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Abstract In this contribution, we review recent efforts on

investigations of the effect of (apparent) boundary slip by

utilizing lattice Boltzmann simulations. We demonstrate the

applicability of the method to treat fundamental questions

in microfluidics by investigating fluid flow in hydrophobic

and rough microchannels as well as over surfaces covered

by nano- or microscale gas bubbles.
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1 Introduction

During the past few decades, the miniaturization of tech-

nical devices down to submicrometric sizes has made

considerable progress. In particular, the so-called micro-

electro-mechianical systems (MEMS) became available for

chemical, biological, and technical applications leading to

the rise of ‘‘microfluidics’’ about 20 years ago (Tabeling

2005). A wide variety of microfluidic systems including gas

chromatography systems, electrophoretic separation sys-

tems, micromixers, DNA amplifiers, and chemical reactors

were developed. Next to those ‘‘practical applications,’’

microfluidics was used to answer fundamental questions in

physics including the behavior of single molecules or par-

ticles in fluid flow or the validity of the no-slip boundary

condition (Tabeling 2005; Lauga et al. 2005). The latter is

the focus of the current review and is investigated in detail

by mesoscopic computer simulations.

Reynolds numbers in microfluidic systems are usually

small, i.e., usually below 0.1. In addition, due to the small

scales of the channels, the surface-to-volume ratio is high

causing surface effects such as wettability or surface charges

to be more important than in macroscopic systems. Also, the

mean free path of a fluid molecule might be of the same order

as the characteristic length scale of the system. For gas flows,

this effect can be characterized by the so-called Knudsen

number (Knudsen 1909). While the Knudsen number pro-

vides a good estimate for when to expect rarefaction effects

in gas flows, for liquids one would naively assume that its

velocity close to a surface always corresponds to the actual

velocity of the surface itself. This assumption is called the

no-slip boundary condition and can be counted as one of the

generally accepted fundamental concepts of fluid mechan-

ics. However, this concept was not always well accepted.

Some centuries ago, there were long debates about the

velocity of a Newtonian liquid close to a surface, and the

acceptance of the no-slip boundary condition was mostly due

to the fact that no experimental violations could be found,

i.e., the so-called boundary slip could not be detected.

In recent years, it became possible to perform very well

controlled experiments that have shown a violation of the

no-slip boundary condition in submicron-sized geometries.
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Since then, mostly, not only experimental (Lauga et al.

2005; Craig et al. 2001; Tretheway and Meinhart 2004;

Cheng and Giordano 2002; Choi et al. 2003; Baudry and

Charlaix 2001; Cottin-Bizonne et al. 2002; Vinogradova

and Yakubov 2003), but also theoretical studies (Vinogra-

dova 1995; Gennes 2002) as well as computer simulations

(Succi 2002; Barrat and Bocquet 1999; Cieplak et al. 2001;

Thompson and Troian 1997; Tretheway et al. 2002) have

been performed to improve our understanding of boundary

slip. The topic is of fundamental interest because it has

practical consequences in the physical and engineering

sciences as well as for medical and industrial applications.

Interestingly, also for gas flows, often a slip length much

larger than expected from classical theory can be observed.

Extensive reviews of the slip phenomenon have recently

been published by Lauga et al. (2005), Neto et al. (2005), as

well as Bocquet and Barrat (2007).

The reason for our unsatisfactory understanding of

boundary slip is that the behavior of a fluid close to a solid

interface is very complex and involves the interplay of

many physical and chemical properties. These include the

wettability of the solid, the shear rate or flow velocity, the

bulk pressure, the surface charge, the surface roughness, as

well as impurities and dissolved gas. Because all those

quantities have to be determined very precisely, it is not

surprising that our understanding of the phenomenon is still

very unsatisfactory. Owing to the large number of different

parameters, a significant dispersion of the results can be

observed for almost similar systems (Lauga et al. 2005;

Neto et al. 2005). For example, observed slip lengths vary

between a few nanometers (Churaev et al. 1984) and

micrometers (Tretheway and Meinhart 2004) and while

some authors find a dependence of the slip on the flow

velocity (Craig et al. 2001; Choi et al. 2003; Zhu and

Granick 2001), others do not (Tretheway and Meinhart

2004; Cheng and Giordano 2002).

