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ABSTRACT

In the present thesis, we have investigated
the lattice dynamics of the following III-V compounds:
gallium arsenide, gallium phosphide, indium antimonide,
indium phosphide:and aluminium antimonide on the basis of
both second neighbour ionic model and shell model of
Kaplan and Sullivan. Results have been presented for
the dispersion curves, vibration spectra and Debye tempe-
ratures of the above mentioned compounds. The two models

have also been compared in the light of these results.
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CHAPTER I

INTRODUCTION

Semiconductor Physics owes its origin to the charac-
teristic conduction properties of germanium and silicon. In
recent years, the properties of a number of other semiconducting
substances have been investigated. These other semiconducting
substances mainly consist of III-V, II-VI and I-VII group
compounds. The importance of the III-V group compounds was
first demonstrated by Welkerl’ 2. He showed that apart from
having semiconducting properties they have very close relation-
ship to the semiconductors of the fourth group elements.
Actually, his observations of the new important characteristics
proved to be a link between germanium, silicon and compounds of

II-VI and I-VII groups and it is possible to know the main pro-

perties of IIT-V compounds from those of neighbouring substances.

A good amount of work has been done on the band
structure; optical, electric and galvanometric properties of
III-V compounds. However, relatively speaking, lattice dynamics
and thermal properties of these compounds have received less

attention. Insufficiency of available data and the suitable
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choice of a theoretical model can be assigned to be the reasonB.

A majority of III-V compounds crystallize in zinc~ -
blende lattice, which is similar to the diamond lattice for a

monatomic substance,

In 1912, Born and von Ka:c'man)+

published a theory of
lattice dynamics for central force interactions between the

nearest neighbours, A 2-constant theory involving radial and
non-central forces between the nearest neighbours in crystals

of diamend type lattice was given by Born (1914)5. The elastic

constants in this kind of interaction satisfy closely an identity

bepy (egg = e ) = (egy + "12)2 (1.1)

where C1p cM+ and cy, are the three principal elastic constants,
This is a necessary though not a sufficient condition if the

first neighbours are important.

A 3-constant theory was given next by Smi'bh6 and by
Nagenclranat.h'7 independently, which took into account a central
force interaction between the second nearest neighbours in addition

to the central and angular force interactions between the first
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nearest neighbours, Smith's theory was applied to germanium
and silicon by Hsieh8 (corrected by Dayal and Singhg). Hsieh's
calculations nevertheless failed to account for the experimental
results particularly for the frequencies of transverse acoustic
modes of short wave length limits where the discrepancy amounts
to 70%. It has been shown by Brockhouse and Iyengarlo (1959)
that it is not sufficient to introduce the second neighbour

interactions to explain the experimental results on dispersion

11 12

curves of germanium, Herman™ and Pope™" showed that it is

necessary to use a five neighbour model to fit the dispersion

13

curves of germanium, Braunstein, Moore and Herman considered

a force model in which they considered all the forces for the
nearest neighbours and only the angular force for the second

nearest neighbours, They applied this model - Angular force

model to germanium and found that the frequencies in the Brillioun

zone boundaries can be obtained within a good limit of approxi-
mation. But they did not calculate the phonon dispersion curves
and Debye ©., It should be noted that in this model, the model

of Smith, the second neighbour force constants and v are taken



to be equal,

The Shell model originated by Dick and Overhauserlh,
and developed by Cochranls’ 16 and Cowleyl7, and largely equi-

valent Distortion dipole formulation by Tolpygols’ 19

ard his
group have led to more realistic treatment of the lattice

dynamics of these substances.

Cochran regarded each atom as composed of a core of
charge Z coupled to an oppositely charged shell by means of an
isotropic spring of constant k. He assumes four types of nearest
neighbour interactions - core-core, core-shell, shell-core and
shell~shell interactions, To keep his model as simple as
possible Cochran considered only two force constants to be
assigned for each type., One is associated with radial force
and the other with the angular force., The formulation of dipoles
by the lattice wave gives rise to electro-static forces throughout
the crystal, This interaction includes all neighbours and re-
quires no extra parameter., This model has been used with éonsi-
derable success to account for the dispersion curves and specific

21)'

heats of diamond (Dolling and Cowleyzo, Blanchard and Varshni

T AR AR
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silicon (Dollingzz) and germanium (Dollingzz).

So far, we have considered mainly the lattice dynamics

of the monatomic substances having lattice structure like that
of diamond. A majority of III-V compounds crystallize in the
zinc blende lattice. For investigating the lattice dynamics of
these compounds one must realize that the bonding is not purely
covalent, but belongs to a certain intermediate type between
covalent and ionic, thus the ionic contribution to the lattice

23

vibration in these compounds should not be overlooked (Potter

Sirota and Gololobovel).

2%

For ionic lattices, Kellermann (1941) has shown that

the long range coulomb forces contribute a major part in the

’

interaction. Expressions for the coupling coefficients due to the

coulomb forces in the equations of motion were given by him,
The numerical results shown by Kellermann were on NaCl lattice
but they can be easily converted for diamond and zinc blende

15

lattice in a way suggested by Cochran™ .

Merten26 (1958) and Srinivasan and Rajagopal27 (1959)

gave theories on the lattice vibration of zinc blende structure
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in which they included both the short range forces attributed

to covalent bonding and the long range coulomb forces for the
ionic part., Their results were not in satisfactory agreement
with the experimental values, One of the reasons may be their
assumption that the second neighbour forces are central and that

Zinc-Zinc and Sulphur-Sulphur interactions are equivalent.,
These compounds do not satisfy Born's equation and

Born®s ratio

(1.2)

deviates from unity as can be seen from Table I on page 53,
Thus it is well understood that a simple central force model
will not be sufficient to explain the lattice dynamics of these
compounds .,

The next simple model that can be considered is one
similar to Braunstein, Moore and Herman's model for germanium,
Attempts were made with this model on III-V compounds but it was

found to be unsatisfactory,

b4
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Tolpygo and his group28 tried to explain the lattice

vibrations in such crystals with the distortion dipole model but

he needed more parameters than the experimental data available

to him,

Kaplan and Sullivan®dimplified the model of Cochran in
the light of Tolpygo's work and also used similar parazeters.,
They considered the core~-core, shell-shell and core-shell inter-
actions similar to the rigid ion interaction and for which ex-
pressions similar to Smith can be found. They haveléaleulated
the frequencies in [100]  directions for gallium éfsehide;fi

indium antimonide and alluminium antimonide.

Recently, on a similar model Dowling and Cow-ley20 (1966)

have calculated the thermodynamic properties of?géliiﬁm,arsenide
and compared them with experimental results. Thej wgr§ ab1e to
obtain a very good fit for the dispersion curves, Thié model‘
involves a large number of parameters and can be successfully
applied only to those compounds whose dispersion curves have been
measured. Amongst III-V compounds, dispersion curves have been

measured only for gallium arsenideBo.
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In the present thesis, we have investigated the lattice

dynamics of GaAs, GaP, InSb, InP and AlSb, firstly on a second

neighbour ionic model (SNI model) and then on Kaplan and Sullivant®s

model (KS model). SNI model is a general force constant model

with the force constant matrices for first neighbours as

= B B
B = B
BB « (1.3)
and for the second neighbours as
A, 6. O
i i
-ﬁi Wy Yy i=1,2

We_have taken the two parameters y and v to‘be equal in
ccncurreﬁce with‘the central force modélrof'Smith and angular
force model of Braunstein, Moore and Herman, The long-range
coulomb fordes1are also taken into consideration in view of the
ionic bonding present in III-V compounds. This model has only
a limitedvnumber of parameters which can be determined from
elastic constant and inffa red data. Thus it is possible to

apply this model to those substances for whom dispersion curve
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measurements are lacking but zone boundary frequencies are known
from infra-red measurements, Results are presented for the dis-

persion curves, vibration spectra and Debye temperatures,

Next, we consider the model of Kaplan and Sullivan,
After a few necessary changes we calaculated the thermodynamic
properties as before on'the basis of the\paramétens ' given in
their paper. We assumed Z to be zero when choosing a particular
set of parameters from the different sets given - mainly for the Q‘
simpliéity”in compuﬁatioﬁ. Comparisons of the results obtained :

from ONI model aﬁd KS model with experimental results are also

made,

"t



- 10 -

CHAPTER II
THE SECULAR EQUATION FOR THE SECOND NEIGHBOUR IONIC

MODEL OF THE ZINC BLENDE LATTICE

We shall divide the interaction in two parts

A) Mechanical part

B) Coulomb part

As we have said already, the binding in the case
of III-V compounds is of a certain type intermediate between

covalent and ionic, The mechanical part is due to the covalent

bond and Coulomb part is for the ionic,

We shall now derive the MECHANICAL PART of the

secular equation:

v e AT A i sam sovears

—
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1. General Harmonic Lattice Vibration Theory

Born and Begbie31

developed a general force treatment
and it was applied by Smith to diamond lattice and considerably

improved by Merten when applying to zinc blende structure, We

would briefly describe the formulation.

