time. In order to

minimally modify the above expression considering the satu-

ration effects induced by stratification, we propose to use

�L̇ml�t��
2 = 4��L�gAtLml�t���Lml�t�

Lad

� , �23�

where �=��x� must be a function fulfilling the condition

�→1 as x→0 �that is, for Lad→��, in order to recover Eq.

�21� for the not stratified case when the adiabatic gradient

goes to zero. We further add the requirement of reaching the

adiabatic profile with zero velocity and acceleration, enforc-

ing a strict irreversible growth, i.e., L̇ml0, as it must be for

the case of miscible fluids. Under these assumptions, it can

be shown that a simple form for the function � is

�
 L

Lad

� = C�e−��L−Lad�/Lad� − 
2Lad − L

Lad

�� , �24�

where the prefactor C must be set equal to 1 / �e−2� to com-

ply with the prescribed boundary conditions. Equation �23�
must be considered as a zeroth order phenomenological way

to take into account of the adiabatic gradient in the mixing

layer evolution.

We integrated numerically Eq. �23� testing the result in

Fig. 6 where we show that it is possible to fit the global

evolution of the mixing length Lml�t�, by using reasonable
59

values of ��L�, for all times, including the long time behavior

where Lml�t��Lad. In the same figure, we also show the be-

havior of the time-dependent effective Rayleigh number

�20�, estimated using the instantaneous mixing length, Lml�t�.
As one can see, after the initial monotonic growth of the

turbulent intensity, there appear a sudden slowing down, as

identified by a strong reduction in the effective Rayleigh

number. We can therefore safely assume that the solution of

our Eq. �23� is a good generalization of Eq. �22� including

also the adiabatic gradient effects.

B. Compressible effects and mixing layer growth

As shown in Sec. IV A, effects induced by the adiabatic

gradient start to appear when the mixing length becomes of

the order of the adiabatic length Lml�t��Lad. It is neverthe-

less possible to study the limit L�t��Lad but still observing

important effects due to compressibility. Indeed, compress-

ibility due to stratification is controlled by the Atwood

number. From the expression of the instantaneous Rayleigh

number �20� one may compute the typical length scale at

which turbulence will be maximal, i.e., the largest extension

of the mixing layer up to which the Rayleigh number is still

growing, before decreasing because of the adiabatic gradient.

This is just given by the maximum of R̃a�t� as a function of

time, which is reached at a characteristic time t�, such that

Lml�t
�� =

3

4
Lad =

3cp�T

4g
. �25�

It is also possible to estimate the typical Mach number

reached at the maximal turbulent intensity, considering that

hydrodynamical velocities can be estimated as Vmax

�d /dtLml�t��=2��L�At gt� and that the minimal sound speed

is given, in our units, by vs=�Td, we get for the Mach num-

ber at the maximal turbulent intensity: Ma�At���L�cp,

where we have used Eq. �22� to estimate t� at a given Lml�t��.
As a result, dynamical compressibility is only driven by the

Atwood number at fixed cp. Using the typical values of

��L��5�10−2, as reported in the literature,
59

and plugging

the correct prefactor, we estimate Ma�0.4, for the largest

Atwood we could achieve At�0.4.

It is well known that compressibility effects break the

up/down symmetry in the mixing layer propagation,
70,71

downward spikes �cold fluid blobs� move faster than upward

bubbles �hot fluid blobs�. Such effect is completely missing

in Boussinesq approximation where there is a perfect up/

down symmetry, by definition.

Neglecting slowing down effects induced by the adia-

batic gradients, i.e., limiting the study of the mixing layer

growth up to Lml�t��Lad, we may investigate the symmetry

breaking in our setup at changing the Atwood number. To

give an idea of the effects of compressibility, we show in

Fig. 7 a few instantaneous mean profile of temperature, den-

sity, and pressure for the two Atwood numbers here investi-

gated. From the density and temperature profiles it is easy

detectable, already by naked eyes, the asymmetry present for
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FIG. 6. Evolutions of the mixing layer Lml�t� versus time with two different

adiabatic lengths: �a�: Lad=800, g=2.5�10−4 �triangles�; �b� Lad=400,

g=5�10−4 �circles�; Both cases have At=0.05, 
=0.001, and �=0.002.

Solid bold lines correspond to the theoretical prediction �23� with ��L�

=0.05. Continuous line corresponds to the evolution of the instantaneous

Rayleigh number �20� calculated for case �a�, scale on the right y-axis.
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the high Atwood case At=0.4 in the growth of the mixing

layer, with the colder and denser front moving faster. Also,

the appearance of nontrivial fluctuations in the pressure

around the hydrostatic profile, for the case at At=0.4, are the

clear evidence of compressible effects at play. Both the

asymmetry and the pressure fluctuations are completely ab-

sent for the case at small Atwood �left panels of Fig. 7, an

evidence of Boussinesq-like thermal fluctuations�. All nu-

merical experiments have been performed by preparing the

initial configuration in its hydrostatic equilibrium �17� plus a

smooth interpolation between the two half volumes in order

to have a finite width of the initial interface. The initial tem-

perature profile is therefore chosen to be

T0�z� =
Tu + Td

2
+

Tu − Td

2
tanh� �z − zc�

w
� ,

where with w we define the initial width of the interface and

zc its unperturbed height �zc=0 in our frame of reference�.
Initial density �0�z� and pressure p0�z� are then fixed by solv-

ing the hydrostatic equation �16� in order to get the hydro-

static solution corresponding to the smoothed temperature

profile.

To destabilize the initial configuration, we follow Ref.

72 and shift randomly the center of the interface by adding

horizontal perturbation at different wavelengths in the range

k� �kmin :kmax�,

FIG. 7. Temperature �T�x ,z ; t��x, density ���x ,z ; t��x, and pressure �p�x ,z ; t��x, instantaneous mean profiles at different times during the RT evolution. Left

column: At=0.05, times t=3�̃ ,6�̃ ,7�̃ �run A, Table I�; right column: At=0.4, times t=3�̃ ,4.5�̃ ,6�̃ �run B, Table I�. Initial hydrostatic profiles are depicted by

solid bold lines. Notice the asymmetry for the mixing layer growth in the latter case. Notice also the appearance for high Atwood of hydrodynamical pressure

fluctuations superposed to the hydrostatic pressure profiles. Both effects are absent in the small Atwood case.

