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Abstract: Phonon dispersion curves, elastic constants.  and  the p V  isotherms are calculated for solid Xe  and Kr at 0 K using quasihar- 
monic  lattice dynamics derived  from  multiparameter  pair  potentials. The  computations  account  for the Axilrod-Teller-Muto three-body 
triple-dipole forces  that  arise in third-order perturbation theory.  Approximate allowance is also  made for anharmonic effects and, in 
the  case of Xe,  for  three-body,  third-order, dipole-quadrupole  interactions  and the  three-body dipole interactions  that  arise in fourth- 
order perturbation  theory. The over-all agreement with experimental  phonon data is good except. in the  case of xenon,  for  the lowest- 
energy  phonons in the [ 1 101 direction. This has the  consequence  that  the  shear elastic constant (Cll  - C,J / 2 and  the  zero  temperature 
Debye  theta  are  somewhat lower  than current experimental  values. 

Introduction 
Experimental and theoretical studies of rare  gases in 
solid,  liquid, and  gaseous  states  have provided an impor- 
tant testing  ground for experimental  and  theoretical  meth- 
ods in physics. By determining  interatomic potential 
energy functions from  a limited amount of experimental 
data and using them to  make theoretical  predictions of the 
results of other  experiments, it has been  possible to 
compare  results obtained by different  experimental  tech- 
niques  and at  the  same time to  test theoretical and com- 
putational  methods. This  has led to a  far-reaching  syn- 
thesis in which the  same potential  energy functions 
correlate  data  as  diverse  as,  for  example, molecular- 
beam scattering measurements,  spectroscopic  observa- 
tions of vibrational  levels of rare-gas dimers, and  inelastic 
neutron scattering measurements of phonon-dispersion 
relations for  rare  gas  crystals.  The particular purpose of 
this paper is to use  potential  energy functions determined 
from other  data  to predict  phonon  dispersion curves  for 
solid krypton and  xenon. These  curves  are then com- 
pared with recent  accurate  measurements. 

In a recent  paper  Barker  et al. [ 11 have presented new 
pair  potentials for  the ground state of the  inert gas dimers 
Kr, and Xe,. These  interaction potentials were obtained 
by fitting an  assumed  analytic form to a  wide  variety of 
experimental gas  phase  data, including the dilute gas 
viscosity,  second virial coefficients, vibrational level 
spacings of the  dimers  and differential collision cross 
sections,  as well as  the  zero-temperature,  zero-pressure 
lattice spacing in the solid. These pair  potentials,  and  a 
new  pair  potential for  xenon  to  be described in what 

222 follows, have  the following form: 

u ( R )  = c[u,,(R) + u , ( R )  + u , ( R )  + u,(R)  + u , (R) I ,  

where 
L 

u o ( r )  = 2 A i ( r  - 1 - x C6+J (6 + y t i + 2 i ) ,  

i=O i=O 

and 

u , ( R )  = [ P ( v -  1 1 4 +  ~ ( r -  1 ) ~ ' 1 2 - ~ ' ,  r >  1 

= O  r <  1 

u , ( ~ )  = [ ~ , ( u - - , ) ' + - t ~ ( r - s , ) ' ' ]  exp [--y,(~- t , )~] ,  

n = 2 , 3 , 4 .  ( 1 )  

Here E is the well depth and r =  RIR,, where R is the 
internuclear  separation and R,  is this distance  at  the 
minimum of the potential. Theoretical  estimates were 
used for  the long-range coefficients C2i+6. The potential 
parameters  are given in Table 1 .  

The fit to  gas  phase  data followed closely the method 
of Barker and Pompe [2],  Bobetic  and  Barker [ 3 ] ,  and 
Bobetic et al. [ 4 ] .  In addition,  however. the  lowest vi- 
brational level spacing  was  used to  constrain  the  curva- 
ture of the pair  potential near  the minimum, while the 
old high-energy molecular  beam data were  abandoned in 
favor of a better fit to  the  newer high-temperature  viscos- 
ity data.  The differential collision cross  sections were 
then used to  determine precisely the well depth  and  the 
outer wall of the potential by varying the  parameters E, 

P ,  and Q. 
The lattice parameter of the solid was  used to fix R,. 

However,  to  do so it was  necessary  to allow for many- 
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Table 1 Parameters  for  interaction  potentials  for  krypton and xenon. 

