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Lattice Decoding for Joint Detection in Direct-Sequence
CDMA Systems

Loïc Brunel, Member, IEEE,and Joseph J. Boutros, Member, IEEE

Abstract—A new joint detection method based on sphere packing lat-
tice decoding is presented in this paper. The algorithm is suitable for both
synchronous and asynchronous multiple access direct-sequence code-divi-
sion multiple-access (DS-CDMA) systems, and it may jointly detect up to
64 users with a reasonable complexity. The detection complexity is indepen-
dent of the modulation size and large -PAM or -QAM constellations
can be used. Furthermore, a theoretical gain analysis is performed in which
the multiple-access system performance is derived from the lattice param-
eters.

Index Terms—Code-division multiple access (CDMA), lattice decoding,
multiuser detection, sphere decoder.

I. INTRODUCTION

In this correspondence, a new low-complexity joint detection algo-
rithm for direct sequence (DS) multiple-access systems is proposed.
The algorithm is optimal (in the maximum-likelihood (ML) sense) for
synchronous code-division multiple-access (CDMA) systems. The re-
ceiver models the despreader output as a multidimensional lattice point
(sphere packing) corrupted by noise and applies a lattice-decoding al-
gorithm to jointly detect all users. In the asynchronous case, the lattice
decoder is combined with an interference canceler and its performance
remains excellent despite its suboptimality.

The paper is organized as follows. In Section II, the synchronous
multiple-access transmitter structure and its lattice representation are
described. In Section III, the sphere-decoding algorithm, which is a
low-complexity ML decoder for lattice constellations, is presented.
Then, sphere decoding is applied to ML detection of synchronous
direct-sequence spread-spectrum multiple access (DS-SSMA) in
Section IV. In Section V, the combination of sphere decoding and
interference cancellation for the joint demodulation of asynchronous
DS-SSMA is investigated. In Section VI, an analytical approximation
for the system gain is derived from the lattice parameters. Simulation
results for synchronous and asynchronous systems on additive white
Gaussian noise (AWGN) channel are presented in Section VII and
compared with those of multistage successive interference cancella-
tion (PIC) [13], [14], decision-feedback minimum mean-square error
detector (DF-MMSE) [9], and Viterbi-based algorithm (Verdú joint
detector [15]). Conclusions are finally drawn in Section VIII.

II. L ATTICE REPRESENTATION OFSYNCHRONOUS

MULTIUSER SYSTEMS

Let us first consider a synchronous CDMA system withK users.
The symbolbk(i) of userk transmitted at timei is taken from an in-
teger alphabetA of cardinalityjAj. Each userk transmits a block of
N symbols with signal amplitude!k. The symbols are spread by a real
signaturesk(t) with symbol durationT , sk(t) = 0 if t =2 [0; T ). The
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K transmitted data symbols are placed in a row vectorbbb(i) defined as
bbb(i) = (b1(i); . . . ; bK(i)). The corresponding modulated signal is

St =

N�1

i=0

K

k=1

!kbk(i)sk(t� iT ):

We assume that the channel is an ideal AWGN channel. Letrt =
St + �t be the received signal and�t a real Gaussian noise with zero
mean and varianceN0. A sufficient statistic for ML detection ofbbb(i) is
yyy(i) = (y1(i); . . . ; yK(i)), whereyk(i) is the matched filter output
of userk defined as

yk(i)
�
=

+1

�1

sk(t� iT )r(t)dt+ nk(i)

=

K

`=1

!`b`(i)
T

0

s`(t)sk(t)dt+ nk(i): (1)

The cross-correlation coefficients of the noise vectornnn(i) =
(n1(i); . . . ; nK(i)) are

E[n`(i)nk(i)] = R`kN0;

with R`k =
T

0

s`(t)sk(t)dt for k; ` = 1 � � �K: (2)

LetDDD! be the diagonal matrixDiag(!1; . . . ; !K) andRRR = [R`k] the
K �K signature cross-correlation matrix. Then, (1) becomes

yyy(i) = bbb(i)MMM + nnn(i) (3)

where theK �K matrixMMM is defined asMMM = DDD!RRR.
The vectoryyy(i) in (3) can be viewed as a point of aK-dimensional

lattice sphere packing� [6] with generator matrixMMM corrupted by a
noisennn(i). If the signatures are well chosen and all power amplitudes
are strictly positive, the lattice� is a -module of rankK of theK-di-
mensional real spaceK . The rows ofMMM form a basis of�. The mul-
tiple-access signal generates a pointbbb(i)MMM belonging to a constella-
tion, i.e., a finite subset of� of sizejAjK .

