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We propose lattice gauge equivariant convolutional neural networks (L-CNNs) for generic machine
learning applications on lattice gauge theoretical problems. At the heart of this network structure is a novel
convolutional layer that preserves gauge equivariance while forming arbitrarily shaped Wilson loops in
successive bilinear layers. Together with topological information, for example, from Polyakov loops, such
a network can, in principle, approximate any gauge covariant function on the lattice. We demonstrate that
L-CNNs can learn and generalize gauge invariant quantities that traditional convolutional neural networks
are incapable of finding.
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Gauge field theories are an important cornerstone of
modern physics and encompass the fundamental forces of
nature, including electromagnetism and nuclear forces. The
physical information is captured in Wilson loops [1], or
holonomies, which describe how a quantity is parallel
transported along a given closed path. Local gauge trans-
formations can modify the fundamental fields independ-
ently at each space-time point but leave any traced Wilson
loop invariant. On the lattice, gauge invariant observables
are typically formulated in terms of traced Wilson loops of
different shapes. The most basic example is the Wilson
action, which is formulated entirely in terms of 1 × 1 loops,
so-called plaquettes. The Wilson action can be systemati-
cally improved by including terms involving larger loops
[2–6]. Planar rectangular loops are used for characterizing
confinement. Most famously, the potential of a static quark
pair can be computed from the expectation value of a
Wilson loop with large extent in the temporal direction [7].
Improved approximations to the energy momentum tensor
or the topological charge density can involve also non-
planar loops of growing size [8–10]. As the number of
possible loops on a lattice grows exponentially with its path
length, a systematic treatment of higher order contributions
can become increasingly challenging.
Artificial neural networks provide a way to automatically

extract relevant information from large amounts of data.
They have become increasingly popular in many Abelian
lattice applications, such as for ϕ4 scalar field, Ising, XY,
Potts and Yukawa models, where they can recognize
classical [11] and topological [12] phase transitions from

field configurations, determine local and nonlocal features
[13,14], or infer action parameters [15]. Neural networks
can improve the efficiency of sampling techniques [16],
extract optimal renormalization group transformations [17],
or reconstruct spectral functions from Green’s functions
[18]. By the universal approximation theorem, these net-
works can, in principle, learn any function [19–21]. In
order to avoid merely memorizing training samples, impos-
ing additional restrictions on these networks can improve
their generalization capabilities [22]. Global translational
equivariance induces convolutions [23], which form the
basis of convolutional neural networks (CNNs). Additional
global symmetry groups, such as global rotations, can be
incorporated using group equivariant CNNs (G-CNNs)
[24–29]. This approach can be extended to local gauge
symmetries. Even though gauge invariant observables can
be learned to some extent by nonequivariant networks [30],
recently there has been a lot of interest in incorporating
gauge symmetries directly into the network structure. For
discrete ones, equivariant network structures have been
implemented for the icosahedral group [31] or for the Z2

gauge group [32]; for continuous ones, a much larger
symmetry space is available [33]. A recent seminal work
demonstrated that incorporating U(1) or SUðNcÞ gauge
symmetries into a neural network can render flow-based
sampling orders of magnitude faster than traditional
approaches [34,35]. This impressive result was obtained
using parametrized invertible coupling layers that essen-
tially depend on parallel-transported plaquettes. Up until
now, machine learning applications that require larger
Wilson loops have relied on manually picking a set of
relevant Wilson loops [36] or on simplifications due to the
choice of a discrete Abelian gauge group [37]. A compre-
hensive treatment for continuous non-Abelian gauge
groups has been missing so far, and there is an obvious
desire to systematically generate all Wilson loops from
simple local operations.
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In this Letter, we introduce lattice gauge equivariant
(LGE) CNNs (abbreviated L-CNNs), which we intend as a
gauge equivariant replacement for traditional CNNs in
machine learning problems for lattice gauge theory. We
specify a basic set of network layers that preserve gauge
symmetry exactly, while allowing for universal expressivity
for physically distinct field configurations. Gauge equiv-
ariant layers can be stacked arbitrarily to form gauge
equivariant networks. In particular, we provide a new
convolutional operation, which, in combination with a
gauge equivariant bilinear layer, can grow arbitrarily
shaped Wilson loops from local operations. We show that
the full set of all contractible Wilson loops can be
constructed in this way. Together with topological infor-
mation from noncontractible loops, in principle, the full
gauge connection can be reconstructed [38,39]. Trace
layers produce gauge invariant output that can be linked
to physical observables. Using simple regression tasks for
Wilson loops of different sizes and shapes in pure SU(2)
gauge theory, we demonstrate that L-CNNs outperform
conventional CNNs by far, especially with growing
loop size.
Lattice gauge theory is a discretization of Yang-Mills

