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Lattice codes for the Gaussian relay channel:
Decode-and-Forward and Compress-and-Forward

Yiwei Song and Natasha Devroye

Abstract—Lattice codes are known to achieve capacity in the
Gaussian point-to-point channel, achieving the same rates as
independent, identically distributed (i.i.d.) random Gaussian
codebooks. Lattice codes are also known to outperform random
codes for certain channel models that are able to exploit their
linearity. In this work, we show that lattice codes may be
used to achieve the same performance as known i.i.d. Gaussian
random coding techniques for the Gaussian relay channel, and
show several examples of how this may be combined with the
linearity of lattices codes in multi-source relay networks. In
particular, we present a nested lattice list decoding technique
in which lattice codes are shown to achieve the Decode-and-
Forward (DF) rate of single source, single destination Gaussian
relay channels with one or more relays. We next present two
examples of how this DF scheme may be combined with the
linearity of lattice codes to achieve new rate regions which for
some channel conditions outperform analogous known Gaussian
random coding techniques in multi-source relay channels. That
is, we derive a new achievable rate region for the two-way relay
channel with direct links and compare it to existing schemes,
and derive a new achievable rate region for the multiple access
relay channel. We furthermore present a lattice Compress-and-
Forward (CF) scheme for the Gaussian relay channel which
exploits a lattice Wyner-Ziv binning scheme and achieves the
same rate as the Cover-El Gamal CF rate evaluated for Gaussian
random codes. These results suggest that structured/lattice codes
may be used to mimic, and sometimes outperform, random
Gaussian codes in general Gaussian networks.

Index Terms—lattice codes, relay channel, Gaussian relay chan-
nel, decode and forward, compress and forward

I. INTRODUCTION

The derivation of achievable rate regions for general net-
works including relays has classically used codewords and
codebooks consisting of independent, identically generated
symbols (i.i.d. random coding). Only in recent years have
codes which possess additional structural properties, which we
term structured codes, been used in networks with relays [3]–
[9]. The benefit of using structured codes in networks lies not
only in a somewhat more constructive achievability scheme
and possibly computationally more efficient decoding than
i.i.d. random codes, but also in actual rate gains which exploit
the structure of the codes – their linearity in Gaussian channels
– to decode combinations of codewords rather than individual
codewords / messages. While past work has focused mainly
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on specific scenarios in which structured or lattice codes are
particularly beneficial, missing is the demonstration that lattice
codes may be used to achieve the same rate as known i.i.d.
random coding based schemes in Gaussian relay networks, in
addition to going above and beyond i.i.d. random codes in
certain scenarios. In this work we demonstrate generic nested
lattice code based schemes for achieving the Decode-and-
Forward and Compress-and-Forward rates in Gaussian relay
networks which achieve at least the same rate regions as those
achieved using Gaussian random codes. In the longer term,
these strategies may be combined with ones which exploit the
linear structure of lattice codes to obtain structured coding
schemes for arbitrary Gaussian relay networks. Towards this
goal, we illustrate how the DF based lattice scheme may be
combined with strategies which exploit the linearity of lattice
codes in two examples: the two-way relay channel with direct
links and the multiple access relay channel.

A. Goal and motivation

In relay networks, as opposed to single-hop networks, mul-
tiple links or routes may exist between a given source and
destination. Of key importance in such networks is how to
best jointly utilize these links, which – in a single source
scenario – all carry the same message and effectively cooperate
with each other to maximize the number of messages that
may be distinguished. The three node relay channel with one
source with one message for one destination aided by one
relay is the simplest relay network where pure cooperation
between the links is manifested. Information may flow along
the direct link or along the relayed link; how to manage or
have these links cooperate to best transmit this message is
key to approaching capacity for this channel. Despite this
network’s simplicity, its capacity remains unknown in gen-
eral. However, the Decode-and-Forward (DF) and Compress-
and-Forward (CF) achievability strategies, both examples of
cooperative strategies described in [10]–[13], may approach
capacity under certain channel conditions. In the DF scheme,
the receiver does not obtain the entire message from the direct
link nor the relayed link. Rather, cooperation between the
direct and relayed links may be implemented by having the
receiver decode a list of possible messages (or codewords)
from the direct link, another independent list from the coherent
combination of the direct link and the relayed link, which it
then intersects to obtain the message sent1. In the CF scheme

1There are alternative schemes for implementing DF, but the main intuition
about combining information along two paths remains the same.
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of [10], cooperation is implemented by a two-step decoding
procedure combined with Wyner-Ziv binning.

Generalizations of these i.i.d. random-coding based DF and
CF schemes have been proposed for general multi-terminal
relay networks [11], [14], [15]. However, in recent years lattice
codes have been shown to outperform random codes in several
Gaussian multi-source network scenarios due to their linearity
property [3]–[6], [16], [17]. As such, one may hope to derive
a coding scheme which combines the best of both worlds,
i.e. incorporate lattice codes with their linearity property into
coding schemes for general Gaussian networks. At the moment
we cannot simply replace i.i.d. random codes with lattice
codes. That is, while nested lattice codes have been shown to
be capacity achieving in the point-to-point Gaussian channel,
in relay networks with multiple links/paths and the possibility
of cooperation, technical issues need to be solved before one
may replace random codes with lattice codes.

In this paper, we make progress in this direction by demon-
strating lattice-based cooperative techniques for a number of
relay channels. One of the key new technical ingredients in
the DF schemes is the usage of a lattice list decoding scheme
to decode a list of lattice points (using lattice decoding) rather
than a single lattice point. We then extend this lattice-list-
based cooperative technique and combine it with the linearity
of lattice codes to provide gains for some channel conditions
over i.i.d. random codes in scenarios with multiple cooperating
links.

B. Related work

In showing that lattice codes may be used to replace i.i.d.
random codes in Gaussian relay networks, we build upon work
on relay channels, on the existence of “good” nested lattice
codes for Gaussian source and channel coding, and on recent
advancements in using lattices in multiple-relay and multiple-
node scenarios. We outline the most relevant related work.

Relay channels. Two of our main results are the demonstra-
tion that nested lattice codes may be used to achieve the DF
and CF rates achieved by random Gaussian codes [10]. For the
DF scheme, we mimic the Regular encoding/Sliding window
decoding DF strategy [11], [12] in which the relay decodes
the message of the source, re-encodes it, and then forwards
it. The destination combines the information from the source
and the relay by intersecting two independent lists of messages
obtained from the source and relayed links respectively, over
two transmission blocks. We will re-derive the DF rate, but
with lattice codes replacing the random i.i.d. Gaussian codes.
Of particular importance is constructing and utilizing a lattice
version of the list decoder. It is worth mentioning that the
concurrent work [8] uses a different lattice coding scheme to
achieve the DF rate in the three-node relay channel which
does not rely on list decoding but rather on a careful nesting
structure of the lattice codes.

The DF scheme of [10] restricts the rate by requiring the
relay to decode the message. The Compress-and-Forward (CF)
achievability scheme of [10] for the relay channel places no
such restriction, as the relay compresses its received signal
and forwards the compression index. In Cover and El Gamal’s

original CF scheme, the relay’s compression technique utilizes
a form of binning related to the Wyner-Ziv rate-distortion
problem with decoder side-information [18]. In [19], [20] the
authors describe a lattice version of the noiseless quadratic
Gaussian Wyner-Ziv coding scheme, where lattice codes quan-
tize/compress the continuous signal; this will form the basis
for our lattice-based CF strategy. Another simple structured
approach to the relay channel is considered in [21], [22]
where one-dimensional structured quantizers are used in the
relay channel subject to instantaneous (or symbol-by-symbol)
relaying.

Our extension of the single relay DF rate to a multiple relay
DF rate is based on the DF multi-level relay channel scheme
presented in [11], [14]. These papers essentially extend the
DF rate of [10]; the central idea behind mimicking the scheme
of [11], [14] is the repeated usage of the lattice list decoder,
enabling the message to again be decoded from the intersection
of multiple independent lists formed at the destination from
the different relay - destination links.

Lattice codes for single-hop channels. Lattice codes are
known to be “good” for almost everything in Gaussian point-
to-point, single-hop channels [23]–[25], from both source and
channel coding perspectives. In particular, nested lattice codes
have been shown to achieve capacity for the AWGN channel,
the AWGN broadcast channel [20] and to achieve the corner
points of the AWGN multiple access channel [3] (see further
details in [26], [27]). Lattice codes may further be used in
achieving the capacity of Gaussian channels with interference
or state known at the transmitter [28] using a lattice equivalent
[20] of dirty-paper coding (DPC) [29]. The nested lattice
approach of [20] for the dirty-paper channel is extended to
dirty-paper networks in [30], where in some scenarios lattice
codes are interestingly shown to outperform random codes. In
K-user interference channels for K ≥ 3, their structure has
enabled the decoding of (portions of) “sums of interference”
terms [16], [17], [27], [31], allowing receivers to subtract off
this sum rather than try to decode individual interference terms
in order to remove them. From a source coding perspective,
lattices have been useful in distributed Gaussian source coding
when reconstructing a linear function [32], [33].

Lattice codes in multi-hop channels. The linearity property
of lattice codes have been exploited in the Compute-and-
Forward framework [3] for Gaussian multi-hop wireless relay
networks [4]–[6]. There, intermediate relay nodes decode a
linear combination, or equation, of the transmitted codewords
or equivalently messages by exploiting the noisy linear com-
binations provided by the channel. Through the use of nested
lattice codes, it was shown that decoding linear combinations
may be done at higher rates than decoding the individual
codewords – one of the key benefits of using structured rather
than i.i.d. random codewords [34]. Recently, progress has been
made in characterizing the capacity of a single source, single
destination, multiple relay network to within a constant gap
for arbitrary network topologies [35]. Capacity was initially
shown to be approximately achieved via an i.i.d. random
quantize-map-and-forward based coding scheme [35] and al-
ternatively, using an extension of CF based techniques termed
“noisy network coding” [15]. Recently, relay network capacity
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was also shown to be achievable using nested lattice codes for
quantization and transmission [7]. Alternatively, using a new
“computation alignment” scheme which couples lattice codes
in a compute-and-forward-like framework [3] together with a
signal-alignment scheme reminiscent of ergodic interference
alignment [36], the work [37] was able to show a capacity
approximation for multi-layer wireless relay networks with an
approximation gap that is independent of the network depth.
While lattices have been used in relay networks, the goals so
far have mainly been to demonstrate their utility in specific
networks in which decode linear combinations of messages is
beneficial, or to achieve finite-gap results.

As a first example of the use of lattices in multi-hop sce-
narios, we will consider the Gaussian two-way relay channel
[4], [5]. The two-way relay channel consists of three nodes:
two terminal nodes 1 and 2 that wish to exchange their two
independent messages through the help of one relay node
R. When the terminal nodes employ nested lattice codes,
the sum of their signals is again a lattice point and may be
decoded at the relay. Having the relay send this sum (possibly
re-encoded) allows the terminal nodes to exploit their own
message side-information to recover the other user’s message
[4], [5]. Gains over DF schemes where both terminals transmit
simultaneously to the relay stem from the fact that, if using
random Gaussian codebooks, the relay will see a multiple
access channel and require the decoding of both individual
messages, even though the sum is sufficient. In contrast, no
multiple access (or sum-rate) constraint is imposed by the
lattice decoding of the sum. An alternative non-DF (hence
no rate constraints at relay) yet still structured approach to
the two-way relay channel is explored in [38], [39], where
simple one dimensional structured quantizers are used for a
symbol-by-symbol Amplify-and-Forward based scheme. In the
two-way relay channel, models with and without direct links
between the transmitters have been considered. While random
coding techniques have been able to exploit both the direct
link and relayed links, lattice codes have only been used in
channels without direct links. Here, we will present a lattice
coding scheme which will combine the linearity properties,
leading to less restrictive decoding constraints at the relay,
with direct-link information, allowing for a form of lattice-
enabled two-way cooperation.

A second example in which we will combine the linearity
property with direct-link cooperation is the Gaussian multiple
access relay channel [12], [40], [41]. In this model, two
sources wish to communicate independent messages to a
common destination with the help of a single relay. As in
the Gaussian two-way relay channel, the relay may choose to
decode the sum of the codewords using lattice codes, rather
than the individual codewords (as in random coding based
DF schemes), which it would forward to the destination.
The destination would combine this sum with direct-link
information (cooperation). As in the two-way relay channel,
decoding the sum at the relay eliminates the multiple access
sum-rate constraint.

C. Contributions and outline

Our contributions center around demonstrating that lattices
may achieve the same rates as currently known Gaussian
i.i.d. random coding-based achievability schemes for relay
networks. While we do not prove this sweeping statement
in general, we make progress towards this goal along the
following lines:

• Preliminaries and Lattice List Decoder: In Section
II we briefly outline lattice coding preliminaries and
notation before outlining key technical lemmas that will
be needed, including the central contribution of Section
II – the proposed Lattice List Decoding technique in
Theorem 3.