Potential  Potential 

Parameter   Kr(K2)" X e ( X 3 ) "   X e ( X 4 ) "  Parumeter   Kr(K2)" X e ( X 3 ) > '  X e  ( X 4 ) "  
~ 

20 1.9 
4.0067 
0.23526 

-4.78686 
-9.2 
-8.0 

-30.0 
-205.8 

1.0632 
0.1701 
0.0143 

0.01 

68.67 

12.5 

-9.0 

282.35 
4.3623 
0.2402 

-4.8  169 
-10.9 
-25.0 
-50.7 

-200.0 
1.0544 
0.1660 
0.0323 

0.01 
12.5 

59.3 
71.1 

282.35 
4.3634 
0.2402 

-4.8 169 
-10.9 
-25.0 
-50.7 

-200.0 
1 .OS44 
0.1660 
0.0323 

0.01 
12.5 

59.3 
71.1 

_ _ _ _ ~ ~  

2.08 
-6.24 
50.0 

1 .o 
1.0 
0.0 
0.0 
- 
- 

0.0 
0.0 

- 

- 
- 
- 

2.08 
-6.24 
50.0 

1 .o 
I .o 

-3.81 
0.0 

100.0 
1 .o 
0.87 
0.0 

-400.0 
150.0 

1 .o 
0.7 

"These pair potentials are derlved by Barker et al. [ I ]  
"Present pan potentials; see text. 

body forces in the solid. Following  previous  work it was 
assumed that  the only  many-body forces of importance 
were the long-ranged threr-body forces. The potential 
energy in the solid can then  be  written as 

E =  u ( R i j )  + u ( R i ,  Rj ,  Rk). (2 )  

For  krypton  the Axilrod-Teller-Muto (ATM) triple- 
dipole  interaction was  the only  three-body  interaction 
considered. The third-order  dipole quadrupole and  fourth- 
order dipole interactions discussed by Doran  and  Zucker 
[5] appear  to cancel one  another  to within the uncer- 
tainty of the  estimates in their contributions  to  the proper- 
ties of solid krypton. In the  case of xenon, this can- 
cellation is not so close and the  contributions of these 
interactions were  included, using the  estimates given 
by Doran and Zucker [ 5 ] .  Actually later work by  Bell 
and Zucker [6] indicates that  the  Doran-Zucker esti- 
mate of the  fourth-order dipole  contribution is an excel- 
lent  approximation to  the contribution of dipole  interac- 
tions in fourth and all highpr orders of perturbation 
theory;  thus we may regard our calculations as including 
these higher order contributions. 

In  the  case of krypton  we used the pair potential (K2; 
see Table 1 ) of Barker  et al. [ 11, which gave very good 
agreement with all available  experimental data.  In  the 
case of xenon, Barker et al. found  that the potential X2 
did not  agree within experimental error with data on the 
vibrational  levels of the xenon dimer, which became 
available too late to be  incorporated into  the main part 
of their work. 

In a note added in proof they  described another po- 
tential X3 (Table l )  which did agree with these  data 

i>j i>j>k 
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within experimental error  (Table 2 ) .  We  have calculated 
p V  data  for this potential and find that  the  results  are 
somewhat  less satisfactory  than for X2, as indicated in 
Fig. 1 .  We  therefore derived another potential X4 
(Table 1 )  which also agreed  essentially within experi- 
mental error with the  spectroscopic  data  but which gave 
improved agreement with the experimental p V  data,  even 
better than X2. This is shown in Fig. I .  Agreement was 
achieved by adding the term u3 of Eq. ( 1  ) ;  at  the  same 
time we improved the fit  of viscosities (Table 3 ) by add- 
ing the term u 4  of Eq. ( 1 ). This potential X4 also  gave an 
excellent fit  of the differential scattering cross sections 
of Barker et at. [ I ] ,  i.e., 2 = 0.041, as compared with 
0.054 for X2 and 0.038 for X3, and of second virial co- 
efficients [ 71, including new low-temperature measure- 
ments [8]. For  the  cohesive energy of crystalline xenon 
at 0 K, X4 gave -3773 cal/mole  compared with the ex- 
perimental [ 9 ]  value -3786 f 22 cal/mole. By compari- 
son, X2 gave -3754 cal/mole  and X3  -3770 cal/mole. 
Thus X4 gives an excellent fit  of available  experimental 
data, and this  potential is used in the calculations  de- 
scribed in this  paper. 

Lattice dynamics of Xe at 0 K 
The basic theory of the lattice dynamics of the  gas  crys- 
tals in the presence of three-body  forces  has been  given 
in earlier papers [ 3 ,  10- 121. Here  we  carry  out a quasi- 
harmonic  calculation of the phonon frequencies, wqh in- 
cluding explicitly in the dynamical  matrix the  third-order 
triple-dipole forces [ 31. Anharmonic effects were incor- 
porated by an  approximate  frequency-shift method [lo].  
This method was  tested  and found to be adequate [ 111 223 
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Table 2 Vibrational  level  spacings  for Xe,; experimental  and  calculated  values. 

