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Abstract. A simple model for the calculation of the phonon dispersion curves of the noble 
and transition metals is proposed. The model uses the concept of a rigid shell moving rela- 
tive to its nucleus to simulate the response of the d electrons to the nuclear motion, short 
range central forces for the interaction between the ion cores, and a screened pseudopoten- 
tial for the conduction electron response. The most general form of the model considered 
for fcc metals contains six parameters. three of which may be obtained from the adiabatic 
elastic constants and the remainder from a least square f i t  to the experimental frequencies. 
Preliminary applications of the model containing five parameters made for copper and 
nickel have resulted in fits to the experimental dispersion curves which are within 2 and 
2,5',;. respectively. 

1. Introduction 

From first principles, within the harmonic approximation, the vibrational energy of a 
system of atoms in a solid can be written as (Joshi and Rajagopal 1968) 

I/ = vii - Vie(€ - 1)/€ (1) 

or 

v = vii - vie + Vie/€ 

where the first term is the second order change in the ion-ion potential energy with 
respect to the displacement of the ions, the next term is the second order change in the 
bare electron-ion potential energy, and the third term (which is the second order change 
in the bare electron-ion potential energy divided by the dielectric function E) is the 
screened electron-ion potential energy arising from the interaction between the elec- 
trons. For simple metals, the atom is divided into nearly free conduction electrons and 
a well localized ion composed of the nucleus plus the remaining inner core of electrons. 
Under these assumptions, the ion-ion term is produced by Coulomb interactions 
between point charges, while the bare electron-ion term results from interactions 
between a conduction electron and the pseudopotential of an ion. 

The direct application of equation (1) to the calculation of the phonon dispersion 
curves of simple metals is difficult. The major reasons for this are a lack of knowledge 
as to how to treat the interactions between electrons which determine the dielectric 
function, and how to describe the ionic potential that an electron sees within the solid. 
The latter has been handled relatively successfully for simple metals by model potentials 
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based on first principles pseudopotential theory (Heine er a1 1970). In these calculations 
the ionic potential is parametrized. The parameters are obtained from experimental 
atomic spectrum energies or from other properties such as the elastic constants or the 
experimental phonon frequencies themselves. Because of the difficulties encountered in 
first principles calculations, considerable effort has been devoted to the development 
of phenomenological theories in which reasonable guesses are made as to the nature 
of the forces acting between nuclei (de Launay 1956). 

From equation (2), it is seen that the bare electron-ion interaction reduces the effect 
of the long range Coulomb interaction between the ions. Also, from first principles cal- 
culations, it is found that the electron-ion interaction reduces the ion-ion interaction 
to short range forces between ions (Harrison 1966). Furthermore, from Born-von Kar- 
man force constant models, it is found that only a few force constants between a few 
nearest neighbours are required to obtain a good overall fit to the experimental phonon 
dispersion curves of the simple metals, the noble metals and some transition metals. 
However, for a detailed fit, several more force constants (extending out to many neigh- 
bours in the case of some transition metals) are required. This indicates that, as well 
as the short range forces which reproduce the overall structure of the dispersion curves, 
there are long range forces of lesser magnitude present which produce the finer structure 
of the dispersion curves (Woods 1972). These long range forces are believed to result 
from the screened electron-ion potential energy term in equation (2) which reduces the 
effect of the bare electron-ion term on the ion-ion interaction term. 

Several phenomenological models have been proposed which attempt to reduce the 
number of force constants required to fit a phonon dispersion curve by phenomenologi- 
cally incorporating the long range effects of the conduction electrons. The best of these 
models is the one proposed by Krebs (1965). This model contains central forces between 
only a few nearest neighbours. For simple metals, the number of force constants in most 
cases is sufficiently small to facilitate their evaluation from the elastic constants. The 
model also contains the following expression to take account of the long range effects 
of the conduction electrons: 

where q is the wave vector, H is a reciprocal lattice vector, e is the polarization vector, 
E is the dielectric function (in the case of the Krebs model, the Lindhard dielectric func- 
tion), R,, is the Thomas-Fermi screening parameter, g(x) = (sinx - xcos x)/3x3, A is an 
unknown parameter which can be obtained from the elastic constants, E. is the Bohm- 
Pines screening parameter and R, is the Wigner-Seitz radius obtained from the unit 
cell volume. The expression in equation (3) with A equal to 4ne2/(vol unit cell) and i. 
equal to iTF is the Fourier transform of a screened electron-ion pseudopotential energy 
obtained by assuming a pseudopotential of the form (Joshi and Rajagopal 1968) 

Aelr r > R, 
A(3e/2R0 - er2/2R:) r < R,. 