• Decode-and-Forward, single source: This Lattice List
Decoding technique is used to show that nested lattice
codes may achieve the Decode-and-Forward rate for the
Gaussian relay channel achieved by i.i.d. random Gaus-
sian codes [10] in Section III, Theorem 7. We furthermore
extend this result to the general single source, multiple
relay Gaussian channel in Theorem 8.

• Decode-and-Forward, multiple source including two-
way relay and multiple access relay channels: In
Section IV relays decode and forward combinations of
messages as in the Compute-and-Forward framework,
which is combined with direct link side-information at
the destination. In particular, we present lattice-based
achievable rate regions for the Gaussian two-way relay
channel with direct links in Theorem 9, and the Gaussian
multiple access relay channel in Theorem 10.

• Compress-and-Forward, single source: In Section V,
we revisit our goal of showing that lattice codes may
mimic the performance of i.i.d. Gaussian codes in the
relay channel by demonstrating a lattice code-based
Compress-and-Forward scheme which achieves the same
rate as the CF scheme in [10] evaluated for i.i.d. Gaussian
codebooks. The proposed lattice CF scheme is based
on a variation of the lattice-based Wyner-Ziv scheme
of [19], [20], as outlined in Theorem 12. We note
that lattices have been shown to achieve the Quantize-
Map-and-Forward rates for general relay channels using
Quantize-and-Map scheme (similar to the CF scheme)
which simply quantizes the received signal at the relay
and re-encodes it without any form of binning / hashing
in [7]; the contribution is to show an alternative lattice-
coding based achievability scheme which employs com-
putationally more efficient lattice decoding.

Remark 1: We note that motivation behind seeking lattice-
based schemes for relay networks is to allow for more flexible
relaying strategies whereby nodes need not be constrained to
decoding individual messages as in i.i.d. DF based coding
schemes (i.e. relays can decode linear combinations of mes-
sages). This, rather than using the structure of nested lattice
codes to reduce decoding complexity, is our focus. Decoding
complexity (relative to i.i.d. codes) is reduced at the relay(s)
but not significantly at the destination. In this respect, our
DF based schemes differs from the more computationally
efficient lattice-based DF scheme of [8]. Our lattice-based CF
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does however utilize the structure of the lattice codes to offer
decoding complexity reduction.

II. PRELIMINARIES, NOTATION, AND THE LATTICE LIST
DECODER

We introduce our notation for lattice codes, nested lattice
codes, and nested lattice chains and present several existing
lemmas. We next present the new Lattice List Decoder (The-
orem 3) in which the decoder, instead of outputting a single
estimated codeword, outputs a list which contains the correct
one with high probability. The lemma bounds the number
of points in the list. For completeness, a unique-decoding
equivalent of this theorem is provided in Lemma 6, which
states that one may also use lattice codes to decode a unique
point with high probability rather than a list, in mixed noise
consisting of the sum of Gaussian noise(s) and independent
noise(s) uniformly distributed over the Voronoi regions of
Rogers-good lattices.

A. Lattice codes

Our notation for (nested) lattice codes for transmission over
AWGN channels follows that of [6], [20]; comprehensive
treatments may be found in [20], [23], [42] and in particular
[25]. An n-dimensional lattice Λ is a discrete subgroup of
Euclidean space Rn with Euclidean norm || · || under vector
addition and may be expressed as all integral combinations of
basis vectors gi ∈ Rn

Λ = {λ = G i : i ∈ Zn},
for Z the set of integers, n ∈ Z+, and G := [g1|g2| · · · |gn] the
n×n generator matrix corresponding to the lattice Λ. We use
bold x to denote column vectors, xT to denote the transpose of
the vector x. All vectors are generally in Rn unless otherwise
stated, and all logarithms are base 2. Let 0 denote the all
zeros vector of length n, I denote the n × n identity matrix,
and N (µ, σ2) denote a Gaussian random variable (or vector)
of mean µ and variance σ2. Define C(x) := 1

2 log2 (1 + x).
Further define
• The nearest neighbor lattice quantizer of Λ as

Q(x) = arg min
λ∈Λ
||x− λ||;

• The mod Λ operation as x mod Λ := x−Q(x);
• The fundamental Voronoi region of Λ as the points closer

to the origin than to any other lattice point

V := {x : Q(x) = 0},
which is of volume V := Vol(V) (also sometimes denoted by
V (Λ) or Vi for lattice Λi);
• The second moment per dimension of a uniform distribu-

tion over V as

σ2(Λ) :=
1

V
· 1

n

∫

V
||x||2 dx;

• The normalized second moment of a lattice Λ of dimension
n as

G(Λ) :=
σ2(Λ)

V 2/n
;

• A sequence of n-dimensional lattices Λ(n) is said to be
Poltyrev good [6], [23] (in terms of channel coding over the
AWGN channel) if, for Z ∼ N (0, σ2I) and n-dimensional
vector, we have

Pr{Z /∈ V(n)} ≤ e−n(EP (µ)−on(1)),

which upper bounds the error probability of nearest lattice
point decoding when using lattice points as codewords in the
AWGN channel. Here Ep(µ) is the Poltyrev exponent [23],
[43] which is given as

Ep(µ) =





1
2 [(µ− 1)− logµ], 1 < µ ≤ 2

1
2 log eµ

4 2 ≤ µ ≤ 4,
µ
8 µ ≥ 4.

and µ is volume-to-noise ratio (VNR) defined as [24]

µ :=
(Vol(V))2/n

2πeσ2 + on(1).

Since Ep(µ) > 0 for µ > 1, a necessary condition for the
reliable decoding of a single point is µ > 1, thereby relating
the size of the fundamental Voronoi region (and ultimately
how many points one can transmit reliably) to the noise power,
aligning well with our intuition about Gaussian channels.
• A sequence of n-dimensional lattices Λ(n) is said to be

Rogers good [44] if

lim
n→∞

r
(n)
cov

r
(n)
eff

= 1,

where the covering radius r(n)
cov is the radius of the smallest

ball which contains the fundamental Voronoi region of Λ(n),
and the effective radius r(n)

eff is the radius of a ball of the same
volume as the fundamental Voronoi region of Λ(n).
• A sequence of n-dimensional lattices Λ(n) is said to be

good for mean-squared error quantization if

lim
n→∞

G(Λ(n)) =
1

2πe
;

It may be shown that if a sequence of lattices is Rogers good,
that it is also good for mean-squared error quantization [45].
Furthermore, for a Rogers’ good lattice Λ, it may be shown
that defining either σ2(Λ) or V = Vol(V) also defines the
other as in [6, Appendix A]; hence for a Rogers good lattice
we may define either its second moment per dimension or its
volume. This will be used in generating nested lattice chains.

Finally, we include a statement of the useful “Crypto lemma”
for completeness.

Lemma 1: Crypto lemma [23], [46]. For any random vari-
able x distributed over the fundamental region V and statisti-
cally independent of U, which is uniformly distributed over V ,
(x+U) mod Λ is independent of x and uniformly distributed
over V .

B. Nested lattice codes

Consider two lattices Λ and Λc such that Λ ⊆ Λc with
fundamental regions V,Vc of volumes V, Vc respectively. Here
Λ is termed the coarse lattice which is a sublattice of Λc, the
fine lattice, and hence V ≥ Vc. When transmitting over the
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Fig. 1. A lattice chain Λ ⊆ Λs ⊆ Λc with fundamental regions V ⊇ Vs ⊇
Vc of volumes V ≥ Vs ≥ Vc.

AWGN channel, one may use the set CΛc,V = {Λc ∩ V} as
the codebook. The coding rate R of this nested (Λ,Λc) lattice
pair is defined as

R =
1

n
log |CΛc,V | =

1

n
log

V

Vc
,

where ρ = |CΛc,V |
1
n =

(
V
Vc

) 1
n

is the nesting ratio of the
nested lattice pair. It was shown that there exist nested lattice
pairs which achieve the capacity of the AWGN channel [23].

C. Nested lattice chains

In the following, we will use an extension of nested lattice
codes termed nested lattice chains as in [5], [6], and shown
in Figure 1 (chain of length 3). We first re-state a slightly
modified version of [6, Theorem 2] on the existence of good
nested lattice chains, of use in our achievability proofs.

Theorem 2: Existence of “good” nested lattice chains
(adapted from Theorem 2 of [6]). For any P1 ≥ P2 ≥
· · · ≥ PK > 0 and γ > 0, there exists a sequence of n-
dimensional lattice Λ1 ⊆ Λ2 ⊆ · · · ⊆ ΛK ⊆ ΛC with
(V1 ⊇ V2 ⊇ · · · ⊇ VK ⊇ VC) satisfying:
a) Λ1, Λ2, . . . , ΛK are simultaneously Rogers-good and and
Poltyrev-good while ΛC is Poltyrev-good.
b) For any δ > 0, Pi − δ ≤ σ2(Λi) ≤ Pi, 1 ≤ i ≤ K for
sufficiently large n.
c) The coding rate associated with the nested lattice pair
ΛK ⊆ ΛC is RK,C = 1

n log VK
VC

= γ + on(1) where
on(1) → 0 as n → ∞. Moreover, for 1 ≤ i < j ≤ K,
the coding rate of the nested lattice pair Λi ⊆ Λj is Ri,j :=
1
n log Vi

Vj
= 1

2 log Pi
Pj

+ on(1) and Ri,C = Ri,K + RK,C =
1
2 log Pi

PK
+ γ + on(1) (1 ≤ i ≤ K − 1).

Proof: From Theorem 2 of [6] there exists a nested
lattice chain which satisfies the properties a) and b) and
for which RK,C = γ + on(1), and Ri,C = 1

n log Vi
VC

=

RK,C + 1
2 log Pi

PK
+on(1). Now notice that Ri,j = 1

n log Vi
Vj

=
1
n log Vi

VC
− 1

n log VC
Vj

= Ri,C −Rj,C = 1
2 log Pi

Pj
+ on(1).

D. A lattice list decoder

List decoding here refers to a decoding procedure in which,
instead of outputting a single codeword corresponding to a
single message, the decoder outputs a list of possible code-
words which includes the correct (transmitted) one with high
probability. Such a decoding scheme is useful in cooperative
scenarios when a message is transmitted above the capacity
of a given link (and hence the decoder would not be able to
correctly distinguish the true transmitted codeword from that
given link), and is combined with additional information at
the receiver to decode a single message point from within the
list. We present our key theorem next which bounds the list
size for a lattice list decoder which will decode a list which
contains the correct message with high probability.

Theorem 3: Lattice list decoding in mixed noise. Consider
the channel Y = X + Z, subject to input power constraint
1
nE[XTX] ≤ P , where Z = ZG+

∑M
i=1 Zi is noise which is a

mixture of Gaussian noise ZG ∼ N (0, σ2
GI) and independent

noises Zi which are uniformly distributed over fundamental
Voronoi regions of Rogers-good lattices with second moments
Pi. Thus, Z is of equivalent total variance N = 1

nE(ZTZ) =

σ2
G +

∑L
i=1 Pi. For any |L| > 2n(R−C(P/N)+ε), ε > 0, δ > 0,

R > C(P/N), and n large enough, there exists a chain of
nested lattices such that the lattice list decoder can produce a
list of size |L|, which does not contain the correct codeword
with probability smaller than δ.

Proof:
Encoding: We consider a good nested lattice chain Λ ⊆

Λs ⊆ Λc as in Figure 1 and Theorem 2, in which Λ and Λs
are both Rogers good and Poltyrev good while Λc is Poltyrev
good. We define the coding rate R = 1

n log V
Vc

and the nesting
rate R1 = 1

2 log V
Vs

. Each message w ∈ {1, . . . , 2nR} is one-
to-one mapped to the lattice point t(w) ∈ CΛc,V = {Λc ∩ V},
and the transmitter sends X = (t(w)−U) mod Λ, where U
is an n-dimensional dither signal (known to the encoder and
decoder) uniformly distributed over V .

Decoding: Upon receiving Y, the receiver computes

Y′ = (αY + U) mod Λ

= (t(w)− (1− α)X + αZ) mod Λ

= (t(w) + (−(1− α)X + αZ) mod Λ) mod Λ

= (t(w) + Z′) mod Λ, (1)

for α ∈ R. We choose α to be the MMSE coefficient α =
P

P+N and note that the equivalent noise Z′ = (−(1− α)X +
αZ) mod Λ is independent of t(w). The receiver decodes the
list of messages

LwS−D(Y) := {w| t(w) ∈ SVs,Λc(Y′) mod Λ}, (2)

where

SVs,Λc(Y
′) :=

⋃

λc∈Λc

{λc|λc ∈ (Y′ + Vs)},

is the set of lattice points λc ∈ Λc inside Vs centered at the
point Y′ as shown in Figure 2.

Remark 2: The notation used for the list of messages, i.e.
LwS−D(Y) should be understood as follows: the S − D



6

subscript is meant to denote the transmitter S and the receiver
D, the dependence on Y (rather than Y′) is included, though
in all cases we will make the analogous transformation from
Y to Y′ as in (1) (but for brevity do not include this in
future schemes), and the superscript w is used to recall what
messages are in the list, useful in multi-source and Block
Markov schemes.