Level spacing  no., u AG,+,,(e.xpt);’ AGtj,lp2(X2)  Calc-expt AG,+,,,(X3) Culc,-expt AG,+,,,(X4)  Calc-expt 
differenticrl differential differential 

~ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

~~ 

19.90 
18.55 
17.20 
16.17 
14.63 
13.70 
12.63 
11.33 
10.15 
8.95 

19.23 
18.08 
16.94 
15.79 
14.68 
13.56 
12.44 
11.35 
0.25 
9.20 

~~ ~ ~~ 

-0.67 
4 . 4 7  
-0.26 
-0.38 

0.05 
4 . 1 4  
-0.19 

0.02 
0.10 
0.25 

~ 

19.73 
18.47 
17.18 
15.89 
14.66 
13.47 
12.35 
1 1.25 
10.19 
9.15 

~~ 

4 .  I7 
-0.08 
-0.02 
4 . 2 8  

0.03 
-0.23 
4 . 2 8  
-0.08 

0.04 
0.20 

~~ 

19.61 
18.38 
17.12 
15.85 
14.64 
13.45 
12.34 
11.26 
10.21 
9.18 

-0.29 
4 . 1 7  
-0.08 
-0.32 
-0.01 
4 . 2 5  
-0.29 
4 . 0 7  

0.06 
0.23 

~~ 

~ 

“D. E. Freeman. K .  Yoshmo. and Y. 1-anaka. J .  Chern. Phg.5. 61, 4880 (1974). Unlts are cm”. The  estimated  experimental error is k0.3 c m “ .  

for solid Ar  at 0 K and so should  be  even better  here 
where  anharmonic effects are considerably  smaller. In 
this approach  the quasiharmonic frequencies  are first 
used to obtain the velocity of sound u ( q A )  = ( 8wYx/  d q ) q _ , ,  
and  hence the elastic constants, since, for  example, 

pu(100L)2 = e,,, pu( 100T)2 = e,,, 
p u ( 1  I O T , ) ~  = ( c , ~  - c12) / 2 ,  etc., 

Figure 1 Pressure-volume  relationship for solid  xenon near 
0 K. Solid curve. X2: dashed curve, X3; dotted  curve, X4; cir- 
cles,  experimental  data of Anderson  and  Swenson [ 181. 

22 3 1 

where p is the  crystal density. The elastic constants cal- 
culated in this  fashion  include the usual two-body “lat- 
tice”  contribution as well as  the triple-dipole “lattice” 
contribution C i j ( D D D ) ,  but  not  the  anharmonic contri- 
bution due  to  the vibrational (zero-point)  energy,  Cij 
(anhc).  The  latter  are calculated  from the strain  depen- 
dence of the second and  fourth  moments of the phonon 
frequency  spectrum using the method of Barron and 
Klein [ 131, and  values  are given in Table 4. The contri- 
bution from higher order  three-body  forces  to  the elastic 
constants  are estimated from  the work of Doran  and 
Zucker [5] in the following way. Doran  and  Zucker 
evaluated  the  appropriate  three-body lattice sums,  and 
hence estimated E ( D D D ) , ,  E(DDQ), ,  E (DQQ) , ,  and 
E ( D D D ) , .  Since  these energies are volume dependent, 
being proportional  respectively to F 3 ,  V ‘lis, V 1 3 ’ , ,  and 
V 4 ,  their contribution to  the  pressure p = - ( d E / d V )  and 
bulk modulus B = - V ( a p / a V )  is readily  determined. 
Moreover, it turns  out  that  the  contribution of u ( D D D ) ,  
to  shear elastic constants is negligible [ 1 11 (essentially 
because  shear  modes  propagate with no first-order 
change in the crystal volume)  and  hence  the relationship 
3B = (C,, + 2C,,) is sufficient to  determine  the contribu- 
tion of u ( D D D ) ,  to  the individual  elastic constants, 
namely, 

C,,(DDD), = 0. 

If we  make  the  Ansatz  that  the  above relationships also 
hold for the other  three-body  interactions discussed 
above, then their  contributions  to  the individual elastic 
constants  are  also  determined by the calculations of 
Doran  and  Zucker.  Values calculated in this  fashion are 
given in Table 4. I t  is seen there  that  these higher order 
three-body  effects to some extent cancel the  anharmonic 
contributions.  Because of this, it is not worth while to 
include explicitly either  the  anharmonic effects or  these 
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Table 3 Viscosity of gaseous  Xe. 