V(r) = (4) 

This is the potential produced by a uniform spherical charge distribution of radius R,,. 
As in first principles calculations, the most questionable terms are the bare electron- 
ion pseudopotential and the Lindhard dielectric function. Krebs tried to improve the 
Lindhard dielectric function by using the Bohm-Pines screening parameter in place of 
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the Thomas-Fermi screening parameter. The Krebs model reproduces the phonon dis- 
persion curves of the simple metals (eg Na and K (Krebs 1965)) quite well. On compar- 
ing the Krebs model with equation (2), it can be inferred that for simple metals the first 
two terms of equation (2) are well reproduced by central forces between a few nearest 
neighbours, and the third term is reproduced by the expression in equation (3). 

The Krebs model does not give a good fit to the phonon dispersion curves of non 
simple metals, such as the noble (Shukla 1964) or transition metals (Hautecler and van 
Dingenen 1965). The reason for this is believed to be that the outermost d electrons 
are not rigidly bound to, nor nearly free from, their respective nucleus but are loosely 
bound to it. Hence, the outermost d electrons cannot be treated as rigid inner core elec- 
trons nor as nearly free conduction electrons. 

In recent years, several authors (Sinha 1969, Hanke 1973) have proposed treating 
the outermost d electrons as tightly bonded electrons. In these treatments, the d elec- 
trons are allowed to respond to the displacement of the ion cores. The secular equations 
obtained for the phonon frequencies can be shown to be similar in form to those 
obtained from the shell model originally proposed by Dick and Overhauser (1958). The 
earlier results of Sinha’s work led Hanke and Bilz (1971) to apply the breathing shell 
model of Schroder (1966) to some noble and transition metals. Their model contained 
seven parameters which were fitted to the elastic constants and four experimental fre- 
quencies. The resulting fits for the noble and fcc transition metals considered were quite 
good. More recently, Hanke (1973) has proposed a first principles approach similar to 
Sinha (1969) in which again the resulting secular equations are found to have the form 
of those obtained through the shell model. He has applied his model to the fcc transition 
metals Pd and Ni (Hanke 1973) and obtained a fairly good representation of the overall 
structure of the dispersion curves. In order to reduce the computational work, several 
approximations with regard to the d band structure and ion core potential seen by the 
d electrons were made. 

Based on the above results, this paper proposes a very simple model similar to the 
Krebs model, and using the concept of a shell for the response of the d electrons to 
the lattice motion. In the next section, the theory for the proposed model is given. The 
model itself is described in 53, and $4 discusses the application of the model to copper 
and nickel. 

2. Theory 

For a non simple metal, the atoms in the solid are assumed to be composed of three 
entities: the conduction electrons, which are spread throughout the solid, a shell of outer- 
most d electrons and the ion core (composed of the nucleus plus the remaining core 
electrons which are taken to move rigidly with the nucleus). Under this division, equa- 
tion (1) can be written as 

or 

where V,, is the second order change in the potential energy with respect to the displace- 
ment of the ion cores and is due to the interactions between the ion cores. v d d  is the 
second order change in the potential energy between the d electrons on neighbouring 
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ions due to a relocation of the d electron charge distributions. Vc, and Vd, are the second 
order changes arising from the interaction between the conduction electrons and the 
ion core and the d electrons, respectively, due to relocation of the ion core and d elec- 
trons, respectively. E is the dielectric function arising from the interaction between the 
conduction electrons. Vcd is the change in potential energy arising from the interaction 
between the ion core and its d electrons as a result of displacement of the ion core or 
redistribution of the d electron charge distribution. Since the ion cores are well localized 
the interactions between ion cores can be taken as Coulomb interactions between point 
charges. Due to the distribution of the conduction electrons throughout the metal and 
the finite distribution of the core and d electrons, the interaction between the conduc- 
tion electrons and the ion core or the d electrons can be considered as an interaction 
of the conduction electrons with the respective pseudopotentials arising from the ion 
core and d electrons. The interaction between neighbouring d electrons would contain 
two terms: a Coulomb interaction between the neighbouring d electron charge distribu- 
tions and an exchange interaction between nearest neighbour d electrons produced by 
the overlapping of the nearest neighbour d electrons. The exchange interaction tends 
to localize the d electrons by reducing the overlapping between neighbouring d elec- 
trons. The separation caused by the exchange interaction reduces the Coulomb interac- 
tion between the neighbouring d electrons by increasing their interaction distance. 
Thus, the exchange potential energy will reduce the Coulomb potential energy between 
neighbouring d electrons. 