055101-9 Lattice Boltzmann methods for thermal flows Phys. Fluids 22, 055101 �2010�

Downloaded 04 Jun 2010 to 131.155.128.133. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



zc → zc�x� =
�

N
	

k=kmin

k=kmax

cos�2�kx/Lx + �k� , �26�

where �k are random phases and N=�kmax−kmin, in order to

have a total amplitude for the initial width almost indepen-

dent on the number of modes. We have tried different ranges

of wavelengths, without observing quantitative differences

in the large time growth of the mixing layer. The ratio

W=� /w gives the “wiggling” of the interface, i.e., how much

the perturbation of the interface position is important with

respect to the interface width.

Below, we present results in different geometries, up to a

resolution of Lx�Lz=1664�4400 with different choices of

W. For each parameters set we made typically O�50� sepa-

rate RT evolution, starting from different random phase ini-

tial configurations.

In the sequel, we show a summary of the results from

two typical numerical series of runs, one with At=0.05

�small compressibility� and a second one with At=0.4 �large

compressibility�. It is useful to adopt a different definition for

the mixing length in terms of a bulk mixing percentage, in-

troducing the characteristic function �tent-map�,

����� = 2� , 0 � � � 1/2,

���� = 2�1 − �� , 1/2 � � � 1,
 �27�

and defining the mixing length as
71

H�t� =
1

Lx

� dxdz��T�x,z� − Tu

Td − Tu

� . �28�

It is easy to realize that if the temperature is fully homog-

enized in the fluid, T�x ,z�= �Tu+Td� /2, then the mixing

length coincides with the full vertical extension of the box:

H=Lz; if we have two perfectly separated hot and cold re-

gions we have H=0. In the intermediate situation when we

have a mean linear temperature profile for z� �zd ,zu� be-

tween two unmixed regions �T=Tu if z�zu and T=Td if

z�zd� the mixing length estimated by Eq. �27� is exactly

given by half of the linear region, H= �zu−zd� /2. The defini-

tion of the mixing length �27� must be preferred with respect

to more common definition of Lml based on thresholds on the

linear profile, as adopted in Sec. IV A. The former, being

based on a bulk measure, is not affected too much on the

highly fluctuating properties of the interface between mixed

and unmixed fluids. This is particularly important in 2D,

where the averaged profile, being a one-dimensional cut,

may fluctuate a lot �see also Fig. 7�. Anyhow, in the case of

a perfectly linear temperature profile the two lengths are ob-

viously related by the relation H=1 /2	Lml, where 	 is the

percentage threshold used to identify the mixing front �in
Sec. IV A, 	=0.99�.

Moreover, because here we want to distinguish the

downward growth of the front due to cold spikes from the

upward growth of bubbles, we introduce two different inte-

gral mixing lengths,

Hs�t� =
1

Lx

� dxdz��
L

2
− z���T�x,z� − Tu

Td − Tu

� ,

Hb�t� =
1

Lx

� dxdz��
z −
L

2
���T�x,z� − Tu

Td − Tu

� ,

where of course, H�t�=Hs�t�+Hb�t�. Clearly, the ��H� value

ruling the long term quadratic growth of the integral mixing

H is not necessarily the same of Lml. Typically one expects

the same relation ��H�=0.5	��L� valid for the definition of the

two mixing lengths, at least for times long enough.

As one can see in Fig. 8 there is a wide scattering of the

mixing length evolution from run to run, where the only

difference between them is the realization of the initial ran-

dom phases. Due to the intense local temperature and density

fluctuations, averaging over horizontal direction is not very

efficient to smooth down statistical fluctuations, and one ob-

serves high variations from sample to sample: many realiza-

tions are needed to extract stable quantitative results on the

long time evolution. In order to have an insight on the typical

fluctuations we decided to analyze run by run and following

two fitting procedures. First, we start from the equivalent of

Eq. �22�, written for bubbles and spikes separately,

At = 0.4

t/τ̃

Hb(t)/Lz bubbles

6420

At = 0.4

t/τ̃

Hs(t)/Lz spikes
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At = 0.05

t/τ̃
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t/τ̃

Hs(t)/Lz spikes
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0

FIG. 8. Growth of Hs,b�t�, run by run, for the two Atwood numbers of run A

and run B. The mixing length width is normalized by the total box width Lz.

Notice the evident asymmetry between spikes and bubbles for the high

Atwood case �run B�.
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�Hb�t − t0� = Hb�0� + Ḣb�0�t + �b
�H� At gt2,

Hs�t − t0� = Hs�0� + Ḣs�0�t + �s
�H� At gt2,

 �29�

with Ḣb,s�0�=2�Hb,s�0��
b,s

�H�
At g, where t0 must be under-

stood as the time when the initial perturbation is fully en-

tered in its nonlinear regime. In other words, t0 must be

larger than the typical characteristic time of the slowest un-

stable mode. It can be estimated from linear stability analysis

as t0��Lx / �2�g At�. A brute force way to extract the

growth rate is to evaluate the ratio �
s,b

�H�
=limt→� Hs,b�t� / t2.

Even, neglecting possible contamination due to stratification,

this is of course valid, only asymptotically, when both depen-

dencies on the initial time t0 and on the initial mixing length

Hs,b�t0� become negligible. As a matter of fact, taking into

account also the maximum time achievable due to numerical

limitations, it is very difficult to extract stable statistical re-

sults on the ��H� fluctuations starting from the brute force

analysis of Eq. �29�. For instance, we found that a parabolic

fit to our data, taking �
s,b

�H�
free, is very sensitive to the initial

time t0 and/or the initial distance Hb,s�t0�, without allowing

for a systematic assessment of the asymptotic behavior. To

give an idea of the importance of the initial condition versus

statistical fluctuations, we show in the bottom panel of Fig. 9

the results of the asymptotic ratio Hs,b�t� / t2 for two different

series of runs with different initial conditions. As one can

see, even if asymptotically there is a clear tendency to forget

the initial separation, in agreement with Eq. �29� there is not

a well developed plateau, up to the time achievable in out

numerics, indicating the existence of important subleading

effects. The existence of such terms is highlighted in the

inset of the same panel, where a log-log plot clearly shows

the lack of a plateau even for large times.