Probability of error for list decoding: Pick δ > 0. In de-
coding a list, we require that the correct, transmitted codeword
t(w) lies in the list with high probability as n→∞, i.e. the
probability of error is (for n the blocklength or dimension
of the lattices) Pn,e := Pr{w /∈ LwS−D(Y)|w sent}, which
should be made less than δ as n → ∞. This is easy to do
with large list sizes; we bound the list size next. The following
Lemma allows us to more easily bound the probability of list
decoding error.

Lemma 4: Equivalent decoding list. For the nested lattices
Λs ⊆ Λc and given Y′ ∈ Rn, define

QVs,Λc(Y
′) :=

⋃

λc∈Λc

{λc|Y′ ∈ (λc + Vs)}. (3)

and
SVs,Λc(Y

′) :=
⋃

λc∈Λc

{λc|λc ∈ (Y′ + Vs)},

Then the sets SVs,Λc(Y
′) mod Λ and QVs,Λc(Y

′) mod Λ
are equal.

Proof: QVs,Λc(Y
′) is the set of λc ∈ Λc points satisfying

Y′ ∈ (λc+Vs). Also note that the fundamental Voronoi region
V of any lattice Λ is centro-symmetric (∀x ∈ V , we have that
−x ∈ V) by definition of a lattice and fundamental Voronoi
region (alternatively, see [47]). Hence, for any two points x
and x′, and a centro-symmetric region V , x′ ∈ x+ V ⇔ x ∈
x′ + V . Applying this to SVs,Λc(Y

′) and QVs,Λc(Y
′) yields

the lemma.
We continue with the proof of Theorem 3. We first use

Lemma 4 to see that the lists SVs,Λc(Y
′) mod Λ and

QVs,Λc(Y
′) mod Λ are equal. Next notice that the probability

of error may be bounded as follows:

Pn,e = Pr{w /∈ LwS−D(Y)| w sent}
= Pr{t(w) 6∈ SVs,Λc(Y′) mod Λ| w sent}
= Pr{t(w) 6∈ QVs,Λc(Y′) mod Λ| w sent}
= Pr{Y′ 6∈ (t(w) + Vs) mod Λ| w sent}
= Pr{(t(w) + Z′) mod Λ 6∈

(t(w) + Vs) mod Λ| w sent}
= Pr{Z′ 6∈ Vs| w sent}
≤ Pr{Z′′ 6∈ Vs| w sent}

where Z′ = (−(1 − α)X + αZ) mod Λ and Z′′ = −(1 −
α)X + αZ. We now use Lemma 5 to show that the pdf of
Z′′ can be upper bounded by the pdf of a Gaussian random
vector of not much larger variance, which in turn is used to
bound the above probability of error.

Lemma 5: Let ZG ∼ N (0, σ2
GI), X be uniform over the

fundamental Voronoi region of the Rogers good Λ, of effective
and covering radii reff and rcov and second moment P , and

Zi be uniform over the fundamental Voronoi region of the
Rogers good Λi of effective and covering radii reff,i and rcov,i
and second moments Pi, i = 1, · · · ,M . Let Z′′ := −(1 −
α)X+αZG+α

∑M
i=1 Zi. Then there exists an i.i.d. Gaussian

vector

Z? = −(1− α)Z?X + αZG + α

M∑

i=1

Z?i

with variance σ2 satisfying

σ2 ≤ (1− α)2

(
rcov
reff

)2

P + α2σ2
G + α2

M∑

i=1

(
rcov,i
reff,i

)2

Pi

such that the density of Z′′ is upper bounded as:

fZ′′(z) ≤ e(c(n)+
∑M
i=1 ci(n))nfZ?(z) (4)

where c(n) = ln
(
rcov
reff

)
+ 1

2 ln 2πeG
(n)
B + 1

n and ci(n) =

ln
(
rcov,i
reff,i

)
+ 1

2 ln 2πeG
(n)
B + 1

n , and G
(n)
B is the normalized

second moment of an n-dimensional ball.
Proof: The proof follows [3, Appendix A] and [23,

Lemma 6 and 11] almost exactly, where the central difference
with [3, Appendix A] is that we need to bound the pdf of a
sum of random variables uniformly distributed over different
Rogers good lattices rather than identical ones. This leads to
the summation in the exponent of (4) but note that we will
still have c(n), ci(n)→ 0 as n→∞.

Continuing the proof of Theorem 3, according to Lemma 5,

Pn,e ≤ Pr{Z′′ 6∈ Vs} ≤ e(c(n)+
∑M
i=1 ci(n))n Pr{Z? 6∈ Vs}.

(5)

To bound Pr{Z? 6∈ Vs}, we first need to show that the VNR
of Λs relative to Z?, µ, is greater than one:

µ =
(V (Λs))

2/n

2πeσ2
+ on(1) (6)

≥ (V (Λ))2/n/22R1

2πe PN
P+N

+ on(1) (7)

=
1

22R1

1

2πeG(Λ)

P
PN
P+N

+ on(1) (8)

=
1

22R1

(
1 +

P

N

)
(1 + on(1)) + on(1) (9)

= 22(C(P/N)−R1) + on(1) (10)

where (7) follows from Lemma 5, the fact that Λ and Λi
(1 ≤ i ≤ M ) are all Rogers good, and recalling that α =
P

P+N , where N = σ2
G +

∑M
i=1 Pi. Then (8) follows from

the definition of G(Λ) and (9) follows as Λ is Rogers good.
Combining (5), (10), and the fact that Λs is Poltyrev good, by
definition

Pn,e ≤ e(c(n)+
∑M
i=1 ci(n))n Pr{Z? 6∈ Vs} (11)

≤ e(c(n)+
∑M
i=1 ci(n))ne−n(Ep(µ)−on(1)) (12)

≤ e−n(Ep(22(C(P/N)−R1))−on(1)) (13)

where (13) follows as Λ,Λ1, · · ·ΛL are Rogers good and hence
c(n), ci(n) all tend to 0 as n→∞.
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=

SVs,Λc
(Y�) :=

�

λc∈Λc

{λc|λc ∈ (Y� + Vs)} QVs,Λc
(Y�) :=

�

λc∈Λc

{λc|Y� ∈ (λc + Vs)}

Fig. 2. The two equivalent lists, in this example consisting of the four points encircled in red.

To ensure Pn,e < δ as n→∞ we need C(P/N)−R1 > 0,
where R1 = 1

n log( VVs ) = 1
2 log( PPs )+on(1), and n sufficiently

large. By choosing an appropriate Ps according to Theorem
2, we may set R1 = 1

n log( VVs ) = C(P/N)− ε for any ε > 0.
Combining these, we obtain

Vs =

(
N

P +N

)n/2
2nεV. (14)

The cardinality of the decoded list LwS−D(Y), in which the
true codeword lies with high probability as n→∞, is thus

|LwS−D(Y)| = Vs
Vc

=

Nn/2V
(P+N)n/2

2nε

V
2nR

= 2n(R−C(P/N)+ε),

since R = 1
n log( VVc ). As ε may be set to be arbitrarily small,

the list size |LwS−D(Y)| = 2n(R−C(P/N)+ε) may be made
arbitrarily close to 2n(R−C(P/N)).

Remark 3: Note that in our Theorem statement we have
assumed R > C(P/N); when R < C(P/N), the decoder can
decode an unique codeword with high probability, as stated in
Lemma 6 next.

Lemma 6: Lattice unique decoding in mixed noise. Consider
the channel Y = X + Z, subject to input power constraint
1
nE[XTX] ≤ P , where Z = ZG+

∑M
i=1 Zi is noise which is a

mixture of Gaussian noise ZG ∼ N (0, σ2
GI) and independent

noises Zi which are uniformly distributed over fundamental
Voronoi regions of Rogers-good lattices with second moments
Pi. Thus, Z is of equivalent variance N = 1

nE(ZTZ) = σ2
G+∑L

i=1 Pi. For any δ > 0, R < C(P/N), and n large enough,
there exist lattice codebooks such that the decoder can decode
an unique codeword with probability of error smaller than δ.

Proof: This lemma can be derived as a special case of
Compute-and-Forward [3, Theorem 1]; in particular this is
found in [3, Example 2], where the decoder is interested in
one of the messages and treats all other messages as noise. We
may view Zi in this lemma as the signals from other (lattice-
codeword based) transmitters in [3, Example 2].

III. SINGLE SOURCE DECODE AND FORWARD

We first show that nested lattice codes may be used to achieve
the Decode-and-Forward (DF) rate of [10, Theorem 5] for the
Gaussian relay channel using nested lattice codes at the source
and relay, and a lattice list decoder at the destination. We
then extend this result to show that the generalized DF rate
for a Gaussian relay network with a single source, a single
destination and multiple DF relays may also be achieved using
an extension of the single relay lattice-based achievability
scheme.

A. DF for the AWGN single relay channel

Consider a relay channel in which the source node S, with
channel input XS transmits a message w ∈ {1, 2, · · · , 2nR}
to destination node D which has access to the channel output
YD and is aided by a relay node R with channel input and
output XR and YR. Input and output random variables lie in
R. At each channel use, the channel inputs and outputs are
related as YD = XS + XR + ZD, YR = XS + ZR, where
ZR, ZD are independent Gaussian random variables of zero
mean and variance NR and ND respectively. Let XS denote
a sequence of n channel inputs (a row vector), and similarly,
let XR,YR,YD all denote the length n sequences of channel
inputs and outputs. Then the channel may be described by

YD = XS + XR + ZD, YR = XS + ZR, (15)

where ZD ∼ N (0, NDI) and ZR ∼ N (0, NRI), and inputs
are subject to the power constraints 1

nE[XS
TXS] ≤ P and

1
nE[XR

TXR] ≤ PR.
An (2nR, n) code for the relay channel consists of the set of

messages w uniformly distributed over M := {1, 2, · · · 2nR},
an encoding function Xn

S : M → Rn satisfying the power
constraint, a set of relay functions {fi}ni=1 such that the relay
channel input at time i is a function of the previously received
relay channel outputs from channel uses 1 to i − 1, XR,i =
fi(YR,1, · · ·YR,i−1), and finally a decoding function g : YnD →
M which yields the message estimate ŵ := g(Y nD). We define



8

the average probability of error of the code to be Pn,e :=
1

2nR

∑
w∈M Pr{ŵ 6= w|w sent}. The rate R is then said to

be achievable by a relay channel if, for any ε > 0 and for
sufficiently large n, there exists an (2nR, n) code such that
Pn,e < ε. The capacity C of the relay channel is the supremum
of the set of achievable rates.

We are first interested in showing that the DF rate achieved
by Gaussian random codebooks of [10, Theorem 5] may be
achieved using lattice codes. As outlined in [12], this DF rate
may be achieved using irregular encoding / successive decod-
ing as in [10], regular encoding / sliding-window decoding as
first shown in [48], and using regular encoding / backwards de-
coding as in [49]. We will mimic the regular encoding/sliding-
window decoding scheme of [14], which includes: (1) random
coding, (2) list decoding, (3) two joint typicality decoding
steps, (4) coding for the cooperative multiple access channel,
(5) superposition coding and (6) block Markov encoding. We
re-derive the DF rate, following the achievability scheme of
[14], but with lattice codes replacing the random Gaussian
coding techniques. Of particular importance is the usage of two
lattice list decoders to replace two joint typicality decoding
steps in the random coding achievability scheme.

Theorem 7: Lattices achieve the DF rate achieved by ran-
dom Gaussian codebooks for the relay channel. The following
Decode-and-Forward rates can be achieved using nested lattice
codes for the Gaussian relay channel described by (15):

R < max
α∈[0,1]

min

{
1

2
log

(
1 +

αP

NR

)
,

1

2
log

(
1 +

P + PR + 2
√
ᾱPPR

ND

)}
, ᾱ = 1− α.

(16)

Proof:
Codebook construction: We consider two nested lattice
chains of length three Λ1 ⊆ Λs1 ⊆ Λc1, and Λ2 ⊆
Λs2 ⊆ Λc2 whose existence is guaranteed by Theorem 2, and
whose parameters Pi, γ we still need to specify. The nested
lattice pairs (Λ1,Λc1) and (Λ2,Λc2) are used to construct
lattice codebooks of coding rate R with σ2(Λ1) = αP and
σ2(Λ2) = ᾱP for given α ∈ [0, 1]. Since Λ1 and Λ2 will
not be the finest lattice in the chain, they will be Rogers
good, and hence σ2(Λ1) = αP will define the volume of
Λ1, V1, and σ2(Λ2) = ᾱP will define the volume of Λ2, V2.
Since (Λ1,Λc1) and (Λ2,Λc2) are used to construct lattice
codebooks of coding rate

R =
1

n
log

(
V1

Vc1

)
=

1

n
log

(
V2

Vc2

)
,

this will in turn define Vc1 in terms of V1 and rate R; similarly
for Vc2 in terms of V2 and rate R. Since Λc1 and Λc2 are
only Poltyrev good, we may obtain the needed Vc1, Vc2 by
appropriate selection of γ in Theorem 2. Finally, the lattices
Λs1 and Λs2 (whose second moments we may still specify
arbitrarily, and which will be used for lattice list decoding
at the destination node) will also be Rogers good and their
volumes, or equivalently, second moments, will be selected in
the course of the proof.