A boundary slip is typically quantified by the so-called

slip length b—a concept that was already proposed by

Navier in 1823. He introduced a boundary condition where

the fluid velocity at a surface is proportional to the shear

rate at the surface (Navier 1823) (at x = x0), i.e.,

vzðx0Þ ¼ b
ovzðxÞ

ox
: ð1Þ

In other words, the slip length b can be defined as the

distance from the surface where the relative flow velocity

vanishes. Assuming a typical Poiseuille setup consisting of

a pressure-driven flow of an incompressible liquid between

two infinite planes, the velocity in flow direction (vz) at

position x between the planes is given by

vzðxÞ ¼
1

2l
oP

oz
d2 � x2 � 2db
� �

; ð2Þ

where 2d is the distance between the planes, and l is the

dynamic viscosity. qP/qz is the pressure gradient. In con-

trast to a no-slip formulation, the last term in Eq. 2 linearly

depends on the slip length b.

Most recent computer simulations apply molecular

dynamics and report increasing slip with decreasing liquid

density (Koplik et al. 1989; Thompson and Robbins 1990)

or liquid–solid interactions (Cieplak et al. 2001; Nagayama

and Cheng 2004), while slip decreases with increasing

pressure (Barrat and Bocquet 1999). These simulations are

usually limited to a few tens of thousand particles, length

scales of a few nanometers and time scales of nanoseconds.

Also, shear rates are usually some orders of magnitude

higher than in any experiment (Lauga et al. 2005). Owing

to the small accessible time and length scales of molecular

dynamics simulations, mesoscopic simulation methods,

such as the lattice Boltzmann method, are well applicable

for the simulation of microfluidic experiments.

The experimental investigation of apparent slip can be

based on different setups: a fluid is pumped through a

microchannel, and the measured mass flow rate at the end

of the channel is compared to the theoretical value with

no-slip boundary conditions. From the deviation of the two

values, the magnitude of slip can be computed (Tretheway

and Meinhart 2002). Another possibility is to measure the

slip length directly using optical methods such as particle

image velocimetry (PIV). Very popular is the modification

of an atomic force microscope (AFM) by adding a silicon

sphere to the tip of the cantilever. While moving the sphere

toward the boundary, the required force is measured. It is

possible to measure the amount of slip at the wall by

comparing the force needed to move the sphere with its

theoretical value (Vinogradova and Yakubov 2003;

Vinogradova 1996).

During the past few years, the substantial scientific

research invested in the slip phenomenon has led to a more

clear picture which can be summarized as follows: one can

argue that many surprising results published were only due

to artifacts or misinterpretation of experiments. In general,

there seems to be an agreement within the community that

slip lengths larger than a few nanometers can usually be

referred to as ‘‘apparent slip’’ and are often caused by

experimental artifacts. Small slip lengths are experimen-

tally even harder to determine and require sophisticated

setups such as the modified AFMs as described above.

Here, small variations of the apparatus such as choosing a

different shape of the cantilever or modifying the control

circuit of the sample holder can lead to substantial varia-

tion of the measurements. Also, the theoretical equations

correlating the measured force to the slip length are only

valid for perfect surfaces and infinitely slow oscillations of

the sphere. Therefore, it is of importance to perform
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computer simulations which have the advantage that most

parameters can be changed independently without modi-

fying anything else. Thus, the influence of every single

modification can be studied to present estimates of

expected slip lengths.

2 Apparent slip in hydrophobic microchannels

The simulation method used to study microfluidic devices

has to be chosen carefully. While Navier–Stokes solvers are

able to cover most problems in fluid dynamics, they lack the

possibility to include the influence of molecular interactions

as needed to model boundary slip. Molecular dynamics

(MD) simulations are the best choice to simulate the fluid–

wall interaction, but the computer power today is not suffi-

cient to simulate length and time scales necessary to achieve

orders of magnitude which are relevant for experiments.

However, boundary slip with a slip length b of the order of

many molecular diameters r has been studied with molec-

ular dynamics simulations by various authors (Baudry and

Charlaix 2001; Cieplak et al. 2001; Thompson and Troian

1997; Cottin-Bizonne et al. 2004; Priezjev et al. 2005).