Another alternative, and more robust way, to extract ��H�

relies on the differential equivalent of Eq. �29� given by Eq.

�21� or Eq. �23� when stratification becomes important. Us-

ing Eq. �21�, one may directly assess the nonlinear growth

rate, without spurious contamination from initial conditions.

In the upper panel of Fig. 9 we show the same data

plotted in the lower panel but for the ratio

�s,b
�H� = �Ḣs,b�t��2

/�4g At Hs,b�t�� , �30�

i.e., we address time by time the part depending on

asymptotic growth rate only. It is evident the net improve-

ment in both the extension of the range where ��H� coeffi-

cients are constant and the clear disentanglement of effects

coming from the initial conditions. Out of the data for

�Ḣs,b�t��2
/4�g At Hs,b�t�� we may estimate the statistical

fluctuations of �
s,b

�H�
, by making a fit to a constant in a given

time windows. In Fig. 10 we plot the results of fitting the

evolution �30� independently for bubbles or spikes �upward

or downward fronts�. From this we learn a few interesting

facts: �i� at small Atwood �upper panel� bubbles and spikes

travel almost with the same statistics, even though a small

asymmetry can be observed in the shape of the whole histo-

gram. The asymmetry is so small, that if averaged quantities

are measured, the differences between them fall within error

bars; �ii� there are no important effects from initial

conditions—compare the two upper panels obtained with

two different classes of initial conditions—at least when data

are fitted using Eq. �30�, confirming that the observed spa-

tiotemporal evolutions are dominated by strongly nonlinear

fully developed dynamic; �iii� at large Atwood �lower panel�
the asymmetry becomes evident, spikes are systematically

faster then bubbles, the two evolutions give different mean

vales for �
s

�H�
and �

b

�H�
parameters. Our measure of the aver-

age global growth rate ��H� can be estimated by summing up

the growth rate in the two half cells: ��H�=�
s

�H�
+�

b

�H�

�0.02 is agreement with values typically found in

literature.
59,70,71

For instance, in Ref. 59 a detailed overview

of numerical results gives for the growth rate of bubbles,

measured on the 99% width, �
b

�L��0.025�0.003, in agree-

ment with �
b

�H�
=0.0095�0.002, we found for our integral

growth rate �see caption of Fig. 10� taking into account that

W=8

W=2

(Ḣs(t))
2

4gAtHs(t)

t/τ

5.554.543.532.521.510.50

0.05

0.04

0.03

0.02

0.01

0

-0.01

-0.02

log( Hs(t)
g At t2

)

log(t/τ)

1010.1

0.1

0.01

W=2

W=8

Hs(t)
g At t2

t/τ

5.554.543.532.521.510.50

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

FIG. 9. Run A. At=0.05. Analysis of the asymptotic growth rate for spikes,

�
s

�H�
. Bottom panel: mixing length evolution normalized by t2 for two dif-

ferent sets of initial width, W=� /�=2 �circles� and W=8 �triangles�, where

� is the intensity of the initial perturbation and � is the width of the regu-

larizing tanh initial profile. Data refer to Nconf=50 for both cases. Notice the

long relaxation time before the two evolution forgets the initial conditions.

This is due to the presence of the prefactor proportional to Lml�t0� in the

subleading linear term of Eq. �22�. Inset: the mean value of the data shown

in the body but in log coordinate-same symbols. Upper panel: mean value of

the instantaneous growth rate of spikes extracted from Eq. �30� for the two

initial setup with W=2,8. Average is performed over Nconf=50 separate

Rayleigh–Taylor evolution for the two cases. Error bars are estimated out of

root mean square fluctuations. Notice the more extended range where the

two setups superpose and the extended time interval where �
s

�H�
stays con-

stant �notice the different y-scale between lower and upper panels�. Results

for bubble evolution are similar and not shown. Both cases are summarized

in Fig. 10.
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by definition one expects a factor of 2 between the measure-

ment made on the integral quantity ��H� and the measure-

ment made on the 99% level set, ��L�.

The last issue we want to discuss concerns with homog-

enization inside the mixing layer. It is easy to show that in

the Boussinesq approximation for a convective stationary

cell with a mean linear temperature profile, all deviations

from the mean profiles are homogeneous. The case of RT

evolutions investigated here is slightly different. First, when-

ever stratification is important, there is no reason to expect

exactly homogenization inside the mixing length. Second,

and more importantly, homogeneity must be expected only

well inside the mixing layer, far from the up and downside

fronts, where clearly strong nonhomogeneous effects for

both mean and fluctuating quantities must appear. It is inter-

esting therefore to test how homogeneous the statistics is and

also to quantify the degree of mixing. In order to do that, we

introduce the pth order moments of temperature fluctuations,

Q�p��z,t� = ��T�x,z� − �T�x,z��x�
p�x. �31�

In Fig. 11 we show the root mean square fluctuations around

the vertical mean temperature profile Q�2��z , t� �bottom

panel� and the flatness, F�z , t�=Q�4��z , t� / �Q�2��z , t��2, i.e., the

ratio between fourth and squared second order moments of

fluctuating quantities �top panel�. As one can see, the root

mean square fluctuations tend—very slowly—to develop a

flatter and flatter plateau inside the mixing region, demon-

strating that if the mixing layer is wide enough, there will be

a larger and larger region where statistics is pretty homoge-

neous. On the other hand, if we plot the flatness as a function

of a normalized mixing length width, it converges toward a

self-similar profile, for any time, where the effects coming

from the two boundaries of the mixing regions are felt inside

the whole layer, without showing any trend toward homog-

enization. This second finding is a clear indication that if

normalized with the total mixing length extension, the region

where the statistics may be considered homogeneous does

not increase with time.