Randomly map the messages w ∈ {1, 2, . . . , 2nR} to code-
words t1(w) ∈ C1 = {Λc1 ∩ V1} and t2(w) ∈ C2 =
{Λc2∩V2}. Let these two mappings be independent and known
to all nodes.

We use block Markov coding and define wb as the new
message index to be sent in block b (b = 1, 2, · · · , B);
define w0 = 1. At the end of block b − 1, the receiver
knows (w1, . . . , wb−2) and the relay knows (w1, . . . , wb−1).
We let YR(b),YD(b) denote the vectors of length n of
received signals at the relay and the destination, respectively,
during the b-th block, and U1(b),U2(b) denote dithers during
block b known to all nodes which are i.i.d., change from
block to block, and are uniformly distributed over V1 and V2

respectively. The encoding and decoding steps are outlined in
Figure 4.

Encoding: During the b-th block, the transmitter sends the
superposition (sum) XS(wb, wb−1) = X′1(wb) + X′2(wb−1),
and the relay sends XR(wb−1), where

X′1(wb) = (t1(wb)−U1(b)) mod Λ1,

X′2(wb−1) = (t2(wb−1)−U2(b− 1)) mod Λ2,

XR(wb−1) =

√
PR
ᾱP

X′2(wb−1)

=

(√
PR
ᾱP

t2(wb−1)−
√
PR
ᾱP

U2(b− 1)

)
mod

√
PR
ᾱP

Λ2.

By the Crypto lemma X′1(wb) and X′2(wb−1) are uniformly
distributed over V1 and V2 and independent of all else.

Decoding:
1. At the b-th block, the relay knows wb−1 and consequently

X′2(wb−1), and so may decode the message wb from the
received signal YR(b) − X′2(wb−1) = X′1(wb) + ZR(b) as
long as R < C(αP/NR), since (Λ1,Λc1) may achieve the
capacity of the point-to-point channel [23] or Lemma 6.

2. The receiver first decodes a list of messages wb−1,
L
wb−1

R−D(YD(b)), defined according to (2) as

L
wb−1

R−D(YD(b)) = {wb−1| t2(wb−1) ∈
SκVs2,κΛc2(Y′D(b)) mod κΛ2},

(17)

of asymptotic size 2n(R−RR) from the signal

YD(b) = XS(wb, wb−1) + XR(wb−1) + ZD(b) (18)
= X′1(wb) + κX′2(wb−1) + ZD(b) (19)

for κ =

(
1 +

√
PR
ᾱP

)
using the lattice list decoding scheme

of Theorem 3. Notice that Theorem 3 is applicable as the
“noise” in decoding a list of wb−1 from YD(b) is composed
of the sum of a Gaussian signal ZD(b) and X′1(wb) which is
uniformly distributed over the fundamental Voronoi region of
the Rogers good lattice of second moment αP . The equivalent
noise variance in Theorem 3 is thus αP + ND, and the
capacity of the channel is [23] C(κ2ᾱP/(αP + ND)) =
C((
√
ᾱP +

√
PR)2/(αP + ND)). We may thus obtain a list
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Y3 = X1 + X2 + Z3, Z3 ∼ N (0, N3)

YD =XS + XR + ZD,

ZD ∼ N (0, ND)

YR = XS + ZR, ZR ∼ N (0, NR)

AWGN relay channel AWGN multiple relay channel

S
1

D

2
R

4

3

Y2 = X1 + Z2, Z2 ∼ N (0, N2)

Y4 = X1 + X2 + X3 + Z4, Z4 ∼ N (0, N4)

L1−3

L2−3

L1−4

L3−4L2−4

LS−D

LR−D

Fig. 3. The two Gaussian relay channels under consideration in Section III-A and Section IV-A. For the AWGN relay channel we have assumed a particular
relay order (2,3) for our achievability scheme and shown the equivalent channel model used in deriving the achievable rate rather than the general channel
model.

X �
1(w1) + X �

2(1)

X �
2(1)

X �
1(w2) + X �

2(w1) X �
1(w3) + X �

2(w2) X �
1(1) + X �

2(w3)

X �
2(w1) X �

2(w2)

Block 3Block 1 Block 4
Encoding:

Decoding:

Block 2

X �
2(w3)

w1 w2 w3 w4

Lw1

S−D
Lw1

R−D

Lw2

S−D
Lw3

S−D

Lw2

R−D Lw3

R−D

R

R

S

D

Fig. 4. Lattice Decode-and-Forward scheme for the AWGN relay channel.

of size 2n(R−RR) as long as

RR <
1

2
log

(
κ2ᾱP

κ2ᾱP (αP+ND)
κ2ᾱP+αP+ND

)

=
1

2
log

(
1 +

(
√
ᾱP +

√
PR)2

αP +ND

)
.

(20)

One may directly apply Theorem 3; for additional details on
this step, please see Appendix A.

3. A second list of messages wb−1 was obtained at the end
of block b − 1 from the direct link between the transmitter
node S and the destination node D, denoted as Lwb−1

S−D(YD(b−
1) − κX′2(wb−2)) defined according to (2) and analogous
to (17) using a lattice list decoder. We now describe the
formation of the list LwbS−D(YD(b)− κX′2(wb−1)) in block b
which will be used in block b+ 1. Assuming that the receiver
has decoded wb−1 successfully, it subtracts κX′2(wb−1) from
YD(b): YD(b) − κX′2(wb−1) = X′1(wb) + ZD(b), and then
decodes another list of possible messages wb of asymptotic
size 2n(R−C(αP/(ND))) using Theorem 3. This is done using
the nested lattice chain Λ1 ⊆ Λs1 ⊆ Λc1. Again, Theorem

3 is applicable as we have a channel X′1(wb) + ZD(b) of
capacity C(P/ND) where the noise is purely Gaussian of
second moment ND. Here, choose the list decoding lattice Λs1
to have a fundamental Voronoi region of volume approaching

Vs1 =
(

ND
αP+ND

)n/2
V1 asymptotically (analogous to (14)) so

that the size of the decoded list approaches 2n(R−C(αP/(ND))).
Notice that this choice of Vs1 < V1 and hence is permissible by
Theorem 2 (as P1 > Ps1). For the interesting case when R ap-
proaches 1

2 log
(

1 + P+PR+2
√
ᾱPPR

ND

)
(and hence list decod-

ing is needed / relevant), Vc1 =
(

ND
P+PR+2

√
ᾱPPR+ND

)n/2
V1

asymptotically in the sense of (14). Thus Vc1 < Vs1 < V1 as
needed.

4. The receiver now decodes wb−1 by intersecting two
independent lists L

wb−1

R−D(YD(b)) and L
wb−1

S−D(YD(b − 1) −
κX′2(wb−2)) and declares a success if there is a unique wb−1

in this intersection. An error is declared if there is no message
in this intersection, or multiple messages in this intersection.
We are guaranteed by Theorem 3 that the correct message
will lie in each list, and hence also in their intersection, with
high probability by appropriate choice Vs1 and Vs2. To see
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that no more than one message will lie in the list, notice
that the two lists are independent due to the random and
independent mappings between the message and two codeword
sets. Thus, following the arguments surrounding [10, Eq. (27)
and Lemma 3], or alternatively by independence of the lists
and applying [50, Packing Lemma], with high probability,
there is no more than one correct message in this intersection
if R− C(αP/(N2))−RR < 0, or

R <
1

2
log

(
1 +

αP

ND

)
+RR

<
1

2
log

(
1 +

P + PR + 2
√
ᾱPPR

ND

)
.

Remark 4: While we have mimicked the regular encoding
/ sliding window decoding method to achieve the DF rate,
lattice list decoding may equally be used in the irregular
encoding and backwards decoding schemes. The intuition
we want to reinforce is that one may obtain similar results
to random-coding based DF schemes using lattice codes by
intersecting multiple independent lists to decode a unique
message. Furthermore, as the lattice list decoder is a Euclidean
lattice decoder, it does not increase the complexity at the
decoder. We note that using lists is not necessary – other
novel lattice-based schemes can be used instead of lattice list
decoding such as [8] to achieve the same DF rate region.

B. DF for the multi-relay Gaussian relay channel

We now show that nested lattice codes may also be used to
achieve the DF rates of the single source, single destination
multi-level relay channel [11], [12], [14]. Here, all definitions
remain the same as in Section III-A; changing the channel
model to account for an arbitrary number of full-duplex relays.
For the 2 relay scenario we show the input/output relations
used in deriving achievable rates in Figure 3. In general we
would for example have Y2 = X1+X2+X3+Z2, but that, for
our achievability scheme we assume a relay order (e.g. 2 then
3) which results in the equivalent input/output equation Y2 =
X1 +Z2 at node 2. This is equivalent due to the achievability
scheme we will propose combined with the assumed relaying
order, in which node 2 will be able to cancel out all signals
transmitted by itself as well as node 3 (more generally, node
i may cancel out all relay transmissions “further” in the relay
order than itself).

The central idea remains the same – we cooperate via a series
of lattice list decoders and replace multiple joint typicality
checks with the intersection of multiple independent lists
obtained via the lattice list decoder. For clarity, we focus on the
two-relay case as in Figure 3, but the results may be extended
to the N -relay case in a straightforward manner. Let π(·)
denote a permutation (or ordering) of the relays. In the N = 2
case as shown in Figure 3 we have two possible permutations:
the first the identity permutation π(2) = 2, π(3) = 3 and the
second π(2) = 3, π(3) = 2.

The channel model is expressed as (a node’s own signal is

omitted as it may subtract it off)

Y2 = X1 + X3 + Z2

Y3 = X1 + X2 + Z3

Y4 = X1 + X2 + X3 + Z4,

where Z2 ∼ N (0, N2I), Z3 ∼ N (0, N3I) and Z4 ∼
N (0, N4I), under input power constraints 1

nE[X1
TX1] ≤ P1,

1
nE[X2

TX2] ≤ P2, and 1
nE[X3

TX3] ≤ P3.
Theorem 8: Lattices achieve the DF rate achieved by Gaus-

sian random codebooks for the multi-relay channel. The rate R
in (21) is achievable using nested lattice codes for the Gaussian
two relay channel described by [11].

The proof of Theorem 8 may be found in Appendix B, and
follows along the same lines as Theorem 7.

IV. MULTI-SOURCE DECODE AND FORWARD –
COMBINING COMPUTE-AND-FORWARD AND DF

We now illustrate how list decoding may be combined with
the linearity of lattice codes in more general networks by
considering two examples. In particular, we consider relay
networks in which two messages are communicated, along
relayed and direct links, as opposed to the single message
case previously considered. The relay channel may be viewed
as strictly cooperative in the sense that all nodes aid in the
transmission of the same message and the only impairment is
noise; the presence of multiple messages leads to the notion
of interference and the possibility of decoding combinations
of messages.

We again focus on demonstrating the utility of lattices in
DF-based achievability schemes. In the previous section it
was demonstrated that lattices may achieve the same rates
as Gaussian random coding based schemes. Here, the pres-
ence of multiple messages/sources gives lattices a potential
rate benefit over random coding-based schemes, as encoders
and decoders may exploit the linearity of the lattice codes
to better decode a linear combination of messages. Often,
such a linear combination is sufficient to extract the desired
messages if combined with the appropriate side-information,
and may enlarge the achievable rate region for certain channel
conditions. In this section, we demonstrate two examples of
combining Compute-and-Forward based decoding of the sum
of signals at relays with direct link side-information in: 1) the
two-way relay channel with direct links and 2) the multiple
access relay channel. To the best of our knowledge, these are
the first lattice-coding based achievable rate regions for these
channels.

A. The two-way Gaussian relay channel with direct links

The two-way relay channel is the logical extension of the
classical relay channel for one-way point-to-point communi-
cation aided by a relay to allow for two-way communication.

While the capacity region is in general unknown, it is known
for half-duplex channel models under the 2-phase Multiple
access Channel and Broadcast Channel (MABC) protocol [51],
to within 1/2 bit for the full-duplex Gaussian channel model
with no direct links [4], [5], and to within 2 bits for the same
model with direct links in certain cases [52].
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R <max
π(·)

max
0≤α1,β1,α2≤1

min

{
C

(
α1P1

Nπ(2)

)
, C

(
α1P1 + (

√
β1P1 +

√
α2Pπ(2))

2

Nπ(3)

)
,

C



α1P1 +

(√
β1P1 +

√
α2Pπ(2)

)2
+
(√

(1− α1 − β1P1) +
√

(1− α2)Pπ(2) +
√
Pπ(3)

)2

N4








(21)

AWGN two-way relay channel

1 2

R

1

2

R D

YD = X1 + X2 + XR + ZD, ZD ∼ N (0, ND)

Lw1

1−D

Lw2

2−D

Lw1

R−D

Lw2

R−D

Lw1
1−2

Lw2
2−1

Lw2

R−1 Lw1

R−2

AWGN multiple-access relay channel

w1 w2

w1

w2

Fig. 5. The AWGN two-way relay channel with direct links and the AWGN multiple access relay channel. We illustrate the lists Lw
i−j of messages w

carried by the codewords at node i and list decoded according to Theorem 3 at node j.