This article focuses on numerical investigations of the

slip phenomenon by means of lattice Boltzmann simula-

tions. While an emphasis is put on reviewing our own

contributions to the field, the achievements of other groups

are commonly referred to. However, it should be noticed

that while a large number of groups utilizes the lattice

Boltzmann technique to investigate microfluidic problems,

only a very small number of researchers are actually

applying the method to studying slippage. Even though

interactions have to be described on a mesoscopic scale, this

is surprising since mesoscopic simulation methods offer a

closer relation to experimentally relevant time and length

scales than microscopic techniques such as molecular

dynamics.

In the lattice Boltzmann method, one discretizes the

Boltzmann kinetic equation

o

ot
þ vrx

� �
gðx; v; tÞ ¼ X ð3Þ

on a lattice. The Boltzmann kinetic equation describes the

evolution of the single particle probability density g(x, v, t),

where x is the position, v the velocity, and t the time. The

derivatives represent simple propagation of a single particle

in real and velocity space, whereas the collision operator

X takes into account molecular collisions in which a par-

ticle changes its momentum due to a collision with another

particle. In order to represent the correct physics, the col-

lision operator should conserve mass and momentum, and

should be Galilei invariant. By performing a Chapman

Enskog procedure, it can be shown that such a collision

operator X reproduces the Navier–Stokes equation (Succi

2001). In the lattice Boltzmann method, the time t, the

position x, and the velocity v are discretized.

A few groups have applied the lattice Boltzmann method

for the simulation of microflows and to study boundary slip.

A popular approach is to introduce slip by generalizing the

no-slip bounce-back boundary conditions to allow specular

reflections with a given probability (Succi 2002; Tretheway

et al. 2002; Tang et al. 2005; Sbragaglia and Succi 2005),

or to apply diffuse scattering (Ansumali and Karlin 2002;

Sofonea and Sekerka 2005; Niu et al. 2004). It has been

shown by Guo et al. that these approaches are virtually

equivalent (Guo et al. 2007). Another possibility is to

modify the fluid’s viscosity, i.e., the fluid viscosity is

modified due to local density variations to model slip (Nie

et al. 2002). In both cases, the parameters determining the

properties at the boundaries are ‘‘artificial’’ parameters, and

they do not have any obvious physical meaning. Therefore,

they are not easily mappable to experimentally available

values. We model the interaction between hydrophobic

channel walls and the fluid by means of a multiphase lattice

Boltzmann model. Our approach overcomes this problem

by applying a mesoscopic force between the walls and the

fluid. A similar approach is used by Zhu et al. (2005), Benzi

et al. (2006a), and Zhang et al. (2004). This force applied at

the boundary can be linked to the contact angle which is

commonly used by experimentalists to quantitatively

describe the wettability of a material (Benzi et al. 2006b;

Huang et al. 2007).

The simulation method and our implementation of

boundary conditions are described as follows. A multi-

phase lattice Boltzmann system can be represented by a set

of equations

ga
i ðxþ ci; t þ 1Þ � ga

i ðx; tÞ ¼ Xa
i ; i ¼ 0; 1; . . .; b; ð4Þ

where gi
a(x, t) is the single-particle distribution function,

indicating the amount of species a with velocity ci, at site

x on a D-dimensional lattice of coordination number

b (D3Q19 in our implementation), at time-step t. This is a

discretized version of Eq. 3 without external forces F for a

number of species a. For the collision operator Xi
a we choose

the Bhatnagar–Gross–Krook (BGK) form (Bhatnagar et al.

1954)

Xa
i ¼ �

1

sa
ðga

i ðx; tÞ � ga eq
i ðuaðx; tÞ; gaðx; tÞÞÞ; ð5Þ

where sa is the mean collision time for component a and

determines the kinematic viscosity

ma ¼ 2sa � 1

6
: ð6Þ

of the fluid. The relaxation time sa is kept constant at 1.0 in

this study. The system relaxes to an equilibrium distribution
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gi
a eq which can be derived imposing restrictions on the

microscopic processes, such as explicit mass and momentum

conservation for each species. In our implementation, we

choose for the equilibrium distribution function

geq
i ¼ fig

a 1þ ci �u
c2

s

þðci �uÞ2

2c4
s

� u2

2c2
s

þðci �uÞ3

6c6
s

� u2ðci �uÞ
2c4

s

" #

;

