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A thermal lattice Boltzmann model is constructed on the basis of the ellipsoidal sta-
tistical Bhatnagar-Gross-Krook (ES-BGK) collision operator via the Hermite moment
representation. The resulting lattice ES-BGK model uses a single distribution function
and features an adjustable Prandtl number. Numerical simulations show that using a
moderate discrete velocity set, this model can accurately recover steady and transient
solutions of the ES-BGK equation in the slip-flow and early transition regimes in the
small Mach number limit that is typical of microscale problems of practical interest. In
the transition regime in particular, comparisons with numerical solutions of the ES-BGK
model, direct Monte Carlo and low-variance deviational Monte Carlo simulations show
good accuracy for values of the Knudsen number up to approximately 0.5. On the other
hand, highly non-equilibrium phenomena characterized by high Mach numbers, such as
viscous heating and force-driven Poiseuille flow for large values of the driving force, are
more difficult to capture quantitatively in the transition regime using discretizations
that have been chosen with computational efficiency in mind such as the one used here,
although improved accuracy is observed as the number of discrete velocities is increased.

1. Introduction

The lattice Boltzmann (LB) method has been successful in simulating isothermal
(athermal) flows; however, thermal flows still remain a challenge, despite significant ef-
forts from a number of research groups (see Shim & Gatignol 2011; Sbragaglia et al.

2009; Scagliarini et al. 2010; Prasianakis et al. 2009; Prasianakis & Karlin 2008; Watari
2009; Gonnella et al. 2007; Zheng et al. 2010; Guo et al. 2007; Shan & Chen 2007; Watari
& Tsutahara 2003; Prasianakis & Karlin 2007; Lallemand & Luo 2003; Chen & Doolen
1998). Recent approaches fall into two broad categories: the high-order approach (e.g.,
Sbragaglia et al. 2009; Shan & Chen 2007; Watari & Tsutahara 2003) and the double-
distribution-function approach (e.g., He et al. 1998; Shan 1997). As a direct extension
of the isothermal LB model, the high-order model only uses one distribution function
while retaining high-order terms in the equilibrium distribution function to recover the
full Navier-Stokes (NS) equations. Unfortunately, this approach requires a richer velocity
space and as a result suffers in terms of simplicity and in some cases numerical instabil-
ity†. By contrast, in the double-distribution-function approach, two distribution functions

† We also note some efforts on constructing single-distribution-function thermal models using
standard lattices e.g. a 2 dimensional model with nine discrete velocities (see Prasianakis &
Karlin 2007).
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are utilized: one for the velocity field and the other for the temperature field. As a re-
sult, high-order terms can be avoided and the standard lattice can be used. In addition,
this approach is numerically more stable. However, to utilize the standard lattice, the
energy and momentum transport equation need to be decoupled through the Boussinesq
approximation (cf. Guo et al. 2007); in this case the double distribution approach does
not recover the full NS equations in a strict sense.
In addition to heat transfer, kinetic effects can make flows even more complex. For

example, for gaseous flows at the microscale, kinetic effects have to be taken into account
as the Knudsen number (Kn, the ratio of the mean free path and the characteristic length)
becomes finite (Hadjiconstantinou 2006). Due to its kinetic origins, the LB method has
been shown to be able to describe moderately complex kinetic effects (see, e.g., Zhang
et al. 2005; Toschi & Succi 2005; Sbragaglia & Succi 2005, 2006; Tang et al. 2008b;
Zhang et al. 2006; Shan et al. 2006; Ansumali et al. 2007; Kim et al. 2008a; Yudistiawan
et al. 2008; Guo et al. 2006; Succi 2002; Kim et al. 2008b; Tang et al. 2008a; Tian
et al. 2007). Particularly, as the LB method can be considered as an approximation
to the Boltzmann-BGK equation, high-order models should, in principle, be able to go
beyond NS hydrodynamics (Shan et al. 2006; Meng & Zhang 2011a). Both analytical and
numerical analysis have shown that using a generous discrete velocity set, LB models can
capture kinetic effects including the Knudsen layer qualitatively and provide reasonably
accurate results for a range of isothermal problems (Kim et al. 2008a; Yudistiawan et al.

2008); also, as expected, more discrete velocities generally give better predictions (Meng
& Zhang 2011a). When gas-surface interactions are concerned, discrete velocity sets from
even-order Hermite polynomials typically perform better (Meng & Zhang 2011b). For
thermal rarefied flows, despite that the velocity-slip and temperature-jump problems have
been investigated using a high-order LB model (Watari 2009), significant effort is still
required to develop robust LB methods for modeling general thermal non-equilibrium
flows of engineering interest.

The Hermite expansion provides a systematic approach to derivation of the LB models
for representing the NS hydrodynamic systems and beyond (Shan et al. 2006). The usage
of the Hermite expansion was pioneered by Grad (1958, 1949) for approximating the
Boltzmann equation. An important feature of Hermite polynomials is that the expansion
coefficients correspond directly to moments of the distribution function. In addition, the
truncation of higher-order terms do not directly alter the lower-order velocity moments
of the distribution function. In his famous paper, Grad kept the first thirteen Hermite
coefficients and obtained the well known 13-moment system (Grad 1949). This system
contains physics beyond the NS equation. However, a significant weakness of Grad’s
13-moment system is its inability to describe smooth shock structures above a critical
Mach number. Also, this system is not easily related a priori to the Knudsen number.
As a result, significant effort has been devoted towards the development of an improved
moment system in the last decade. Regularization for Grad’s 13 moment system (i.e., the
so-called R13 system) has been introduced on the basis of a Chapman-Enskog expansion
around a non-equilibrium state (Struchtrup & Torrilhon 2003; Struchtrup 2005, 2004).
The related issues associated with the numerical scheme and boundary conditions have
then been discussed by Torrilhon & Struchtrup (2008) and Gu & Emerson (2007). A
series of analytical solutions were also obtained and compared to the kinetic solutions
(see Taheri et al. 2009; Taheri & Struchtrup 2010). In addition to the R13 system, higher-
order moment equation models have also been developed (Gu & Emerson 2009).