V. CONCLUSIONS AND PERSPECTIVES

We have explicitly computed the continuum thermohy-

drodynamical limit of a new formulation of lattice kinetic

equations for thermal compressible flows, recently proposed

in Ref. 32. We have shown that the hydrodynamical manifold

is given by the correct compressible Fourier–Navier–Stokes

equations for a perfect fluid. We have validated the calcula-

tions against exact results for transition to convection in

Rayleigh–Bénard compressible systems and against direct

comparison with finite-difference methods. The method is

stable and quantitatively reliable up to temperature jumps

between top and bottom walls �stratification� of the order of

�T /Tu�2. We have also applied the method to study RT

instability for compressible stratified flows and we deter-
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FIG. 10. Top: Run A, At=0.05; histograms of �
s,b

�H� �multiplied by 103 for the

sake of clarity� as extracted from Eq. �30�, at fixed initial width W=2 �left�
and W=8 �right�. The fit is done over 50 and 35 different configurations,

respectively. In order to test dependency on the fitting window we

have summed results from two different ranges, t� �1.5�̃ :4.5�̃� and

t� �2.2�̃ :4�̃� in both cases the maximum time is such that the front did not

reach more than 80% of the total vertical extension of the physical domain.

Bottom: Run B, At=0.4. Results from two fitting ranges t� �2.3�̃ :5.4�̃� and

t� �3�̃ :4.5�̃�. Notice the asymmetry developing for At=0.4, with spikes

traveling faster. An estimate of the mean value for the growth rate in the two

cases gives �
s

�H�
= �10�2��10−3 and �

b

�H�
= �9.5�2��10−3 at At=0.05,

while �
s

�H�
= �14�4��10−3 and �

b

�H�
= �9�5��10−3 for At=0.4.

z/Lml(t)

F (z, t)

210-1-2

1.e+0

1.e-3
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FIG. 11. Bottom: second order moment of temperature fluctuations �see

Eq. �31�� as a function of the height at times t= �2.2,3.3,4.4��̃. The z-height

has been normalized with the total cell extension Lz. Top: Flatness

Q�4��z , t� / �Q�2��z , t��2 at the same three instants of time as in the bottom

panel. The z-height has been normalized with Lml�t� in order to show the

self-similarity of the mixing process �the three curves collapse onto each

other by rescaling�. Parameters refer to run A in Table I.
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mined the growth of the asymmetric mixing layer at chang-

ing Atwood numbers up to At�0.4 and to Rayleigh Ra�2

�1010. We determined the distribution of the growth rate for

bubbles and spikes, at changing At and we discuss its depen-

dence on the initial perturbation.

We also discussed the importance of the adiabatic gradi-

ent for the growth of the RT mixing layer in strongly strati-

fied systems. In the latter case, we showed the existence of a

maximal width, the adiabatic length Lad for the mixing re-

gion. The high flexibility—and locality—of LB algorithm

makes them the ideal playground where to push the reso-

lution, having perfectly scalable performances as a function

of the number of processors in the parallel architecture. In

particular, it is simple to extend such algorithm to deal with

fully 3D systems for ideal, nonideal, and/or even immiscible

two fluids systems. High resolution studies of RT systems

meant to investigate short wavelengths scaling properties of

velocity, density, and temperature fields for high Rayleigh,

with and without surface tension,
38

and using a highly opti-

mized LBM algorithm for the cell broadband engine
74

are

under current investigation and will be reported elsewhere.

The thermal LBM here proposed still suffers of small spuri-

ous oscillations of temperature and perpendicular velocity

close to the solid boundaries, making it still not appropriate

to study high Rayleigh numbers stationary convection. A

possible way to overcome this difficulty consists in abandon-

ing numerical schemes based on exact streaming and to de-

velop the proposed thermal LBM on a finite-volume scheme.

Results in this direction are out of the scope of this paper and

will be the subject of forthcoming publications.
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APPENDIX A: CHAPMAN–ENSKOG EXPANSION

In this appendix we detail the steps of the Chapman–

Enskog expansion leading to the thermohydrodynamical

equations under the effect of a general forcing term �g. Simi-

lar analysis �without the effect of the forcing� can be found

in Ref. 39. We start from the shifted equilibrium formulation,

f l�x + cl�t,t + �t� − f l�x,t� = −
�t

�
�f l�x,t� − f̄ l� , �A1�

where, for the sake of simplicity, in the notation of this ap-

pendix we have renamed the equilibrium distribution func-

tion with shifted fields, f
l

�eq�
= f̄ l,

f̄ l = f̄ l��,u�L� + �,T�L� + ��

and where � and � are general momentum and temperature

shifts for the equilibrium distribution with u
�L�, T�L� the lat-

tice velocity, and temperature hereafter denoted simply with

u and T. Central to our analysis is the expansion of the

equilibrium distribution in Hermite polynomials,
15,26,39

f̄ l = wl	
n

1

n!
a0

�n���,u + ��,T + �2��Hl
�n�,

with wl suitable weights whose values are reported in Refs.

26 and 28 for the D2Q37 model here used �see also Fig. 12�.
For the purposes of our investigation a fourth order approxi-

mation proves to be enough to recover the correct equations

with the right isotropic properties for all hydrodynamical

fields and tensors up to the eighth order.
28

The Hermite poly-

nomials are given by the following relations:

Hl
�0� = 1, Hl

�1� = cl, Hl
�2� = cl

2 − � , �A2�

Hl
�3� = cl

3 − �cl, Hl
�4� = cl

4 − �cl
2 + �� , �A3�

and the projection coefficients a
0

�n�
by

FIG. 12. Scheme for the D2Q37 model used for the simulation of thermo-

hydrdoynamics. The “lattice constant” is r�1.1969 as reported in Ref. 28.

The velocity set is such that every projection of the velocity is an integer

multiple of r which is chosen to enforce the unitarity of Hermite polynomi-

als �Eqs. �A2� and �A3�� up to the fourth order. The relationship between

real and velocity lattices is set by �x=r�t with �x and �t space and time

discretizations. Based on the Hermite–Gauss quadrature procedure �Refs.