ð7Þ

which is a polynomial expansion of the Maxwell

distribution. ci’s are the velocity vectors pointing to

neighboring lattice sites and fi are the lattice weights

resulting from the velocity space discretization. cs ¼ 1=
ffiffiffi
3
p

is the speed of sound for the D3Q19 lattice. The macroscopic

values can be derived from the single-particle distribution

function gi
a(x, t), i.e., the density ga(x, t) of the species a at

lattice site x is the sum over the distribution functions gi
a(x, t)

for all lattice velocities ci,

gaðx; tÞ �
X

i

ga
i ðx; tÞ: ð8Þ

ua(x, t) is the macroscopic velocity of the fluid, defined as

gaðx; tÞuaðx; tÞ �
X

i

ga
i ðx; tÞci: ð9Þ

Interactions between different fluid species are introduced,

according to Shan and Chen, as a mean field body force

between nearest neighbors (Shan and Chen 1993, 1994),

Faðx; tÞ � �waðx; tÞ
X

�a

ga�a

X

x0
w�aðx0; tÞðx0 � xÞ; ð10Þ

where waðx; tÞ ¼ ð1� e�gaðx;tÞ=g0Þ is the so-called effective

mass with g0 being a reference density that is set to 1 in our

case (Shan and Chen 1993). ga�a is a force coupling constant,

whose magnitude controls the strength of the interaction

between component a and �a: The dynamic effect of the force

is realized in the BGK collision operator (5) by adding an

increment dua = saFa/ga to the velocity u in the equilibrium

distribution function (7). A repulsive potential between

surface and fluid can be used to model hydrophobic fluid–

surface interactions. Such a potential is realized by attaching

the imaginary fluid ‘‘density’’ gwall to the first lattice site

inside the wall. Only the distribution corresponding to the

rest velocity is filled, while the remaining ones are kept at 0.

As a result, the only difference between gwall and any other

fluid packages on the lattice g�a is that the fluid corresponding

to gwall is taken into account only for the collision step and

for the calculation of Eq. 10, but not in the propagation step.

Therefore, we can adopt gwall and the coupling constant

ga,wall to tune the fluid–wall interaction. ga,wall is kept at 0.08

throughout this article if not mentioned otherwise, and all the

values are reported in lattice units. These parameters allow to

simulate a wide range of effective interactions without

compromising on numerical stability. In addition, we apply

second-order correct mid-grid bounce-back boundary con-

ditions between the fluid and the surface which assures

vanishing velocities at solid surfaces. Here, a distribution

function that would be advected into a solid node is simply

reversed and advected into the opposite direction (Succi

2001).

From molecular dynamics simulations, it is known that

the fluid–wall interactions causing a slip phenomenon

usually take place within a few molecular layers of the

liquid along the boundary surface (Baudry and Charlaix

2001; Cieplak et al. 2001; Thompson and Troian 1997;

Cottin-Bizonne et al. 2004). Our coarse-grained fluid–wall

interaction acts on the length scale of one lattice constant

and does not take the molecular details into account.

Therefore, coarse-grained implementations based on the

lattice Boltzmann method are only able to reproduce an

averaged effect of the interaction and cannot fully resolve

the correct flow profile very close to the wall and below the

resolution of a single lattice spacing. However, in order to

understand the influence of the hydrophobicity on experi-

mentally observed apparent slip, it is fully sufficient to

investigate the flow behavior on more macroscopic scales as

they are accessible for experimental investigation. Coarse-

grained interaction models could be improved by a direct

mapping of data obtained from MD simulations to the

coupling constant ga,wall allowing a direct comparison of the

influence of liquid–wall interactions on the detected slip

(Harting et al. 2006). Similar approaches are known from

quantitative comparisons of lattice Boltzmann and molec-

ular dynamics simulations in the literature (Horbach and

Succi 2006; Chibbaro et al. 2008).

The simulations in this study use a setup of two infinite

planes separated by the distance 2d. We call the direction

between the two planes x, and if not stated otherwise, 2d is

set to 64 lattice sites. In y direction, we apply periodic

boundary conditions. Here, eight lattice sites are sufficient

to avoid finite size effects since there is no propagation in

this direction. z is the direction of the flow with our channels

being 512 lattice sites long. At the beginning of the simu-

lation (t = 0), the fluid is at rest. We then apply a pressure

gradient rP in the z-direction to generate a planar

Poiseuille flow. Assuming Navier’s boundary condition, the

slip length b is measured by fitting the theoretical velocity

profile as given by Eq. 2 in flow direction (vz) at position x,

to the simulated data via the slip length b. We validate this

approach by comparing the measured mass flow rateR
gvðxÞdx to the theoretical mass flow without boundary

slip and find a very good agreement. The dynamic viscos-

ity l as well as the pressure gradient oP
oz needed to fit Eq. 2

are obtained from our simulation data.