Let us consider a general lattice structure in which
there are n particles to each cell. Distinguishing different
particles in the same cell by index k¥ =1, .,... n and taking
any cell as the reference, we label different cells by /

) 12, 13). Thus a particle in general lattice can be specified

(1

by 1 and £,

If we represent the total potential energy q; of a
lattice as a function of the displacements of the lattice par-
ticles from their positions of equilibrium, we can form its
derivatives with respect to the component of the particle dis-
placement u_ (i),(m-component of the displacement vector of
particle (%), «=1, 2, 3). Small vibrations of a lattice are

controlled by the second neighbours:



.12 -

223 i @(%E?) (22)

d u, (%) d us(%')

0

The symbol on the right is due to the fact that the second deri-

vative depends only on the relative cell index 1 -~ 1t and not on

1 and 1' individually. Denoting the position vector of a lattice
particle (%) in the equilibrium configuration by ?F(%), the

complex solutions of the cquations of motion are of the form?
1 . JREREC S 1 ‘
UG) =V(K) exp (2md g W) - i wt) (2.2)

-
where 1 (X) is a constant vector depending only on K. CU is the
wave vector in the reciprocal space. For a given ﬁ]the circular
frequency w = 2 m v 1is determined by the following secular

equation:

| M (K?') - o by, bog =07 (2.3)

o (3) g T oo

(2.4)

2

the summation being over all integral values of ll, 1%, 13 and m,

and m,, being the particle masses, 8e and 6&5 signify Kronecker
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delta, e.g.

by = é() it 1] g (2.5)
Equation(lf})is a 3n degree equation in wz. Restricting our-
selves to positive roots only we will find that three of these
roots - the acoustic branches - tend to z€ro #s ‘§3~ 0 and the
remaining 3n - 3 roots;-‘the‘pptical branches, tend tolfinité
limits as ?1'5*0 'tﬁef ?irst _:order Raman spectrum of the lattice
(notvgl1 v§1ﬁes of Eﬁ correspond to mutually distinct solutions
as shoﬁn,by-Bofn32 (1923) the choice of the possible wave vectors
shoﬁi& be restficted by "cyelic lattice condition™),

Y
©.© ~ 'The elements of the matrix @@as (lKK,l ) are related

through the symmetry of the lattice in the following way:

.i  ~:A symmetry operation of the lattice can be expressed
as a trénéformation matrix T, and if (;) is some other lattice |
point

FE) =1 F(Y) (2.6)

The elements will then have the transformation law

A
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L -L% o 1.1
where T is the transpose of T and the change of indices {%) is
/

obtained from equation (2.6).

2. STRUCTURE AND GEQMETRY OF ZINC BLENDE TYPE LATTICE

The III-V compounds whose lattice vibrations we are
investigating crystallize in zinc blende lattice, In this kind
of lattice each of the two types of ions occupy the sites.of a
face-centered cubic lattice, the cube side having a length 2a,
The second such lattice is displaced along the body diagonal of

-

the first lattice by one quarter of the cube diagonal ( L%? a).

The three basis vectors that define the rhombohedral parallele-

piped unit cell are

g, = 20,1, 1)

i

@, = a1, 0,1 (2.8)

a, a (1, 1, 0)

and thus the volume of the unit cell is 2a3.

i

AN I 1O A AN 1RNAAN



Fiqure 2.1: _Structure of zine blende lattice

rigure (2.1) represents the lattice structure of zinc

blende. The black circlevrépresents the atoms of type I and

lattice I and white circles represent the four nearest neighbours.
of and are in lattice II.
The atoms of lattice I are located by the vector
= o+
B (n) = [ny ny) £+ (ng +ny) & ¥ (ny + n3) _?3]'
(2.9)

The quantities ny, 0, Ny are integers and _@i, e, and .eb are

anit vectors parallel to x, y and z oxes respectively.

AAVLLCD A ALISIIALIINGO
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Lattice II is said to Le generated by displacing first

lattice through a displacement rl' 2
|
" = - é
Py 2 (e + e+ ¢ (2.10)

(the negative sign is choser ir conformity to Cochran and

Kellermann).

Thus the location of the atoms in lattice II is given

by

_
—~
)
1

R R ST (2,11)

ol

v 1 ; \
[(111+n3‘ 2) el +(nl+n2' / 82+
. +n -3 e.la (212
R 3 2 3
The transformation laws in this lattice can be sum-

marized by the following matrices:

1, Threefold axis of rotation:

T, = 0 0 1 (2,13a)

L WAAVILLO H4O MISENJ
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2. Planes of reflection:

[0 1 0]
T, = 1 0 0 (2.13b)
(0 0 1

n

3. Rotation through 5 about an axis through the point (%, %, %)

parallel to x3—axis followed by a rotation through g about an

axis through the same point parallel to the xl-axis:

[0 -1 0]
T3 = 0 0 -1 (2.13c)
1 0 0]

n

4. Rotation through >

about an axis parallel to the xl-axis
through the point (%, %, %) followed by a rotation through g

about an axis through the same point parallel to the xz-axis:

% b
0 1 O
Th = 0 0 -1 (2.13d)
tl 0 0

5. Rotation through % about an axis parallel to the xz-axis

. u
through the point (%, %, %) followed by a rotation through 3

s asmra s~ s~ A ARCMIIAL
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about an axis through the same point parallel to the x3-axis:

0 -1 0]
T5= 0 0 1 (2,13e)
L-l 0 OJ

3, DYNAMICAL MATRICES AND ELASTIC CONSTANTS (MECHANICAL PART)

If we apply the transformations (eq. 2.13) on the
force constant matrices we can show that they should be of the
form given in expressions (1.3) and (1.4) of Chapter I for

nearest and next nearest neighbours of two types respectivelyx.

The elements of the dynamical matrix in the reciprocal

space can be given as (in Qs Gy 9, space):

¥

% Herman has pointed out an error in Smith's treatment of next
nearest neighbour force constants, The error amounts to the
neglect of the parameter 6, which is, in general, non-zero.
This was due to an error in the choice of the transformation

matrices,
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=t [« +1 {1-cosm g cos T q,!}

+ R - ~
by { cos T g cos T qy cos g, cos ﬂqz}]

Vi _ &
M'yy(KK = -ng [°¢K + A {1 -~ cos nqz cos m qx}

i {2 - cos l'rqy cos mq, - cos ﬂqy cos ﬂqx}]

AN _
M (KK —-I-L;; [<==K + XK {1 - cos rrqx cos ﬂqy}

+ e {2 - cos mq, cos Mg - cos 7q, coS 'nqy} ]

(2.14)
L) S . ) %)
Mxy (KK) = n (v sin m q, sin @ qy] = Myx (KK
0 (D) - . . o, (9)
Myz (KK = n [vK gin T qy sin T qZ] sz Kk (2.15)
() s . . _ ﬁ)
sz (KK> = EE [ve sinmq sin® qx] =M, ek
M (ﬂ))_ —_— Moo+ +)+ex1i—(q- - q
o o] Tt Ty ) ey (g g

MM s

+expg—i (qy- qy - qz) +exp-g}- (q, - 9 - qz)]
(2.16)

where « =X, ¥y,

Y

)

—earasr i~ v~ \\ﬂ\le\LIJ
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| =. P m m
‘%W{\) = [exp 5 (q, +a, +q,) +exp == (q,

'
»Q
=
!
2

mi i
- &Py (qy " G - qz) - &P _%'(qx-qy'qz)] ) M'yx <;2>

+q) - ‘expﬂ—zi (1, - ay -]

VA
h Cl‘)
l%yéz

: qj) B i

mi T
- exp 5 (g - o = q)) + e F (g,-q-q,)]

? ﬁ) = B mi m
o (12 T [exp 5 (ay +a +q,) - e (g, - q - g
M s
m mi . _ q}‘
tewy (qY Gt q) - e (qx-qy-qz)J T Txz \12
(2.17)
N {3
Mg (21 =M 12 (2.18)
%
where Mia (12 is the hermitian conjugate of MOEB {12 . Kk can

be either 1 or 2 depending upon the type of the lattice particle.