This lattice representation of multiuser systems allows us to use an
efficient ML lattice decoding algorithm called theUniversal Lattice
Decoder[17], [18], also known as theSphere Decoder[3]. The sphere
decoder is capable of decoding any lattice defined by an arbitrary gen-
erator matrixMMM . The version presented in the following is based on
enumerating points inside a sphere according to the Pohst strategy [10],
[7]. Alternative strategies are presented in a recent tutorial by Agrellet
al. [1].

III. SPHEREDECODING WITH WHITE GAUSSIAN NOISE

Let us first describe the ML decoding of aK-dimensional lattice�
used over an AWGN channel and generated by a realK�K matrixGGG.
The decoder must find the closest lattice point to the received vector,
which is equivalent to minimizing the metric

m(yyyjxxx) =

K

i=1

jyi � xij
2 = kyyy � xxxk2 (4)

whereyyy = xxx+��� is the received vector,��� = (�1; . . . ; �K) is the noise
vector andxxx = (x1; . . . ; xK) is a point belonging to�. The noise
vector��� has real Gaussian distributed independent components with
zero mean and variance�2. The lattice pointsfxxx = bbbGGGg are obtained
from the data vectorsbbb = (b1; . . . ; bK) where the componentsbi
belong to the ring of integers.

0018-9448/03$17.00 © 2003 IEEE
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Fig. 1. Geometrical representation of the sphere-decoding algorithm.

In practice, the set of data vectors is limited to an alphabetAK � K

and an exhaustive ML decoder looks for the best pointxxx in the whole
finite constellation. The sphere decoder restricts its computation to the
points which are found inside a sphere of a given radius

p
C centered

at the received point, as depicted in Fig. 1. Thus, only the lattice points
within the squared distanceC from the received point are considered
in the metric minimization of (4). The decoder performs the following
optimization:

min
xxx2�

kyyy � xxxk = min
www2yyy��

kwwwk: (5)

The equality (5) indicates that we must find the shortest vectorwww in the
translated setyyy��. We write the received vector and the difference as
yyy = ���GGG andwww = ���GGG, respectively, with��� = (�1; . . . ; �K) 2 K and
��� = (�1; . . . ; �K) 2 K .

In the new coordinate system defined by���, the sphere of squared
radiusC centered atyyy is transformed into an ellipsoid centered at the
origin, defined by

kwwwk2 = ���GGGGGGT ���T � C: (6)

Cholesky’s factorization [5] of the Gram matrix��� = GGGGGGT yields
��� = AAAAAAT , whereAAA is a lower triangular matrix with elementsaij .
Using (6), it was shown that pointxxx is included in the search sphere if
and only if the integer components ofbbb satisfy the following inequali-
ties [17], [18]:

� C

qKK

+ �K � bK � C

qKK

+ �K

� C � qKK�2K
qK�1;K�1

+ �K�1 + qK;K�1�K

� bK�1 � C � qKK�2K
qK�1;K�1

+ �K�1 + qK;K�1�K

� 1

qii
C �

K

`=i+1

q`` �` +

K

j=`+1

qj`�j

2

+ �i +

K

j=i+1

qji�j � bi

bi � 1

qii
C �

K

`=i+1

q`` �` +

K

j=`+1

qj`�j

2

+ �i +

K

j=i+1

qji�j (7)