In Harting et al. (2006), we show that this model creates

a larger slip b with stronger interaction, namely, larger

ga,wall and larger gwall. The maximum available slip length
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measured is 5.0 in lattice units. For stronger repulsive

potentials, the density gradient at the fluid–wall interface

becomes too large, causing the simulation to become

unstable. At lower interactions, the method is very stable,

and the slip length b is independent of the distance d

between the two plates and, therefore, independent of the

resolution. We also show that the slip decreases with

increasing pressure since the relative strength of the repul-

sive potential compared to the bulk pressure is weaker at

high pressure. Therefore, the pressure reduction near the

wall is less in the high pressure case than in the low pressure

one. Furthermore, we demonstrate that b can be fitted with a

semianalytic model based on a two-viscosity model.

We study the dependence of the slip length b on the flow

velocity for a wide range of velocities of more than three

decades as shown in Fig. 1 and in Harting et al. (2006). In

the figure, we show data for different fluid–wall interactions

0 \ gwall \ 2.0 and flow velocities from 10-4 \ v \ 10-1.

For simplicity, we restrict ourselves to ga,wall = 0.08 which

is a suitable value found from parameter studies given in

Harting et al. (2006). Within this region, we confirm the

findings of many steady-state experiments (Cheng and

Giordano 2002), namely, the slip length is independent of

the flow velocity and only depends on the wettability of the

channel walls. Some dynamic experiments, however, find a

shear rate-dependent slip (Zhu and Granick 2001; Neto

et al. 2003). These experiments often utilize a modified

AFM, as described in the introduction, to detect boundary

slippage. Since the slip length is found to be constant in our

simulations after sufficiently long simulation times, we

cannot confirm these results. However, it has been proposed

by various authors that this velocity dependence is due to

noncontrolled effects such as impurities or surface nano-

bubbles. In simulations, we can only find a shear rate

dependence if the system has not yet reached the steady

state or if time-dependent accelerations are present (Kunert

and Harting 2008a).

Our mesoscopic approach is able to reach the small flow

velocities of known experiments, and reproduces results

from experiments and other computer simulations, namely,

an increase of the slip with increasing liquid–solid inter-

actions, the slip being independent of the flow velocity, and

a decreasing slip with increasing bulk pressure. In addition,

within our model, we develop a semianalytic approxima-

tion of the dependence of the slip on the bulk pressure as

described in Harting et al. (2006).

3 Roughness induced apparent slip

If typical length scales of the experimental system are

comparable to the scale of surface roughness, the effect of

roughness cannot be neglected anymore. Figure 2 (left)

shows a typical example of a simulation setup: Poiseuille

flow between two rough surfaces. The surface is generated

using a random number generator to randomly choose the

height of the obstacles at every discrete surface position. As

can be observed in the figure, the stream lines of the flow are

getting disturbed or trapped between the obstacles at the

surfaces. In this section, we show that an apparent boundary

slip can have its origin in the misleading assumption of

perfectly smooth boundaries.

The influence of surface variations on the slip length b
has been investigated by numerous authors. It was demon-

strated by Richardson that roughness leads to higher drag

forces and thus to no-slip on macroscopic scales. He has

shown that if on a rough surface even a full-slip boundary

condition is applied, one obtains a flow speed reduction near

the boundary resulting in a macroscopic no-slip boundary

condition (Richardson 1973). An experimental confirma-

tion was later presented by by McHale and Newton (2004).

The MD simulations of Couette flow between sinusoidal

walls have been presented by Jabbarzadeh et al. (2000).

They found that slip appears for roughness amplitudes

smaller than the molecular length scale (Jabbarzadeh et al.

2000). Sbragaglia et al. applied the LB method to simulate

fluids in the vicinity of microstructured hydrophobic sur-

faces (Sbragaglia et al. 2006), Al-Zoubi et al. demonstrated

that the LB method is well applicable to reproduce known

flow patterns in sinusoidal channels (Al-Zoubi and Brenner

2008), and Varnik et al. (Varnik and Raabe 2006; Varnik

et al. 2006) have shown that even in small geometries,

rough channel surfaces can cause flow to become turbulent.

