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Abstract. - Due to its intrinsically kinetic nature, lattice Boltzmann (LB) approach to simulating
non-equilibrium gas flows has recently attracted significant research interest. Compared with other
kinetic methods, it can offer a significantly smaller computational cost. To capture the nonlinear
high-order rarefaction phenomena in gas flows, a geometry-dependent gas local mean free path has
been proposed to be implemented in our “high-order” LB model. A series of tests on rarefac-
tion effects and the Knudsen layer interference have been carried out and the simulation results
demonstrate our LB model’s capability for highly non-equilibrium flows.

Introduction. – Understanding fluid flows possessing substantial non-equilibrium ef-
fects poses a long-standing challenge to fundamental statistical physics as well as many other
science and engineering disciplines [1]. With rapid development of micro/nano fabrication
technology, gas flows in micro/nano-fluidic devices have found a broad range of applications.
Flows in these miniaturised devices are often non-equilibrium, which can be characterised
by the Knudsen number (Kn), defined as the ratio of the gas molecular mean free path λ
to the device characteristic length L. The Knudsen layer is the local non-equilibrium region
extending several mean free paths from the wall. The momentum and heat fluxes, which are
of most interest to designers in microflow and nanoflow applications, usually transfer from
the boundaries to the bulk flow through this Knudsen layer. Because flows in the Knudsen
layer are not in local thermodynamic quasi-equilibrium, the linear constitutive relations for
shear stress and heat flux, which are assumed in the Navier-Stokes (NS) equations, are no
longer valid in the Knudsen layer [2]. Figure 1 shows the schematic diagram of the velocity
structure in the Knudsen layer of a shear driven flow. Although the NS equations with
macro slip boundary condition can accurately predict the flow field outside the Knudsen
layer, they fail to capture the flow characteristics in the Knudsen layer [3].

To simulate highly non-equilibrium flows, whether a model can capture the Knudsen
layer flow characters becomes essential because the Knudsen layer forms a large proportion
of the flow domain. Traditionally, kinetic methods such as directly solving the Boltzmann
equation or the direct simulation Monte Carlo (DSMC) method can offer accurate descrip-
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tion of non-equilibrium flows. However, these methods are computationally impractical
for micro/nano-fluidic system simulation [4]. Significant effort has been made to develop
computationally efficient and numerically accurate methods, e.g. extended hydrodynamic
methods [5, 6], hybrid model [7], the information preservation method for DSMC [8], and
reducing the statistical scatter associated with Monte Carlo methods [9, 10]. Recently, the
lattice Boltzmann (LB) methodology has also been attempted to model non-equilibrium
gas flows [4, 11–28]. One important advantage of the LB methodology is that it is kinetic
in nature, so does not suffer the closure and boundary condition problems associated with
high-order continuum methods such as Grad’s 13-moment model.

To accurately describe non-equilibrium gas dynamics beyond the NS level, high-order LB
models have been proposed [21, 29]. Ansumali et al. [31] have demonstrated that the high-
order LB models can enhance performance and capture nonlinear rarefaction phenomena
away from wall boundary. However, it appears not being able to predict flow behavior in the
Knudsen layer which may be due to lack of appropriate wall boundary conditions (see figure
6 for more detailed comparison with the results of the linearised Boltzmann equation).
The other high-order models are also not sufficiently accurate to describe Knudsen layer
flow behavior [33]. Unfortunately, the roots of Hermite polynomials of the high-order are
irrational, so that the discrete velocities cannot match lattice nodes. Additional effort, such
as point-wise interpolation [32], is required. It dramatically increases the computational cost
because it essentially becomes an off-lattice discrete velocity method for solving the kinetic
Boltzmann equation. Recently, Chikatamarla and Karlin [29] have reported to resolve this
issue of fitting Hermite polynomials’ solution on lattice.

Efforts have also been made to capture flow characteristics in the Knudsen layer. For
example, the regularisation methods add an additional term which considers the omitted
high-order moments effect [24,27,34], which are in the same spirit of the regularised moment
methods [5, 35]. Similarly, Szalmás [28] recently proposed a mechanism to add high-order
moments effect through a fast relaxation model as proposed by Gorban [36]. We have
also considered the wall effect on gas mean free path in the standard lattice Bathnagar-
Gross-Krook (BGK) model [22,26] and our simplified “high-order” D2Q13 model [33] which
was inspired by the concept of rational number approximation [29]. However, our previous
treatment of the wall effect on the mean free path is difficult to deal with complex geometries
and the Knudsen layer overlap effect. In this paper, we will improve our “high-order” LB
model capability for highly non-equilibrium flows by incorporating a geometry-dependent
local mean free path, an idea appeared in the work of Stops [37] and Guo et al. [38]. The
concept of local mean free path is consistent with the mesoscopic nature of LB methodology,
an analogous notion was also used by Chen et al. [39] for the simulation of turbulence flows.