whereqii = a2ii for i = 1; . . . ; K and qij = aij=aii for j =
1; . . . ; K, i = j + 1; . . . ; K. The functiondxe is theceil function
andbxc is thefloor function. The lower and upper bounds in (7) tell us
that the sphere decoder hasK internal countersbi, i.e., one counter per
dimension. We, thus, enumerate all values of vectorbbb for which the cor-
responding lattice pointxxx = bGbGbG is within the squared distanceC from
the received point. Lattice points outside the given sphere are never
tested. Consequently, the decoding complexity does not depend on the
sizejAjK of the lattice constellation. Finally, we select the best point
xxx as the one associated to the minimal Euclidean normkwwwk. During
the enumeration of all points located in the search sphere, the radiusp
C may be updated by the normkwwwk found at the current enumerated

point. Points located in the initial sphere beyond the updated radius are
not selected by the decoder. The update of

p
C by every newly com-

putedkwwwk guarantees that all points in the new search sphere have a
norm smaller or equal tokwwwk. Thus, the points in this sphere are good
candidates for ML detection. This radius update dramatically acceler-
ates the closest point search.

For more details on the sphere decoding implementation, the reader
is referred to [18].

The search radius
p
C must be properly chosen. Indeed, the number

of lattice points lying inside the decoding sphere increases withC.
Therefore, a large value ofC slows down the algorithm, whereas the
search sphere may be empty ifC is chosen too small. In order to ensure
that at least one lattice point is found by the sphere decoder, the search
radius has to be greater than the lattice covering radius, e.g., select a
radius value equal to the Rogers upper bound [6]

p
CK = (K logK +K log logK + 5K)� j det(GGG)j

VK

whereVK is the volume of a sphere of radius1 in the real space K .
As we consider a finite constellation of the lattice, it may occur that no
lattice point in the sphere belongs to the constellation. This decoding
failure is overcome by slightly increasing the search radius and per-
forming the sphere decoding again.

IV. DECODING OF ASYNCHRONOUSMULTIPLE-ACCESSSYSTEM

The additive-noise samples included in the system model (3) are cor-
related. This correlation is produced by the nonzero cross correlation
between the different users signatures, see (2). The ML lattice decoder
must minimize the following metric:

m0(yyy(i)jxxx(i)) = (yyy(i)� xxx(i))RRR�1(yyy(i)� xxx(i))T : (8)

The sphere-decoder equations can be easily adapted to the optimization
of metric (8). This is equivalent to ML decoding of a lattice�0 with a
generator matrixMMM in the presence of colored noisennn(i). Neverthe-
less, we prefer to whiten the noise at the output of the matched filter
bank in order to use the decoding procedure given in the preceding sec-
tion. Note that all studies of lattice sphere packing performance have
been done in the AWGN case. The noise whitening will also help us
to simplify the analytical study of lattice parameters’ impact on the
CDMA error rate presented in Section VI.

The noise whitening operation performed before the lattice decoder
is similar to what is widely known in equalization theory [12]. Cholesky
factorization of the cross-correlation matrixRRR yieldsRRR = WWWWWW T ,
whereWWW is a lower triangular matrix. The whitened observation is
defined as~yyy(i) = yyy(i)WWWT and the new lattice point is given by
~xxx(i) = xxx(i)WWWT . Finally, the whole CDMA system model is illus-
trated in Fig. 2.
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Fig. 2. CDMA system model with joint lattice detection.

Now, we write the relation between the lattice point~xxx(i) and the data
vectorbbb(i)

~xxx(i) = xxx(i)WWWT = bbb(i)MMMWWW
T = bbb(i)D!D!D!WWW: (9)

Equation (9) shows that the whitening operation results in a new lat-
tice with generator matrixGGG = DDD!WWW . Therefore, the new received
point ~yyy(i) is processed with a sphere decoder associated to this new
lattice. SinceDDD!WWW is already a lower triangular matrix, Cholesky fac-
torization preceding the sphere search given by inequalities (7) can be
omitted(AAA = GGG), or equivalently, the triangular factorization has been
transferred from the decoder to the noise whitener.

V. SPHEREDECODING WITH INTERFERENCECANCELLATION FOR

ASYNCHRONOUSMULTIUSER SYSTEMS

Let us now consider an asynchronous multiuser system. Userk has
a delay�k. We assume that0 � �1 � �2 � � � � � �K < T . As
shown in Fig. 3, each symbol of a given user interferes with one or
two symbols from other users. The latter symbols interfere also with
other symbols and it is impossible to define a finite-dimensional lattice
to describe the system as we did in Section II. To solve this problem,
we combine the lattice decoder with a subtractive interference canceler.
The detection of symbolbk(i) takes into account its entire despreading,
the partial despreading of future symbols of other users, and the partial
correlations with past symbols of other users.