The equations (2.16 and 2,17) are different from the
similar matrix elements of Smith, which are incorrect since a

factor exp %% (qx + qY + qz) is left out in her paper27.

Thus, if we know the direction and assign particular
values to the parameters we can calculate the normal mode of

vibrations for that direction in the reciprocal space.

o

—AAAIY YA 3 1 11ENTAIRO J
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Next; we try to find a relation between the force
constants and elastic constants. According to Born; one can
deduce the relation between the coupling parameters and the
elastic constants by taking the long wave length limit of the
acoustic branch of the lattice vibrations, If we develop the

terms of the equation of motion

W U (k) =Z Cog {K?“) oW (KT) (2.19)
K9
where
U -8, (3402
Cg (;cn? =¢a3 e\ 'V‘KK' (2,20)
as

>

(2.21)
The first three terms on the right hand side of eq.

(2.21) have the explicit form

e (3) 100
(1) (“U) .oy

Kice

o(2) (?{)

n
1
1 SY

KK?®

Ceg (1‘?9) = ¢lo) (KT7)+ (1) ‘@Jﬁc cf2) (:}?J .

M

WARVYILO 3O ALISHIAINND
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Equating terms containing like powers ofﬁ; on either side of

equation (2.19), the equation of motion can be approximated as

gl (W) L) () 4 0,y o (Wh, -0 (22)

prt B pr? 8

(L m) w? Y. =L 2\/’_0 (},J ’!}(l) (k?)

KK?8 B

+L me LZ) (ov)’l}ﬁ (2,24)

0
Kic? KK

(1) (k7

Eliminating 1} ) between the equation (2.23)

and (2.24); we can write

4
o v ) @«a (@) 1, (2.25)
where f=-l—2 m_is the density and =% B, X3, = 2
. ’ yand ¥, =2 .8,x3; =2
ak

is the volume of the unit cell (eq. 2.8).

We compare equation (2,25) with the equation for the
amplitudes of elastic waves in elasticity theory and find that
the @;B (q) are related to the elastic constants in the

following ways

VMVILO 2O ,uxsa;/uNnJ
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Wl%n (a) [ ] 2
11 ‘<9 €11 %66 ©55 ©S65 Cs51 €16 Ay
®‘ (q) c 2
22 2/ 66 S22 CSu, C24 °u6 €62 Ay
®~ (q) | c c c c c c 2
33 55 Su4 ©33 43 35 5L 4,
%n vaA B c c c Le.+¢,) L (c + cag) = (c + cop) 2 q.q
L 65 21, 43 2 '©°23 4’ 2 (s 36! 2 lcg, 25 y %z
' 1 1 1
55 () °s1 %46 ©35 7 (%45 * C36) 3 (e31 ¥ cs5) F legg *ocqy) 2 9z %
AV (q) {: c c c 3 (c + c..) 1 (c + cq,) 1 (c + c. ) 2 :
i 66 ‘9 16 62 “s4, 2 ‘Ceés 25’ 2 ‘%56 1’ 2 12 66 i 9y aw;
1 " | |

1)
«~
|

(2.26)
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Proceeding in a way similar to Smith*, we obtain:

[~ X -~ — o -~ 2 'f]
4311 (q) A B B 0 0 O q
! 2
@22 (q) B A B 0 0 0 q
! 2
@33 (q) B B A 0 0 O a
- L
Qo @ 2 1o 0 0 c¢c 0 0] |2qa
b 4 vz
7 4
(1355 (q) 0 0 0 0 C O 2 9,0,
?
Cb (q) 0 0 0 0 0 ¢ 2 9.9
- 66 - L_ J L X7 o
(2.27)
where:
A=t by +hu,
2
B=o-~=+2 (ul t gyt A ot xz)
_1 B
C=358 (2-2) +2 (vl + vz)

% Tt should always be kept in mind that there is only one
kind of particle in Smith's treatment whereas the two kind

of particles in zinc blende lattice has different masses.

o
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The elastic constants can thus be given as
ey = g (<t b+ ko)
11 =~ Za Hy TR M2
a2
oy, = plEmS 2l )+ 2 (uy + )

¢, = 7z 12 B2 (x1+x2) =2 (up o) +h (v+v,)}

(2,28)
B) Coulomb Part

We now include the terms which arise from the
electrostatic interaction of units within the crystal, Since
every atom situated at the lattice points can be considered
as an ion and in two neighbouring lattice points, the ions
are of different polarity we can consider them as dipoles.
Thus the crystal field can be assumed to be a field of dipoles.
In the similar manner if we consider Cochran shell model we.
can see that the relative displacement of a core and a shell
produces a dipole which in turn exerts some influence on the
other units of the crystal. The forces exerted due to these
dipoles and their effective contribution to the coupling co-

efficients were shown by Kellermann in 1942,

YAMVLLO JO ALISYIAIND J
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He has defined the Coulomb coefficients in his
work for NaCl lattice, Cochran has appli.ed this definition
to diamond and we can extend it to zinc blende lattice,

From Cochran®s paper it follows that

2) 22 2 3
= -Z2"e” lim ——

(2.29)
—_—

c = 2% lexp (i 3. v, . Uy _Vra ~

g 12 T "2 s RO TRy

3

(2.30)

e have used a slipghtly different notation with the abbreviation

— —
N

SRR ; (2,31)

Modifying for tre zirc dlende lattice, we can write

SRV I SPRR +«11; b +1,)
= a (1)() ny

where ).{ = 2l

and _ﬂ +%, 23+!21+%,Ql+02+%)

=a (M, my, m) (2.32b)

where imx = 2N + %

L,) (2.32)
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The reciprocal vectors are given by

1
b, - %= (-1, 1, 1)

o
n

1
b =5 (1, -1, 1)

e
b - 1,1, 1)
thus a vector in reciprocal space is:

1
bh = 55 (hythy=hy, hothy-hy, by shooh)

where hx’ hy, hz are either all odd or all even. Since

b1+q2 by +q b3

=L (q.+q.= +q, - +q,.=Q, )
28 q2 QB ql’ q3 ql qg) ql q2 q3

=2 )

we now give Kellermann®s formulae for Coulomb coefficients

(for zinc blende lattice modifications)

For ﬁ? =0

¢ 2; _ hm
2 o:{K’_Béc:B

For other directions q/#tc

i7e

(2.33)

(2.34)

(2.35)

(2,36)

A
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Va 3. . 8
2%2 °c«a("q")) = oglin) + Hg(D) + g o
Ja . (% .
7%e? CC«B("‘) "o () - H )
where
(he + 9 )(hg + q) 2 ..
G(Kh)=uﬂz e - L (h +7)?
5 - 3 +ﬁj)2 exp 4e2 +9)°]
T (b +q)(h, +q)) 2 s
Cog12) = b 7 L =P exp [ T (R Y)Y
h (h +9) Le

exp (im (hx + hy + hZ)

(2.37)

—_

11
=8 exp (i fr?l)\.k)

KK

Heg (1) = 22 (£ (1) b + &8 (1)
1

(( i = 0) excluded)

(2.38)
- 2,2

_ 2 exp (=e"X) y (ed)
£ (L) =R 32 12 + l3

L4 3 2.2 . 6 £°6) 3 ¥(e)
g(l)—ﬁe exp (-1 +7-ﬁeexp (12 + 13€ (2.39)

{ €

¥ (ed) =1 '{%JO exp (- 52) d& (2.40)

with A = [Tl = m (2.41)

These equations only hold for 7174:(0, 0, 0) should be remembered

for numerical calculations.