Local mean free path. – The mean free path concept, which describes the average
distance a gas molecule travels between consecutive collisions, is central to modelling the
transport phenomena in gases. When the mean free path λ becomes comparable with the
linear dimension L of a finite system, the wall boundaries will affect the local mean free path.
Usually, the mean free path is determined via the relation to the macroscopic properties such

as viscosity, pressure and temperature, e.g. λ = µ
p

√

πRT
2 , where µ is the viscosity, p is the

gas pressure, R is the gas constant, and T is temperature. However, the presence of wall will
reduce the local mean free path at the near wall region. For highly non-equilibrium flows,
collisions with the wall rather than intermolecule collisions dominate the flow characteristics.

The wall effect on reducing the local mean free path has been discussed in our previous
work, which was largely based on semi-empirical data obtained by other numerical simula-
tions including DSMC method. Although significant improvement of LB model performance
has been demonstrated, our previous approach has difficulties in treating complex geome-
tries and Knudsen layer interference. Here, we will adopt the approach used by [37, 38]
to re-evaluate the wall effect on the local mean free path. For an unbounded ideal gas, we
assume that the probability of a gas molecule can travel between two consecutive collisions
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Fig. 1: Schematic diagram showing the actual microscopic slip (uslip) and the predicted macroscopic
slip (us) based on Navier-Stokes equation with macro slip boundary condition within the Knudsen
layer for Kramers’ problem.

with other gas molecules at location x and x + dx is P (x). This probability function has
been asserted in the kinetic theory [37, 38] as

P (x) = exp(
−x

λ0

)d(
x

λ0

). (1)

In the wall region, the gas molecular may collide with wall before hitting another gas
molecule, so that local mean free path is smaller than the bulk value λ0. The wall ef-
fect on local mean free path for any given geometry can be derived from the above general
Eq.(1).

If we consider an ideal gas bounded by two parallel plates at y = 0 and y = L, the local

mean free path of the molecules at a distance y (0 < y < L) from the lower plate can be
calculated by [37, 38]

λ(y) = λ0[1 + (γ − 1)exp(−γ) − γ2

∫

∞

γ

t−1exp(−t) dt], (2)

where γ = y/λ0 for those molecules moving toward y = 0 and γ = (L − y)/λ0 for those
moving toward y = L. Since a molecule can move toward these two walls with the same
probability, the local mean free path for all the molecules in the flow domain can be deter-
mined by averaging these two parts. For y = 0 or y = L at the wall, we have γ = L/λ0.

Figure 2 presents the local mean free path profiles between two parallel plates for K =
0.01 − 10, where K is the rescaled Knudsen number, i.e. K = (

√
π/2)Kn. It is apparent

that the local mean free path near the walls are significantly reduced. The local mean free

path at the wall is only half of the bulk value when the Knudsen number is small. However,
with increasing Knudsen number which means the Knudsen layers start to overlap, the local

mean free path at the wall decreases further. For example, when K = 0.3, the local mean

free path at the wall is about 0.49 rather than 0.5. In addition, the wall effect is also felt in
the centre of the two plates so that the local mean free path in the center is smaller than
the bulk value. For example, when K = 0.2 and K = 0.3, the local mean free path at the
centre is about 0.95λ0, and 0.88λ0, respectively, rather than λ0.

If we remove the upper plate so that gas flow is only affected by the lower plate at y = 0,
the local mean free path can then be determined as [37, 38]

λ(y) =
λ0

2
[2 + (γ − 1)exp(−γ) − γ2

∫

∞

γ

t−1exp(−t) dt], (3)

where γ = y/λ0. Figure 3 shows that the local mean free path at the wall is half of the bulk
value. Moreover, we can see that the thickness of Knudsen layer is 2.33λ0 if we define its
value at λ(y)/λ0 = 0.98.
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Fig. 2: The local mean free path profiles between two plates.

Lattice BGK model. – The details about the lattice BGK model are widely available
e.g. [40–42]

∂fk

∂t
+ eki

∂fk

∂xi

= −fk − feq
k

φ
+

(eki − ui)Fi

c2
sρ

feq
k , (4)

where fk is the velocity distribution function, feq
k is the distribution function at equilibrium,

eki is the lattice velocity, ui is the macroscopic velocity, Fi is the external force, cs is
the sound speed of the lattice fluid, ρ is the density, and φ is the relaxation time. After
discretizing Eq. (4), we obtain

fk(x + ekδt, t + δt) − fk(x, t) = −1

τ
[fk(x, t) − feq

k (x, t)] + δt
(eki − ui)Fi

c2
sρ

feq
k (x, t), (5)

where τ = φ/δt is the nondimensional relaxation time and δt is the time step.
For a two dimensional, thirteen-velocity lattice model (D2Q13) [33], the equilibrium

distribution function can be expressed as:

feq
k = ρωk

[

1 +
ekiui

c2
s

+
(ekiui)