Inspired by Grad’s work, the Hermite expansion has been used to derive new LB models
(Shan et al. 2006; Shan & He 1998). It was shown that the truncation of the Hermite
expansion is equivalent to evaluating the distribution function at the chosen order of the
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discrete velocities. Thus, the resulting LB models can describe gaseous systems at the
corresponding level. However, contrary to Grad’s approach, the governing equation of
LB models is presented in a much simpler form (e.g., the linear convective term) as the
evolution is accomplished at the distribution function level rather than the state-variable
level. Therefore, the LB model has some advantages, e.g., straightforward numerical
implementation and code parallelisation.

In this work, we establish a thermal LB model based on the ellipsoidal statistical
Bhatnagar-Gross-Krook (ES-BGK) equation following the systematic high-order pro-
cedure of the Hermite expansion. The resulting model features an adjustable Prandtl
number in contrast to the BGK model whose Prandtl number is fixed at 1. We validate
our model using shear-driven (Couette) flows, Fourier flows and unsteady boundary heat-
ing problems in the small Mach-number limit over a range of Knudsen numbers. Using
only a moderate set of discrete velocities, we find very good agreement with benchmark
solutions. We also show that, with the same moderate discrete velocity set, highly non-
equilibrium problems characterized by high Mach numbers, such as force-driven Poiseuille
flow for large values of the driving force, are captured accurately in the slip-flow regime
and with good qualitative accuracy in the transition regime. Better accuracy requires a
higher number of discrete velocities, in addition to higher-order Hermite expansion.

2. Thermal lattice Boltzmann model

2.1. The ES-BGK equation

The difficulty associated with solving the Boltzmann equation is mainly due to the col-
lision term. To reduce the complexity, the collision term may be replaced by a simple
statistical model that preserves the conservation laws of mass, momentum and energy.
The most commonly-used model is known as the Bhatnagar-Gross-Krook (BGK) colli-
sion operator, which is often used in constructing lattice Boltzmann models. Despite its
success, the BGK model suffers from a number of drawbacks: specifically, it yields a fixed
Prandtl number (Pr) of unity, while the correct value for a monatomic gas is close to
2/3. To address this limitation, Holway (1966) proposed ES-BGK model that replaces
the Maxwellian distribution of the standard BGK equation with an anisotropic Gaussian
distribution, which can be written as

∂f̂

∂t̂
+ ĉi

∂f̂

∂x̂i
+ ĝi

∂f̂

∂ĉi
= −1

τ̂
(f̂ − f̂ES), (2.1)

where f̂ denotes the single-particle distribution function, ĉi the phase (particle) velocity,
ĝi the body force and τ̂ the mean relaxation time which is assumed to be independent
of particle velocity. The anisotropic Gaussian distribution can be written as

f̂ES = ρ̂
1

√

det[2πλ̂ij ]
exp

[

−1

2
λ̂−1
ij ĈiĈj

]

, (2.2)

where λ̂ij = RT̂δij +(bσ̂ij)/ρ̂ and R is the gas constant. Macroscopic quantities, such as

density ρ̂, velocity û, shear stress σ̂, temperature T̂ and heat flux q̂, can be obtained by
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integrating the distribution function over the velocity space, i.e.
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Ĉ<iĈj>
1
2 ĈiĈjĈj
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dĉ, (2.3)

where Ĉi = ĉi − ûi is the particle peculiar velocity and the angle bracket denotes the
trace-free tensors (see Struchtrup 2005b, Appendix A.2.2). The pressure p̂ can be related
to the density and temperature by the equation of state

p̂ = ρ̂RT̂ . (2.4)

As λ̂−1
ij (the inverse of the matrix) must be positive definite, b is restricted to − 1

2 6 b 6 1.
The exact values of b and τ̂ can be determined by the Boltzmann integral with a known
inter-molecular force law or experimental data. In this work, experimental values will
be used. The Navier Stokes equations can be derived (Holway 1966) using a Chapman-
Enskog expansion. The viscosity and thermal conduction coefficients can be written as
µ̂ = (p̂τ̂)/(1− b) and κ̂ = p̂R(D + 2)τ̂ /2, respectively, where D is the spatial dimension.
Therefore, the Prandtl number is given by Pr = 1/(1−b) and can be adjusted via the free
parameter b. For thermal flows, viscosity depends on temperature, and can be expressed
as µ̂/µ0 = (T̂ /T0)

̟, where ̟ is related to the molecular interaction model, varying from
0.5 for hard-sphere molecular interactions to 1 for Maxwellian interactions. Therefore, in
general, τ̂ may be taken to be a function of temperature.