The joint processing of symbolsbj(i) at timei starts after finishing
the detection of all symbolsbj(i � 1), j = 1 � � �K. The detection at
time i is performed in an increasing order ofk, i.e., the demodulation
of bk(i) uses the symbolsb1(i); b2(i); . . . ; bk�1(i) already detected
and the previous symbolsbk+1(i� 1); bk+2(i� 1); . . . ; bK(i� 1).
The detection procedure for a given userk at timei depends on three
vectors: the past symbolsbbbppp, the future symbolsbbbfff , and the observation
vectoryyyfff = (yf1; . . . ; yfK). The symbol vectors are

bpbpbp =(bp1; . . . ; bpK)

= (b1(i); . . . ; bk�1(i); bk(i� 1); bk+1(i� 1); . . . ; bK(i� 1))

bfbfbf =(bf1; . . . ; bfK)

= (b1(i+ 1); . . . ; bk�1(i+ 1); bk(i); bk+1(i); . . . ; bK(i)):

When decoding symbolbk(i), the observationyf` associated tobf`
is the result of a partial despreading of durationtk`, beginning with
symbolbf` and ending with symbolbk(i). Thus,

tk` = �k � �`; for ` < k

tk` = T + �k � �`; for ` � k:

Fig. 3. Asynchronous multiple-access system with three users: interference on
user 2.

Let �j` denote the cross correlation between symbolsbfj andbf`. Let
�j` denote the cross correlation between symbolbj(i) and the previ-
ously detected symbol of user`. We can express the observation vector
yfyfyf = (yf1; . . . ; yfK) associated to the detection ofbk(i) as

yfj =!j�jjbfj +
j<`<k

!`�j`bp` +
6̀=j

!`�j`bf` + nj ;

for j < k

yfj =!j�jjbfj +
6̀=j

!`�j`bp` +
6̀=j

!`�j`bf` + nj ;

for j = k

yfj =!j�jjbfj +
`<k

!`�j`bp` +
`>j

!`�j`bp`

+
6̀=j

!`�j`bf` + nj ; for j > k: (10)

Equations (10) can be simply written in matrix form

yfyfyf = bpbpbpD!RpD!RpD!Rp + bfbfbfD!RfD!RfD!Rf + nnn (11)

whereRfRfRf = [�ij ], nnn is an additive Gaussian noise with covariance
matrixN0RfRfRf , andRpRpRp is given in the equation at the top of the following
page.

There existK different pairs of matricesRpRpRp andRfRfRf , each one for
the detection of one user. Symbols included inbpbpbp are already detected,
so we can subtract the past interferencebpbpbpD!RpD!RpD!Rp from the observation
yfyfyf to obtain a new observationzfzfzf delivered to the lattice decoder

zfzfzf = yfyfyf � bpbpbpD!RpD!RpD!Rp = bfbfbfD!RfD!RfD!Rf + nnn:

The vectorzfzfzf is a lattice point corrupted with colored noise. Hence, we
can apply results of Section IV to detectbk(i) using a sphere decoder
in theK-dimensional real space. Note thatK lattice-decoding steps
are needed to demodulate theK users at a given timei, whereas one
decoding step suffices to jointly decode all users in the synchronous
system.
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RpRpRp =

0 0 0 � � � 0 0 �1; k �1; k+1 � � � �1; K
�2; 1 0 0 � � � 0 0 �2; k �2; k+1 � � � �2; K
�3; 1 �3; 2 0 � � � 0 0

...
. . .

. . .
...

...
...

...
...

�k�2; 1 �k�2; 2 � � � �k�2; k�3 0 0 �k�2; k �k�2; k+1 � � � �k�2;K
�k�1; 1 �k�1; 2 � � � �k�1; k�3 �k�1; k�2 0 �k�1; k �k�1; k+1 � � � �k�1;K

0 0 � � � 0 0 0 0 0 0 � � � 0

0 � � � 0 0 �k+1; k 0 0 � � � 0

0 0 0 �k+2; k �k+2; k+1 0 0
...