WMVILO 4O ALISHIAIND
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., Dynamical Matrices and Flastic Constants For SNI Model

The dynamical matrix can be written as a combination

of the mechanical and Coulomb part.

Cop (ee) =1 (ko) “Cog (o)

B

where we slightly change the notation by saying Ty (K%') as
o

q
the contribution from the mechanical part and C«B (kK?) as

the dynamical matrix element.

Thus we can write the dynamical matrix as

CAANVLLO 4D ALISHIAINSG J



“ (INTVERSITY OF OTTAWA

1 1 1 1 1 1
= c__ (,2) = c__ (3) =c . ;%) == C__ (1) c.. (%) C E
m; "xx 11 Xy 11 m, "Xz vV m m, XX 127 ..IumnliE“_. > Xy 12 J\ EHB.N. Xz AHNV
1 q 1 q 1 1 1
= c__ (&) —=c__ () —=c__ (1) c 1 c E c 9
m, yx 11 m Yy 11 my "yz 11 N mym, “yX Au.nmv JﬁlE..u.uBN vy A”_.Nv {SHEN vz AHNV
1 q 1 q 1 q 1 q 1
—=c__ (%) = c__ (1) =c__ (;3) ==—==c__ (1) c.. (L) _~—~—c_ (2
my C2X 11 mng, Czy 1l my "zz 11 V4 m T, zx 127 f mm, ~zy 127 -/ mim, "2z Hmv
1 s (2 1 cu q 1 q 2 q 1 q
,mﬂsﬁ:mﬂ Ex (12) T, T ﬁww:l.hlnsr xz (12) m,, Cxx (,2) m, ox% (23%) mﬂ Cxz Ammv
. 1 . 1 1 1
s ( q ) \1 s — C a — C q — C q
_ L\I\HEN 12 my I, v /\HH 2 Nv m, "yXx Ammv m, "yy Ammv m, Yz Amwv .
A
S 1 1 q 1 1 q .
| Je, Vax (13) ,\ulll.. C%y v/\“ Cip (13) my Cax (22 m, Cay (22) n, Czz (22) |

This matrix is hermitian and hence it can beé easily diagonalized to obtain

the characteristic frequencies.

R n e e e e R B D TN R e B AL INEGT O [ S TR i i e st b s e €
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The expressions for the elastic constants (Blackman

1958)33 can now be given as:

R 2 (& + 4 uy + 4 u,)
_ 7 e 1 2
C., = 0,1255 +
11 2al* 2a
22
_ et 1 .
Cqp = -1.324 2a4 + 5 (2B ~x=2 (Al + Az)

-2 (“l + }-‘2) + LI’ (Vl + Vz)}

c =-00632‘Ee—2- +-—1-[o:+2(k +A,) +2 +')}
bl : 2ok 28 17 Hp T Hp
-4%/3
2 2
where A=2.519-Z-e—5-~%
22 a

oo
n

. 22
(e 41 £2) /227
6a

;
:
A
g
2
0
]
0
;
$
>
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CHAPTER III

KAPLAN AND SULLIVAN!S MODEL

This model is basically a shell model and hence
it can be summarized by saying that the interactions are
due to core-core @C-); shell-shell (S3) and each of the
two types of core and shell interactions. There are sepa-
rate second neighbour mstrices for the two types of atoms
in the unit cell; ana for cach of these there are core-
core, sholl-shell; core-shell and shell-core interactions,
The shell charges arc-"{1 and Yziand the core charges are
w and m,. o The total ionic charges are

~

21 o ,_7"}- + ,;"'31: Zg = :Xz * ‘YZ

(“5s¥sg SHELL
SHELL
(accf Bec )‘\>.coke
4
(csc’ﬁsc?::::; :
(qcs’ﬂcs)

Figure 3.1: The most general nearest neighbouy she}l
model for zinc blende structure vibration
showing the force constants and charges.
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Charge neutrality requires Zl + 22 = 0, The constant kl and
k2 represent isotropic coupling of each core to its own shell.
With the parameters of KS model specified we may follow the
procedure indicated in the previous shell mode115’ 16, 17
calculations in order to find dispersion curves for different
directions in the reciprocal space and expressions for various
Earameters of interest. The shells and cores are treated as
separate degrees of freedom; but since the shells are mass

less the equations of motion for the shells do not add
additional branches to the vibration spectrum, These equations
establish a relation between core and shell displacements

and thus serve to eliminate the shell displacements from

the core equations of motion, while simultaneously introducing
the shell polarization effects into the core motions, We

will write down a few important formulae here without going

to more details:

The dispersion curves are obtained by solving

g (G, wer) = of (T, 3) by Sl =0 (3.1)

YAMVLLO SO ALl/>S3
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where 'q'jis the wave vector, j is the branch of the vibration
spectra, « and B are cartesian indices, and K and k' are
indices corresponding to the different cores in the unit
cell, The relative amplitudes of the various cores in the

normal mode q)’ , J are obtained from the equations.

g, 3) o, (6) =quM°‘B(%; k) wi(st)  (3.2)

wz(

The time dependent core amplitudes in a normal mode are

0 (6,1) = ()2 e (2t G (R() 4706 - Jup ()3
(3.3) i
3
and the shell amplitudes are ?,
ui (k,1) = -exp {2 T 717 [R(1) +%x(K)]- iwt} ¥ (3.4) g
>
where
- 1/2
re L 0% ey 685 () ug (1) / () /
ViBykyy (3.5)

where X (1) +X(t) is the undisplaced position.of a core or
shell at the Kth site in the Jth unit cell, [The matrix
elements M g (717, ke?) of KS model and C g (K?{,) of SNI model

are of the similar form and also the secular equation,but since

we are considering the two different models the two secular
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equations are taken separately.] The matrix elements MﬁB

o .
(9, kk?) are given by

o = -1/2 ;.cc
MGB(O[),KK') = [M}tMK?] / {Cm[5 (KK?) - ,6,% ?:;? (KKl)
Y’ H l) 2
SS
Dyg (F1Fy) Cpg (K567 (3.6)
where
0SS = (Css)-l

and the C matrices are given by

o (k1) % exp (2mi 3, (X (11) + X(k7) = X(1)
S X(6) ). Qg (217 651)

(3'7)

with similar expressiops for Cig (kxe), Cig (kk?) and Cig (kKY),

VMNVLLO A MIb'a_—:NNJ

Here the d)'s are the force constants connecting the indicated
degrees of freedom, Note that the first shell or core super=
script belongs to the particle k and the second with particle
kt, It may be pointed out that these dynamical matrix elements
are the same as in the SNI model except the force constants
will be different for core-core, core-shell; shell-core and
shell~-shell interactions, Thus the elements should also consist

of Coulomb interactions, Keeping this in mind one should try
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to write down the elements of the dynamical matrix. The
parameters for this can be evaluated, Once, the parameters
are known if we follow Kaplan®s notations we can expand the

constituents of the dynamical elements in the following way:

The matrix Cig (kk?) can be written in a similar
manner as in SHI model (eq. 2,14 to 2,17) with the same

kind of parameters.

R R IR T R T e T ek RIS e Pt P 2
203 70RO TR R T et RIS G e A I el e BT e e e

For Cig (kk*) we must remember that it can be ex-
panded as
;.88 Ss :
i Cog (KlKl) Cog (Klfcz) .’
CS_E (kK?) =i : (3.8)
« }

i ~S8 ss ;
| Cag (655) g (FfR)

i.e., in a combination of four 3 x 3 matrices. For the first
matrix Cig (lel) the force constant < (as in Kaplan), =, in
s
o

8s . ss "
Cma (KZK) and G/h and H%h in both C“B (&1K2) and COCB KAy )

21
should be used., It is useful to remember that the matrix is
hermitian.,

Similarly, for the matrices due to the shell-core

. X s¢ cs
and core-shell interactions, we have Caﬁ (kk?) and C“B (kK?)
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which can be given as

/ \
[o%f tryry) 055 tigeg) |

6% (k1) | (3.9)
c5 (k) OF (eg6))

\ K
and '

/,-"'
f CES (kg6 ) ng (kyK,) \

Cp (Kk7) = (3.10)
\.cig (k5 ) i: (k.. j

i.e, combinations of 3 x 3 matrices. Obviously, Cig (KiKi)
and C (K K, ) are the same whereas C (K ) and CﬁB ( )
are complex conjugates of C (K2 1) and ng (lez) respecti-

vely.