15, 28, and 26�, the D2Q37 can be regarded as the minimal on grid square

lattice giving with accurate Hermite polynomials up to the fourth order. This

quadrature ensures that the Navier–Stokes thermodynamics is recovered

with full Galilean invariance. Lattice D2Q37 first appeared and was shown

to be minimal for 2d fourth order models in Ref. 26, where the authors

formally showed the equivalence between the condition of norm preserva-

tion and the preservation of the orthogonality property.
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�
a0

�0� = � ,

a0
�1� = �u + ��� ,

a0
�2� = ��u2 + �T − 1��� + ���u + �2���2 + ���� ,

a0
�3� = ��u3 + �T − 1��u� + ����u

2 + ��T − 1���� + �2���2
u + ���u� + �3���3 + ����� ,

a0
�4� = ��u4 + �T − 1��u

2 + �T − 1�2�2� + ����u
3 + ��T − 1���u� + �2���2

u
2 + ���u

2 + ��T − 1���2� + �3���3
u + ����u� + �4���4 + ����2� ,

�
where the shorthand notations of Grad

15,73
for fully symmet-

ric tensors are adopted. A possible set of on-site space-filling

lattice velocities can be found in Fig. 12 and fully detailed in

Refs. 15, 26, and 29. If one gives up the requests to have

lattice velocities only on grid points and allows also for out

of lattice discretized velocity sets, the number of vectors

needed to recover isotropy for moments up to order eight can

be reduced.
29

We next introduce
36

a small separation of scale

parameter � and consider the expansion in � for the distribu-

tion function

f l = f l
�0� + �f l

�1� + �2f l
�2� + �3f l

�3� + �4f l
�4� + ¯ , �A4�

and the rescaling of the time-space derivatives,

�t → ��1t + �2�2t + O��3�; �i → ��i. �A5�

This allows to rewrite the streaming term in the lattice

Boltzmann equation as

f l�x + cl�t,t + �t� − f l�x,t� = �A1 + �2A2 + �3A3 + ¯ ,

where for our purposes it is enough to consider terms up

to A2,

�A1 = ��1tf l
�0� + cl

i�1t�if l
�0���t ,

A2 = ��2tf l
�0� + �1tf l

�1� + cl
i�if l

�1���t +
1

2 �cl
icl

j�i� jf l
�0� + cl

i�i�1tf l
�0� + cl

i�i�1tf l
�0� + �1t�1tf l

�0���t2.


If we further rescale the shifting
36

fields as

u → u + ��, T → T + �2� , �A6�

the shifted equilibrium can be further seen as a power series

in �,

f̄ l��,u + ��,T + �2�� = f̄ l
�0� + � f̄ l

�1� + �2 f̄ l
�2� + �3 f̄ l

�3� + �4 f̄ l
�4�

+ ¯ ,

with

�
f̄ l

�0�

wl

= �Hl
�0� + �uHl

�1� +
1

2
��u2 + �T − 1���Hl

�2� +
1

6
��u3 + �T − 1��u�Hl

�3� +
1

24
��u4 + �T − 1��u

2 + �T − 1�2�2�Hl
�4�,

f̄ l
�1�

wl

= ��Hl
�1� +

1

2
��uHl

�2� +
1

6
���u

2 + ��T − 1����Hl
�3� +

1

24
���u

3 + ��T − 1���u�Hl
�4�,

f̄ l
�2�

wl

=
1

2
���2 + ����Hl

�2� +
1

6
���2

u + ���u�Hl
�3� +

1

24
���2

u
2 + ���u

2 + ��T − 1���2�Hl
�4�,

f̄ l
�3�

wl

=
1

6
���3 + �����Hl

�3� +
1

24
���3

u + ����u�Hl
�4�,

f̄ l
�4�

wl

=
1

24
���4 + ����2�Hl

�4�,
�

where, upon dimensional considerations, we have requested that when the forcing rescales as �, the temperature shifting term

is rescaling like �2 �see also Ref. 36 for a more detailed discussion�. Using the Taylor expansion of f l�x+cl�t , t+�t�, we can

impose the consistency in Eq. �A1� order by order in �,
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�
O��0�:f l

�0� = f̄ l
�0�,

O��1�:�1tf l
�0� + cl

i�if l
�0� = −

1

�
�f l

�1� − f̄ l
�1�� ,

O��2�:�2tf l
�0� + �1tf l

�1� + cl
i�if l

�1� + 
1

2
cl

icl
j�i� jf l

�0� +
1

2
cl

i�i�1tf l
�0� +

1

2
cl

i�i�1tf l
�0� +

1

2
�1t�1tf l

�0���t = −
1

�
�f l

�2� − f̄ l
�2�� .
� �A7�

Taking the momenta at the zeroth order in � we can find

some constraints for the higher terms in the expansion in of

the distribution function. Since we know that f
l

�0�
= f̄

l

�0�
, it

follows from the definition of macroscopic fields that

	
l

f l
�n� = 0, 	

l

cl
if l

�n� = 0, 	
l

cl
2
f l

�n� = 0, n  1.

1. Zeroth order

At the zeroth order in � we can find some constraints for

the higher terms in the expansion of the distribution function.

We know that

f l
�0� = f̄ l

�0�.

It follows that, since we define our macroscopic variables as

� = 	
l

f l; �ui = 	
l

f lcl
i; �T =

1

D
	

l

f l�cl − u�2,

we immediately recover that

	
l

f l
�n� = 	

l

cl
if l

�n� = 	
l

�cl − u�2f l
�n� = 0, n  1. �A8�

The last equation leads to �we take the convention that

double indexes are summed upon�

	ij	
l

�cl
icl

j + uiu j − uicl
j − u jcl

i�f l
�n� = 0, n  1

that, combined with the constraints for the momentum

�	lcl
if

l

�n�
=0�, is equivalent to

	
l

cl
2
f l

�n� = 0, n  1. �A9�

2. First order

We first evaluate and also remind the values of some

useful quantities that can be easily obtained knowing the

relation between Hermite polynomials and the velocity set

�A2� and �A3� and also the constraints coming from Eqs.

�A8� and �A9�,

	
l

cl
if l

�1� = 0, 	
l

cl
i f̄ l

�1� = ��i,

	
l

cl
icl

jf l
�0� = �uiu j + �T	ij ,

1

2
	

l

cl
2
f l

�1� = 0,
1

2
	

l

cl
2
f̄ l

�1� = ��iui,

1

2
	

l

cl
icl

2
f l

�0� = 
1

2
�u2 +

D

2
�T�ui + �Tui.