theory [1,40,41]. We consider a system at finite temperature
with gauge group SUðNcÞ in Dþ 1 dimensions on a lattice
Λ of size NtND

s with Nt (Ns) cells along the imaginary time
(spatial) direction(s) with periodic boundary conditions.
The link variables Ux;μ specify the parallel transport from a
lattice site x to its neighbor xþ μ≡ xþ aêμ with lattice
spacing a. Gauge links transform according to

TΩUx;μ ¼ ΩxUx;μΩ
†
xþμ; ð1Þ

where the group elements Ωx are unitary and have unit
determinant. The Yang-Mills action can be approximated
by the Wilson action [1]

SW ½U� ¼ 2

g2
X
x∈Λ

X
μ<ν

ReTr½1 − Ux;μν�; ð2Þ

with the plaquette variables

ð3Þ

which are 1 × 1 (untraced) Wilson loops on the lattice.
Unless specified otherwise, we assume Wilson loops to be
untraced, i.e., matrix valued. The plaquette variables trans-
form locally at x as TΩUx;μν ¼ ΩxUx;μνΩ

†
x.

L-CNNs can express a large class of possible gauge
equivariant functions in the lattice gauge theory framework.
As customary in feed-forward CNNs, we split L-CNNs into
more elementary “layers,” see Fig. 1. As input data for a
layer, we use a tuple ðU;WÞ consisting of nonlocally
transforming gauge link variables U and locally trans-
forming variablesW. The first part of the tuple is the set of
variables U ¼ fUx;μg, which transform according to
Eq. (1). For concreteness, we choose the defining (or
fundamental) representation of SUðNcÞ such that we can
treat link variables as complex special unitary Nc × Nc
matrices. Its second part is a set of variables W ¼ fWx;ig
with Wx;i ∈ CNc×Nc and index 1 ≤ i ≤ Nch, which we
interpret as “channels.” We require these additional input
variables to transform locally at x,

TΩWx;i ¼ ΩxWx;iΩ†
x: ð4Þ

A function f that performs some mathematical
operation on ðU;WÞ is called gauge equivariant (or gauge
covariant) if fðTΩU; TΩWÞ ¼ T 0

ΩfðU;WÞ, where T 0
Ωf

denotes the gauge transformed expression of the function
f. Additionally, a function f is gauge invariant if

FIG. 1. A possible realization of a L-CNN. Lattice data in the form of U links are first preprocessed by Plaq. and Poly. in order to
generate elementary locally transforming W objects. A L-Conv is used to parallel transport nearby W objects (green dots) along the
coordinate axes to a particular lattice site (red dot). A L-Bilin combines two layers by forming products of locally transforming objects,
which are stored in an increasing number of channels (indicated by stacked lattices). The second input layer (blue) for this operation can
be a duplicate of the original layer (red). An additional L-Act (L-Exp) can modify W (U) in a gauge equivariant way (green layer).
A trace layer generates gauge invariant output that can be further processed by a traditional CNN. The example depicts a 1þ 1D lattice
but applies to higher dimensions as well. The basic layers presented can be combined to form other deeper network architectures.
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fðTΩU; TΩWÞ ¼ fðU;WÞ. All possible functions that can
be expressed as L-CNNs should either be equivariant or
invariant.
LGE convolutions (L-Convs).—Parallel transport of W

objects at neighboring sites to the current location is
performed by L-Convs. They can be written as

Wx;i →
X
j;μ;k

ωi;j;μ;kUx;kμWxþkμ;jU
†
x;kμ; ð5Þ

where ωi;j;μ;k ∈ C are the weights of the convolution
with 1 ≤ i ≤ Nch;out, 1 ≤ j ≤ Nch;in, 0 ≤ μ ≤ D, and
−K ≤ k ≤ K, where K is the kernel size. Unlike traditional
convolutional layers, the gauge equivariant kernels connect
to other lattice sites only along the coordinate axes. The
reason is path dependence. In the continuum case, a natural
choice would be the shortest path (or geodesic) connecting
x and y, which is also used for gauge equivariant neural
networks that are formulated on manifolds [31]. However,
in our lattice approach, the shortest path is not unique,
unless one restricts oneself to the coordinate axes. Possible
variations of this layer are to include an additional bias term
or to restrict to even sparser dilated convolutions [42].
LGE bilinear layers (L-Bilin).—Two tuples ðU;WÞ and