The ES-BGK model has received renewed attention, in part because the associated H
theorem was recently proven (Andries et al. 2000). Several studies have shown that it
can provide reasonable accuracy for modeling transport in simple rarefied flows (An-
dries et al. 2002; Han et al. 2007; Graur & Polikarpov 2009; Han et al. 2011; Mieussens
& Struchtrup 2004; Gallis & Torczynski 2011; Garzó & Andrés Santos 1995). In the fol-
lowing, we will develop a thermal LB model based on the ES-BGK equation using the
Hermite moment representation (Shan et al. 2006); we will refer to the resulting LB
method as the lattice ES-BGK model. In order to separate the numerical error arising
from the LB method from the modeling error associated with approximating the hard-
sphere operator with the ES-BGK model, we will also present numerical solutions of the
Boltzmann equation with the ES-BGK collision operator obtained using the finite dif-
ference/discrete velocity method presented in Aoki et al. (2002). Although this method
is not practical for problems of engineering interest due to the high dimensionality as-
sociated with the very fine discretization of the velocity space, it can be used to obtain
accurate solutions of the ES-BGK equation in the one-dimensional benchmark problems
considered here. In order to differentiate from our lattice-based solutions, we will refer
to the ones obtained by the finite difference/discrete velocity method as numerical.

2.2. Derivation of the lattice ES-BGK equation

Shan et al. (2006) have shown that a hierarchy of different order LB models can be
systematically derived from the BGK equation via the Hermite expansion, which can be
regarded as approximations to the BGK equation. Fluid flows can then be described at
the kinetic level with various discrete velocity sets. This procedure can also be used to
derive the lattice ES-BGK model. For convenience, we use the following non-dimensional



Journal of Fluid Mechanics 5

system,

xi =
x̂i

L
, ui =

ûi√
RT0

, t =

√
RT0t̂

L
, gi =

Lĝi
RT0

, ci =
ĉi√
RT0

, T =
T̂

T0
,

τ =

√
RT0τ̂

L
, f =

f̂(RT0)
D/2

ρ0
, ρ =

ρ̂

ρ0
, p =

p̂

p0
, µ =

µ̂

µ0
, qi =

q̂i

p0
√
RT0

, σij =
σ̂ij

p0
.

The temperature and state equations become

DT =
1

ρ

ˆ

fCiCidc,

p = ρT,

while the other equations are still in the same form. The non-dimensional relaxation time
can be written explicitly as

τ =
µ0

√
RT0

p0L

µ

Prp
=

Kn

Pr

µ

p
,

and the Knudsen number is defined as

Kn =
µ0

√
RT0

p0L
.

To solve Eq.(2.1), the distribution function is first projected onto a functional space
spanned by the Hermite basis. If a Gauss-Hermite quadrature of a degree > 2N is chosen,
then the first N velocity moments of the distribution function are retained (see Shan et al.

2006, P.420). Therefore, the distribution function is essentially approximated as

f(x, c, t) ≈ ω(c)

N
∑

n=0

1

n!
a(n)(x, t) : χ(n)(c), (2.5)

and the coefficients a(n) are calculated from

a(n) =

ˆ

fχ(n)dc (2.6)

where χ(n) is the n-th order Hermite polynomial and ω(c) is the weight function.
The key step is to expand the anisotropic Gaussian distribution as

fES ≈ fN
ES = ω(c)

N
∑

n=0

1

n!
a
(n)
ES : χ

(n)(c), (2.7)

where

a
(n)
ES =

ˆ

fESχ
(n)dc ≈

d
∑

α=1

wα

ω(cα)
fN
ESχ

n(cα), (2.8)

and wα and cα, α = 1, · · · , d, are the weights and abscissae of a Gauss-Hermite quadra-
ture. For the anisotropic distribution, the first a few coefficients are given by

a
(0)
ES = ρ, (2.9)

a
(1)
ES,i = ρui, (2.10)

a
(2)
ES,ij = ρ(uiuj + λij − δij), (2.11)
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a
(3)
ES,ijk = ρ(uiujuk + λijuk + λikuj + λjkui − δijuk − δikuj − δjkui), (2.12)

a
(4)
ES,ijkl = ρ[uiujuluk + (λil − δil)ujuk + (λij − δij)uluk + (λik − δik)ujul

+ (λjl − δjl)uiuk + (λjk − δjk)uiul + (λkl − δkl)uiuj (2.13)

+ (λij − δij)(λkl − δkl) + (λik − δik)(λjl − δjl) + (λil − δil)(λkj − δkj)].

The body force term F (x, c, t) = −g · ∇cf can be approximated as:

F (x, c, t) = ω
N
∑

n=1

1

(n− 1)!
ga(n−1) : χ(n). (2.14)

Although Eq. (2.2) has an infinite Hermite expansion, a LB model is built under
the assumption that to some level of approximation only the leading terms contribute
explicitly to the hydrodynamics (see Shan et al. 2006) and thus the infinite series can be
truncated. In this work, a 4th-order Hermite expansion will be used.
Given the above discussion, the ES-BGK equation Eq.(2.1) can be rewritten in its

truncated form, i.e.,

∂f

∂t
+ ci

∂f

∂xi
= −1

τ
(f − fN

ES) + F. (2.15)

For a 4th-order expansion, a discrete velocity set with 9th-order or higher accuracy is
required (Shan et al. 2006). There are a number of ways of constructing a high-order
discrete velocity set (Shan et al. 2006; Shan 2010; Chikatamarla & Karlin 2009, 2006).
A straightforward approach is to utilize the roots of the Hermite polynomial. In one-
dimension, the discrete velocities cα are just the roots of the Hermite polynomials, and
the corresponding weights are determined by:

wα =
n!