Random coding techniques employing DF, CF, and AF relays
have been the most common in deriving achievable rate
regions for the two-way relay channel, but a handful of work
[4], [5], [53], [54] has considered lattice-based schemes which,
in a DF-like setting, effectively exploit the additive nature
of the Gaussian noise channel in allowing the sum of the
two transmitted lattice points to be decoded at the relay. The
intuitive gains of decoding the sum of the messages rather
than the individual messages stem from the absence of the
classical multiple access sum constraints. This sum-rate point
is forwarded to the terminal which utilizes its own-message
side-information to subtract off its own message from the
decoded sum. While random coding schemes have been used
in deriving achievable rate regions in the presence of direct
links, lattice codes – of interest in order to exploit the ability
to decode the sum of messages at the relay – have so far not
been used. We present such a lattice-based scheme next.

The two-way Gaussian relay channel with direct links con-
sists of two terminal nodes with inputs X1, X2 with power
constraints P1, P2 (without loss of generality, it is assumed
P1 ≥ P2) and outputs Y1, Y2 which wish to exchange
messages w1 ∈ {1, 2, · · · , 2nR1} and w2 ∈ {1, 2, · · · , 2nR2}
with the help of the relay with input XR of power PR and
output YR. We assume, without loss of generality (WLOG),
the channel:

Y1 = XR + h21X2 + Z1, Z1 ∼ N (0, N1I)

Y2 = XR + h12X1 + Z2, Z2 ∼ N (0, N2I)

YR = X1 + X2 + ZR, ZR ∼ N (0, NRI),

subject to input power constraints 1
nE[X1

TX1] ≤
P1,

1
nE[X2

TX2] ≤ P2,
1
nE[XR

TXR] ≤ PR and real con-
stants h12, h21. The channel model is shown in Figure 5, and

all input and output alphabets are R.
An (2nR1 , 2nR2 , n) code for the two-relay channel consists

of the two sets of messages wi, i = 1, 2 uniformly dis-
tributed over Mi := {1, 2, · · · , 2nRi}, and two encoding
functions Xn

i : Mi → Rn (shortened to Xi) satisfying the
power constraints Pi, a set of relay functions {fj}nj=1 such
that the relay channel input at time j is a function of the
previously received relay channel outputs from channel uses
1 to j − 1, XR,j = fj(YR,1, · · · , YR,j−1), and finally two
decoding functions gi : Yni ×Mi → Mī which yields the
message estimates ŵī := gi(Y

n
i , wi) for ī = {1, 2} \ i.

We define the average probability of error of the code
to be Pn,e := 1

2n(R1+R2)

∑
w1∈M1,w2∈M2

Pr{(ŵ1, ŵ2) 6=
(w1, w2)|(w1, w2) sent}. The rate pair (R1, R2) is then said
to be achievable by the two-relay channel if, for any ε > 0 and
for sufficiently large n, there exists an (2nR1 , 2nR2 , n) code
such that Pn,e < ε. The capacity region C of the two-way
relay channel is the supremum of the set of achievable rate
pairs.

Theorem 9: Lattices in two-way relay channels with direct
links. The following rates are achievable for the two-way
AWGN relay channel with direct links

R1 ≤ min

([
1

2
log

(
P1

P1 + P2
+

P1

NR

)]+

, C

(
h2

12P1 + PR
N2

))

R2 ≤ min

([
1

2
log

(
P2

P1 + P2
+

P2

NR

)]+

, C

(
h2

21P2 + PR
N1

))
.

Proof: The achievability proof combines a lattice version
of regular encoding/sliding window decoding scheme (to take
advantage of the direct link), decoding of the sum of transmit-
ted signals at the relay using nested coarse lattices to take care
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of the asymmetric powers, as in [5], a lattice binning technique
equivalent to the random binning technique developed by [55],
and lattice list decoding at the terminal nodes to combine direct
and relayed information.

Codebook construction: We construct two nested lattice
chains according to Theorem 2. The first consists of the lattices
Λ1,Λ2,Λs1,Λs2,Λc1,Λc2 all nested in an order such that:

• Λ1 ⊆ Λs1 ⊆ Λc1 and Λ2 ⊆ Λs2 ⊆ Λc2.; the coarsest
lattice is Λ1 (since P1 > P2 WLOG) and the finest is
Λc1 or Λc2.

• σ2(Λ1) = P1, σ
2(Λ2) = P2; since P1 > P2 WLOG we

also have Λ1 ⊆ Λ2.
• the coding rate of (Λ1,Λc1) is R1 = 1

n log
(
V1

Vc1

)
=

1
2 log

(
P1

Pc1

)
+ on(1), and that of (Λ2,Λc2) is R2 =

1
n log

(
V2

Vc2

)
= 1

2 log
(
P2

Pc2

)
+ on(1). Associate each

message w1 ∈ {1, . . . , 2nR1} with t1(w1) ∈ C1 =
{Λc1 ∩ V1} and each message w2 ∈ {1, . . . , 2nR2} with
t2(w2) ∈ C2 = {Λc2 ∩ V2}.

• if Vc1 > Vc2 (determined by relative values of R1, P1

and R2, P2 in the above), then Λc1 ⊆ Λc2, implying
Λc1 may be Rogers good and hence we may guarantee
the desired Vc1 by proper selection of Pc1 in Theo-
rem 2

(
as R1 = 1

2 log
(
P1

Pc1

)
+ on(1) = 1

n log
(
V1

Vc1

))
;

otherwise by proper selection of γ in Theorem 2 (and
likewise for Λc2).

• the lattices Λs1 and Λs2 which will be used for lattice list
decoding at node 2 and 1 respectively are both Rogers
good and hence may be specified by the volumes of
their fundamental Voronoi regions Vs1 and Vs2 (under
the constraints V1 ≥ Vs1 ≥ Vc1 and V2 ≥ Vs2 ≥ Vc2), or
the corresponding Pc1, Pc2. These will be chosen in the
course of the proof.

• Then final relative ordering of the six lattices will then
depend on the relative sizes of their fundamental region
volumes.

We also construct a nested lattice chain of
ΛR,ΛsR1,ΛsR2,ΛcR according to Theorem 2 such that:

• ΛR ⊆ ΛsR1 ⊆ ΛsR2 ⊆ ΛcR or ΛR ⊆ ΛsR2 ⊆ ΛsR1 ⊆
ΛcR

• σ2(ΛR) = PR
• the relay uses the codebook CR = {ΛcR∩VR} consisting

of codewords tR. This codebook is of rate RR =
1
n log

(
VR
VcR

)
= 1

n log
(
V1

Vc1

)
if Λc2 ⊆ Λc1 and of rate

RR = 1
n log

(
VR
VcR

)
= 1

n log
(
V1

Vc2

)
if Λc1 ⊆ Λc2. This

rate RR in turn fixes the choice of γ in Theorem 2.
• ΛsR1 and ΛsR2 are used to decode lists at the two destina-

tions, and their relative nesting depends on VsR1 and VsR2

(or equivalently PsR1 and PsR2 as both are Rogers good)
subject to VR ≥ VsR1 ≥ VcR and VcR ≥ VsR2 ≥ VR
which will be specified in the course of the proof.

Encoding: We use Block Markov encoding. Messages w1b ∈
{1, 2 · · · 2nR1} and w2b ∈ {1, 2, · · · 2nR2} are the messages
the two terminals wish to send in block b. Nodes 1 and 2

send X1(w1b) and X2(w2b):

X1(w1b) = (t1(w1b)−U1(b)) mod Λ1

X2(w2b) = (t2(w2b)−U2(b)) mod Λ2,

for dithers U1(b),U2(b) known to all nodes which are i.i.d.
uniformly distributed over V1 and V2 and vary from block to
block. At the relay, we assume that it has obtained

T(b− 1) =(t1(w1(b−1)) + t2(w2(b−1))

−Q2(t2(w2(b−1)) + U2(b− 1))) mod Λ1

(22)
in block b − 1. Note that T(b − 1) lies in {Λc2 ∩ V1} if
Λc1 ⊆ Λc2 and in {Λc1∩V1} if Λc2 ⊆ Λc1, and is furthermore
uniformly distributed over this set consisting of 2nRR points.
We may thus associate each T(b − 1) with an index say
i(T(b − 1)), which the relay then uses as index for the
codeword tR(i(T(b−1))) in CR (also of rate RR). With some
abuse of notation we write tR(T(b−1)) instead of the indexed
version tR(i(T(b− 1))). The relay then sends

XR(T(b− 1)) = (tR(T(b− 1)) + UR(b− 1)) mod ΛR,
(23)

for UR(b−1) a dither known to all nodes which is uniformly
distributed over VR.

Decoding: During block b, the following messages / signals
are known / decoded at each node:
• Node 1: knows w11, · · · , w1b, w21, w22, · · · , w2(b−2), de-

codes w2(b−1)

• Node 2: knows w21, · · · , w2b, w11, w12, · · · , w1(b−2), de-
codes w1(b−1)

• Node R: knows T(1),T(2), · · · ,T(b−1), decodes T(b)

Relay decoding: The relay terminal receives YR(b) =
X1(w1b)+X2(w2b)+ZR(b), and, following the arguments of
[3]–[5] can decode T(b) = (t1(w1b)+t2(w2b)−Q2(t2(w2b)+
U2(b))) mod Λ1 if

R1 ≤
[

1

2
log

(
P1

P1 + P2
+

P1

NR

)]+

,

R2 ≤
[

1

2
log

(
P2

P1 + P2
+

P2

NR

)]+

.

Terminal 2 decoding: Terminal 2 decodes w1(b−1) after block
b from the received signals

Y2(b− 1) = XR(T(b− 2)) + h12X1(w1(b−1)) + Z2(b− 1)

Y2(b) = XR(T(b− 1)) + h12X1(w1b) + Z2(b).

This will generally follow the lattice version of regu-
lar encoding/sliding-window decoding scheme as described
in Section III-A. That is, after block b − 1, terminal 2
first forms Y∗2(b − 1) = Y2(b − 1) − XR(T(b − 2))
since it has decoded w1(b−2) and knows its own w2(b−2)

and hence may form XR(T(b − 2)). Then it uses the
list decoder of Theorem 3 to produce a list of mes-
sages w1(b−1), denoted by L

w1(b−1)

1−2 (Y∗2(b − 1)), of size
2n(R1−C(h2

12P1/N2)) using the lattice Λs1, whose fundamental
Voronoi region volume is selected to asymptotically approach

Vs1 =
(

N2

h2
12P1+N2

)n/2
V1 (in the sense of (14)). For R
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Block 3Block 1 Block 4Block 2

X1(w11)

X2(w21)

XR(T (1))

X1(w12) X1(w13) X1(1)

X2(w21) X2(w23) X2(1)

XR(1) XR(T (2)) XR(T (3))

Lw21
2−1

T (1) T (2) T (3)

Lw21

R−1

Lw22
2−1

Lw22

R−1

Lw23
2−1

Lw23

R−1

Lw11
1−2

Lw11

R−2

Lw12
1−2

Lw12

R−2

Lw13
1−2

Lw13

R−2

Encoding:

Decoding:

R

1

2

R

2

1

Fig. 6. Lattice Decode-and-Forward scheme for the AWGN two-way relay channel with direct links.

approaching 1
2 log

(
1 +

h2
12P1+PR
N2

)
, where list decoding is

relevant, Vc1 =
(

N2

h2
12P1+PR+N2

)n/2
V1 asymptotically, and

thus Vc1 < Vs1 < V1 as needed. To resolve which code-
word was actually sent, it intersects this list with another
list L

w1(b−1)

R−2 (Y2(b)) of w1(b−1) obtained in this block b.
This list L

w1(b−1)

R−2 (Y2(b)) of messages w1(b−1) is obtained
from Y2(b) using lattice list decoding with the lattice ΛsR2

whose fundamental Voronoi region volume is taken to asymp-

totically approach VsR2 =
(

h2
12P1+N2

PR+h2
12P1+N2

)n/2
VR. For R

approaching 1
2 log

(
1 +

h2
12P1+PR
N2

)
, where list decoding is

relevant, VcR =
(

N2

h2
12P1+PR+N2

)n/2
VR asymptotically, and

thus VcR < VsR2 < VR as needed. One may verify that
by construction of the nested lattice chains, all conditions
of Theorem 3 are met. This list of messages w1(b−1) is
actually obtained from decoding a list of tR(T(b − 1)), and
using knowledge of its own t2(w2(b−1)) to obtain a list of
t1(w1(b−1)) (and hence w1(b−1) by one-to-one mapping) of

size approximately 2
n(R1−C(

PR
h212P1+N2

))
. To see this, notice

that each tR is associated with a single T = (t1 + t2 −
Q2(t2 + U2)) mod Λ1. Then, given T and t2, one may
obtain a single t1 as follows:

(T− t2 +Q2(t2 + U2)) mod Λ1

= ((t1 + t2 −Q2(t2 + U2))− t2 +Q2(t2 + U2)) mod Λ1

= t1 mod Λ1 = t1. (24)

Similarly, given a T and t1 one may obtain a single t2 as

(T mod Λ2 − t1) mod Λ2 = (25)
((t1 + t2 −Q2(t2 + U2)) mod Λ1 mod Λ2 − t1) mod Λ2

(a)
= ((t1 + t2 −Q2(t2 + U2)) mod Λ2 − t1) mod Λ2

= t2 mod Λ2 = t2, (26)

where (a) follows from X mod Λ1 mod Λ2 = X mod Λ2

when Λ1 ⊆ Λ2. Hence, the list of decoded codewords tR
may be transformed into a list of t1 at Terminal node 2,
which may in turn be associated with a list of w1(b−1).
The two decoded lists of w1(b−1) are independent due to
the independent mapping relationships between w1 and t1 at
Node 1 and between T and tR at the relay. List decoding
ensures that at least the correct message lies in the intersection
with high probability. To ensure no more than one in the
intersection,

R1 < C(PR/(h
2
12P1 +N2)) + C(h2

12P1/N2)

= C((h2
12P1 + PR)/N2).