200 
300 
400 
500 
600 
700 
800 

rl(expr)" 
ppoise 

155.8 
232.4 
305.8 
373.9 
436.7 
495.1 
549.7 

7) (calc X 4 )  
ppoise 

Percent 
difference 

156.3 
232.3 
305.0 
372.6 
435.3 
493.5 
548. I 

4 . 3  
0.0 
0.3 
0.3 
0.3 
0.3 
0.3 

900 
1000 
1100 
1200 
1300 
1400 
1500 

7)(expt)a 
ppoise 

600.9 
649.4 
695.4 
739.3 
78 1.3 
821.6 
860.4 

~ . " 

Percent 
difference 

599.5 
648.3 
694.8 
739.3 
782.0 
823.2 
863.1 

'G. C. Maitland and E. B. Smith, The ViscoJities ofEleven Common Guses; A Crirical Compilafion, Physical  Chemistry  Laboratory, Oxford, 1971. 

~ ~ ~~~~~~~ 

0.2 
0.2 
0.1 
0.0 

4 . 1  
4 . 2  
-0 .3  

higher order three-body forces  into  the lattice  dynamics. 
Instead,  we  assume  that it is sufficient to normalize the 
quasiharmonic  frequencies derived  from the pair po- 
tential  plus u ( D D D ) ,  by the q-independent factor 
[ 1 +  (ACij/Cij)],whereACij=Cij(anhc)+Cij(DDD), 
+ C i j ( D D Q ) ,  + C i j ( D Q Q ) ,  + Cij(QQQ),. The com- 
bined effect of these  terms is never  more than about  one 
percent. Phonon dispersion curves calculated in this 
fashion are shown in Fig. 2, where they are  compared 
with recent experimental data [ 15, 161 measured at 10 K. 
Agreement is good everywhere  except  for  the low  fre- 
quencies of the  lowest  branch in the [ 1101 direction,  for 
which the calculated  values are  lower than experiments. 
As a consequence of this the calculated  value of (Cl, - 
C12) / 2  is lower  than the value derived from the  neutron 
data.  We  see in Table 2 that  the theoretical  value of the 
zero-temperature  Debye  theta is also lower  than the 
experimental  value [ 171. On  the  other hand the calcu- 
lated and experimental  values of C,, agree very well. 
Also  the initial slope of the  transverse branch in the 
[ 11 11 direction, which depends solely on  these two shear 
constants, is well fitted by theory,  as shown in Fig. 2. 

The calculated p V  isotherm for solid Xe and 0 K is 
shown in Fig. 1, where it is  compared with the  recent  data 
of Anderson and Swenson [ 181. The  agreement  between 
theory  and  experiment is excellent over  the whole range 
of the  data.  From  their  data  Anderson and Swenson  de- 
rived a value of 36.5 kbar  for  the bulk modulus at  zero 
pressure, i.e., B = -V(ap/dV),,,,,. Our theoretical  value 
is calculated to  be 39.3 kbar  (Table 4). It is particularly 
surprising that  these  two values are so different because 
the original p V  data from  which Anderson  and  Swenson 
extrapolate  their value are well fitted by the  theory.  The 
theoretical  value for B agrees  better with a recent  direct 
measurement of Korpiun et al. [ 191,  who  found B = 

37.9 k 0.5 kbar. 
We  summarize  our findings. Our model for solid Xe 

predicts  values of 8, and (Cll  - C12) / 2  somewhat  lower 
than  experimental values. However  the calculated  trans- 
verse  phonons in the [ 11 11 direction  which at low q de- 

pend upon these  same elastic constants  agree well with 
experiment. The  zero  pressure bulk modulus  which is the 
limiting slope of the p V  isotherm is calculated to be  great- 
er  than  either  the value derived from an  analysis of neu- 
tron scattering data [ 15, 161 or  that  extrapolated from 
the pV data;  yet  the p V  isotherm itself fits well. The 
zero-pressure bulk modulus does,  however,  agree  rather 
better with another independent  experimental  value [ 191. 

It  seems  to us unlikely that  any  changes in the pair 
potential or in the model for  the many-body forces will 
remove all  of these inconsistencies. 

Lattice  dynamics of Kr at 0 K 
The phonon  dispersion curves  are calculated for Kr at 
0 K using the  same  methods  as outlined in the previous 
section, except  that  the higher order  three-body  forces 
other  than  ATM  are ignored for  reasons already  dis- 
cussed.  Our  results in Fig. 3 are compared  with the ex- 
perimental 10 K data of Skalyo et al. [20].  The overall 

Figure 2 Phonon  dispersion  curves  for  solid  xenon.  Solid 
curves,  calculated  for  potential X4 with many-body interactions 
(0 K ) .  Points,  experimental  data of  Lurie  et  al. [ 15, 161 (10 K ) .  
Inset shows lowest [ 1101 branch  on  enlarged scale. 