[nχn−1(cα)]2
. (2.16)

Another useful procedure is to utilize the entropy construction (cf. Chikatamarla & Kar-
lin 2006, 2009). Given one-dimensional velocity sets, those of the higher-dimension can
be constructed using the “production” formulae (Shan et al. 2006). Once the discrete
velocity set is chosen, the governing equation of the lattice ES-BGK model can be written
as

∂fα
∂t

+ cα,i
∂fα
∂xi

= −1

τ
(fα − fES,α) + gα, (2.17)

where fα = wαf(x,cα,t)
ω(cα) , fES,α = wαfES(x,cα,t)

ω(cα) and gα = wαF (x,cα,t)
ω(cα) .

2.3. Remarks on the accuracy beyond Navier-Stokes

As the distribution functions f and fES are approximated and evaluated at the Gauss-
Hermite quadrature points, cf Eq.(2.5), we can relate the chosen Gauss-Hermite quadra-
ture to the approximated moments of the distribution function. Generally speaking, more
discrete velocities mean higher-order moments can be obtained more accurately. With
sufficiently accurate quadrature and retaining increasingly high-order terms of the ex-
panded fES , the LB model is approaching to the original ES-BGK equation (cf Fig.20).
When the Chapman-Enskog expansion is valid, we can evaluate model accuracy in

terms of the Knudsen number. According the Chapman-Enskog expansion, the distribu-
tion function f is assumed to be a asymptotic series expanded in powers of the (formal)
small parameter ǫ (see Struchtrup 2005b, Chapter 4),

f = f0 + ǫf (1) + ǫ2f (2) + · · · (2.18)
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where ǫ plays the role of the Knudsen number; f0 is the truncation of the Maxwellian fM ,
its first four Hermite coefficients were already given by Shan et al. (2006), cf. Eq.(3.12).
Furthermore the time and spatial variations are also measured in powers of ǫ, i.e.,

∂t = ǫ∂
(0)
t + ǫ2∂

(1)
t + · · · (2.19)

and ∇ = ǫ∇ (Shan et al. 2006). Considering the form of f0, fN
ES can be written as

fN
ES = f0 + ω

[

1

2
bσijχ

(2)
ij +

1

6
(σijuk + σikuj + σjkui)χ

(3)
ijk + · · ·

]

. (2.20)

The shear stress σij should be also expanded as

σij = ǫσ
(1)
ij + ǫ2σ

(2)
ij + · · · , (2.21)

and fN
ES can thereby be written as,

fN
ES = f0 + ǫf

N,(1)
ES + ǫ2f

N,(2)
ES + · · · , (2.22)

where

f
N,(1)
ES = ω

[

1

2
bσ

(1)
ij χ

(2)
ij +

1

6
(σ

(1)
ij uk + σ

(1)
ik uj + σ

(1)
jk ui)χ

(3)
ijk + · · ·

]

, (2.23)

and

f
N,(2)
ES = ω

[

1

2
bσ

(2)
ij χ

(2)
ij +

1

6
(σ

(2)
ij uk + σ

(2)
ik uj + σ

(2)
jk ui)χ

(3)
ijk + · · ·

]

. (2.24)

By matching the terms in the same powers of ǫ, we can have the solution for the two
leading orders, namely the NS order

f (1) = f
N,(1)
ES − τ(∂

(0)
t + c ·∇+ g ·∇c)f

(0) (2.25)

and the Burnett order

f (2) = f
N,(2)
ES − τ [(∂

(0)
t + c ·∇+ g ·∇c)f

(1) + ∂1
t f

0]. (2.26)

According to the above two equations, it is tedious to calculate the explicit form of f (1)

and f (2). However, for the current purpose, we only need to know their highest order
as a Hermite polynomial of the particle velocity c. To determine the highest-order, we
notice that the operators ∂0

t and ∂1
t do not alter the order while c ·∇ or ∇c operation

increase the order by one. Therefore, the Burnett order solution f (2) is a polynomial of
c of two-order higher than fN

ES . If it is desired, the relation for the higher-order solution
can be obtained similarly. Here we restrict the discussion on the first two orders.

With the above discussion, we can estimate the accuracy level with the chosen ex-
pansion order and quadrature. As the fourth-order terms of c in fES are retained, the
Burnett-order solution of the distribution function can be represented by a sixth-order
polynomial. For the heat flux, a third-order velocity moment, to be calculated with the
Burnett level of accuracy, the chosen quadrature has to be accurate for an integration over
the full space for a ninth-order polynomial. Hence, according the Gaussian quadrature
rule (cf., Shan et al. 2006, Appendix in), it is necessary to adopt a quadrature with an
algebraic degree of precision beyond the ninth-order. However, as the ninth-order quadra-
ture has some defect in describing the gas-wall interactions (Meng & Zhang 2011b), an
11th-order quadrature is chosen in this work. On the other hand, the 11th-order is also
expected to deal well with the integration for the transport flux of heat flux (a forth
order moment) at the Burnett lever, which may help to improve the accuracy for the
heat flux.
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i,j+1

i,j i+1,ji−1,j

i,j−1

x

y

Figure 1. Schematic diagram of square lattices.

It is worth noting again that the above analysis relies on the validity of the Chanpman-
Enskog expansion. Consequently, one should be careful when interpreting the above con-
clusion for large Knudsen numbers. Furthermore, it may be better to understand the
requirement on the quadrature for the corresponding accuracy as necessary rather than
sufficient. Nevertheless, the above discussion is informative to understand the capability
of the LB model, which can be seen in numerical simulations below.