The potential energy terms in equation ( 5 )  are dependent on the product of the dis- 
placements of the ion cores and the d electron charge distributions. Noting these depen- 
dences and reordering equation ( 5 )  the following equation is obtained 

The first three terms are analogous to the three terms in equation (2). Hence, these inter- 
actions should be analogous to those for simple metals. Since the Krebs model repro- 
duces the interactions for simple metals well, it should be correct to replace the first 
three terms in equation (7) with the Krebs model. The next two terms are similar to 
the first two for the ion cores except for the addition of the exchange effect in the Vdd 

term which further reduces the Coulomb interactions along with the term Vd, for the 
interaction between the conduction electrons and the d electrons. Thus, the two terms, 
Vdd and Vd,, should give rise to shorter range forces than the first two terms in equation 
(7). Hence, it should be sufficient to replace these two terms by a central force between 
nearest neighbour d electrons only. The screened interaction term between the d elec- 
trons and conduction electrons should be similar to the screened interaction term 
between the ion cores and the conduction electrons, since both are due to screened 
pseudopotentials which arise from the inner core electrons of the ion. Thus, the second 
three terms are assumed to be analogous to the first three and are replaced with the 
Krebs model depending on the d electron charge distributions relative to the ion core 
locations and containing a central force between nearest neighbour d electron distribu- 
tions only. The last term is the potential energy produced by the interaction between 
the d electrons and their respective ion core, and depends on the position of the d elec- 
trons and their ion core. If this interaction is analogous to the interaction in insulators, 
which leads to electronic polarization, then the results of the shell model calculations 
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on insulators indicate that the effects of this term can be reproduced by an isotropic 
force between the ion core and a rigid shell representing the d electrons. 

3. Model 

The following substitutions were now made in equation (7): 
(1) The first two terms are replaced by central forces between nearest and next near- 

est ion cores represented by the force constants, y1, x 2 .  
(2) The fourth and fifth terms are replaced by a central force between nearest neigh- 

bour rigid shells representing the d electrons around an ion core, and with a force con- 
stant denoted by S. 

( 3 )  The third term is replaced by the expression given in equation (3) multiplied by 
the product of the ion core displacements. 

(4) The sixth term is replaced by the expression in equation (3) with A replaced by 
A’ and multiplied by the product of the shell displacements. 
The negative of the force on an ion core can be obtained by taking the gradient of the 
potential energy given by equation (7) with respect to the displacement of the ion core. 
The negative of the force on a shell can be obtained by taking the gradient with respect 
to the shell displacement. 

Considering the case of a fcc crystal structure with longitudinal motion along the 
symmetric direction (loo), the following equations can be obtained for the natural fre- 
quencies of an ion core and its shell: . 

Mw’L‘, = -[8r,sin2(qa/2) + 4x2sin2(qu) + AG(q) + K I U ,  + K U ,  (8) 

mw2Us = -- [8Ssin2(qa/2) - A’G(y) + KIU, + K U ,  (9) 

where M and m are the masses of the ion core and shell, respectively, U ,  and U ,  are 
the maximum displacements of the ion core and shell, respectively, 2a is the lattice con- 
stant, w is the natural angular frequency, and q is the wavevector. On applying the adia- 
batic approximation to the shell, equations (8) and (9) can be reduced to equation (10) 
for the ion core motion. Applying the same reduction of the equations for the other 
symmetric directions, the following equations are obtained: 

(a )  Direction (100) 