ðU;W 0Þ are combined by L-Bilin to form products of
locally transforming quantities as

Wx;i →
X
j;k

αi;j;kWx;jW0
x;k; ð6Þ

where αi;j;k ∈ C are parameters with 1 ≤ i ≤ Nout,
1 ≤ j ≤ Nin;1, and 1 ≤ k ≤ Nin;2. Since only locally trans-
forming terms are multiplied in Eq. (6), gauge equivariance
holds. For more flexibility, the bilinear operation can be
further generalized by enlarging W and W 0 to also include
the unit element 1 and all Hermitian conjugates of W and
W 0. A L-Bilin can then also act as a residual module [43]
and includes a bias term.
LGE activation functions (L-Act).—These functions can

be applied at each lattice site via

Wx;i → gx;iðU;WÞWx;i; ð7Þ

using any scalar-valued, gauge invariant function g. A
gauge equivariant generalization of the commonly used
rectified linear unit (ReLU) could be realized by choosing
gx;iðU;WÞ ¼ ReLUðReTr½Wx;i�Þ where g only depends on
local variables. In general, g can depend on values of
variables at any lattice site and, in principle, could also
depend on trainable parameters.
LGE exponentiation layers (L-Exp).—L-Exp can be used

to update the link variables through

Ux;μ → U0
x;μ ¼ Ex;μUx;μ; ð8Þ

where Ex;μ ∈ SUðNcÞ is a group element that transforms
locally TΩEx;μ ¼ ΩxEx;μΩ

†
x. By this update, the unitarity

(U0†
x;μU0

x;μ ¼ 1) and determinant (detU0
x;μ ¼ 1) constraints

remain satisfied. A particular realization of Ex;μ in terms of
W variables is given by the exponential map

Ex;μðWÞ ¼ exp

�
i
X
i

βμ;i½Wx;i�aH
�
; ð9Þ

where ½Wx;i�aH denotes the anti-Hermitian traceless part of
Wx;i, and βμ;i ∈ R are real-valued weight parameters with
0 ≤ μ ≤ D and 1 ≤ i ≤ Nch. The above method projects
Wx;i onto the Lie algebra, and therefore Ex;μ is guaranteed
to be an element of the Lie group.
Additional layers.—Trace layers generate gauge invari-

ant output

T x;iðU;WÞ ¼ Tr½Wx;i�: ð10Þ

Plaquette layers (Plaq.) generate all possible plaquettes Ux;μν
from Eq. (3) at location x and add them to W as a
preprocessing step. To reduce redundancy, we can choose
to only compute plaquetteswith positive orientation, i.e.,Ux;μν

with μ < ν. Polyakov layers (Poly.) compute all possible
Polyakov loops [44] at every lattice site according to

Lx;μðUÞ ¼
Y
k

Uxþkμ;μ ¼ Ux;μUxþμ;μ;…; Ux−μ;μ ð11Þ

and add them to the set of locally transforming objects inW as
a preprocessing step. These loops wrap around the periodic
boundary of the (toruslike) space-time lattice and cannot be
contracted to a single point.
Figure 2 contains a sketch of the proof by induction that

L-CNNs can generate arbitrary Wilson loops [Fig. 2(a)].
This is achieved by concatenating loops as shown using a
L-Bilin such that intermediate path segments to the origin
(indicated by a blue dot in Fig. 2) cancel. Arbitrary paths
to a plaquette and back along the same path as shown in
Fig. 2(c) can be generated by an initial Plaq. with repeated

(a) (b) (c)