These two matrices are not hermitian but it can be

showed that the product of the three matrices
Cc; (kk®), Dig (kk®) and ¢5C (kk?)

is hermitian (see Appendix I) where Dig is the inverse of

SS

=8 (kk?) and hence will remain hermitian. -

C
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-
The matrix M«B(GU , kk?) ig difference of
two hermitian matrices,. hence will remain hermitian and

can easily be diagonalized,

7
E. .
n
9
2
-4 H
D
-
)
3
oby .
€
»
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. CHAPTER IV

THE SECULAR EQUATIONS FOR THE SPECIAL DIRECTIONS

Ye would like to show the method of solving the
secular equations in the special directionms for both the

models,

In SNI model, it has been seen that by teking
into sccount the Coulomb interaction, an effective charge
e is postulated on the ions., The coupling coefficients

now consist of two parts - -

c . {,&; (2.42)

q
o (ko) =T . (..xqiﬂ) - “’Cﬂa _

o
When we are cdnsi&ering’KS rodel, it can be

shown very easily>that fhough thé individual dynamical
matrix elements will be different, the general pattern,
i.e. the symuetry, zeros etc, will have the same form as
SNT model. This ig due to the fact that the individual
matrix elements of core-core, core-shell and shell-shell
follow the same pattern as that of SNI model and the way

the matrix equation (eq. 3.6) is set up the general pattern

O A AL EHANES T

VNVIi
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will be retained. The following treatment thus can be

applied for both the models.

The dynamical matrix can always be written as:

’ .
! \

j q qy *
[ (1) Mg (1)

My () = | . (4.1)

* q qy §
Wi () Mg )
. .

q ' ;
where M g (11), etc. are each 3 x 3 matrices.

We consider only two special directions in the

Brilliouin zone, namely [100] and [111] directions.

If we also take into account the tables of
Kellermann's coefficients in Cochran's paper, we can
easily find the dynamical matrix elements.and the secular

equation thus can be written for the special directions:

[100] direction:

The secular equation in [100] direction can be

shown to be as follows:

PN VLLY, A ALI> T3 i



21iggn
arrg where
- and

o <
3*

o

i H] I L]

fl

manipulations

Wk

X

N 1)
Mo () = ¥y )
¥y
Mo (1)
i, )

P q
I'lyz (12)

By interchanging the rows

it

11

ke XK U.‘2 WX UY

i
v 0 0
1
0 W )&
0 X W
/
S 0 =Q (4.2)
,T.
0 Uy 0
"
0 0 bz
‘- 2
and S, = 5, - @ (4.3)

(lb‘h)

and the columns and after other

W-X Ui WX

=0 (4.5)
2

>

PNVLILY A AL)OTAIGiYE s
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and hence

2 2
U, +U 0,0, . '
‘1 2 1772
wg = 5 + (-Ah??--) + W+ XI2 (L .6)
+ o '

Since |W + XI2 = |¥ - Xiz, we will have

(4.7}
:r2 = r'z
and ,.J3 .ML

- ~

Out of these four different roots of w‘; wﬁ are the longi~
tudinal vibrations and gﬁ are the transverse vibratiocns,

Each kiad of vibration will have the optical and the acoustic
branches., This will depend upon the choice of positivg or
negative sign in the right hand side of equation (4.6) -

the positive sign gives the optical branch and the negative

sign gives the acoustic.

[111] direction:

The secular equation for [111] direction has the

expression:

!'v
YMVALD S ALISEEIESES J
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D= W 4y 1
Uy =N (ll),Uz— -

N

W

1t

1}

q )
Me 1) Ty

and =7F §

“,3 =x: Y’ Z

after the usual manipulations:

W-X

jt,=- ¥V

WX
I W
I 3
i, T
T, U
T
oY, =0, - o
=i U
= Mg (3}

q - g
M_ (12), X=MN, (12)

)

gti+2
3 W+2X

V., W+2X

V.

| VOISV, S LTSGR
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and similar to eq. (4.6)

U..V. WV \/'U-V TV °
2_ 11 "2 °2 11 272 2
up = t= ok ( = - = )+ |W-X|

2
(4.11)
: ¥ Z
U, +2V, U,V U,+2V, U, +2V
2 _ 1 2, 22 171 2 71 2
= =y + 5=t (== - =3 )+ |W+2X|
These two kinds of vibrations again, will have
the optical and the acoustic branches depending upon the
choice of sign in the right hand side of eq. (4.11).
Next, we must show what happens in SNI model at )
3
the [000] point (T) in the Brillioun zone, the frequency E;
3
<
at this point is the Raman frequency of the lattice: 3y
n
34
2 4 1 1 3
(TR == 3
wT = (l+ = E_ x) (ml + mz) :=
and (4.12)
o = (4 =+ x) (-—- + -—-)
L '6' m,
2.2
vhere X = te
2

Thus we have all the information for calculating

the parameters from the special direction values.
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The expressions given in Kaplan and Sullivan®s
paper (eq. 9) can easily be shown to follow from the

determinant (eqs. 4.2 and 4.8)%,

¥ It may be mentioned here that there appears to be a

misprint in the expression (9e¢,d) of Kaplan and Sullivan;
the correct expression is
)2

+ 4 R? rvzlzurz]l/ 2

)2 _ SMi + SMé S [(SMi - Qﬁé

2 MiMZ

u(Tl,T2

FOIVOVALNS T\’ FOBIO SIS 230 6 "~
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CHAPTER V

DETERMINATION OF PARAMETERS

In order $o determine the parameters for SHI
model, we first of all take the Raman freguencies and

estimate the values of = and X

= li= - B x) )™ ‘

= (4= + %E x} (m)™

L
2

FaM)
VOTD VLAY . Feur | FRAFISIAS 657 TF&

(5.1}
X =5 (uf - &)

Next, we use the zone boundary frequencies in the

direction [1003 to calculate the other parameter_s

3 ,
S S S-S,

2—_3.:.3......\/71 .:.',‘2

‘”1.‘2'2‘42]'3‘ (5.2)

but since V = 0 in SNI model for this special direction,

2
Y10 ©
) (5.3)
Urp =

“
N
o
%
s
Yo
ER
£
£
b3
i
g
.
&
&
3
i
¥
;
3
4
‘I.
:
i
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where my ( m,, as longitudinal optic frequency should be

greater vhan the longitudinal acoustic frequency.
Considering Kellermamn ccefficients, we can write
=k .
59 ) (= + 4 My * 0.5k125 x)

S2 = hié- (m + l‘, uz + 0-51-!'125 x)

and thus
2
Y Yl PRYTI
-.2 (5.5)
21 MY
My =% (-—Z- - =~ 0,54125 %)

The choice of these frequencies to determine the
parameters is two fold. Firstly; their values are known
fairly accurately from the available experimental resulté
on ITI-V compounds and secondly; their simple relationship
with the parameters, We have deviated ourselves from the
usual procedure cf finding the parameters from the elastic
constants, instead, the parameters are obtained from the
zone boundary frequencies and the elastic constants arc

the restraints on their values.

o

e
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We have found the approximate values pf B; kl and
xg from the three elastic constants i.e. from their relation;
ship with the parameters. Once the approximate value is
knowm, they are substituted in the equations for the trans;
verse optical and acoustic branches of the frequencies in
(1001 direction., We readjust their values slightly so that
the frequencies are accurately given by the parameters.

Next, these parameters were substituted in the equations

for determining the frequencies in [100] direction.