3. Numerical implementation

3.1. Scheme

To solve Eq. (2.17), various numerical schemes can be used, depending on the charac-
teristics of the problem of interest. Typically, if a first-order upwind finite difference is
chosen, we have a standard stream-collision scheme.
As flows with various Knudsen numbers will be considered in the following simulations,

the numerical scheme has to be carefully chosen to cope with discontinuities at the
system boundaries caused by rarefaction (Hadjiconstantinou 2006). In particular, in
order to intrinsically describe the gas-surface interaction, the kinetic boundary condition
should be accurately implemented in the numerical scheme. Meanwhile, there is still no
general and accurate implementation of the standard stream-collision scheme for high-
order models, especially for rarefied flows. On the other hand, for high-order LB models,
the discrete velocity points may not coincide with the lattice points, which makes the
standard stream-collision procedure impossible. Therefore, in the interest of simplicity,
a finite difference formulation has been chosen and more specifically, a 1st-order forward
Euler method is coupled to a 2nd-order total variation diminishing (TVD) scheme (Kim
et al. 2008a; Sofonea 2009; Toro 2009).
The resulting scheme can be summarized as follows. Let fn,j

α,i denote the distribution
function value fα at the node (xi, yj) at the n-th time step (see Fig.1). The distribution
function update can be written as

fn+1,j
α,i = fn,j

α,i − cαxδt
δx

[

Fn,j
α,i+1/2 −Fn,j

α,i−1/2

]

(3.1)

− cαyδt
δy

[

Fn,j+1/2
α,i −Fn,j−1/2

α,i

]

+
δt
τ
(fES,n,j

α,i − fn,j
α,i ) + gαδt,
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ghost nodes

boundary nodes

wall nodes

k

bulk nodes

1

1/2

0

Figure 2. Schematic illustration of wall boundary treatment.

where δx and δy are the grid spacing in the x and y directions, respectively, and δt
is the time step; cαx and cαy denote the particle velocity components at the x and y
coordinates. The outgoing and incoming fluxes at the node (i, j) (see Fig.1) are

Fn,j
α,i+1/2 = fn,j

α,i +
1

2

(

1− cαxδt
δx

)

[

fn,j
α,i+1 − fn,j

α,i

]

Ψ
(

Θn
α,i

)

, (3.2)

Fn,j
α,i−1/2 = Fn,j

α,(i−1)+1/2, (3.3)

Fn,j+1/2
α,i = fn,j

α,i +
1

2

(

1− cαyδt
δy

)

[

fn,j+1
α,i − fn,j

α,i

]

Ψ
(

Θn,j
α

)

, (3.4)

Fn,j−1/2
α,i = Fn,(j−1)+1/2

α,i , (3.5)

where

Θn
α,i =

fn,j
α,i − fn,j

α,i−1

fn,j
α,i+1 − fn,j

α,i

, (3.6)

Θn,j
α =

fn,j
α,i − fn,j−1

α,i

fn,j+1
α,i − fn,j

α,i

, (3.7)

and the minmod flux limiter is given by

Ψ (Θ) = max [0,min(1,Θ)] . (3.8)

For simplicity, only the formulae for cαy > 0 and cαx > 0 are given.

3.2. Boundary condition

Gas-wall interactions are captured by boundary conditions. The most popular bound-
ary condition is the Maxwell model (Cercignani 2000; Clerk Maxwell 1879), in which
a fraction (1 − γ) of gas particles are assumed to undergo specular reflection while the
remaining particles are diffusely reflected. In the limit of γ = 1, the reflection becomes
fully diffuse.
As lattice models are derived from continuous kinetic equations, their boundary condi-

tions may be obtained from the continuous kinetic theory (Ansumali & Karlin 2002). It
has already been shown that lattice models with diffuse type wall boundary can describe
a range of rarefied effects (see, e.g., Meng & Zhang 2011b; Kim et al. 2008a; Yudistiawan
et al. 2008). In this work, our primary interest is the model accuracy; as a result we will
only implement the Maxwellian diffuse wall boundary.
The boundary condition employed in this work is Version 1 of boundary conditions
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in Sofonea (2009), which is briefly described below. Firstly, the truncated Maxwellian
distribution function can be written as

f0
α = ρS(T,u)

= ρwα

{

1 + ciui +
1

2

[

(ciui)
2 − uiui + (T − 1)(cici −D)

]

(3.9)

+
ciui

6
[(ciui)

2 − 3uiui + 3(T − 1)(cici −D − 2)]

+
1

24
[(ciui)

4 − 6(uici)
2ujuj + 3(ujuj)

2]

+
T − 1

4
[(cici −D − 2)((uici)

2 − uiui)− 2(uici)
2]

+
(T − 1)2

8

[

(cici)
2 − 2(D + 2)cici +D(D + 2)

]}

.

As the discretization is conducted along a Cartesian coordinate system (see Fig.2), the
wall boundary condition can be written as

f0
α,k = ρW,kS(TW,k,uW,k) ξα · n > 0, (3.10)

where

ρW,k =

∑

(ξα·n)<0

|ξα · n| f1
α,k

∑

(ξα·n)>0

|ξα · n|S(TW,k,uW,k)
, (3.11)

Here, subscript W denotes the computational nodes at the wall, ρW,k is the density on
the wall nodes k (see Fig.2), TW,k is the temperature, uW,k the velocity and n the inward
unit vector normal to the wall. The distribution function at the ghost nodes is assumed
to be identical to those on the corresponding wall nodes.