With this, using the momenta of O��� in Eq. �A7�, we can

easily arrive to the following set of equations:

�
�1t� + �i��ui� = 0,

�1t��ui� + � j��uiu j + �T	ij� =
�i

�
= gi,

�1tK + � j�Ku j + �Tu j� =
1

�
��iui = �giui,

� �A10�

where we have introduced the total energy of the system,

K = 
1

2
�u2 +

D

2
�T� ,

and where we have recovered the Euler equations for a

forced fluid with the choice

� = �g . �A11�

The last equation can also be written as an equation for the

temperature �using the momentum equation� in the following

form:

��1t + u j� j�T +
1

c
v

T��iui� = 0; c
v

=
D

2
. �A12�

3. Second order

Using the second of Eq. �A7� and the constraints found

at the first order it is easy to derive

	
l

cl
i��1tf l

�0� + cl
k�kf l

�0�� = −
1

�
	

l

cl
i�f l

�1� − f̄ l
�1�� = �gi.

�A13�

Furthermore, let us write other useful quantities that can be

derived from the explicit expression of the expansion of the

equilibrium distribution, f̄ l, and from the hydrodynamical

constraints on the distribution f l reported in Eqs. �A8� and

�A9�,

	
l

cl
icl

jcl
kf l

�0� = ��uiu juk + �T�	ijuk + 	iku j + 	 jkui�� ,

�A14�
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l

cl
i f̄ l

�2� = 0, 	
l

cl
if l

�2� = 0, �A15�

1

2
	

l

cl
2
cl

i f̄ l
�1� =

�u2�i

2
+ ui�� ju j + �T�i +

D�T�i

2
, �A16�

1

2
	

l

cl
2
cl

icl
j f̄ l

�0� =
1

2
�uiu ju

2 +
�T

2
	iju

2 + 2�Tuiu j

+
1

2
D�Tuiu j + 
D

2
+ 1��T2	ij , �A17�

1

2
	

l

cl
2
f̄ l

�2� =
1

2
��2 +

1

2
D�� . �A18�

We next proceed to evaluate some expressions in terms of

the known results obtained at the previous order. In particu-

lar, for the momentum equation, we will have to evaluate the

term

�1t
	
l

cl
icl

jf l
�0�� = �1t��uiu j + �T	ij� .

If we use the results obtained at order O��� in Eq. �A10� we

obtain

�1t��uiu j + �T	ij� = − �k��uiu juk� − u j�i��T� − ui� j��T�

+ �u jgi + �uig j + 	ij��1tT + 	ijT�1t� .

�A19�

Next, for the momentum equation, we also have to consider

�1t
	
l

cl
icl

jf l
�0�� + �k
	

l

cl
icl

jcl
kf l

�0��
= �1t��uiu j + �T	ij�

+ �k��uiu juk + �T�	ijuk + 	iku j + 	 jkui��

that can be simplified �with results of the previous order� as

�1t��uiu j + �T	ij� + �k��uiu juk + �T�	ijuk + 	iku j + 	 jkui��

= �T�iu j + �T� jui + �u jgi + �uig j − 	ij

�T

c
v

��kuk� .

�A20�

For the energy equation we will have to consider

�1t
	
l

cl
2

2
cl

if l
�0�� = �1t�
1

2
�u2 +

D

2
�T�ui + �Tui�

that, again, can be evaluated using the results at previous

order as

�1t�
1

2
�u2 +

D

2
�T�ui + �Tui� = ��gkuk�ui + �Tgi + 
1

2
�u2 +

D

2
�T�gi − � j�uiu j
1

2
�u2 +

D

2
�T�� − 2�k��Tuiuk�

− �i
1

2
�Tu2� + �Tu j�iu j − 
D

2
+ 1�T�i��T� −

1

c
v

�Tui��kuk� + �ui� ju j . �A21�

Finally, we have to consider

�1t
	
l

cl
2

2
cl

if l
�0�� + � j
	

l

cl
2

2
cl

icl
jf l

�0��
= �1t�
1

2
�u2 +

D

2
�T�ui + �Tui�

+ � j�1

2
�uiu ju

2 +
�T

2
	iju

2 + 2�Tuiu j�
+ � j�1

2
D�Tuiu j + 
D

2
+ 1��T2	ij�

that gives

�1t
	
l

cl
2

2
cl

if l
�0�� + � j
	

l

cl
2

2
cl

icl
jf l

�0��
= + ��gkuk�ui + �Tgi + 
1

2
�u2 +

D

2
�T�gi

+ 
D

2
+ 1��T�iT + �T�ui� ju j + u j�iu j�

−
1

c
v

�Tui��kuk� . �A22�

We are now ready to write down the equations at this order

using results in Eqs. �A14�–�A22�,

�
�2t� + 1/2�i��gi�t� = 0,

�2t��ui� + � j���giu j + ��g jui� + �1t
�gi

2
�t� = 
� −

�t

2
�� j
�T�iu j + �T� jui + �u jgi + �uig j − 	ij

�T

c
v

��kuk�� ,

�2tK + �k�K�gk + ��ukgk + �Tgk� + �1t
�giui

2
�t� − 
� −

�t

2
��i���gkuk�ui + �Tgi + Kgi + 
D

2
+ 1��T�iT + �Tui� ju j + �Tu j�iu j −

1

c
v

�Tui��kuk�� =
1

�

1

2
��2g2 +

1

2
D��� .

�
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Summing up all orders, we note that we can freely add at order O��2� all the gradients of terms O�g2� and also double gradients

of terms O�g� because they would be O��3�. Also, defining the hydrodynamic velocity as u
i

�H�
=ui+gi�t /2, we reconstruct the

following equations:

�
�t� + �i��ui

�H�� = 0,

�t��ui
�H�� + � j��ui

�H�u j
�H�� = − �i��T� + gi + 
� −

�t

2
�� j��T�iu j

�H� + �T� jui
�H� − 	ij

�T

c
v

�kuk
�H�� ,

�tK
�H� + � j�K

�H�u j
�H� + �Tu j

�H�� = �gkuk +
1

2�
���2g2 + D��� + 
� −

�t

2
��i�
1

2
D + 1��T�iT + �Tui

�H�� ju j
�H� + �Tu j

�H��iu j
�H� −

1

c
v

�ui
�H���kuk

�H��� ,
�

with

K
�H� = �1

2
��u�H��2 +

D

2
�T� .