Longitudinal branch 

M a 2  = - [8sc,sin2(qa/2) + 4r2sin2(qa) + K - AG(q)] 

+ K 2 / [ K  + 8Ssin2(qa/2) - A’G(q)] 

Transverse branches (010) or (001) 

Mw2 = - [4a,sin2(qa/2) + K - AG(q)] + K 2 / [ K  + 4s sin2(qa/2) - A‘G(q)] (1 1) 
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(b)  Direction (I 10) 

Longitudinal branch 

M u 2  = -4a,[sinZ(qa/2J2) + sin2(qa/J2)] - 4a2sin2(qa/J2) - K + AG(q) 

+ K ~ / { K  + 4s[sin2(qa/2J2) + sin2(qa/J2)1 - A ’ q q ) }  (12) 

Transverse branch T2 (001) 

M W ~  = - 8x1sin2(qa/2J2) - K + AG(q) 

+ K 2 / [ K  + 8SsinZ(qa/2J2) - A’G(q)] 

Transverse branch T I  (1  - 10) 

M u 2  = -4r,sin2(qa/2J2) - 4r,sin2(qa/v’2) - K + AG(q) 

+ K 2 / [ K  + 4 S ~ i n ~ ( q a / 2 ~ / 2 )  - A’G(q)] 

(c )  Direction ( I 1  1) 

Longitudinal branch 

~u~ = -8r,sin2(qa/J3) - 4r2sinz(qa/J’3) - K + A G ( ~ )  

+ K 2 / [ K  + 8Ssin2(qa/J3) - A’G(q)] 

Transverse branches (1 - 10) or (1 1 - 2) 

M u 2  = -2rlsinz(qa/J’3) - 4r,sin2(qa/3) - K + AG(q) 

+ K 2 / [ K  + 2Ssin2(qu/d 3) - A’G(q)]. 

These equations contain six unknown parameters. Three of these parameters can 
be related to the three elastic constants by comparing the long wavelength limit of the 
above equations with the Christoffell equations for a continuum. In this limit the waves 
are sound waves. The propagation of these waves is thermodynamically an adiabatic 
process (Zemansky 195 1). Thus the elastic constants to be used in the Christoffell equa- 
tions are the adiabatic ones. The following results are obtained 

where C l l ,  C,, and C44 are the adiabatic elastic constants. It is noted that the force 
constant K does not appear in these expressions, and the force constant S contributes 
to the elastic constants. The reason for this is that the shell moves rigidly with the ion 
core at  long wavelengths. It may also be noted that assuming central forces between 
nearest neighbour ion cores only, imposes a restriction on the elastic constants given 
by putting the left hand side of equation (18) equal to zero. This relationship is not 
found to be satisfied by the elastic constants of the noble or transition metals. 
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A‘ can be written as a multiple P of the right hand side of equation (19). A and A’ 
are then expressed as follows: 

A’ = P(CI2 - C4,)2a3L 

A = ( 1  - P ) ( C , ,  - C4,)2a3i, 

where 0 6 P Q 1. With respect to the previous comparison made between terms in 
equations (10) and (7), the value of P equal to zero implies that there is no interaction 
between the conduction electrons and the shell and hence no screening of the interac- 
tion between the shells. On the other hand, it may imply that the dielectric function 
arising in response to the interaction between the shell and conduction electrons is very 
large and different from the dielectric function for the interaction between the conduc- 
tion electrons and the ion cores. Or. the value of P equal to zero could imply that the 
screened potential energy between the conduction electrons and the shell electrons 
when added ‘to the shell-shell plus bare shell-conduction electron potential energies 
gives the central force between nearest neighbour shells. This would mean that the inter- 
action between the shell electrons and the conduction electrons is not similar to the 
interaction between the ion core and the conduction electrons as assumed in equations 
( 7 t (  15). The first two conditions are unrealistic. 

If an attempt is made to fit the three parameters to the experimental frequencies on 
the boundary of the Brillouin zone for the ( (loo), and ( 1  1 l)L modes, it is found 
that the only value of K and S which satisfy the three equations for these points, when 
P is equal to zero, is zero for both K and S whatever the values of the frequencies that 
are used in equations (lo), ( 1  1 )  and (15). This case thus reduces equations (lOHl5) to 
those for the Krebs model, which is known to give a poor fit to the experimental fre- 
quencies. 