4. Validation

We have validated the proposed scheme using a variety of flows, both in the low-Mach
and high-Mach number limit. Unless otherwise stated, our rsults have been obtained
using a 11th-order of discrete velocity set, which represents a good compromise between
accuracy (expected to be accurate at the Burnett level, see Sec.2.3) and computational
efficiency. Our numerical results will be compared with DSMC and LVDSMC (see Ho-
molle & Hadjiconstantinou 2007; Radtke & Hadjiconstantinou 2009, 2011) simulations,
while in some cases, numerical solutions of the ES-BGK equation and the R13 model
will also be presented.
The flows considered here are one-dimensional and are confined by two infinite parallel

plates in the x − z plane. The distance between the two plates (in the y direction) is L
on which the Knudsen number

KD =

√

π

2
Kn (4.1)

is based. Comparisons with the hard-sphere gas will be performed by setting the Prandtl
number to 2/3, i.e. b = −1/2. For the BGK gas, the Prandtl number is unity which
corresponds to b = 0. Furthermore, the gas has the heat capacity Cp = 5/2, i.e., the
spatial dimension D is set to be 3, see Eqs. (2.3) and (3.9). Our 3D simulation results
are described below.
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Figure 3. The velocity and shear stress profiles for Couette flow of a hard-sphere gas at
KD = 0.1, 0.2 and 0.5. The symbols denote DSMC data and the lines represent the lattice
ES-BGK results. The wall velocities are uw = ±0.1.
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Figure 4. The temperature and heat flux profiles for a Fourier problem for a hard-sphere gas
at KD = 0.05, 0.1, 0.2 and 0.5 with the wall temperature difference 0.1. The symbols denote
DSMC data and the lines represent the lattice ES-BGK results.

4.1. Low Mach number flows

Flows in the low-Mach number limit are of particular interest since they are most of-
ten encountered in micro/nanofluidic applications (Cercignani 2006; Hadjiconstantinou
2006). Here we provide validation of our methodology using traditional Couette and
Fourier flows. We also present solutions of an unsteady boundary heating problem that
features coupled momentum and heat transfer and thus requires an accurate represen-
tation of the ratio of the associated transport coefficients, namely the Prandtl number.
This problem also allows us to investigate the limitations of the proposed model in the
presence of kinetic effects due to flow unsteadiness.

4.1.1. Steady Couette and Fourier Flows

Figures 3 and 4 show comparison between our lattice results and DSMC simulations for
a Couette and a Fourier heat tranfer problem respectively. In the Couette flows, the walls
move with velocities uw = ±0.1, while in the Fourier problems the wall temperatures
are Tw = 1 ± 0.05. Fig. 4 shows that the proposed lattice ES-BGK model can be used
to approximate the hard-sphere gas thermal conductivity by setting the Prandtl number
to 2/3. Both figures show that the agreement in the slip-flow regime is excellent; as KD

increases into the transition regime, a small amout of error is evident. This error increases
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further as KD increases, but remains very reasonable for KD < 0.5; for example, for both
flows, at KD = 0.5 the error is less than 5%.

4.2. Unsteady boundary heating problems

In this section we present results from an unsteady boundary heating problem of the
kind studied in (Manela & Hadjiconstantinou 2007); these studies are motivated by
the common occurrence of applications involving time-varying boundary temperatures
in micro-electro-mechanical devices. In this problem, the two walls confining the gas
are heated uniformly via prescribed time dependent temperatures of the form Tw =
1+F (t). Here, F (t) is taken to be a sinusoidal function sin(θt) with an amplitude (0.002
in simulations) that is sufficiently small to justify a linear assumption. As this is a time-
varying problem, another non-dimensional parameter needs to be introduced (Manela
& Hadjiconstantinou 2008, 2010), namely the Strouhal number, defined as

St = θ =
θ̂L√
RT0

. (4.2)

Kinetic effects become important as both the Strouhal and Knudsen numbers increase
as shown in Fig. 6 in Manela & Hadjiconstantinou (2010).
Here, simulations will be conducted for a range of Strouhal and Knudsen numbers.

Prandtl numbers corresponding both to the hard-sphere and BGK model will be consid-
ered. The accuracy of the lattice results will be evaluated by comparison with simulation
results obtained using the recently developed low-variance deviational simulation Monte
Carlo (LVDSMC) method (Homolle & Hadjiconstantinou 2007; Radtke & Hadjicon-
stantinou 2009, 2011) because simulation of this low-Mach number flow by DSMC is
prohibitively expensive. The LVDSMC method was developed to specifically address this
DSMC limitation, namely the prohibitive computational cost associated with low-Ma
and more generally low-signal flows. LVDSMC provides efficient numerical solutions of
the Boltzmann equation for all Knudsen numbers (Wagner 2008) and arbitrarily small

signals by simulating only the deviation from equilibrium. This control-variate variance-
reduction formulation introduces deterministic knowledge of a nearby equilibrium state,
and thus significantly reduces the stastistical uncertainty associated with the Monte Carlo
approach without introducing any approximation. The resulting computational benefits
in the limit of low speed flows such as the one considered here are typically very large
(Homolle & Hadjiconstantinou 2007).
Following Manela & Hadjiconstantinou (2010), comparison with LVDSMC results will

be performed using the following two Knudsen numbers:

KE =
16

5
√
2π

Kn, (4.3)

for the hard-sphere gas with Pr = 2/3, and

KB =

√

8

π
Kn (4.4)

for the BGK gas with Pr = 1. Details on the LVDSMC simulations of the problem
studied here can be found in Manela & Hadjiconstantinou (2008, 2010).
The results for various Strouhal and Knudsen numbers for the hard-sphere and the

presented in Figs.5-8, where both the velocity uy and temperature perturbation ∆T =
T−1 are normalized by the amplitude of F (t). Figs.9-12 show results for the BGK model.
Symbols denote the lattice model proposed here, whereas lines denote LVDSMC data.
At St = π