FIG. 2. Sketch of the proof that L-CNNs can generate arbitrary
Wilson loops. (a) An arbitrary contractible Wilson loop (depicted
here in three dimensions) surrounds a surface that can be tessellated
into n tiles of 1 × 1 unit lattice area. The blue dot indicates the
starting point of the untracedWilson loop. (b) AWilson loop with n
tiles can be composed of an untraced Wilson loop with n − 1 tiles
and a path along the boundary to the missing tile using a L-Bilin.
(c) An arbitrary return path to and from a 1 × 1 plaquette is
obtained by successive applications of L-Convs after an initial Plaq.
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application of L-Convs. On topologies that are not simply
connected, loops that cannot be contracted to a point can be
added by Poly. The possibility of forming a complete
Wilson loop basis [38,39] together with the universality of
deep convolutional neural networks [21] makes L-CNNs
capable of universal approximation within an equivalence
class of gauge connections.
These layers can be assembled and applied to specific

problems in lattice gauge theory. A possible architecture is
depicted in Fig. 1. The alternated application of L-Conv and
L-Bilin can double the area of loops. Repeating this block
can growWilson loops to arbitrary size. L-Bilins are already
nonlinear, but even more general relations can be expressed
through L-Acts. Building blocks in the form of L-Convþ
L-Bilinþ L-Act cover a wide range of possible gauge
equivariant nonlinear functions. The trace layer renders
the output gauge invariant so that it can be further processed
by a conventional CNN or a multilayer perceptron without
spoiling gauge symmetry. Some applications, such as
classical time evolution [45] or gradient flow [46], require
operations that can change the set of gauge linksU. This can
be achieved using a L-Exp. After a L-Exp, one can use Plaq.
and Poly. to update W accordingly.
We demonstrate the performance of L-CNNs by apply-

ing them to a number of seemingly simple regression
problems. Specifically, we train L-CNN models using
supervised learning to predict local, gauge invariant observ-
ables and make comparisons to traditional CNN models as
a baseline test. We perform our experiments on data from
1þ 1D and 3þ 1D lattices with various sizes and coupling
constants g, which we have generated using our own SU(2)
Monte Carlo (MC) code based on the Metropolis algorithm
[47]. One type of observable that we focus on is the real
value of traced Wilson loops, i.e.,

Wðm×nÞ
x;μν ¼ 1

Nc
ReTr½Uðm×nÞ

x;μν �; ð12Þ

where Uðm×nÞ
x;μν is an m × n Wilson loop in the μν plane. A

second observable that we study, which is of more
immediate physical relevance, is the topological charge
density qx, which is only available in 3þ 1D. In particular,
we focus on the plaquette discretization given by

qplaqx ¼ ϵμνρσ
32π2

Tr

�
Ux;μν −U†

x;μν

2i

Ux;ρσ −U†
x;ρσ

2i

�
: ð13Þ

Our frameworks of choice are PyTorch and PyTorch Lightning.
We have implemented the necessary layers discussed
previously as modules in PyTorch, which can be used to
assemble complete L-CNN models. Our code is open
source and hosted on GitLab [48]. In addition to gauge
equivariance, we formulate our models to be translationally
equivariant, which makes them applicable to arbitrary
lattices. The task of the training procedure is to minimize
a mean-squared error (MSE) loss function, which compares

the prediction of the model to the ground truth from
the dataset. For technical details, see our Supplemental
Material [49].
Our L-CNN architectures consist of stacks of L-Convþ

L-Bilin blocks, followed by a trace operation, as shown in
Fig. 1. The gauge invariant output at each lattice site is
mapped by linear layers to the final output nodes. We have
experimented with architectures of various sizes, with the
smallest models only consisting of a single L-Convþ
L-Bilin layer and ≈100 parameters to very large architec-
tures with a stack of up to four layers of L-Convþ L-Bilin
and ≈40 000 trainable parameters.
For comparison, we implement gauge symmetry break-

ing baseline models using a typical CNN architecture. We
use stacks of two-dimensional convolutions followed by
nonlinear activation functions (such as ReLU, LeakyReLU,
tanh, and sigmoid) and global average pooling [50] before
mapping to the output nodes using linear layers. Baseline
architectures vary from just one or two convolutions with
≈300 parameters to large models with up to six convolu-
tions and ≈100 000 trainable weight parameters. These
models are trained and validated on small lattices (8 × 8 for
1þ 1D and 4 × 83 for 3þ 1D, 104 training and 103

validation examples) but tested on data from larger lattices
(up to 64 × 64 and 8 × 163, 103 test examples). In total, we
have trained 2680 individual baseline models.