Recently, we presented the idea of an effective wall for

rough channel surfaces (Kunert and Harting 2007). Here,

we investigate the influence of different types of roughness

on the position of the effective boundary. Further, we show

how the effective boundary depends on the distribution of
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Fig. 1 Slip length b versus bulk velocity v for different fluid–wall

interactions gwall. b is independent of v and only depends on gwall

(Harting et al. 2006). All units are expressed in lattice units

throughout this article, if not stated otherwise
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the roughness elements, and how roughness and hydro-

phobicity interact with each other (Kunert and Harting

2008b). Lecoq et al. (2004) performed experiments with

well-defined roughness, and developed a theory to predict

the position of the effective boundary. In the experiments,

they utilized a laser interferometer to measure the trajectory

of a colloidal sphere, and, thereby, determined the lubri-

cation force and an effective boundary position. The used

geometry consists of grooves with a triangular profile. For a

theoretical description, the boundary is expressed in a

Fourier series that gives the boundary condition for the

Laplace equation. As a result, an effective boundary can be

derived by a fast converting series.

In this article, we revise our previous achievements and

compare them with the theoretical and experimental results

of Lecoq et al. (2004).

Again, Poiseuille flow measurements are utilized to

investigate the effect of interest. The rough surfaces are

characterized by the highest point of one plane (hmax),

the position of the deepest valley (hmin), and the arith-

metic average of all surface heights giving the average

roughness Ra. In the case of symmetrical distributions, we

get Ra = hmax/2.

The position of the effective boundary heff can be found

by fitting the parabolic flow profile via the distance deff.

With b set to 0, we obtain the no-slip case. In order to

obtain an average value for the effective distance between

the planes deff, a sufficient number of individual profiles at

different positions z are taken into account. The deff so

found gives the position of the effective boundary, and the

effective height heff of the rough surface is then defined by

dmax - deff (see Fig. 2, left).

We show that the position of the effective boundary

height is depending on the shape of the roughness elements,

i.e., for strong surface distortions, it is between 1.69 and

1.90 times the average height of the roughness Ra = hmax/2

(Kunert and Harting 2007). In Fig. 3, we plot the effective

boundary positions of different geometries, i.e., randomly

distributed grooves with a square profile and grooves with a

triangular profile. The results for the triangular ones match

with the theoretical value of Lecoq et al. (2004) for a

similar geometry.

By adding an additional distance between roughness

elements, heff decreases slowly, so that the maximum

height is still the leading parameter. We are also able to

simulate flow over surfaces generated from AFM data

of gold-coated glass used in microflow experiments by

Vinogradova and Yakubov (2006). We find that the height

distribution of such a surface is Gaussian and that a ran-

domly arranged surface with a similar distribution gives the

same result for the position of the effective boundary

although in this case the heights are not correlated (Fig. 4).

We can tune the width of the distribution r and the

average height Ra. By scaling r with Ra, we obtain geo-

metrically similar geometries. This similarity is important

because the effective height, heff, scales with the average

Ra

dmax deff

maxh
heff

hmin

x
y

z

Fig. 2 Left A typical simulated system. Poiseuille flow between two

rough surfaces showing random surface variations. Streamlines depict

a two dimensional cut and illustrate the parabolic velocity profile.

This profile is distorted in the vicinity of the rough surfaces (Kunert

and Harting 2008b). Right The effective boundary height heff is found

between the deepest valley at hmin and the highest peak at hmax. It

corresponds to an effective channel width deff. Ra denotes the average

roughness, and the maximum distance between the plates dmax is kept

constant (Kunert and Harting 2008b)
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Fig. 3 Simulated effective height heff versus Ra for different surface

geometries. The triangular shape matches the theoretical results of

Lecoq et al. (2004) for a similar geometry
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roughness in the case of geometrical similarity (Kunert and

Harting 2007). We investigate Gaussian-distributed heights

with different widths r and find that the height of the

effective wall depends linearly on r in the observed range

(Kunert and Harting 2008b). Further, we find that the slip

diverges as the amplitude of the roughness increases and

the flow field gets more restricted, which highlights the

importance of a proper treatment of surface variations in

very confined geometries (Kunert and Harting 2007).