In order to recover the correct thermohydrodynamical evolu-

tion we need to obtain the correct forcing in the equation for

the total energy in terms of the hydrodynamical velocity

fields, i.e.,

�gkuk +
1

2�
���2g2 + D��� = �gkuk

�H� = �gk
uk +
�tgk

2
�

that leads to

� =
���t − ��g2

D
. �A23�

In conclusions, expressing everything in terms of the hydro-

dynamical fields, it is easy to realize that the final expression

�A23� coincides with the one given in the body of the article

�9�. Notice that up to now we have used a single-time relax-

ation LBM, as given by Eq. �A1�. Therefore, the final

Fourier–Navier–Stokes equations are constrained to describe

fluids with unit Prandtl numbers, Pr=
 / �k /cp�=1. It is pos-

sible to generalize the approach by using a multirelaxation

time version of the same algorithm.
28

Even though, in the

latter case, there exists a small mismatch in the viscous dis-

sipation term appearing in the energy balance.

APPENDIX B: BOUNDARY CONDITIONS

In this appendix we detail the technical steps leading to

the desired hydrodynamical boundary conditions for the

physical systems analyzed in the paper, i.e., an ideal gas

under the effect of gravity g= �0,−g� acting along the nega-

tive z direction �i.e., g is positive�. Similar ideas can be ap-

plied to the case of a generic volume or internal force acting

also in the streamwise x direction. For the sake of concrete-

ness we explicitly report the case of the lower boundary con-

dition with the upper boundary condition being a straightfor-

ward generalization. Let us call the poststreaming

populations f l
� while keeping f

l

��,pre�
to identify the pre-

streaming populations. Moreover, all the populations will

also undergo collisions and therefore there will be a net gain

of momentum so that the hydrodynamic fields will be the

average of pre- and postcollisions. For a given computational

boundary, there are three layers of points labeled by x
� from

now on �see also Fig. 13�, where some unknown populations

have to be set soon after the streaming step. We use the

freedom to set these populations in such a way that the

measured hydrodynamic quantities such as the streamwise

�u
x

�H�� and vertical �u
z

�H�� velocities and also the temperature

�T�H�� are fixed to some given boundary conditions on those

lattice layers. The conditions to be fulfilled up to the second

order in the Chapman–Enskog expansion �see also Appendix

A� are

ux
�H��x�� =

1

��x��	l

f l
��x��cl

x, �B1�

uz
�H��x�� =

1

��x��	l

f l
��x��cl

z −
�t

2
g , �B2�

D

2
T�H��x�� +

1

2
��u�H��2 + �v�H��2��x��

=
1

2��x��	l

f l
��x��cl

2. �B3�

In the following we show how to determine the unknown

populations on the first three layers �those coming—after

streaming—from node outside the domain� in order to set the

vertical velocity to zero on layer 3, with any temperature and

streamwise velocities:

�
uz

�H��z = 3� = 0,

ux
�H��z = 3� = u3,

T�H��z = 3� = T3.
�

Similarly we can fix any desired profile for temperature and

velocity on layers 1, 2,

�
uz

�H��z = 2� = v2; uz
�H��z = 1� = v1,

ux
�H��z = 2� = u2; ux

�H��z = 1� = u1,

T�H��z = 2� = T2; T�H��z = 1� = T1.
�

We will define only the case of homogeneous boundary con-

ditions along the streamwise component but the method is

general and can deal also nonhomogeneous cases. Imposing

a given set of boundary conditions means defining the set of

unknown outgoing populations in the first three layers in

terms of the set of in-going and outgoing known populations

such that mass is conserved and the hydrodynamical fields

defined above are the wanted ones.
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In this way, if the computational boundary extends from

the mesh point z=1 up to z=Lz, the real physical domain is

between mesh points z=3 and z=Lz−2, i.e., it is in these

points that we exactly verify the condition of no-slip,

no normal velocity and given temperature for the hydrody-

namical fields on the solid walls. Fields at points z=1,2 and

z=Lz−1, Lz−2 may be used to better stabilize the algorithm

close to the boundaries. All details refer to the 37 speed

model D2Q37.

1. Layer 1

As evident from Fig. 13 we have to determine some

“outer” poststreaming populations �l=2,10,18. . .�, whereas

other poststreaming populations �l=4,12,20. . .� are known.

To keep a compact notation, let us also introduce the subsets

I�1�, U�1�, and I
0

�1�
which are identified by the following

conditions:

I�1� = �cl,cl
z � 0�, U�1� = �cl,cl

z � 0� ,

I0
�1� = �cl,cl

z � 0� .

We choose to define the outer populations in the layer 1 as

f l
�1,�� =

N

	l�U�1��l
�1��l

�1�, l � U�1�, �B4�

with N a constant and �
l

�1�
a suitable population that we

choose in the form

�l
�1� = 1 + cl · p

�1� +
1

2cl
2
E�1�, �B5�

where p
x

�1�
, p

z

�1�
, and E�1� are unknown at this level and must

be chosen in such a way that the hydrodynamical tempera-

ture and momentum exactly reproduce the desired values on

this layer, T1 ,u1 ,v1. Also, mass conservation should be ful-

filled. This latter condition is naturally imposed by setting

N = 	
l�I�1�

f l
�1,�,pre�.

The requirement that T1 ,u1 ,v1 are exactly reproduced leads

to the following system of equations:

�
u1 =

1

Mp
	l

f l
�
cl

x,

v1 =
1

Mp
	l

f l
�
cl

z −
�t

2
g ,

T1 =
1

MpD
	l

f l
�
cl

2 +
1

D
�u1

2 + v1
2� ,
� �B6�

where we have defined the poststreaming mass as

Mp = N + 	
l�I0

�1�

f l
�1,��.