√
2/16, the two sets of results show good agreement, even when KE = 0.5
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Figure 5. The velocity and temperature perturbations for a hard-sphere gas subject to a sinu-
soidal heating at t = 3π/2 at different Kn and St. The symbols correspond to the data of the
lattice model (Pr = 2/3) and the lines are the results of the LVDSMC method.
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Figure 6. The velocity and temperature perturbations (∆T ) for a hardsphere gas subject to a
sinusoidal heating at t = 3π/2 at different Kn and St. The symbols correspond to the data of
the lattice model (Pr = 2/3) and the lines are the results of the LVDSMC method.
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lattice model (Pr = 2/3) and the lines are the results of the LVDSMC method.
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soidal heating at t = 3π/2 at different Kn and St. The symbols correspond to the data of the
lattice model (Pr = 2/3) and the lines are the results of the LVDSMC method.
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heating at t = 3π/2 at different Kn and St. The symbols correspond to the data of the lattice
model (Pr = 1) and the lines are the results of the LVDSMC method.
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Figure 10. The velocity and temperature perturbations (∆T ) for a BGK gas subject to a
sinusoidal heating at t = 3π/2 at different Kn and St. The symbols correspond to the data of
the lattice model (Pr = 1) and the lines are the results of the LVDSMC method.
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Figure 11. The velocity and temperature perturbations for a BGK gas subject to a sinusoidal
heating at t = 3π/2 at different Kn and St. The symbols correspond to the data of the lattice
model (Pr = 1) and the lines are the results of the LVDSMC method.
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Figure 12. The velocity and temperature perturbations for a BGK gas subject to a sinusoidal
heating at t = 3π/2 at different Kn and St. The symbols correspond to the data of the lattice
model (Pr = 1) and the lines are the results of the LVDSMC methods.

or KB = 0.5. With increasing Strouhal number, disprepancies between the two appear
and become larger. For St = π

√
2/4, significant disagreement is observed even for KE

as low as 0.05. Larger Strouhal numbers lead to stronger rarefaction effects, so this
disagreement can be attributed to the moderate discrete velocity set. Overall, with this
moderate discrete velocity set, the present model can give reasonable predictions for
flows with a Knudsen number up to 0.5 and a Strouhal number up to π

√
2/8. If highly

accurate results are desirable, more discrete velocities are required, leading to higher
computational costs.

4.3. High-Mach number flows

In this section we present simulation results for high Mach number flows such as Couette
flows with uw ± 0.2 and forced Poiseuille flows with non-dimensional forcing magnitude
g = 0.22. Although in the Couette flows the wall speed is only a factor of 2 larger than
the flows examined in section 4.1, our focus here turns to the resulting temperature field
that, despite the small temperature differences involved, reveals useful information.
Fig. 13 shows a comparison between our lattice model, DSMC and numerical solution

of the ES-BGK equation for a Couette flow at KD = 0.05. The comparison reveals that at
these small KD, the lattice model can capture both kinetic (e.g. slip/temperature jump)
and non-equilibrium effects quite accurately. For comparison, the results of the BGK
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Figure 13. The velocity and temperature profiles for the Couette flow at KD = 0.05, where
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Figure 14. The velocity and temperature profiles (∆T = T − Tw) for Couette flow of a hard–
sphere gas at KD = 0.1, 0.2 and 0.5. The symbols denote the DSMC data and the red lines
represent the lattice ES-BGK results. The wall velocities are uw = ±0.2. For further comparison,
the temperature profiles predicted by the R13 model (Taheri et al. 2009) are also presented with
the black lines where the line styles same to those of the lattice ES-BGK results are used to
distinguish the Knudsen numbers.

equation and its lattice version (b = 0) are also presented. These two models predict a
temperature maximum that is 30% higher than the hard-sphere result.

Results for Couette flows in the transition regime are presented in Figs. 14 and 15.
Overall, our model predictions for the velocity, shear stress and heat flux are close to those
of DSMC even for KD = 0.5. However, our predictions of the viscous-heating-induced
temperature field start to deviate from the DSMC results at KD = 0.2. Remarkably, the
heat flux predictions of the lattice model are still in excellent agreement with the DSMC
data for KD as large as 0.5.

To further validate the model accuracy beyond the NS level, the profiles of shear stress
σyy and stream-wise heat flux qx are presented in Fig.(16), which are both zero for the
NS solutions. However, our lattice model can give reasonable predictions for σyy up to
KD = 0.2 which is consistent with the temperature prediction. For the heat flux qx,
we have similar observation, which further confirms that our model can describe kinetic
effects beyond the NS level with the chosen moderate 11-th order quadrature, which
is consistent with the discussion in Sec.2.3. It is also interesting to compare with the
predictions of the R13 model, which gives a stable set of transport equations of the
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Figure 15. The shear stress σxy and heat flux qy profiles for Couette flow of a hard-sphere gas
at KD = 0.1, 0.2 and 0.5. The symbols denote DSMC data and the lines represent the lattice
ES-BGK results. The wall velocities are uw = ±0.2.
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Figure 16. The shear stress σyy and heat flux qx profiles for Couette flow of a hard-sphere gas
at KD = 0.1, 0.2 and 0.5. The symbols denote direct solution of the ES-BGK equation, the red
lines represent the lattice ES-BGK results and the black lines are those of the R13 model(Taheri
et al. 2009). The Knudsen numbers for the R13 model are also distinguished by the line styles
same to those of the lattice ES-BGK results. The wall velocities are uw = ±0.2.
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Figure 17. The velocity and temperature profiles (∆T = T −Tw) for the force-driven Poiseuille
flow of a hard-sphere gas at KD = 0.1, 0.2, 0.4 and 0.5. The symbols denote DSMC data and
the lines represent the lattice ES-BGK results.