Analogous steps apply to rate R2.

B. Comparison to existing rate regions

We briefly compare the new achievable rate region of The-
orem 9 with three other existing Decode-and-Forward based
rate regions for the two-way relay channel with direct links,
and to the cut-set outer bound. In particular, in Figure 7,
the region “Rankov-DF” [56, Proposition 2], the blue “Xie”
[55, Theorem 3.1 under Gaussian inputs] and our orange
“This work” (Theorem 9) are compared to the green cut-
set outer bound under three different choices of noise and
power constraints for h12 = h21 = 1. The “Rankov-DF” and
“Xie” schemes use a multiple access channel model to decode
the two messages at the relay, while we use lattice codes to
decode their sum, which avoids the sum rate constraint. In
the broadcast phase, the “Rankov-DF” scheme broadcasts the
superposition of the two codewords, while the “Xie” and our
scheme use a random binning technique to broadcast the bin
index. The advantage of the “Rankov-DF” scheme is its ability
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of obtain a coherent gain at the receiver from the source and
relay at the cost of a reduced power for each message (power
split αP and (1 − α)P ). On the other hand, the “Xie” and
Theorem 9 schemes both broadcast the bin index using all of
the relay power, but are unable to obtain coherent gains. We
note that our current scheme does not allow for a coherent
gain between the direct and relayed links as 1) we decode
the sum of codewords and re-encode that, and 2) we use the
full relay power to transmit this sum. Whether simultaneous
coherent gains are possible to the two receivers while using
a lattice-based scheme to decode the sum of codewords is an
interesting open question which may possibly be addressed
along the lines of [57].

At low SNR, the rate-gain seen by decoding the sum and
eliminating the sum-rate constraint is outweighed by 1) the
loss seen in the rates 1

2 log
(

Pi
P1+P2

+ SNR
)

compared to
1
2 log(1 + SNR), or 2) the coherent gain present in the
“Rankov-DF” scheme. At high SNR, our scheme performs
well, and at least in some cases, is able to guarantee an
improved finite-gap result to the outer bound, as further
elaborated upon in [58]. Further note that, compared with the
two-way relay channel without direct links [4], [5], the direct
links may provide additional information which translate to
rate gains – direct comparison shows that the rate region in
[5, Theorem 1] is always contained in that of Theorem 9.

C. The multiple access relay channel

We now consider a second example of a relay network with
two messages and cooperative relay links: the multiple access
relay channel (MARC). The MARC was proposed and studied
in [12], [40], [41], and describes a multi-user communication
scenario in which two users transmit different messages to the
same destination with the help of a relay. As in the TWRC,
the MARC can be seen as another example of an extension of
the three-node relay channel. The channel model is described
by

YR = X1 + X2 + ZR, ZR ∼ N (0, NRI)

YD = X1 + X2 + XR + ZD, ZD ∼ N (0, NDI).

where X1, X2 and XR have power constraints P1, P2 and
PR.

An (2nR1 , 2nR2 , n) code for the multiple access relay chan-
nel consists of the two sets of messages wi, i = 1, 2
uniformly distributed over Mi := {1, 2, · · · 2nRi}, and two
encoding functions Xn

i : Mi → Rn (shortened to Xi)
satisfying the power constraints Pi, a set of relay functions
{fj}nj=1 such that the relay channel input at time j is a
function of the previously received relay channel outputs
from channel uses 1 to j − 1, XR,j = fj(YR,1, · · ·YR,j−1),
and one decoding functions g : Yn → M1 × M2

which yields the message estimates (ŵ1, ŵ2) := g(Y n).
We define the average probability of error of the code
to be Pn,e := 1

2n(R1+R2)

∑
w1∈M1,w2∈M2

Pr{(ŵ1, ŵ2) 6=
(w1, w2)|(w1, w2) sent}. The rate pair (R1, R2) is then said
to be achievable by the multiple access relay channel if,
for any ε > 0 and for sufficiently large n, there exists an
(2nR1 , 2nR2 , n) code such that Pn,e < ε. The capacity region

C of the multiple access relay channel is the supremum of the
set of achievable rate pairs.

We derive a new achievable rate region whose achievability
scheme combines the previously derived lattice DF scheme,
and the linearity of lattice codes using lattice list decoding.
In particular, we demonstrate how we may decode the sum
of two lattice codewords at the relay rather than decoding the
individual messages, eliminating the sum-rate constraint seen
in i.i.d. random coding schemes. The relay then forwards a re-
encoded version of this which may be combined with lattice
list decoding at the destination to obtain a new rate region.

Theorem 10: Lattices in the AWGN multiple access relay
channel. For any α ∈ [0, 1], the rates described in (27) are
achievable for the AWGN multiple access relay channel.

Proof:
Codebook construction: We construct two nested lattice

chains according to Theorem 2, Λ1,Λ2,Λs1,Λs2,Λc1,Λc2 and
ΛR,ΛsR1,ΛsR2,ΛcR, nested in the exact same way as in the
codebook construction of Theorem 9.

Encoding: We again use block Markov encoding. At the b-th
block, terminal 1 and 2 send X1(w1b) and X2(w2b), where

X1(w1b) = (t1(w1b)−U1(b)) mod Λ1

X2(w2b) = (t2(w2b)−U2(b)) mod Λ2.

At the relay, we assume that it has decoded

T(b− 1) =(t1(w1(b−1)) + t2(w2(b−1))

−Q2(t2(w2(b−1)) + U2(b− 1))) mod Λ1

in block b− 1. Following the exact same steps as in between
(22) and (23), the relay sends

XR(T(b− 1)) = (tR(T(b− 1))−UR(b− 1)) mod ΛR.

The dithers U1(b),U2(b), and UR(b) are known to all nodes
and are i.i.d. and uniformly distributed over V1, V2, and VR
and vary from block to block. In the first block 1, terminal
1 and terminal 2 send X1(w11) and X2(w21) respectively,
while the relay sends a known XR(1).

Decoding: At the end of each block b, the relay terminal
receives YR(b) = X1(w1b) +X2(w2b) +ZR(b) and decodes
T(b) = (t1(w1b)+t2(w2b)−Q2(t2(w2b)+U2(b))) mod Λ1

as long as

R1 ≤
[

1

2
log

(
P1

P1 + P2
+

P1

NR

)]+

,

R2 ≤
[

1

2
log

(
P2

P1 + P2
+

P2

NR

)]+

.

following arguments similar to those in [5].
At the end of block b, before decoding, the destination

already has the following:

w1(b−1), w2(b−2), a list of w2(b−1), i.e., L
w2(b−1)

2−D (Y∗D(b−1)).

Using YD(b) we now describe how it will obtain

w1b, w2(b−1), and a list of w2b, i.e., Lw2b

2−D(Y∗D(b)).

The destination receives YD(b) = X1(w1b) + X2(w2b) +
XR(T(b − 1)) + ZD(b) and either decodes the messages
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Fig. 7. Comparison of decode-and-forward achievable rate regions of various two-way relay channel rate regions.

R1 < αmin

([
1

2
log

(
P1

P1 + P2
+

P1

NR

)]+

,
1

2
log

(
1 +

P1

P2 + PR +ND

))

+ (1− α) min

([
1

2
log

(
P1

P1 + P2
+

P1

NR

)]+

,
1

2
log

(
1 +

P1 + PR
ND

))
,

R2 < (1− α) min

([
1

2
log

(
P2

P1 + P2
+

P2

NR

)]+

,
1

2
log

(
1 +

P2

P1 + PR +ND

))

+αmin

([
1

2
log

(
P2

P1 + P2
+

P2

NR

)]+

,
1

2
log

(
1 +

P2 + PR
ND

))
.

(27)

Block 3Block 1 Block 4Block 2

X1(w11)

XR(T (1))

X1(w12) X1(w13) X1(1)

X2(w22) X2(w23) X2(1)

XR(1) XR(T (2)) XR(T (3))

Encoding:

T (1) T (2) T (3)

w11

Lw21

2−D

X2(w21)

w12

Lw21

R−D
Lw22

2−D Lw23

2−D

w13

Lw22

R−D Lw23

R−D

Decoding:
R

D

R

1

2

Fig. 8. Lattice Decode-and-Forward scheme for the AWGN multiple access relay channel.

in the order w1b and then w2(b−1) or the reverse w2b and
then w1(b−1). We describe the former; the latter follows
analogously and we time-share between the two decoding
orders. The destination first decodes w1b from YD(b), treating
X2(w2b) + XR(T(b− 1)) + ZD(b) as noise. This equivalent
noise is the sum of signals uniformly distributed over funda-
mental Voronoi regions of Rogers good lattices and Gaussian
noise. Hence, according to Lemma 6, the probability of error
in decoding the correct (unique) w1b will decay exponentially
as long as

R1 < C

(
P1

P2 + PR +ND

)
.

It then subtracts X1(w1b) from the signal YD(b) to ob-
tain Y∗D(b) = X2(w2b) + XR(T(b − 1)) + ZD(b) and
decodes a list of w2(b−1) denoted by L

w2(b−1)

R−D (Y∗D(b)) of size

2
n
(
R2−C

(
PR

P2+ND

))
assuming side information w1(b−1), and

treating X2(w2b) + ZD(b) as noise. This list of w2(b−1) is
obtained from a lattice list decoder based on tR(T(b−1)) and
noting the one-to-one correspondence between tR(T(b− 1))
and t2(w2(b−1)) and hence w2(b−1) given t1(w1(b−1)), using
the arguments of (24) and (26).

The destination then intersects the list L
w2(b−1)

R−D (Y∗D(b)) with

another list L
w2(b−1)

2−D (Y∗D(b − 1)) of size 2
n
(
R2−C

(
P2
ND

))
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obtained in the block b − 1 (described next for block b)
to determine the unique w2(b−1). Once the destination has
decoded w1b, w2(b−1) and w1(b−1), it is also able to reconstruct
XR(T(b− 1)).

At last, the destination decodes a list Lw2b

2−D(Y∗D(b)) of

possible w2b of size 2
n
(
R2−C

(
P2
ND

))
from the signal Y∗D(b) =

YD(b)−X1(w1b)−XR(T(b−1)) = X2(w2b)+ZD(b) which
is used to determine w2b in the next block b + 1. To ensure
that there is an unique codeword w2(b−1) in the intersection
of the two lists L

w2(b−1)

R−D (Y∗D(b)) and L
w2(b−1)

2−D (Y∗D(b − 1)),
we need

R2 < C

(
PR

P2 +ND

)
+ C

(
P2

ND

)
=

1

2
log

(
1 +

P2 + PR
ND

)
.

We presented the decoding order w1b, w2(b−1). Alternatively,
one may decode in the order w2b and w1(b−1) at the analogous
rates. Time sharing with parameter 0 ≤ α ≤ 1 between the
orders yields the theorem.

Remark 5: Note that the above region is derived using time-
sharing between two decoding orders at the destination. This
results as we employ successive decoding at the destination
in order to allow for the use of lower complexity Euclidean
lattice decoding, rather than a more complex form of “joint”
decoding for lattices proposed for example in [7], [26]. Further
note that this region does not always outperform or even attain
the same rates as random coding based schemes – in fact, as
in the two-way relay channel, there is a trade off between rate
gains from decoding the sum at the relay node, and coherent
gains and joint decoding at the destination.

V. SINGLE SOURCE COMPRESS AND FORWARD

We have shown several lattice based Decode-and-Forward
schemes for relay networks. Forcing the relay(s) to actually
decode the message(s) imposes a rate constraint; Compress-
and-Forward (CF) is an alternative type of forwarding which
alleviates this constraint. Cover and El Gamal first proposed
a CF scheme for the relay channel in [10] in which the
relay does not decode the message but instead compresses
its received signal and forwards the compression index. The
destination first recovers the compressed signal, using its
direct-link side-information (the Wyner-Ziv problem of lossy
source coding with correlated side-information at the receiver),
and then proceeds to decode the message from the recovered
compressed signal and the received signal.