...
...

...
. . .

. . .
...

0 0 � � � 0 0 0 �K�1; k �K�1; k+1 � � � �K;K�1 0

:

VI. A NALYTICAL PERFORMANCE DERIVED FROM THE

LATTICE PARAMETERS

We now compute an analytical bound for the system gain by studying
the structure of the embedded lattice constellation. For simplicity rea-
sons, it is assumed that all users are synchronous and that the mul-
tiple-access medium is an ideal AWGN channel. The point error prob-
ability Pe of a cubic constellationS is approximated by [4]

Pe �
� (�)

2
erfc

3�

2�+1
Eb

N0

(�)

where� (�) is the first shell population number (kissing number), erfc
is the complementary error function,� is the number of bits per two di-
mensions,Eb is the bandpass average energy per bit. Thefundamental
gain (�) is given by [8]

(�) =
d2Emin

vol(�)2=K
(12)

for a K-dimensional lattice with minimal Euclidean distancedEmin

and a fundamental volumevol(�). The fundamental gain, also known
as Hermite constant [6], is equivalent to the normalized Euclidean
distance of a trellis-coded modulation [2], and gives its asymptotic
signal-to-noise ratio (SNR) gain. IfGGG is the generator matrix of�,
vol(�) = j det(GGG)j. The energy ratio(�) stands for the gain of
� when the integer lattice K is taken as a reference. Recall that
( K) = 1 and that(�) depends only on the lattice structure. When
the constellationS is not of cubic shape, the total gain(S) is equal
to the product of the fundamental gain and theshaping gains(S),
where the latter depends on the constellation second moment [8]

(S) = (�)� s(S):

Let kbbbk2
cube

be the second moment of the integer constellationScube
obtained from the concatenation of theK users’ symbols. Letk~xxxk2S be
the second moment of the constellationS. We assume thatS andScube
have the same volume. Thus, (9) becomes

~xxx = bGbGbG= j det(GGG)j

and a simple calculation gives the formula of the shaping gain

s(S) =
kbbbk2

cube

k~xxxk2S
=
K � det(GGG)

Trace(���)
: (13)

Now, let us study the simple case of a synchronousK = 2 users
system. We assume that user 1 has unit amplitude and user 2 has am-
plitude! � 1. The cross-correlation coefficient is denoted� 2 [0; 1].

Then, the cross-correlation matrixRRR and the generator matrix of the
associated lattice are

RRR =
1 �

� 1
and GGG = D!WD!WD!W =

1 0

!� ! 1� �2
:

The CDMA system performance is compared to that of a reference
system defined by a constellationSo. This reference constellation is
cubic shaped and corresponds to the ideal case of two orthogonal sig-
natures(� = 0; d2Emin = 1); we have

(�o) =!�1

s(So) =
2!

1 + !2

(So) =
2

1 + !2
: (14)

Finally, the total gain0(S) of the CDMA system is defined as the ratio
of (S) to (So)

0(S) =
d2Emin(1 + !2)

Trace(���)
: (15)

The lattice minimum squared distanced2Emin can be determined by1

d2 = min(1; �2 + !2 � 2�!�)

where� is the nearest integer to!�. Thus, we can write

Trace(���) = Trace(GGGGGGT ) = 1 + !2: (16)

From (15) and (16), we get a simple expression for the total gain of the
multiple-access system

0(S) = d2: (17)

Consequently, as long asd2 = 1, there is no global performance loss
in our system. In other words, the joint detection shows a zero loss
in performance for small and medium values of the correlation coeffi-
cient. The theoretical gain in (17), expressed in decibels and illustrated
versus�, will be compared to the effective gain measured by computer
simulation in the next section. This theoretical gain is equivalent to the
asymptotic efficiency of the DS-CDMA system [16].