FIG. 3. Scatter plots comparing best L-CNN models to baseline
CNNmodels forWilson loops of various sizes for 1þ 1D. For each
example in theNsNt ¼ 8 × 8 test dataset, we plot the true value vs
the model prediction. Perfect agreement is indicated by the dashed
45° line. As the size of the traced Wilson loops grows, the
performance of the baseline CNN models worsens quickly. On
the other hand, L-CNNmodels achieve high agreement in all cases.
The values in the upper left corner denote the MSEs of each plot.
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A selection of results are presented in Figs. 3 and 4 for
1þ 1Dand Fig. 5 for 3þ 1D lattices. Figure 3 shows scatter
plots of our best performing models (L-CNN and baseline)
evaluated on test data. We demonstrate that the performance
of the baselinemodels quickly deteriorates with the growing
size of the Wilson loop. In the case of 4 × 4 loops, the
baselinemodel collapses and only predicts the average value
of the training data. This signals that the baseline models are
unable to learn any meaningful relationship between input
and output data. Except for the case of 1 × 1 loops, the
baseline CNN models are not able to adequately learn even
moderately sized Wilson loops in 1þ 1D and have particu-
lar difficulty with predicting negative values, which are
associated with large gauge rotations.
We have experimented with different baseline CNN

architectures of various widths and depths and a variety
of activation functions. In all of our experiments, we have
obtained similar behavior as shown in Fig. 3. In contrast,
L-CNN architectures are able to converge to solutions that
can predict the observables to a high degree of accuracy in
all tasks, and they are gauge covariant by construction.
Furthermore, our models perform well across all

considered lattice sizes because of translational equivar-
iance. In Fig. 4, we show how predictions of baseline CNNs
and L-CNNs change under gauge transformations. We have
tried two strategies: random gauge transformations and
adversarial attacks (see our Supplemental Material, Sec. VI
A [49]). We observe that trained CNN models learn to
approximate gauge invariance (see [30] for a similar result)
but are vulnerable to certain gauge transformations that can
drastically change their predictions.
L-CNNs can also be applied to 3þ 1D lattices. Figure 5

demonstrates the predictions of our best L-CNN model for
topological charge (trained on 4 × 83) during Wilson
(gradient) flow [46] on an 8 × 243 lattice. The values from
our simulation (MC) agree with the model predictions to
high accuracy and assume integer values, as expected.
To summarize, we introduced a neural network structure

for processing lattice gauge theory data that is capable of
universal approximation within physically relevant degrees
of freedom. The network achieves this by growing Wilson
loops of arbitrary shapes in successive trainable gauge
covariant network layers. We demonstrated that our method
surpasses ordinary convolutional networks in simple regres-
sion tasks on the lattice and that it manages to predict and
generalize results for larger Wilson loops where a baseline
network completely fails. Furthermore, our models can also
be applied to lattices of any size without requiring retraining
or transfer learning. From a broader perspective, we intro-
duced a generalization of traditional CNNs that could replace
them in a large range of machine learning applications where
CNNs are applied to lattice gauge data.
Our approach opens up exciting possibilities for future

research. So far, we implemented the network layers for the
SU(2) gauge group only, but our method works for any
SUðNcÞ. Also, we have introduced the general concepts of
Polyakov-loopgenerating layers andof exponentiation layers,
but we have not exploited them in numerical experiments. It
would be interesting to study these layers and their possible
applications. Finally, the compositional nature of successive
gauge covariant network layers is reminiscent of the renorm-
alization group picture [51–53]. Trainable networks could
provide a viable implementation of the renormalization group
approaches by Wilson [54] and Symanzik [55]. Improved
lattice actions and operators could be obtained by training on
coarse lattices, while providing ground-truth data from finer
grained simulations. Automatically learning improved lattice
actions couldmake accessible previously unreachable system
sizes for zero and finite temperature applications [2,3,5] as
well as for real-time lattice simulations [4,6,56,57].

D. M. thanks Jimmy Aronsson for valuable discussions
regarding group equivariant and gauge equivariant neural
networks. This work has been supported by the Austrian
Science Fund FWF No. P32446-N27, No. P28352 and
Doctoral program No. W1252-N27. The Titan V GPU used
for this research was donated by the NVIDIA Corporation.

FIG. 4. Prediction uncertainty in Wð1×2Þ due to breaking of
gauge symmetry for our best baseline CNN and L-CNN models
on 8 × 8 test data. Black crosses (MC) denote the calculated true
value of the Wilson loop. The red bands show the effects of
random gauge transformations and transformations obtained
from adversarial attacks. Predictions by the L-CNN models
are invariant by construction.

FIG. 5. Predictions of our best L-CNN for the topological
charge on a Wilson flowed 8 × 243 lattice configuration at
2=g2 ¼ 0.2.
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