In the 	lf l
� of system �B6� we have known populations com-

ing from the bulk but also outer populations to be determined

with Eqs. �B4� and �B5�. The resulting system is therefore an

algebraic system for p
x

�1�
, p

z

�1�
, and E�1�. We have solved the

system whose final solution is

pz
�1� =

− c3d2 + c2d3

− a3c2 + a2c3

,

px
�1� =

a2c3d1 − a2c1d3 − a3c2d1 − c3a1d2 + c1a3d2 + a1c2d3

b1�a3c2 − a2c3�
,

E�1� =
− a3d2 + a2d3

a3c2 − a2c3

,

where

a1 = 26�p̃x − Ox�r, b1 = − 40Nr2,

FIG. 13. Scheme for the lower boundary layer for the simulation of thermal flows under the effect of gravity. The relationship between real and velocity

lattices is set by �x=r�t with �x and �t space and time discretizations, and r the lattice constant whose value is r�1.1969. The locations at r and 2r indicated

in this figure correspond to the locations z=2 and z=3 discussed in the text.
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c1 = 47�p̃x − Ox�r
2, d1 = 15�p̃x − Ox� ,

a2 = 26�p̃z − Oz�r − 54Nr2, c2 = 47�p̃z − Oz�r
2 − 91Nr3,

d2 = 15�p̃z − Oz� − 26Nr, a3 = 26�Ẽ − Oe�r − 91Nr3,

c3 = 47�Ẽ − Oe�r
2 −

367

2
Nr4, d3 = 15�Ẽ − Oe� − 47Nr2,

with

p̃x
�1� = Mpu1, p̃z

�1� = Mpv1 +
1

2
Mpg�t ,

Ẽ = T1Mp +
1

2Mp

��p̃x
�1��2 + �p̃z

�1��2�

and

Ox = 	
l�I0

�1�

cl
xf l

�1,��, Oz = 	
l�I0

�1�

cl
zf l

�1,��,

Oe = 	
l�I0

�1�

1

2
cl

2
f l

�1,��.

In the above r is the lattice constant whose value for the

D2Q37 model is r�1.1969.
28

2. Layer 2

Situation goes similarly with respect to the previous

layer. We new have to define the subsets I�2�, U�2�, and I
0

�2�
as

I�2� = �cl,cl
z � − r�, U�2� = �cl,cl

z � r� ,

I0
�2� = �cl,cl

z � r� .

We then identify some coarse grained quantities as

N = 	
l�I�2�

f l
�2,��; Mp = N + 	

l�I0
�2�

f l
�2,��

and define some local momentum and energy fields,

p̃x
�2� = Mpu2,

p̃z
�2� = Mpv2 +

1

2
Mpg�t ,

Ẽ�2� = T2Mp +
1

2Mp

��p̃x
�2��2 + �p̃z

�2��2� .

We next define

Ox = 	
l�I0

�2�

cl
xf l

�2,��, Oz = 	
l�I0

�2�

cl
zf l

�2,��,

Oe = 	
l�I0

�2�

1

2
cl

2
f l

�2,��,

a1 = 19�p̃x − Ox�r, b1 = − 12Nr2,

c1 =
59

2
�p̃x − Ox�r

2, d1 = 8�p̃x − Ox� ,

a2 = 19�p̃z − Oz�r − 47Nr2,

c2 =
59

2
�p̃z − Oz�r

2 −
147

2
Nr3,

d2 = 8�p̃z − Oz� − 19Nr, a3 = 19�Ẽ − Oe�r −
147

2
Nr3,

c3 =
59

2
�Ẽ − Oe�r

2 −
475

4
Nr4, d3 = 8�Ẽ − Oe� −

59

2
Nr2.

In terms of these constants and parameters we can set

pz
�2� =

− c3d2 + c2d3

− a3c2 + a2c3

,

px
�2� =

a2c3d1 − a2c1d3 − a3c2d1 − c3a1d2 + c1a3d2 + a1c2d3

b1�a3c2 − a2c3�
,

E�2� =
− a3d2 + a2d3

a3c2 − a2c3

,

construct suitable populations,

�l
�2� = 1 + cl · p

�2� +
1

2cl
2
E�2�,

and define the outer populations in the layer 2 as

f l
�2,�� =

N

	l�U�2��l
�2��l

�2�, l � U�2�,

that is enough to set the hydrodynamic velocity to u2 and v2

while keeping the hydrodynamic temperature to T2.

3. Layer 3

As also evident from the Fig. 13, only three populations

are unknown on the third layer �they are populations l

=24,25,18�. In this way we do not have enough freedom to

choose the desired hydrodynamic velocities and temperature.

It is anyhow possible to require a zero vertical hydrodynamic

velocity �v3=0� with a generic streamwise hydrodynamic ve-

locity and temperature �u3 ,T3�. Again, let us introduce the

following sets:

U�3� = �cl,cl
z � 2r�, I0

�3� = �cl,cl
z � 2r� .

The boundary condition for the unknown populations is set

as

f l
�3,�� =

N

	l�U�3��l
�3��l

�3�, l � U�3�,

�l
�3� = 1 + cl

xpx
�3� +

1

2
cl

2
E�3�,

and we choose p
x

�3�
and E�3� to set the desired hydrodynami-

cal streamwise velocity �u3� and temperature �T3� while

keeping the vertical hydrodynamical velocity to zero. The
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resulting algebraic system is solved with the solution

E�3� = −
d2

b2

, px
�3� =

b1d2 − d1b2

a1b2

,

with

a1 = − 2Nr2, b1 =
29

2 �p̃x − Ox�r
2,

d1 = 3�p̃x − Ox�, b2 =
29

2 �Ẽ − Oe�r
2 −

281

4 Nr4,

d2 = 3�Ẽ − Oe� −
29

2 Nr2,

where

Ox = 	
l�I0

�3�

cl
xf l

�3,��, Oe = 	
l�I0

�3�

1

2
cl

2
f l

�3,��,

p̃x
�3� = Mpu3,

Ẽ�3� = T3Mp +
1

2Mp

��p̃x
�3��2 + �p̃z

�3��2� ,

p̃z
�3� = 3Nr + 	

l�I3
�0�

cl
zf l

�3,��,

Mp = N + 	
l�I0

�3�

f l
�3,��,

N = −
A1

3r
+

1

2

A2

3r
g�t ,

A1 = 	
l�I3

�0�

cl
zf l

�3,��, A2 = 	
l�I3

�0�

f l
�3,�� + 	

l,cl
z
=−3r

f l
�3,�,pre�.

�B7�

This whole algorithm for layer 3 now is ensuring a zero

vertical hydrodynamical velocity and arbitrary u3 and T3.

Still, mass conservation is not fulfilled and to do that we

need to redefine the rest population as

f0
�3,�� = f0

�3,�,pre� − N + 	
l,cl

z
=−3r

f l
�3,�,pre�.
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