In the KS model with Z = 0, Kaplan found the
values of his parameters from the elastic constants, piezo-
electric constants and total and electronic polarizabilities

as is given in his paper. They are as follows:
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5 C ("1*‘*“szcl+‘f°‘sls 2*“-89':::;01"‘“31%)/ T
w, = (K they o the 'Q;“ %x')ﬁz
2 2%%,0,%%,8, 5,0, "5 092
8 = I WSS + gslcz + =3201 + c:cc)
g = b {iggt 331’33 % vsz‘"‘l + Bog)
g =kl t <3s//T3
g, = Al ” “ss!/%2 j
= hligg * ‘ass}/gl
hy = hlbgg s55/%) ..
9= bsflnyy)
1
e b oagfnyyy)
Fori=1, 2 |
o= b éusisi +2 “Sici * ucici)
o= hOgs 2 o)
Neo= b (vsisi + 2 8,6 * vcicl)
K, = b (usici + “SiSi)IYi




n. = L (v + Vg a )
i SlCi SiS.//&
2
= by Y
}Cl Sisf/ i
2
= LA Y
421 Sisf/ i
- 2
i 4"s.s./Yi
i"i
These parameters can be found from the following
equations:
2 -l-G+0252/ + K, +K
114 172
20, = 5 H = 3 6 - 2.64 8/ + N, - 1 +1, 48 +K)
12 7 2 4 : 2 A )

1 2
220, = L-G+—§(L +L,+K +K2)'0‘1221/v+10'01"21 G]h/a

Z, 2 :
+{1 - 5‘——) 7 (25,2 (-;}) = - %},

where

B=G (“1“2" 92) + 81 (829 - zgl} + gz {glg - clgz}’

and

b = BE (==m GF) 4+ 2 [ny(Gymmyy) + by (Gopmogy )]

+2 b, (ge- G o) w2 (e g ?) + n? (apeg)

- /3] [6lny#hy)? + &, (8hy2)% + « (B + h2)?

+2§ (H-hy ) (H41,2, ) #2, (b +hy) (b g,=h ) )-2(g, +6,) (g +h, )]

ek y R

[XXERR L A A
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e, = (2a/¥) 11 = (0/3v) T (B/4B - 2,50 s Bg/¥],

where

E= ZlEH("lug‘gg)*‘hl( :‘ 82‘“2gl)+h2( ggl" ng) ]'*'(“2"5) (-Hgl'*'hlG)
+{o +G) (b, Gelig, ) +(g) ve,) (-hy g thog) ) |
r.:e = (<.'1+c:2+2 }/(c:lczz- % 2] :

s, = (1/B)[Zi(uiz2- 92)+2 Zl(gz(ml+3 )-gl(¢2+5))+G(“i+“2+25')

- (g1+gz)2] §

'
Thus, all the parameters can be estimated nume- i

rically for different substances and they can be used to

calculate the dispersion curves, frequency spectra and

A ¢ e N AP I T

specific heat of those substances.
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CEAPTER VI

WUMERICAL RESULTS AND CALCULATIONS

Before stating the values of the parameters
we have found, we must provide the experimental results
which have been obtained in the past years for the III.V
compounds. Table I gives the lattice constants, elastic
constants and Born®s ratio of these compounds and the

source from which the results are taken. Table II gives
the zone boundary frequencies.

With the help of the experimental results of
Table T and Table II, we have calculated the parameters
of SNT model given in Table III.

We have not calculated the parameters of Kaplan
Sullivants model but quoted the parameter for which 2 = 0

from his paper. These are given in Table IV.
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fable I_ '
Zlestic Constant Data | C T
T ey - -’\i'.
Compounds Eizgggit( Elastic.Constants IR |
| N ﬂ K
C Q P Born's .
11 12 § "L irati ‘
SLevEL 4° units of 10+ dy:ws/cm2
o Gallium a v 4D :
» ) Arsenide 5.65357 1 11.81°} 5.32 | 5.94 Q-945
CELOUOCENICD
2dnalenon .' Gallium 5 Ll'soéa 13 75 f' "n 4 81& 0 9
i Phosphide ) C.2 0. by ;
SRR ';}
{ Indium a znd R o s
ace o | hnzinonige | 04789 | 6677 ) 3.65 | 5.02 | O.5L L
3\"
1
Ingium - | a e : y
. Aluminium a £ .. = -
T At monide 6.1356% | 8.9397| 4.427 | 4.155 | 0.957
|
N z) Ciesecke, G. and Pfiéter, H., Acta Cryst., ;;, 389 {1958;. .

o). Garland, C.W. and Park, X.C., J. Appl. Phys. 33,
757 (1962)

c; Estimated here.
g) Slutsky, L.J. and CGarlend, C.¥., 2hys. Rev. 117,
167 (1959).

-

e) Bolef, D.I. and Menes, M., J. £ppl. Phye., 31,

1426 -(1960). .. -
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Sets of theoretical parameters‘of SNI moaéiwforf :

~different=TIII-V -compounds. £l1 parameters are

given in the units of 103 dyn/em.

Com=
pounds

o
X

« B M. My Vl'»“i) : FX‘

Gals

39,5254 34,0 | 1.187].3.697 | b5 | <h.5 {3.286

InSh

573964 3500 | 3.574] 1202 2.0 |15 05

30,555 | 295 | -1.512] 6.532-} 3.0~ |- 1.0} 2.938




Table IV
h mmﬁm of theoretical parameters of KS model for the different XITwV compounds.
All parameters are given in the units of 104 dyn/cm.
—.Gosﬁozﬁmm -y “, K=K, [bg =L, ZHHZM. G g gy
: GaAs Sl | 1L.4.88 ~0.5 o 0 30.78 5.55 11.63
insb 8.305 h.152 ~0.5 -0.5 0 21.37 {+7.L7 +3 .41
ALSD .82t | 9.642 | ~0.5 o] 0 | 25.92 |+6.41 A7 b5
— T e 8 T — s 8 L YLt W 4 4 I St G - . -
o)
N\
i 13 <
Compounds Ge” H h.e h,e mw . k,e k, e
2 RISASREESR AN ] ¥ U- N UA N
Gahs 2.3 20.45 5.21 10.41 1.18 1.2 | -0.61
InSo 2.31 13.43 +2.56 0.67 -0.55 +0,.53 | ~1.8L
ALSDL 2.3 15.38 +6 .14 +9.43 1.50 4+0.56 |+0.80

i
1 ¢ 1
¥
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1. Dispersion Curves

Once the parameters are obtained, we substitute .
these parameters in the expressions for -dynamical metrix.

glements and also we can always insert them into the ex-

pressions for special directions ((oo) and (si€) for
different values of ¢ and we will find the dispersion

curves given by the following figures (6.1} to (6.10):
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Tizure 6.1:

Dispersion curves for gallium arsenide in [(00] \

direction. Solid lines denote curves for SHI
model, broken line for XS model. Experimental
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... and transverse by 0. . .
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2. Freguency Spectra

Dispersion curves for special directions can
be calculated quite easily since the 6 x 6 matrix which
we have to solve for the roots of the secular equation
simplifies. But in order to find the frequency spectra
we must be able to solve the secular equation in any
arbitrary direction., The essential problem is the dia-
gonalization of the dynamical matrix. In the case of
3 x 3 matrix, we can find the roots and that means we
can diagonalize quite easily but for matrices of higher
rank we have to depend on numerical techniques. One of
the methods of diagonalization is Householder?s method
(AppendixII) which is essentially for symmetric matrix
but can be converted to Hermitian matrix too (Blancharch).

IBM 360 computer was used extensively to do the various

parts of the numerical calculations.

In order to find g (v) for all these compounds,
the reciprocal space was divided into miniature cells

with axes one fortieth of the length of the reciprocal
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lattice cell, Vibration frequencies were calculated
from the roots of the secular determinant for 1686-1

= 1685 wave vectors in the 1/48 of the first Brillouin

z0one.

The point zif= (0, 0, 0) was left out because
of equations (2.36-2.40). Each point is weighed according
to the number of points equivalent to it by symmetry.