2

2c4
s

− uiui

2c2
s

+
(ekiui)

3

2c6
s

− 3(ekiui)(uiui)

2c4
s

]

, (6)

ω0 =
3

8
; ωk =

1

12
, k = 1 − 4 ; ωk =

1

16
, k = 5 − 8 ; ωk =

1

96
, k = 9 − 12,

where c2
s = c2/2 and c =

√
2RT . The lattice velocities, ek, are given by e0 = 0; ek =

[cos ((k − 1)π/2, sin ((k − 1)π/2)]c for k = 1 − 4; ek = [cos ((k − 5)π/2 + π/4),
sin ((k − 5)π/2 + π/4)]

√
2c for k = 5 − 8; ek = [cos ((k − 1)π/2), sin ((k − 1)π/2)]2c for

k = 9 − 12.
Similar to our previous work [4,17], the Knudsen number in a D2Q13 lattice BGK model

can be related to the relaxation time and the local mean free path:

τ = (
λ

λ0
)

√

π

8
(

c

cs

)Kn0NL +
1

2
, (7)

where NL = L/δy is the number of lattice in characteristic length direction, δy is the lattice
length, and Kn0 is the bulk Knudsen number based on the bulk mean free path λ0 and the
characteristic length L. Clearly, the dimensionless relaxation time τ is dependent on the
boundary geometry and the specific locations.

Many boundary conditions have been developed to capture velocity slip and tempera-
ture jump at the wall, e.g. bounce back, specular reflection, a combination of the above
two [30], kinetic boundary condition [43], and a virtual-wall collision scheme [19]. Here,
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Fig. 3: The local mean free path profile in a half space Kramers’ problem where y is the distance
from the plate.

the Maxwellian kinetic boundary condition considering tangential momentum accommoda-
tion coefficient is applied [17, 43]. The unknown reflected distribution function fk can be
determined by the incident fk′ :

fk(x, t + δt) = (1 − α)fk′(x, t + δt)|(ek′ − uw) · n|

+ α

∑

(ei−uw)·n<0

|(ei − uw) · n|fi(x, t + δt)

∑

(ej−uw)·n>0

|(ej − uw) · n|feq
j (x, ρw,uw)

feq
k (x, ρw,uw), (8)

where uw and ρw are the velocity and density at the wall, respectively, and n is the unit
normal. The tangential momentum accommodation coefficient, α, stands for the fraction of
impinging molecules absorbed and re-emitted diffusely, while (1−α) are specularly reflected
from the surface. The diffuse reflection at wall is assumed for α = 1.

Kramers’ problem. – The model is initially tested on the Kramers’ problem. The
Kramers’ problem consists of finding the molecular distribution function of a gas which fills
the half-space y > 0 bounded by a plate at y = 0. There is a velocity gradient along the
y direction and this gradient becomes a constant as y → ∞. In the simulation, the wall at
y = 0 is fixed and the Maxwellian kinetic boundary has been used with different tangential
momentum accommodation coefficient α. To achieve a constant shear rate, we apply a
constant velocity uw for the upper wall at y = L which is 200 λ0 away from the lower
plate. In addition, we adopted an extrapolation scheme for non-equilibrium part to obtain
the unknown distribution functions at the upper wall for non-slip flow [44]. Therefore, the
upper wall has no influence on the Knudsen layer at the lower wall. To validate the present
approach, our LB model results are compared with the data obtained by Loyalka et al [45]
where the BGK equation is directly solved. Figure 4 shows that our LB model results agree
well with the solutions of the BGK equation.

Planar Couette flow. – The second test case is a planar Couette flow consisting of
a moving upper plate at y = L and a stationary lower plate at y = 0. The kinetic boundary
condition given in Eq. (9) is employed to describe the molecular interactions with the solid
walls, while periodic boundary conditions are implemented at the inlet and outlet. In Fig. 5,
we demonstrate that modification on local mean free path enables our LB model to capture
the nonlinear velocity profiles in the Knudsen layer. Without modification on local mean

free path, Fig. 6 shows that the high-order D2Q16 LB model given by Ansumali et al. [31]
still fails to describe the nonlinear velocity profiles in the Knudsen layer quantitatively.
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Fig. 4: The velocity profiles of the Kramers’ problem with different tangential momentum accom-
modation coefficients. u∗

w = (2/
√

π)λ0uw/L. The symbols are the data from Loyalka et al [45].

Therefore, appropriate wall boundary conditions or wall scaling treatment is also neccessary
for high-order LB models.