4 Structured surfaces with entrapped microbubbles

A natural continuation of our previous studies on rough-

ness-induced apparent boundary slip and the collaboration

mentioned above is the analysis of flow along superhy-

drophobic surfaces (Hyväluoma and Harting 2008). While

in typical experiments, slip lengths of a few tens of

nanometers can be observed, it would be preferable for

technical applications to increase the throughput of fluid in

a microchannel, i.e., to obtain substantially larger slip.

Superhydrophobic surfaces are promising in this context,

since it has been recently predicted (Cottin-Bizonne et al.

2003) and experimentally reported (Perot and Rothstein

2004) that the so-called Fakir effect or Cassie state con-

siderably amplifies boundary slippage. Using highly rough

hydrophobic surfaces, such a situation can be achieved.

Instead of entering the area between the rough surface

elements, the liquid remains at the top of the roughness and

traps air in the interstices. Thus, a very small liquid–solid

contact area is generated.

Steinberger et al. utilized surfaces patterned with a

square array of cylindrical holes to demonstrate that gas

bubbles present in the holes may cause a reduced slip

(Steinberger et al. 2007). Numerically, they found even

negative slip lengths for flow over such bubble mattresses,

i.e., the effective no-slip plane is inside the channel, and the

bubbles increase the flow resistance. In this section, we

consider negative slip lengths on bubble surfaces and also

discuss the question of shear-rate dependent slip. In par-

ticular, we show that microbubbles can generate a shear-

rate dependence.

Our simulations utilize the single component multiphase

LB model by Shan and Chen (1994), which enables sim-

ulations of liquid–vapor systems with surface tension. We

are not aware of further lattice Boltzmann simulations to

study the flow over a bubble mattress. However, a number

of authors have applied various LB multiphase and

multicomponent models to study the properties of droplets

on chemically patterned and superhydrophobic surfaces

(Kusumaatmaja et al. 2006; Kusumaatmaja and Yeomans

2007; Pirat et al. 2008; Hyväluoma et al. 2007). The flow

in our system is confined between two parallel walls. One

of the walls is patterned with holes and vapor bubbles are

trapped to these holes. The other wall is smooth and moved

with velocity u0. Steinberger et al. (2007) presented finite-

element simulations of flow over rigid ‘‘bubbles’’ by

applying slip boundaries at static bubble surfaces. The LB

method allows the bubbles to deform if the viscous forces

are high enough compared to the surface tension. We are

also interested in how surface patterning affects the slip

properties of these surfaces, and how bubbles could be

utilized to develop surfaces with special properties for

microfluidic applications (Hyväluoma and Harting 2008).

The distance between walls is d = 1 lm (40 lattice

nodes) in all the simulations, and the area fraction of holes

is 0.43. A unit cell of the regular array is included in a

simulation, and periodic boundary conditions are applied at

domain boundaries. The bubbles are trapped into holes by

using different wettabilities for boundaries in contact with

the main channel and with the hole. The protrusion angle u
(see Fig. 5 for definition) is varied by changing the liquid’s

bulk pressure. The effective slip length is b = lu0/r - d,

where r = ldv/dz is the shear stress acting on the upper

wall and l the dynamic viscosity of the liquid.

We investigate the effect of a modified protrusion angle

and different surface patterns by using square, rectangular,

and rhombic bubble arrays. The cylindrical holes have a

radius a = 500 nm, and the area fraction of the holes is

equal in all the cases. The shear rate is such that the

Capillary number Ca = laGs/c = 0.16. Here, Gs and c are

the shear rate and surface tension, respectively. A snapshot

of a simulation is shown in the left part of Fig. 5, and the

slip lengths obtained are shown in the right part. The

observed behavior is similar to that reported in Steinberger

et al. (2007), where a square array of holes was studied. In

particular, we observe that when u is large enough, b
becomes negative. Moreover, when the protrusion angle

Fig. 4 Simulated effective height heff versus Ra for gold-coated glass

surfaces and a randomly generated surface with Gaussian distributed

heights. The background image shows the gold coated glass surface

on the left and the artificially generated structure on the right (Kunert

and Harting 2007)
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equals zero, the slip length is maximized, and the highest

possible throughput in a microchannel is obtained. The

behavior of the slip length can be explained by thinking of

an increased surface roughness if the protrusion angle is

greater or less than zero. Since the area fraction of the

bubbles is the same in all the three cases, our results clearly

indicate that slip properties of the surface can be tailored

not only by changing the protrusion angle but also by the

array geometry. In this study, the highest slip lengths are

obtained for the rhombic unit cell, and it is an ongoing

study to investigate the influence of the array geometry in

more detail. Recently, our findings have been confirmed

theoretically by Davis and Lauga (2009).