The total number of' points in the whole zone was thus

403-1 = 63999; and that of the frequencies 192000-6 =
191,994. The vibration spectra were then constructed

using Blackman®s sampling technique. The calculation on

IBM 369 needs 2 hours to calculate the dynamical matrices
and to diagonalize in order to give the roots of the

secular equation for all these number of points (see
Appendix II for Block diagrams and Flow charts). The
vibration spectra thus calculated are given in figures (6.11)

to (6.18) for different compounds.
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3. Obtaining Debye D Curve ¥

The specific heat at constant volume is given

by

C, = 3R J "e) g {vidy (6.1)

_hv
where X = KT

and

J gwdv=1 (6.2)

LT RSVRATT ST L

the equivalent Debye temperature 8 was calculated from

these equations and they are given in the fig. (6.19) to (6.23). .
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CHAPTER VII

DISCUSSIONS

Except for gallium arsenide, other III-V
compounds considered here have only a limited amount
of experimental data available. Thus, the results
must be discussed more for the general behaviour of
the theoretical model than for the quantitative agree-
ment with the experimental results. For gallium
arsenide, sufficient data on dispersion curves are
available. A reasonable amount of data is also
available for Debye & of these compounds. Ve discuss
mainly the following four aspects:

1) The choice of the parameters in consi-
deration of their satisfying the elastic constant
equations and obtaining the dispersion curves.

2) Frequency spectra.

3) Debye € curves

L) Suitability of the two theoretical models

chosen in terms of their explaining the experimental results.
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. Before discussing the results for individual
compounds we would summarize the general features of the

various results obtained.

Dispersion curves:

'”TheAgeneral characteristics of the dispersion
curves follow ffom the Harmonic lattice theory. Except
in KS model for iﬁdium antimonide and aluminium antimo-
nide, the acoustic branches increase continuously from

zero at fOOO]of the Brillouin zone to the zone boundary

11

[100] and [5 3 %]. In the optical branch, the frequencies

decrease as we go from [000] to either (100] or [% % %],

but the relative amount of decrease is smaller than that

for the acoustic branch. -

Frequency spectra: “
" on ‘the basis of the Debye theory of specific

2 put,

heat, we should expect g (v) as proportional to v
in general, it.ié not so and we have for all the compounds

a complicated relation between g (v) and v. There are

two general properties of the frequency spectra which is

S i e e e T TSR I S TR R L e a4y et

o R T EUTN BTN
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common to all these compounds. Firstly, there is one

major pesk which is mach higher than the other peaks

_and this lies near the optical zone boundaries and

secondlj, there are £w0‘maiﬁ regions where most of the
frequencies are stacked. The high frequency peak arises
from the optical frequencies, iost of the optical fre-
quencies do not change appreciably with the change in
the Brillouin zone direction and thus g (v) at those

frequencies become very large.

Debye & curves:

The experimental results of Piesbergen38 show
that the general shape of Debye € curves for III-V come
pounds are of the same nature s € curves for silicon

and germanium (Morrison39 et al). If we start from the

lowest temperature, € first decreases to a minimum,

then increases to a flat meximum and finally decreases .

slowly. Hermonic theory requires that & should increase

' asymptotlcally with temperature to & constant value €y

' This decrease in eD is to be associated with an anharmonlc

o RETEYT 1 -GNV I\
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effect of a type which cannot be explained by change
of volume alone.

Ludwigho (1958) hes carried out an extensive

theoretical study of the effect of anharmenicity on the

properties of crystal lattices. He proposed an additional

term in the heat capacity which is directly proportional

to the absolute temperature.

Gallium Arsenide:

e have seen, .that out ¢ all the compounds we
are considering, gallium arsenide has the maximum amount
of available experimental data. The elastic constants
are well determined experimentally by ultra-sonic pulse-

echo technique and the dispersion curves are also known

for specific directions from neutron scattering experiments.

Thus it is really the best example on which the models
proposed can be examined.
Referring to figure 6.1 and 6.2, we find that

the dispersion curves for SNI model in both [E00] and

[ge€] directions are in good agreement with the experi-

1
4 A

1

;
1
.h
2
J
]
:1
N
u
3
y
]
t
L]



- 88 -

mental results except for the transverse acoustic branch
which has a 10% variation. For XS model the optical
branches of the curves have very large discrepancles but

for acoustic ones the fit is reasonable.

Next we come to the frequency spectra (fig.
6.11 and 6.12). For SNI model, the peak of the spectra
is around 8.0 cPs which is within the limits of error of
the same peak obtained by Dolling and Cowley, and the
general shape is also very similar. KS model gives the
peak around lo.d?cgs and a gap in the frequency spectra
between 6.8 cgé to 7.7 cgs which are both very unlikely

from experimental findings.

For Debye € curve (see fig. 6.19), we find
that the agreement with the experimental results at low
temperatures is reasonable but at high temperatures; due

to anharmonic effects, they do not tally so well.

Indium Antimonide:
The dispersion curves are not measured for this

compound and hence we only give a qualitative discussion.
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We find a good fit-in the zone boundary
frequencies (see fig. 6.3 and 6.4) for SNI model and
the shape of the curves are as expected. For KS model,
the acoustic branches resemble well with SNI model but
the optical branches are mich higher and different from

the experimental zone boundary values.

There is a sharp peak at 5.5 cgskin the
frequency spectra for SNI model (see fig. 6.13 and 6.14).
This peak is shifted to 6.6 cgé in XS model which does

not seem reasonable.

For SNI model the behaviour of Debye € curve
(see fig. 6.20) at lower temperatures is similar to that
of gallium arsenide but at higher temperatures, experi-
mental &y decreases rapidly, thus the deviation increases
with temperature. It seems that the anharmonic effects
in indium antimonide are more dominant than that in
gallium arsenide. KS model does not improve the deviatién

from the experimental results.

. ————p ¢ Sa. &t S 4 e e S M3 el S S SR
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% Throughout this discussion, by cbs, we really neant a
eduency or lO12 cycles per second for brevity.
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Aluminium Antimonide:

The state of things in this compound are
almost the same as in indium antimonide. The dis-
persion curves obtained from the two models in both
the directions (see fig. 6.5 and 6.6) are similar to

InSh.

Frequency spectra from SNI model has a peak
1 . 12
at 8.7 cﬂs and a gap between the frequencies 5.6 cps
to 7.8 cgs. KS model gives a peak at 11.5 cg% and a
gap between 5.3 cgs to 10.5 cgs which is again unlikely

(see fig. 6.15 and 6.16).

Debye & curves (see fig. 6.21) based on SNI
nodel coincides well with the experimental data at lower
temperatures but fails at higher temperature. KS model
gives a good fit at lower temperature but is away at
higher temperatures.

Indium Phosphide:
Except for the dispersion curves, all the other

experimental data are available now. But the calculation
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of the paremeters and Debye @ was done with the help of

an estimation of the elastic constants since the elastic

constants were not available until very recently.

For SNI modei, the zone boundary frequencies

have a good fit in both directions (see fig. 6.7 and 6.8).

The frequency spectra has a peak at 9.0 c%s.

The theoretical Debye € curve is in dis-
agreement with the experimental results. It seems that
the zone boundary frequency assignments from the infra-

red spectra are not correct.

Gallium Phosphide:

;
i
:;§
:
s

In this case, elastic constants or Debye €data

are not available except for the zone boundary frequen=-

cies. Hence’the elastic constants were estimated. The
zone boundary values in [EEE] direction coincide rea-

sonably well with the experimental results.

N 2
The frequency spectra has a peak at 10.6 cps

and it resembles very much the frequency spectra of Gahs.
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The shape of the Debye € curve is similar to that of
other compounds considered here but since experimental
data are lacking, justification for the theoretical

model cannot be emphasized.

Comment_on_the two theoretical models

In SNI model, there is some disagreement in
the zone boundary frequencies obtained in [eEe] direction
and also inthe elastic constants obtained from the para-

meters chosen. It seems that the assumption p; = Vg is

not completely satisfactory.

In general, Kaplan and Sullivan's model quali-
tatively follows the experimental results but the quanti-
tative agreement is poor. We have seen that the disper-
sion curves for the acoustic branches obtained from K5
model are not very different from that obtained from SNI

model but the values for the optical branches are signi-

ficantly different.
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For the ffeqﬁency spectra, KS model, shows
the peak at a different place than the frequency ex-

pected. Secondly, the gap in the range of frequencies

is also larger than expected.

Debye € curve obtained from XS model has
similar behaviour for very low temperatures but for
higher temperature it is very different from the experi-
mental values. The reason for this discrepancy lies in
the choice of the parameters, The parameters in their

paper should be recalculated.
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APPENDIX I

In order to show that the matrix in the second
term of the right hand side of eq. {3.6) is hermitian we.
will show that for a 6 x 6 matrix of similar form as- eq.