Figure 7 illustrates the predicted velocity profiles for a planar Couette flow at K = 0.1−
1.0, mainly in the transitional flow regime. Our LB results are compared with the solutions
of the linearised Boltzmann equation given by Sone et al. [46]. The predicted velocity profiles
are in good agreement with the analytical solutions of the linearised Boltzmann equation,
both in the bulk and wall regions. Particularly, we can see that the curvature near the
walls region was captured well, which is a typical phenomenon of gas rarefaction effect,
where the NS equations will predict a linear velocity profile. When the Knudsen number
increases, the Knudsen layers start to interfere with each other so that the overlap effect
of the Knudsen layers become significant for highly non-equilibrium flows. Figure 7 shows
that our LB model can not only predict nonlinear velocity profile in the Knudsen layer but
also the overlap effect of the Knudsen layers at the upper and lower walls.

Pressure-driven Poiseuille flow. – The third test case is fully-developed pressure
driven Poiseuille flows with two parallel plates located at y = 0 and y = L. We will compare
our LB model results with the solution of linearised Boltzmann equation given by Ohwada
et al. [47]. Ohwada et al. assumed the applied pressure gradient in the streamwise direction
was small, so that the flow could be considered as incompressible. Therefore, a small uniform
pressure gradient is applied in the streamwise direction in the current LB simulation. The
periodic velocity boundary conditions are used again at the inlet and outlet.

Figure 8 illustrates that the predicted velocity profiles across the channel for K = 0.1−10
where the velocity is normalized by the channel mean velocity um. The present LB results
are in good agreement with the solutions of the linearised Boltzmann equation in both central
and wall regions with K as large as 4. Therefore, the present LB model incorporating local

mean free path can also capture the high-order rarefaction effect in pressure driven flows.

Summary. – A geometry-dependent local mean free path approach has been imple-
mented in our simplified “high-order” LB model which enables our model to capture flow
characteristics in the Knudsen layer. In addition, this approach has a distinguished advan-
tage that is convenient to tackle complex geometries and interference of Knudsen layers.
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Fig. 5: The velocity profiles of the planar Couette flows. Our LB model results with and without
local mean free path modification are compared with the solutions of the linearised Boltzmann
equation given by Sone et al. [46].
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Fig. 6: The velocity profiles of the planar Couette flows. Our LB model results are compared with
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equation are given by Sone et al. [46].

[34] Karlin I. V. and Ansumali S., Phys. Rev. E, 76 (2007) 025701.
[35] Karlin I. V., Gorban A. N., Dukek G. and Nonnenmacher T. F., Phys. Rev. E, 57

(1998) 1668.
[36] Gorban A. N. and Karlin I. V., Physica A, 360 (2006) 325.
[37] Stops D. W., J. Phys. D, 3 (1970) 685.
[38] Guo Z. L., Shi B. C. and Zheng C. G., EPL, 80 (2007) 24001.
[39] Chen H., Kandasamy S., Orszag S., Shock R., Succi S. and Yakhot V., Science, 301

(2003) 633.
[40] Qian Y. H., d’Humières D. and Lallemand P., Europhys. Lett., 17 (1992) 479.
[41] Benzi R., Succi S. and Vergassola M., Phys. Rep., 222 (1992) 145.
[42] Chen S. and Doolen G. D., Annu. Rev. Fluid Mech., 30 (1998) 329.
[43] Ansumali S. and Karlin I. V., Phys. Rev. E., 66 (2002) 026311.
[44] Tang G. H., Tao W. Q. and He Y. L., Phys. Rev. E., 72 (2005) 016703.
[45] Loyalka S. K., Petrellis N. and Storvick T. S., Phys. Fluids, 18 (1975) 1094.
[46] Sone Y., Takata S. and Ohwada T., Eur. J. Mech. B-Fluids, 9 (1990) 273.
[47] Ohwada T., Sone Y. and Aoki K., Phys. Fluids A, 1 (1989) 1588.

p-8



Non-equilibrium lattice Boltzmann model

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0
 K=0.1,Sone et al.
 K=0.2,Sone et al.
 K=0.3,Sone et al.
 K=0.4,Sone et al.
 LB model

 

 

u/
u w

y/L

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

y/L

u/
u w

K=0.6
 Sone et al.
 LB model

 

 

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

u/
u w

y/L

K=0.8
 Sone et al. 
 LB model

 

 

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

y/L

u/
u w

 

 

K=1
 Sone et al. 
 LB model

Fig. 7: The velocity profiles of the planar Couette flows. Our LB model results are compared with
the solutions of the linearised Boltzmann equation given by Sone et al. [46].
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Fig. 8: The velocity profiles of the planar Poiseuille flows. Our LB model results are compared with
the solutions of the linearised Boltzmann equation given by Ohwada et al. [47].

p-10