VII. SIMULATION RESULTS

In a first scenario, the sphere-decoding algorithm has been applied to
jointly detect four and seven users in a direct-sequence SSMA system.
The signatures are Gold sequences with period7 (spreading factor
= 7). The first user has a fixed transmit power. All other users have
equal transmit power and we vary their SNR to observe the near–far

1We would like to emphasize that in some exceptional cases, e.g.,� close to
1:0, the distanced may not equal the true minimum distance
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Fig. 4. Synchronous system: four users, BPSK modulation, SNR1= 7 dB, three iterations for PIC hard detector.

Fig. 5. Synchronous system: seven users, 16-PAM modulation, SNR1= 19 dB.

effect on the first user. The results are compared with those of a PIC
detector with hard cancellation and a decision feedback MMSE joint
equalizer. At the first iteration of the PIC detector, the contributions of
interfering users are successively subtracted from the received signal
by decreasing order of transmit power, which is not necessarily the op-
timum order. In the following iterations, parallel interference cancella-
tion is performed. The total number of iterations is three.

Consider a model of synchronous transmission with binary phase-
shift keying (BPSK) modulation on a Gaussian channel. Fig. 4 depicts
the ML performance of the sphere decoder. It is very near–far resistant
compared to the PIC detector. The performances of different users are
similar contrary to those of the PIC which depend on the cross-correla-
tion values. For user 4, we observe a 5.5-dB gain for the sphere decoder
with respect to the PIC detector.

In Fig. 5, with a 16-PAM modulation and seven users, the sphere de-
coder outperforms the DF-MMSE detector. An exhaustive ML detector
would have to compute164 = 65 536 metrics to detect each point!

Tables I and II compare the complexity of the sphere decoder with
that of the exhaustive search when both perform an ML joint CDMA
detection. All users transmit 16-PAM signals with the same transmit
power equal to 19 dB. The average complexity of the sphere decoder
has been measured by counting all the operations executed in our simu-
lation program. The lower the SNR, the larger the variance of the com-
plexity. The search radius has been determined from Rogers bound.
A further reduction of the number of operations can be achieved with
the Lenstra–Lenstra–Lovasz (LLL) algorithm [5], [11], especially in a
near-far effect situation.

To illustrate the relative low complexity of sphere decoding, let us
consider a synchronous system with 63 users using 16-PAM modula-
tion and spread by a factor63. Two sets of spreading sequences are
used. The first set contains 63 Gold sequences of length63. The repar-
tition of the nontrivial cross-correlation absolute values is:17=63 (12
occurrences),15=63 (17 occurrences),1=63 (3876 occurrences). The
second set contains 63 highly correlated purely theoretical sequences
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Fig. 6. Synchronous system: 63 users, 16-PAM modulation.

Fig. 7. Asynchronous system: four users, BPSK modulation, SNR1= 7 dB, three iterations for PIC hard detector.

TABLE I
COMPLEXITY OF THE JOINT ML DETECTORBASED ON THESPHEREDECODER(WITHOUT LLL) FOR 16-PAM MODULATION. THE SEARCH RADIUS IS

DERIVED FROM ROGERSBOUND

of length63. In the latter case, all nontrivial cross-correlations abso-
lute values are equal to21=63. All users have the same transmit power.
In Fig. 6, performance results with both sequence sets are depicted
versus the SNR of all users. Although the system is highly loaded, the
single-user performance is reached with Gold sequences, whereas a
low degradation of 0.5 dB is observed at an average bit-error rate (BER)

equal to10�5 when using highly correlated sequences. This shows that,
even with highly correlated sequences, the ML performance is near the
single-user performance, i.e., the multiuser efficiency is close to1.

Let us now consider an asynchronous multiple-access system. The
time delays are 0, 2, 4, and 6 chips for four users. The results are rep-
resented in Fig. 7. It is clear that the pure ML detector based on Viterbi
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Fig. 8. Asynchronous system: seven users, 4-PAM modulation, SNR1= 11 dB.

Fig. 9. Synchronous system gain: two users, 16-PAM modulation.

algorithm has the lowest error rate. However, the combination of sphere
decoding and interference cancellation still outperforms the PIC de-
tector. Fig. 8 depicts the BER with a 4-PAM asynchronous system for
seven users and a spreading factor7. The system has a full load. The
sphere decoder has the best average error rate because its worst user is
well protected. The DF-MMSE detector exhibits a relatively large dif-
ference between the performance of the best and the worst users.