It is natural to wonder whether lattice codes may be used
in the original Cover and El Gamal CF scheme for the relay
channel. We answer this in the positive. We note that lattices
have recently been shown to achieve the Quantize-Map-and-
Forward rates for general relay channels using Quantize-and-
Map scheme (similar to the CF scheme) which quantizes the
received signal at the relay and re-encodes it without any form
of binning / hashing in [7]. The contribution in this section is
to show an alternative achievability scheme which achieves the
same rate in the three node relay channel, demonstrating that
lattices may be used to achieve CF-based rates in a number of
fashions. We note that our decoder employs a lattice decoder

rather than the more complex joint typicality, or “consistency
check” decoding of [7].

In the CF scheme of [10], Wyner-Ziv coding – which
exploits binning – is used at the relay to exploit receiver side-
information obtained from the direct link between the source
and destination. The usage of lattices and structured codes for
binning (as opposed to their random binning counterparts) was
considered in a comprehensive fashion in [20]. Of particular
interest to the problem considered here is the nested lattice-
coding approach of [20] to the Gaussian Wyner-Ziv coding
problem.

A. Lattice codes for the Wyner-Ziv model in Compress-and-
Forward

We consider the lossy compression of the Gaussian source
Y = X + Z1 , with Gaussian side-information X + Z2

available at the reconstruction node, where X,Z1 and Z2 are
independent vectors of length n which are independent and
each generated in an i.i.d. fashion according to a Gaussian
of zero mean and variance P,N1, and N2, respectively.
We use the same definitions for the channel model and for
achievability as in Section III-A. The rate-distortion function
for the source X + Z1 taking on values in Xn1 = Rn with
side-information X+Z2 taking on values in Xn2 = Rn is the
infimum of rates R such that there exist maps in : Xn1 →
{1, 2, · · · , 2nR} and gn : Xn2 × {1, 2, · · · , 2nR} → Xn1 such
that lim supn→∞E[d(X+Z1, gn(X+Z2, in(X+Z1))] ≤ D
for some distortion measure d(·, ·). If the distortion measure
d(·, ·) is the squared error distortion, d(X, X̂) = 1

nE[||X −
X̂||2], then, by [59], the rate distortion function R(D) for the
source X+Z1 given the side-information X+Z2 is given by

R(D) =
1

2
log

(
σ2
X+Z1|X+Z2

D

)
, 0 ≤ D ≤ σ2

X+Z1|X+Z2

=
1

2
log

(
N1 + PN2

P+N2

D

)
, 0 ≤ D ≤ N1 +

PN2

P +N2
,

and 0 otherwise, where σ2
X+Z1|X+Z2

is the conditional vari-
ance of X + Z1 given X + Z2.

A general lattice code implementation of the Wyner-Ziv
scheme is considered in [20]. In order to mimic the CF scheme
achieved by Gaussian random codes of [10], we need a slightly
sub-optimal version of the optimal scheme described in [20].
That is, in the context of CF, and to mimic the rate achieved
by independent Gaussian random codes used for compression
in the CF rate of [10], the quantization noise after compression
should be independent of the signal to be compressed to allow
for two independent views of the source, i.e. to express the
compressed signal as Ŷ = Y−Eq = X+Z1−Eq where Eq

is independent of X+Z1. This may be achieved by selecting
α1 = 1 in a modified version of the lattice-coding Wyner-
Ziv scheme of [20] rather than the optimal MMSE scaling
coefficient α1 =

√
1− D

N1+
PN2
P+N2

. This roughly allows one to

view Ŷ = X+N1−Eq as an equivalent AWGN channel, and
is the form generally used in Gaussian CF as in [13]. Whether
this is optimal is unknown. The second difference from direct
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application of [20] is that, in our lattice CF scheme, the signal
X is no longer Gaussian but uniformly distributed over the
fundamental Voronoi region of a Rogers good lattice. We
modify the scheme of [20] to incorporate these two changes
next.

Corollary 11: Lattices for the (X + Z1,X + Z2) Wyner-
Ziv problem used in the lattice CF scheme based on [20].
Let X be uniformly distributed over the fundamental Voronoi
region of a Rogers good lattice with second moment P , while
Z1 ∼ N (0, N1I) and Z2 ∼ N (0, N2I). The following rate-
distortion function for the lossy compression of the source
X + Z1 to be reconstructed as X + Z1 − Eq (where Eq is
independent of X+Z1 and has variance D) may be achieved
using lattice codes:

R(D) =
1

2
log

(
1 +

N1 + PN2

P+N2

D

)
, 0 ≤ D ≤ ∞.

Proof: Consider a pair of nested lattice codes Λ ⊆ Λq ,
where Λq is Rogers-good with second moment D, and Λ is
Poltyrev-good with second moment N1 + PN2

P+N2
+ D. The

existence of such a nested lattice pair good for quantization is
guaranteed as in [20]. We consider the encoding and decoding
schemes of Figure 9, similar to that of [20]. We let U be a
quantization dither signal which is uniformly distributed over
Vq and introduce the following coefficients (choices justified
later):

α1 = 1, α2 =
P

P +N2
. (28)

Encoding: The encoder quantizes the scaled and dithered
signal α1(X+Z1)+U to the nearest fine lattice point, which is
then modulo-ed back to the coarse lattice fundamental Voronoi
region as

I := Qq(α1(X + Z1) + U) mod Λ

= (X + Z1 + U−Eq) mod Λ.

where Eq := (X+Z1+U) mod Λq is independent of X+Z1

and uniformly distributed over Vq according to the Crypto
lemma [46]. The encoder sends index i corresponding to I at
the source coding rate

R =
1

n
log

(
V (Λ)

V (Λq)

)
=

1

2
log

(
1 +

N1 + PN2

P+N2

D

)
.

Decoding: The decoder receives the index i of I and recon-
structs Ŷ as

Ŷ = α1((I−U− α1α2(X + Z2)) mod Λ) + α2(X + Z2)

= α1((α1((1− α2)X− α2Z2 + Z1)−Eq) mod Λ)

+ α2(X + Z2)

(a)≡ α1(α1((1− α2)X− α2Z2 + Z1)−Eq) + α2(X + Z2)

= X + Z1 −Eq

where equivalence (a) denotes asymptotic equivalence (as n→
∞), since, as in [20, Proof of (4.19)]

Pr{(α1((1− α2)X− α2Z2 + Z1)−Eq) mod Λ

6= α1((1− α2)X− α2Z2 + Z1)−Eq} → 0
(29)

for a sequence of a good nested lattice codes since

1

n
E||α1((1− α2)X− α2Z2 + Z1)−Eq||2

=
PN2

P +N2
+N1 +D = σ2(Λ).

(30)

Note that there is a slight difference from [20, Proof of
(4.19)] since X is uniformly distributed over the fundamental
Voronoi region of a Rogers good lattice rather than Gaussian
distributed. However, according to Lemma 5, α1((1−α2)X−
α2Z2 + Z1)−Eq = (1− α2)X− α2Z2 + Z1 −Eq may be
upper bounded by the pdf of an i.i.d. Gaussian random vector
(times a constant) with variance approaching (30) since X is
uniformly distributed over the Rogers good V , Eq is uniformly
distributed over the Rogers good Vq of second moment D, and
−α2Z2 + Z1 is Gaussian. Then because Λ is Poltyrev good,
(29) can be made arbitrary small as n→∞. This guarantees
a distortion of D as Vq is of second moment D.

B. Lattice coding for Compress-and-Forward

Armed with a lattice Wyner-Ziv scheme, we mimic every
step of the CF scheme for the AWGN relay channel of Figure
3 and Section III-A, described in [10] using lattice codes and
will show that the same rate as that achieved using random
Gaussian codebooks may be achieved in a structured manner.

Theorem 12: Lattices achieve the CF rate for the relay
channel. The following rate may be achieved for the AWGN
relay channel using lattice codes in a lattice Compress-and-
Forward fashion:

R <
1

2
log

(
1 +

P

ND
+

PPR
PNR + PND + PRNR +NRND

)
.

Proof:
Lattice codebook construction: We employ three nested
lattice pairs of dimension n satisfying:
• Channel codebook for Node S: codewords t1 ∈ C1 =
{Λc1∩V1} where Λ1 ⊆ Λc1, and Λ1 is both Rogers-good and
Poltyrev-good and Λc1 is Poltyrev-good. We set σ2(Λ1) = P
to satisfy the transmitter power constraint. We associate each
message w ∈ {1, 2, · · · 2nR} with a codeword t1(w) in one-
to-one fashion and send a dithered version of t1(w). Note that
Λc1 is chosen such that |C1| = 2nR.
• Channel codebook for the relay: codewords tR ∈ CR =
{ΛcR ∩ VR} where ΛR ⊆ ΛcR, and ΛR is both Rogers-
good and Poltyrev-good and ΛcR is Poltyrev-good. We set
σ2(ΛR) = PR to satisfy the relay power constraint. We
associate each compression index i ∈ {1, 2, · · · , 2nR′} with
the codeword tR(i) in a one-to-one fashion and send a
dithered version of tR(i). Note that ΛcR is chosen such that
|CR| = 2nR

′
.

• Quantization/Compression codebook: tq ∈ Cq = {Λq ∩ V}
and Λ ⊆ Λq , where Λ is Poltyrev-good and Λq is Rogers-
good. We set σ2(Λq) = D, σ2(Λ) = NR + P1N2

P1+N2
+ D,

such that the source coding rate is R̂ = 1
n log

(
V (Λ)
V (Λq)

)
=

1
2 log

(
1 +

NR+
PND
P+ND

D

)
.
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α2(X + Z2)

Ŷ

Fig. 9. Lattice coding for the (X + Z1,X + Z2) Wyner-Ziv problem.

Encoding: We use block Markov encoding as [10]. In block
b, Node 1 transmits

XS(wb) = (t1(wb) + U1(b)) mod Λ1,

where U1(b) is the dither uniformly distributed over V1.
The relay quantizes the received signal in the previous
block b − 1, YR(b − 1) = XS(wb−1) + ZR(b − 1)
to I(wb−1) = Qq (XS(wb−1) + ZR(b− 1) + Uq) mod Λ
(with index i(wb−1)) by using the quantization lattice code
pair (Λq,Λ) as described in the encoding part of Theorem
11, for Uq a quantization dither uniformly distributed over Vq
and Eq := (XS(wb−1) + ZR(b− 1) + Uq) mod Λq . Node
2 chooses the codeword tR(i(wb−1)) associated with the index
i(wb−1) of I(wb−1) and sends

XR(i(wb−1)) = (tR(i(wb−1)) + UR(b− 1)) mod Λ

with UR(b − 1) the dither signal uniformly distributed over
VR and independent across blocks.
Decoding: In block b, Node D receives

YD(b) = XS(wb) + XR(i(wb−1)) + ZD(b).

It first decodes i(wb−1) using lattice decoding as in [23] or
Lemma 6 as long as

R′ <
1

2
log

(
1 +

PR
P +ND

)
.

We note that the source coding rate of I, R̂ must be less than
the channel coding rate R′, i.e.

1

2
log

(
1 +

NR + PND
P+ND

D

)
<

1

2
log

(
1 +

PR
P +ND

)
, (31)

which sets a lower bound on the achievable distortion D. Node
D then may obtain

Y′D(b) = YD(b)−XR(i(wb−1)) = XS(wb) + ZD(b)

which is used as direct-link side-information in the next block
b+1. In the previous block, Node D had also obtained Y′D(b−
1) = XS(wb−1) + ZD(b− 1). Combining this with I(wb−1),
Node D uses Y′D(b − 1) as side-information to reconstruct
ŶD(b− 1) as in the decoder of Theorem 11.

Thus, we see that the CF scheme employs the (X+Z1,X+
Z2) Wyner-Ziv coding scheme of Section V-A where the
source to be compressed at the relay is XS + ZR and the
side-information at the receiver (from the previous block) is
XS + ZD.

The compressed YR(b− 1) may now be expressed as

ŶR(b− 1) = (α2
1 − α2

1α2 + α2)XS(wb−1) + α2(1− α2
1)ZD

+ α2
1ZR − α1Eq(b− 1)

= XS(wb−1) + ZR(b− 1)−Eq(b− 1)

where Eq(b − 1) := (YD(b − 1) + Uq(b − 1)) mod Λq
(with Uq(b − 1) the quantization dither which is uniformly
distributed over Vq) is independent and uniformly distributed
over Vq with second moment D. The destination may decode
t1(wb−1) from Y′D(b − 1) and ŶR(b − 1) by coherently
combining them as

√
P

ND
Y′D(b− 1) +

√
P

NR +D
ŶR(b− 1)

=

(√
P

ND
+

√
P

NR +D

)
XS(wb−1) +

√
P

ND
ZD(b− 1)

+

√
P

NR +D
(ZR(b− 1)−Eq(b− 1)) .