(3.6), the product will be a hermitian niatrix’..:_ ' _ e

The matrices of the form -

» E *
A c /A G
cs . sc . D . 0SS =
gy = s C7 ; D77 = G : r
b B \C B
: (a1)
where B are 211 3 x 3 matrices.

\

\0 BN\ F/\C B :\§E+BG D"G"+Brkc B

w

.| DEA+BGA  DED*BGD
DGC+BFC +DGR+BFB o
We :'findv that (AED+CED+A€B+CBF ) is the Cc;mf)lex.;. |
conjugate of (5EA+BGA+66C;"BFC)
This can also be shown for matrices of 6 x 6 order

by expanding in detail tae verms of the matrix.

e T
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APPENDIX II

It was found that the Jacobi method used to = - B
diagonalize matrices has a time problem even in IBM 360
and we had to resort to Householder method for determining

the Eigenvalues,

The following Block diagram illustrates the

scheme of caleulations.

Read in
the matrik

y
Reduce
6x6 to tri
diagonal fprm

1

Calculate the
roots from the
corresponding
Sturm's sequen¢e

ARG T UG S a6 7

Flow Chart 1
This summarizes the Householder's method. He
devised a simple rotation matrix which reduces a whole

row and column to triple diagonal form in one step.




-6 w

The post-nultiplication by I? reduces the row;

the pre-multiplication by i? the colum..

/
The first rotation R B R reduces the first

1

row and column, After four votations we get

e

0 €

CT b2 ¢y

‘ : ct b5 05

l_ ok b

w—

The eigenvalues are then found, using the corresponding

turm sequence Po, P1 ceny Pn defined as

Po =1
Pl = by~ X
P, = (or-x)-Pr_: - e, q CEy P2 (r=2,3, oy 6)

We illustrate the basic property of this sequence by means

of a simple exauple.

q
3
-
g
3
-
2
<
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Consider the 2 x 2 matrix shown below,

P0 = ]

P, =1 -x

1

P, = (1-x) P1 - (1) (~i) PO

=x (x - 2)

We wiri to find the eigenvalues of lgllsing Sturm's method.

Firstly take x = 3, we get

P0 = 1 +
Pl = =2 -
P2 = 3 ¥

The number .f shanges of sign is equal to two. The St

property says that there are two rcots smaller than x = 3.

Now trying x = 1/2, we get

Po= 1
P= 12
P2 = '3/h -

R

L]

»
"
j
?
7
»
2
(4
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There is one change in sign and consequently one root

1
smaller than 1/2. So we conclude 1/2 ¢ Ay ( 3. ?
. Characteristic polynomial P2(x)
! ositive
| A , Root K2 .
_‘._.._._...”-.,i,___._*._..4[/// e AL

{ negative

We now describe the bisection method whereby we can

. |

approximate_)\2 to any desired accuracy.
Bisect the hatched interval (A, B) = (1/2, 3)

to get x = 7/k. Checking the sign of the characteristic ‘

£

;meamﬁmwunim%mm.%wﬂmA=M+ ]
and keep B = 3. Bisect again to get x = 19/3, the cha-

racteristic polynomial is now positive, S0 keep A = 7/4

and let B = 19/8. In two steps we have found

1.75 ¢ A,y < 2.375  (we know that A, = 2)
Speed of convergence: once a root is isolated
between A and B, N steps of the bisection method squeezes

it within ¢ = (B - A)/2N. Taking B - A =1 and solving
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for N we get N = log €/log 2.

Binhop3 5 and '«Jilkn‘.mscm'iC give the formulae for

a real matrix only. The necessary modifications for a
complex matrix can be given in the following way. The

rotation matrix is of the form ’

R= I—- ;.lZZ K

where 7, is a column vector, the corresponding row vector . i‘/
being given by '
Z‘= (Zi‘, Z):', se o ‘, Z;::) ! : g

/ : il | i }:
and Cw=YZZ L (A.3) 2

We seek 2y, Zyy +ev » %y such that the zfotation matrix

will reduce the matrix B to t‘ridiagonal form 'by reducing

o whole row at a time, The necessary condition is

.20 p(BYL - (bl

3

where P{ B} denotes the first row of B

i.e. pLBY = oy 1 by e By

/ :
and where Z- (0, Zg» b1’3, o bl,n‘_)
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we seek 2, such that equation (A.L) is satisfied. We re-

write (A.4) as follows .
. / , .
WiBYZ=27 s ‘

{
' 1
|
!

quation {.5), when vritten in full, gives

+ hic Ve % = (g% 2 ooteee %
SO BT P W R RS

~(A.6)

/ .
Since Z:Z s real, the left hand side of equation (A.6)

-

e O RN e

is real, therefore

e, (A7)

wheré ¢ = some real constant. Using equation (A7) we
substitute z, back into equation (h,6) to get

I Y TN Py

2 (¢ + X°) =c + X

2 . (. bk . + b, b¥ )/b bk ,. Solving for
vhere x (b1;3b1’3 l,nt.)l,n)./ 1,2 1’2 &
c we get

c=14# \/1+7(. (A.8)
Since Z is now determined completely, the rotation matrix

is known and we can reduce our natrix B to tridiagonal form.
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th

We now write the formulae for the r' step of the process.

-

Let B stand for the reduced matrix.

|
-
|
.

Since we want ¢ 0 we select the + sign in
cquation (A.8)

n

[ .
- l Z br,r+2b;,r+2 / br‘,r+lb;:,r+l
j=r+l

0 | for j ( r+l o
‘ 1. 1/ 2 . - R
L= b 1411+ jfor = r+l : P
“ Tl ( X : o
b* | :ﬁ; R for j > r+l f“ o
r,J - S )

1/[2brr+1 ;.+11/1+X (/1+x2+1}].
"'Y=BZ
LY
s Y-umT
B.B-wz' - 7w’




CONTINUE
Y

Root within |4 -

B| ¢ 1070 ?_)

vy no

.

Bisect the interval |,
x = (A+B)/2

\

Calculate the
Sturm index 7(x)

yesY

Calculate the
multiplicity M

\

Label the roots A
k= 6:5:&-:" ’ 6-M

@’(—‘ Reset A and B

flowchart 2.

‘ r(x) <k+1
yes no
Let A=x| Y |Let B=x
| 7(x) = k+l
\

One root ?\k isolated
Bigsect (A,B) ten times

we geb

o AB
N within €= T

GS this the 6th Root

N

v \
no

PRINT ),

yes
1<=1a

102
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APPENDIX III

1) Kellermann Coefficients

Various tests showed that for the choice of ¢ =1

¢ -
N ] Y

the sums ; y L and L have to be carried out using 35, k2,
i m

109 terms respectively to obtain good accuracy. A program

was written in which

! 2
w)=5e-g &

0

was calculated by means of an approximation due to Hastingsa7. ‘.l

2) Calculations For SNI Model and K3 Model

The parameters and other relevant data were fed
in the computer and programming was done in the way shown
in the flow chart. At the output, we obtained punched
cards with different frequencies and their appropriate
statistical weight. These frequencies were sorted and cal-

culations were again carried out to obtain Debye tempe-

rature GD'
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. Read
Paraneters

N

nslculations
ol Matrix
Flements

Smith's
Coefficient

bttt asatt———r o=

Flow Chart III:

Diagonali~
_gation of
Matrix

Qutput

Kellermann®
Coefficient

¥ '
Punched |
Cards :

SNI MODEL
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Flow Chart IV

Read
Parameters

\
\Ticalculntionp ' _
7 T o o e cmmnenet
of latrix :
> M enents -
_J
Y

A 4 o

\ ' : T i
¢ P" o

‘ 1

' ‘Calculatijon Calculation '
oi' Shell- of Jore | e
| Core Int, Shell Ing. o i
Calc. of | | | Joales of | |
Core-Cor \ . Shell-
_Int. | Shell Intl.
Diagdnali- ; A
0y A zation of
Matrix /

Calc. of ] Calc. of
Kellermann's ‘ ' [Kellermann's
Coefficients Qutput |Coefficient

Munched
Cards
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