For the case P equal to one, the three above implications could be made for the 
interaction between the conduction electrons and the ion cores. The first two are unrea- 
listic. The third will be consistent for simple and non simple metals if the screened con- 
duction electron-ion potential energy for simple metals, as well as for non simple 
metals, is due to the outermost electrons of the ion, and if the interaction between the 
conduction electrons and the inner core electrons just contributes to the formation of 
short range central forces between the ions in simple metals, and between ion cores in 
non simple metals. Since the outermost core electrons in the simple metals are rigidly 
bound to the nucleus, their displacement is the same as that of the nucleus, and equation 
(7) reduces to equation (2). 

4. Application 

Least square fits of the experimental frequencies for the fcc metals, copper and nickel, 
were initially made by setting P equal to 1 and varying K and S .  The resulting fits are 
sufficiently good to warrant their publication. The experimental frequencies for copper 
were obtained from neutron scattering experiments of Svensson et a1 (1967) and the 
adiabatic elastic constants and lattice constant were those used in Svensson’s paper. The 
experimental frequencies, elastic constants and lattice constant for nickel were taken 
from Birgeneau’s (1969) and de Klerk’s (1959) papers, respectively. The elastic and lat- 
tice constants are shown in table 1 along with the force constants. Figure 1 shows the 
results for copper, and figure 2 the results for nickel. Two values of the screening para- 
meter /I were considered; the Bohm-Pines and the Thomas-Fermi. The broken line in 
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Table 1. Material constants and model parameters 

Metal Elastic constant Lattice ~ ( 2 ~ 3 i . l -  1 i. 
( x  10" dyncm-') constant Force constants(x IO3 dyncm- ' )  ( x  10" dyncm-2)  
Cll ClZ c44 (A) 21 2 2  K S 

CU 16.85 12.15 7'55 3.6147 -6.26 2 3 7  -2980.0 -21.0 4.6 BP 
cu - - - 57.74 2.57 -8250.0 -85.0 4.6 T F  
Ni 24.6 15.0 12.2 3.524 65.03 2.29 -7772.0 - 110.0 2.8 T F  

~ 

figure 1 gives the results using the Bohm-Pines value. In an attempt to improve the 
fit for the (1 11) direction, the Thomas-Fermi value was used. From figure 1, it is seen 
that the fit for (looh and (1lOh is improved at  the expense of the fit for the (lOOh and 
(1 1 lh . The best overall fit for copper was obtained by using the Bohm-Pines value. The 
average deviation from the experimental mean values was 2%, while the largest devia- 
tion was 3%. For nickel, only the Thomas-Fermi screening parameter was used because 
preliminary calculations indicated that the frequencies for the (100) and (1 10) directions 
could be fitted as well using either value, while the fit to the (1 11) direction would be 
somewhat improved using the Thomas-Fermi value. The average deviation for nickel 
was 2.576, while the largest deviation was 4%. As can be seen from the figures, the fits 
are rather similar for the two metals and the overall fit for both metals is good for all 
three directions with the exception of the discrepancies for the (1 11) direction at the 
boundary. It will be interesting to see if this discrepancy is removed by using a value 
of P less than one. Such an investigation is now underway and the results will be pub- 
lished in the near future. 

Reduced wavevector 

Figure 1. Phonon dispersion curves along symmetric directions for copper. The broken 
curve is with BP screening parameter and the solid curve is with the T F  screening para- 
meter. 
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Figure 2. Phonon dispersion curves along symmetric directions for nickel. The solid curve 
is with TF screening parameter. 

5. Conclusions 

In this paper a very simple model has been proposed for the calculation of the phonon 
dispersion curves of the noble and transition metals. Preliminary results show that the 
model may give a very good reproduction of the dispersion curves for the noble and 
transition metals. It should be remarked that, besides reproducing the phonon disper- 
sioncurves, the model may be useful in investigations into the effect of different dielectric 
functions on the phonon dispersion curves of the noble or transition metals. Further- 
more, it may be possible to study the effects of the electronic band structure on the dis- 
persion curves through the dielectric function by considering appropriate dielectric 
functions modified by the band structure of the metal. 
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