Now we wish to decode wb−1 from (32) which is the sum
of the desired codeword which is uniformly distributed over a
Rogers good lattice, and noise composed of Gaussian noise
and Eq uniformly distributed over a fundamental Voronoi
region of a Rogers good lattice. This scenario may be handled
by Lemma 6, and we may thus uniquely decode wb−1 as long
as

R <
1

2
log

(
1 +

P

ND
+

P

NR +D

)
.

Combining this with the constraint (31), we obtain

R <
1

2
log

(
1 +

P

ND
+

PPR
PNR + PND + PRNR +NRND

)
,

which is the CF rate achieved by the usual choice of Gaussian
random codes (in which the relay quantizes the received signal
YR as ŶR = YR +Eq in which Eq is independent of YR)
[13, pg. 17–48].

VI. CONCLUSION

We have demonstrated that lattice codes may mimic random
Gaussian codes in the context of the Gaussian relay channel,
achieving the same Decode-and-Forward and Compress-and-
Forward rates as those using random Gaussian codes. One
of the central technical tools needed was a new lattice list
decoder, which proved useful in networks with cooperation
where various links to a destination carry different encodings
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of a given message. We have further demonstrated a technique
for combining the linearity of lattice codes with classical
Block Markov cooperation techniques in a DF fashion in two
multi-source networks. Such achievability schemes outperform
known i.i.d. random coding for certain channel conditions.
The question of whether lattice codes can replace random
codes in all Gaussian relays networks and thereby achieve
the same rates as the random coding counterparts remains
open. Another remaining open question is whether the DF and
CF schemes may be unified into a single scheme – from the
lattice DF and CF schemes presented here we notice that the
relay performs a form of lattice quantization in both scenarios.
Finally, the extension of these results – which roughly imply
that structured codes may be used to replace random Gaussian
codes in Gaussian networks – to discrete memoryless channels
is of interest. In particular, structured codes such as “abelian
group codes” [60] may prove useful in this direction.

APPENDIX

A. Details in Decoding step 2. of Theorem 7.

In applying the Lattice List Decoder of Theorem 3 to the
steps between (17) – (20), we form the list

L
wb−1

R−D(YD(b)) = {wb−1| t2(wb−1) ∈ SκVs2,κΛc2(Y′D(b))

mod κΛ2},
where

Y′D(b) = (βYD(b) + κU2(b− 1)) mod κΛ2

= (κt2(wb−1)− (1− β)κX′2(wb−1)+

β(X′1(wb) + ZD(b))) mod κΛ2.

As in Section II-B, choose β to be the MMSE coefficient
βMMSE = κ2ᾱP

κ2ᾱP+αP+ND
, resulting in self-noise Zeq := ((1−

β)κX′2(wb−1) +β(X′1(wb) +ZD(b))) mod κΛ2 of variance

Neq =
κ2ᾱP (αP +ND)

κ2ᾱP + αP +ND
.

Select Λs2 in the lattice chain Λ2 ⊆ Λs2 ⊆ Λc2 to
have a fundamental Voronoi region of volume Vs2 =(

αP+ND
αP+ND+(

√
ᾱP+

√
PR)2

)n/2
V2 asymptotically (notice Vs2 <

V2 as needed). This will ensure a list of the desired size
2n(R−RR) as long as RR < C((

√
ᾱP +

√
PR)2/(αP +

ND)). For rates R approaching 1
2 log

(
1 + P+PR+2

√
ᾱPPR

ND

)

(where list decoding is needed / relevant), Vc2 =(
ND

P+PR+2
√
ᾱPPR+ND

)n/2
V2 asymptotically. Thus Vc2 <

Vs2 < V2 as needed.

B. Proof of Theorem 8

Proof: Here we demonstrate achievability for the permu-
tation π(2) = 2, π(3) = 3, and thus drop π(·) to simplify
notation. The other permutation may be analogously achieved.
Source Node 1 transmits a message to the destination Node
4 with the help of two relays: Node 2 and Node 3. The
achievability scheme follows a generalization of the lattice
regular encoding/sliding window decoding DF scheme of

Theorem 7. The only difference is the addition of one relay
and thus one coding level.
Codebook construction: We construct three nested lattice
chains according to Theorem 2:

• Λ1 ⊆ Λs(1−3) ⊆ Λs(1−4) ⊆ Λc1, or Λ1 ⊆ Λs(1−4) ⊆
Λs(1−3) ⊆ Λc1 (relative nesting order depends on the
system parameters and will be discussed in the following
paragraph)

• Λ2 ⊆ Λs(2−3) ⊆ Λs(2−4) ⊆ Λc2, or Λ2 ⊆ Λs(2−4) ⊆
Λs(2−3) ⊆ Λc2

• Λ3 ⊆ Λs(3−4) ⊆ Λc3

How these are ordered depends on the relative values of
the power split parameters α1, β1, α2 ∈ [0, 1], the power
constraints P1, P2, P3 and the noise variances N2, N3, N4. In
particular, the second moments of coarse lattices are selected
as: σ2(Λ1) = α1P1, σ2(Λ2) = β1P1, and σ2(Λ3) = (1 −
α1 − β1)P1. The message set w ∈ {1, 2, · · · 2nR} is mapped
in a one-to-one fashion to three codebooks t1(w) ∈ C1 =
{Λc1 ∩ V1}, t2(w) ∈ C2 = {Λc2 ∩ V2}, and t3(w) ∈
C3 = {Λc3 ∩ V3}. These mappings are independent. The fine
lattices Λc1,Λc2,Λc3 may be chosen to satisfy the needed
rate constraint R by proper selection of the corresponding
γ in Theorem 2. The lattices Λs(1−3),Λs(2−3) will be used
for lattice list decoding at relay 3, while Λs(1−4), Λs(2−4),
and Λs(3−4) will be used for lattice list decoding at the
destination node 4. They will all be Rogers good, with
fundamental Voronoi region volume specified by the desired
lattice list decoding constraints; we are able to select this
volume (or equivalently second moment) arbitrarily as long
as they are smaller than their corresponding nested coarse
lattices, by Theorem 2. In which order they are nested will
depend on the relative volumes, which in turn depends on the
systems parameters α1, β1, α2 ∈ [0, 1], the power constraints
P1, P2, P3 and the noise variances N2, N3, N4. Define the
following signals (which will be superposed as described in
the Encoding):

X′1(wb) = (t1(wb) + U1(b)) mod Λ1

X′2(wb) = (t2(wb) + U2(b)) mod Λ2

X′3(wb) = (t3(wb) + U3(b)) mod Λ3,

where U1, U2 and U3 are the dithers which are uniformly
distributed over V1, V2 and V3, respectively, independent from
block to block, and independent of each other. The encoding
and decoding steps are outlined in Figure 10. We make a
small remark on our notation: X′k should not be thought of
as the signal being transmitted by Node k (which would be
Xk but we do not use this, opting instead to write out the
transmit signals in terms of X′k). Rather, Node k will send
a superposition of the signals X′k,X

′
k+1, · · · . Thus, multiple

nodes may transmit the same (scaled) codeword X′k which
will coherently combine.

Encoding: We again use block Markov encoding: the mes-
sage is divided into B blocks of nR bits each. In block b,
suppose Node 2 knows {w1, . . . , wb−1} and Node 3 knows
{w1, . . . , wb−2}. Node 1 sends the superposition/sum of
X′1(wb), X′2(wb−1) and X′3(wb−2) with power α1P1, β1P1,
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Fig. 10. Lattice Decode-and-Forward scheme for the AWGN multi-relay channel.

and (1−α1−β1)P1 respectively. Node 2 sends the superposi-
tion/sum of

√
α2P2

β1P1
X′2(wb−1) and

√
(1−α2)P2

(1−α1−β1)P1
X′3(wb−2)

with power α2P2, and (1−α2)P2 respectively. Node 3 sends√
P3

(1−α1−β1)P1
X′3(wb−2) with power P3.

Decoding:
Node 2 decodes wb: In block b, since Node 2 knows wb−1

and wb−2 and thus X′2(wb−1) and X′3(wb−2), it can subtract
these terms from its received signal

Y2(b) = X′1(wb) + X′2(wb−1) + X′3(wb−2)+√
P3

(1− α1 − β1)P1
X′3(wb−2) + Z2(b)

and obtains a noisy observation of X′1(wb) only. Node 2 is
able to then uniquely decode wb as long as (see [23] or Lemma
6)

R <
1

2
log

(
1 +

α1P1

N2

)
.

Node 3 decodes wb−1: Since Node 3 knows wb−2 and thus
X′3(wb−2), it subtracts these from Y3(b):

Y3(b) =X′1(wb) + X′2(wb−1) + X′3(wb−2)

+

√
α2P2

β1P1
X′2(wb−1) +

√
(1− α2)P2

(1− α1 − β1)P1
X′3(wb−2)

+Z3(b)

and obtains a noisy observation of X′1(wb) and X′2(wb−1),

Y∗3(b) = X′1(wb) +

(
1 +

√
α2P2

β1P1

)
X′2(wb−1) + Z3(b).

It then uses Λs(2−3) to decode a list L
wb−1

2−3 (Y∗3(b)) of

possible wb−1 of size 2
n

(
R−C

(
(
√
β1P1+

√
α2P2)

2

α1P1+N3

))
in the

presence of interference X′1(wb) (uniformly distributed over
the fundamental Voronoi region of a Rogers good lattice code)

and Gaussian noise Z3(b) (hence we may apply Theorem
3). It then intersects this list Lwb−1

2−3 (Y∗3(b)) with the list

L
wb−1

1−3 (Y∗∗3 (b − 1)) of asymptotic size 2
n
(
R−C

(
α1P1
N3

))
ob-

tained in block b − 1 by subtracting off the known signals
dependent on wb−2, wb−3 to obtain Y∗∗3 (b−1) = X′1(wb−1)+
Z3(b − 1). To ensure a unique wb−1 in the intersection, by
independence of the lists (based on the independent mappings
of the messages to the codebooks C1 and C2), we need

R < C

((√
β1P1 +

√
α2P2

)2

α1P1 +N3

)
+ C

(
α1P1

N3

)

= C

(
α1P1 +

(√
β1P1 +

√
α2P2

)2

N3

)
.

After Node 3 decodes wb−1, it further subtracts X′2(wb−1)
from its received signal and obtains a noisy observation of
X′1(wb). It again uses the lattice list decoder using Λs(1−3)

to output a list Lwb1−3(Y∗∗3 (b)) of wb of size 2
n
(
R−C

(
α1P1
N3

))
which is used in block b+ 1 to determine wb.

Node 4 decodes wb−2: Finally, Node 4 intersects three lists
to determine wb−2. These three lists are again independent by
the independent mapping of the messages to the codebooks
C1, C2, C3, where each corresponds to one of the three links
(between node 1-4, 2-4, and 3-4). The first list Lwb−2

3−4 (Y4(b))
of wb−2 messages is obtained by list decoding using Λs(3−4)

on its received signal

Y4(b) =X′1(wb) + X′2(wb−1) + X′3(wb−2) +

√
α2P2

β1P1
X′2(wb−1)

+

√
(1− α2)P2

(1− α1 − β1)P1
X′3(wb−2)

+

√
P3

(1− α1 − β1)P1
X′3(wb−2) + Z4(b)

which is a combination of scaled signals X′1(wb) and
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X′2(wb−1) which are uniform over the fundamental Voronoi
regions of Rogers good lattices and additive Gaussian noise
Z4(b), and is of size

|Lwb−2

3−4 (Y4(b))| = 2
n

(
R−C

(
(
√

(1−α1−β1P1)+
√

(1−α2)P2+
√
P3)

2

α1P1+(
√
β1P1+

√
α2P2)

2
+N4

))
.

The second list Lwb−2

2−4 (Y∗4(b− 1)) is obtained in block b− 1

and is of size 2
n

(
R−C

(
(
√
β1P1+

√
α2P2)

2

α1P1+N4

))
, while the third

list Lwb−2

1−4 (Y∗∗4 (b − 2)) is obtained in block b − 2 and is of

size 2
n
(
R−C

(
α1P1
N4

))
. The formation of these lists is described

next (they are formed analogously in blocks b− 1 and b− 2).
After the successful decoding of wb−2 in block b, node 4

decodes two more lists which are used in the blocks b + 1
and b+ 2 to determine wb−1 and wb respectively. Node 4 first
subtracts the X′3(wb−2) terms from its received signal Y4(b)
to obtain Y∗4(b) and decodes a list of possible wb−1 from the
terms X′2(wb−1) using Λs(2−4) in the presence of interference
terms X′1(wb) which are uniformly distributed over Rogers
good lattices and Gaussian noise (hence Theorem 3 applies).
This list is denoted as Lwb−1

2−4 (Y∗4(b)) and is used in the block
b+ 1 to determine wb−1.

After Node 4 decodes wb−1 in the block b + 1, it further
subtracts the X′2(wb−1) terms from Y∗4(b) to obtain Y∗∗4 (b) =
X′1(wb) + Z4(b). It then uses Λs(1−4) to decode a list of wb,
denoted as Lwb1−4(Y∗∗4 (b)), which is used in block b + 2 to
determine wb.

In block b, to ensure a unique message wb−2 in the intersec-
tion of the three independent lists, we need to constrain R as
in (32).
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