Finally, we represented in Fig. 9 the theoretical global gain given by
(17) in Section VI for two users with an SNR difference�SNR= 0
and 3 dB. This gain is compared with the one derived from computer
simulations. As predicted by information theory, the bigger�SNR is,
the higher the gain is! In fact, the strongest user has a negligible ef-
fect on the global BER. Thus, the global gain is roughly related to the
weakest user. The latter is less sensitive to cross-correlation variations
since its error rate is higher.

TABLE II
COMPLEXITY OF THE JOINT ML DETECTORBASED ON EXHAUSTIVE SEARCH

FOR 16-PAM MODULATION

VIII. C ONCLUSION

In this correspondence, we proposed a new joint detection technique
based on lattice (sphere packing) decoding using the sphere-decoding
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algorithm. The algorithm is optimal in synchronous systems and ex-
hibits excellent performance when users are asynchronous. The algo-
rithm may jointly detect up to 64 users which is a practical limit for the
complexity of the sphere decoding [18]. Indeed, in the worst case, the
kernel of the sphere decoder has a complexity proportional toK6 [7].
Furthermore, the detection complexity does not depend on the modu-
lation size and largeM -PAM orM -QAM constellations can be used.
We also derived a theoretical gain analysis where the performance is
derived from the lattice parameters. The sphere decoder is clearly more
complex than linear joint detectors, but its complexity gain is signifi-
cant versus the ML exhaustive or Viterbi algorithm, especially for large
modulation alphabets. The use of such modulations could be suggested
to increase the spectral efficiency of DS-CDMA mobile radio systems.
For example, in the European UMTS standard, the combination of sev-
eral services belonging to the same user makes the final modulated
signal behave like a large alphabet signal.

Finally, the authors would like to indicate that the sphere decoder is
applicable to any communication system satisfying a constraint similar
to (3). This includes multiantenna and multicarrier systems.
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Upper Bounds on Empirically Optimal Quantizers

Dong Sik Kim, Member, IEEE,and Mark R. Bell, Senior Member, IEEE

Abstract—In designing a vector quantizer using a training sequence
(TS), the training algorithm tries to find an empirically optimal quantizer
that minimizes the selected distortion criteria using the sequence. In
order to evaluate the performance of the trained quantizer, we can use
the empirically minimized distortion that we obtain when designing the
quantizer. In this correspondence, several upper bounds on the empirically
minimized distortions are proposed with numerical results. The bound
holds pointwise, i.e., for each distribution with finite second moment in a
class. From the pointwise bounds, it is possible to derive the worst case
bound, which is better than the current bounds for practical training
ratio , the ratio of the TS size to the codebook size. It is shown that
the empirically minimized distortion underestimates the true minimum
distortion by more than a factor of (1 1 ), where is the sequence
size. Furthermore, through an asymptotic analysis in the codebook size,
a multiplication factor [1 (1 ) ] (1 1 ) for an
asymptotic bound is shown. Several asymptotic bounds in terms of the
vector dimension and the type of source are also introduced.

Index Terms—Clustering algorithm, empirically optimal quantizer,
training sequence (TS), vector quantizer.

I. INTRODUCTION

The codewords of the vector quantizer (VQ) codebook are elements
of k-dimensional Euclidean spacek, and the VQ design problem
can be described as finding a set of codewords ink such that length
k source sequences can be efficiently represented (i.e., a sufficiently
small number of codewords) with an acceptably small average
distortion (a statistically appropriate distribution of the codewords
throughout k). LetF be a distribution function,k be a fixed integer,
andk � k denote theL2 norm on k. The optimal quantizer design
problem for F is to find a codebook that minimizes the average
distortion defined by

D(C) := min
yyy2C

kxxx� yyyk2 dF (xxx) (1)

over all possible choices of the setC in Cn, whereCn is the class of
sets that containsn points. Let the sets inCn be called thecodebooks,
where each codebook hasn codewords. LetC� be an optimal codebook
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