18

-0.5 -0.3 -0.1 0.1 0.3 0.5
Y

-15

-10

-5

0

5

10

15

S
h
e
a
r 

st
re

ss
 (
σ
x
y
×1

02
) KD =0.1

KD =0.2

KD =0.4

KD =0.5

-0.5 -0.3 -0.1 0.1 0.3 0.5
Y

-3

-2

-1

0

1

2

3

H
e
a
t 

fl
u
x
 (
q y
×1

02
)

KD =0.1

KD =0.2

KD =0.4

KD =0.5

Figure 18. The shear stress and heat flux profiles for the force-driven Poiseuille flow of a
hard-sphere gas at KD = 0.1, 0.2, 0.4 and 0.5. The symbols denote DSMC data and the lines
represent the lattice ES-BGK results.
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force-driven flow among the ES-BGK equation, lattice ES-BGK model and DSMC method at
KD = 0.1 and 0.5.

-0.5 -0.3 -0.1 0.1 0.3 0.5
Y

-0.2

-0.1

0

0.1

0.2

V
e
lo

ci
ty

 (
u
x
)

KD =0.2

ES-BGK
11th
15th
19th

-0.5 -0.3 -0.1 0.1 0.3 0.5
Y

4

5

6

7

8

∆
T
×1
03

KD =0.2

ES-BGK
11th
15th
19th
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Figure 21. Comparisons of the velocity and temperature profiles for the combined Couette–
Fourier flows. The wall velocities are uw = ±0.2 while the wall temperature difference is 0.3.
The lines are the lattice ES-BGK model data and the symbols are the results of the ES-BGK
equation.

super-Burnett order (Taheri et al. 2009). Fig.(16) shows similar performance for both of
the R13 model and our lattice model.

The simulation results for Poiseuille flows at four Knudsen numbers are depicted in
Figs. 17 and 18. This flow is more numerically challenging compared to the Couette flow.
Even for KD as small as 0.1, the temperature profiles show significant difference between
the lattice model and DSMC results, even though the bimodal temperature distribution
(Mansour et al. 1997) can be qualitatively captured by the lattice model at KD = 0.2.
As the Knudsen number increases further, the difference becomes even larger, though
the temperature minimum at the center of the computational domain can be predicted
qualitatively. Remarkably, but also consistently with the Couette flow case, the heat
flux profiles show good agreement with the DSMC data despite the more significant
discrepancies in the temperature profiles.

The inability of our model to predict accurate viscous heating may be caused by two
factors. First, as shown in the derivation process, the lattice model approaches the cor-
responding kinetic model via the moment representation with increasing order of Gauss-
Hermite quadrature. However, as discussed in Sec.2.3, the chosen moderate discrete ve-
locity set is only expected to approach the Burnett level, which may not be sufficient
to capture all kinetic effects in the presence of a non-negligible Mach number. This is
verified in Fig. 20 where its is shown that increasing discrete velocities can improve the
model accuracy.

In addition to the error due to a finite number of discrete velocities, the ES-BGK
equation itself is a model which may be failing in these flows. In fact, as shown by
some studies (e.g., Gallis & Torczynski 2011), the ES-BGK equation tends to produce
inaccurate velocity distribution functions. The possibility that the ES-BGKmodel is itself
contributing to the error can be confirmed by the results presented in Fig. 19. At KD =
0.5 the lattice model result shows a significant deviation from the numerical solution of
the ES-BGK model. Meanwhile, the temperature profile from numerical solution of the
ES-BGK equation itself shows a large deviation from the DSMC result.

While the comparisons with the DSMC solutions for the temperature difference of
0.1 have been shown in Fig. 4, a larger temperature difference of 0.3 is investigated for
the combined Couette-Fourier flow. The results are shown in Fig. 21 where excellent
agreement is observed between the lattice ES-BGK model and the ES-BGK equation.
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5. Concluding remarks

We have presented and validated a lattice Boltzmann model using a systematic Hermite
moment representation of the ES-BGK equation. The resulting lattice ES-BGK model
features an adjustable Prandtl number and may thus be more appropriate for use in
coupled thermofluidic phenomena. This generic procedure may be applied to other kinetic
model equations.
We have validated the lattice model for combined thermal and rarefaction effects by

comparing its predictions with the DSMC and LVDSMC results as well as numerical
solutions of the ES-BGK model. We find that, for a moderate 11th-order discrete velocity
set, the proposed model can provide reasonable predictions for Couette and force-driven
Poiseuille flows for Knudsen numbers up to 0.5. In addition, it is able to accurately predict
heat conduction in the slip-flow and early transition regimes. This finding extends to
unsteady problems provided the additional kinetic effects due to their time-dependence
are also considered: for an unsteady boundary heating problem reasonable agreement
with LVDSMC simulations is observed for Knudsen numbers up to 0.5 and Strouhal
numbers up to π

√
2/8.

The solutions obtained by the lattice Boltzmann method are expected to approach the
“true” solutions of the ES-BGK equation as the number of discrete velocities and the
Hermite expansion order is increased. However, the moderate discrete velocity set used
here already represents a reasonable compromise between computational efficiency and
modeling accuracy for flows with a range of Knudsen and Strouhal numbers. Although
we have tested the model for rarefied gas thermal flows, this model, in principle, can be
used for liquid thermal flows, which will be the subject of future work.
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