Next, the shear-rate dependence of the slip length is

investigated. As the shear rate and, thus, the viscous stresses

grow, the bubbles are deformed (see Fig. 6, left) and the

flow field is modified. In the central part of Fig. 6, we show

the simulated slip length as a function of the Capillary

number for three different protrusion angles. The Capillary

numbers chosen are in higher end of the experimentally

available range. Our results show shear-rate dependent slip,

but the behavior is opposite to that found in some experi-

ments: in fact, the slip lengths measured by us decrease with

increasing shear due to a deformation of the bubbles. In the

experiments, surface force apparatuses are used (see, e.g.,

Zhu and Granick 2001), where a strong increase in the slip

is observed after some critical shear rate. This shear-rate

dependence has been explained, e.g., with formation and

growth of bubbles (Gennes 2002; Lauga and Brenner 2004).

In our simulations, there is no formation or growth of the

bubbles as we only simulate a steady case for given bubbles.

The experiments on the contrary are dynamic. However, our

results indicate that the changes in the flow field which

occur due to the deformation of the bubbles cannot be an

explanation for the shear-rate dependence observed in some

experiments. Our results are consistent with Kunert and

Harting (2007) and the previous section, where it is shown

that smaller roughness leads to smaller values of a detected

slip. In this studied case, the shear reduces the average

height of the bubbles, and thus the average scale of the

roughness decreases as well.

Finally, we consider a surface patterned with grooves.

Cylindrical bubbles protrude to the flow channel from these

holes with protrusion angle u = 72�, and the area fraction

of slots is 0.53. We apply shear both parallel and perpen-

dicular to the slots. The slip length is strongly dependent on

the flow direction (Hyväluoma and Harting 2008). For

parallel flow, the slip length is positive, but for the per-

pendicular case, it becomes negative. Flow direction affects

also greatly on the shear-rate dependence (cf. Fig. 6, right).

When flow is parallel to the grooves, no shear-rate depen-

dence is observed, but for the perpendicular case, this

dependence is similar to that seen on hole arrays. These

results can be understood on the basis of deforming bubbles.

For perpendicular flow, the bubbles are able to deform, but

for the parallel case, the bubbles retain their shape regard-

less of the shear rate.

5 Conclusion

In this article, we review applications of the lattice Boltz-

mann method to microfluidic problems. The main focus of

this article is on our own research related to the validation

of the no-slip boundary condition. By introducing a model

for hydrophobic fluid–surface interactions and studying

pressure-driven flow in microchannels, we show that an

experimentally detected slip can have its origin in hydro-

phobic interactions, but is constant with varied shear rates

and decreases with increasing pressure. Another effect that

was not fully understood so far is the influence of surfaces

roughness. We are able to apply our simulations to surface

data obtained from AFM measurements of experimental

samples. We show that ignoring roughness can lead to large

errors in a detected slip. In fact, we propose that roughness

alone could often be the reason for apparent boundary slip.

Microscale bubbles at surfaces allow to tailor the slip

properties of a surface. Such a surface with bubbles may

yield negative slip, i.e., increased resistance to flow, if

bubbles are strongly protruding to the channel. The lattice

Boltzmann simulations capture the deformability of bubbles

and thus allow to study the influence of the shear rate on the

deformation of the interface and its effect on the measured

slip. We find that the slip decreases with increasing shear

rate demonstrating that shear-induced bubble deformation

cannot explain recent experimental findings where slip

increases with increasing shear rate.

In this article, we also demonstrate the suitability of

the lattice Boltzmann method for modeling microfluidic

applications: in contrast to molecular dynamics, it is able to
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Fig. 5 A visualization of the simulation setup (left) the lower surface

is patterned with holes, while the upper surface is moved with

velocity u0. Right the slip length b as a function of protrusion angle

u. A unit cell of each array is shown in insets, and corresponding

results are given by triangles (rhombic array), diamonds (rectangular

array), and circles (square array). The inset in the top-left corner

shows the definition of u (Hyväluoma and Harting 2008)
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reach experimentally available time and length scales. This

allows one to compare simulation results to experimental

data directly as demonstrated in the case of simulations of

flow along surface data obtained from AFM measurements

of ‘‘real’’ samples.
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