1.4 

I Phonon wave  number, (2r/d) 

MAY 1976 

225 

PHONON DISPERSION IN SOLID Xe AND Kr 



1.6 '3 3 

I Phonon wave number, ( 2 ~ 1 4  

Figure 3 Phonon  dispersion curves  for solid krypton. Solid 
curves, calculated (0 K ) ;  points,  experimental data of Skalyo 
et al. [20]. 

Table 4 Elastic constants (in kbdr) for solid Xe  at 0 K. 

C i j ( t o t a / ,  X 4 )  C i j ( e x p t )  Cz j (unhc )  ACij 

Cll 54.5 52.7 rf- 0.9" 0.9 
CI, 31.7 28.2 f 0.8" 0.7 
c 4 4  29.7 29.5 * 0.4" 

-0 .4  
-0.6 

0.4 0.3 
B 39.3 36.4 rf- 0.8" 0.8 -0.5 

36.5" 
37.9 * 0.5' 

A 2.61 2.41" 
Q,(K) 61.0 62.5 & 1.1 K" 

64.0 * 1.0 Kd 

G .  Shirdne, and J .  Skalyo [IS, 161. 
"Value derived from neutron scattering  measurements at 10 K. N. A. Lurie. 

"Value derived from analysis of high pressure  data. M. S. Anderson  and C A. 
Swenson. [ I X ] .  

'Direct  measurement from low pressure pV data. P. Korpiun et  al. [ I91 
"Value taken  from analysis of Cv data. H. Fenichel and R. Serin [ 171 

Table 5 Elastic constants  (in  kbar) of solid Kr at 0 K 

Cij( total)  Cij(expr) Cij(anhc)  

Cl 1 49.9 51.4 f 0.6" 1.8 
Cl, 28.6 28.4 k 0.6" 1.3 
c 4 4  26.9 26.8 & 0.3" 0.7 
B 35.7 36.1 & 0.5" 1.5 

33.4b 

A 
34.5 2 0.4" 

2.52 2.33 rf- 0.05" 
0 0  71.1 K 71.9d 

71.7 &0.7" 

"Values derived from neutron scattering  data  at 10 K [20]. 
"pV data  (see ref. [IS] J at 4.2 K. 
'X-ray data,  A. 0. Urvas,  D.  L.  Losee, and R.  D.  Simmons, J .  Phys.   Chrm. 

'From analysis of C ,  data, L. Finegold and N .  E. Phillips, Phys. Rev .  177, 1383 

From analysis of C ,  data, R. H .  Beaumont, H. Chihara, and J .  A. Morrison, 

Solids 28, 2267 (1967) .  

(19:9J. 

226 Proc.  Phys. SOC.  (London) 78, 1462 (1961). 

BARKER,  KLEIN,  AND  BOBETIC 

agreement is very  good. The elastic constants  are given 
in Table 5; the  agreement with experiment  is  better  than 
for solid Xe.  The  pvisotherm  agrees [ 11 with experiment 
about  as well as  for solid Xe,  and again the experimentally 
extrapolated bulk modulus [ 181 appears  to  be a little low. 

Discussion 
For solid Xe it is necessary  to allow for higher order con- 
tributions  to  the three-body  energy than  the  customary 
triple-dipole term ( D D D ) ,  that  arises in third-order 
perturbation  theory [ 5 , 6 ] .  One must also include dipole- 
quadrupole  terms  that  arise in third order  as well as  the 
three-body fourth-order term (DDD),.  Thus we have  for 
Xe,  but  not  for  Kr, 

u(R i ,  Rj ,  R,) u ( D D D ) ,  + u ( D D Q ) ,  + u ( D Q Q ) ,  

+ u ( Q Q Q ) ,  + u(DDD), .  (3 1 
We stress  that all these  terms  are three-body  contribu- 
tions. Doran  and  Zucker [5] have  shown  that  for solid 
Ne  the last four  terms  are numerically  small, while 
fortuitously for solid Ar and  Kr  they  almost cancel. 
In solid Xe  the over-all effect of these higher order  terms 
is to  reduce  the effect of u ( D D D ) ,  slightly. 

In this paper we have  presented calculations of proper- 
ties of solid Xe  and  Kr  other  than  those  that  were used 
in fitting the pair  potential. The calculations thus  serve 
as a consistency  check  on  our model for  the  forces in 
these solids. 
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