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Gauge theories are the cornerstone of our understanding of fundamental interactions among elementary

particles. Their properties are often probed in dynamical experiments, such as those performed at ion

colliders and high-intensity laser facilities. Describing the evolution of these strongly coupled systems is a

formidable challenge for classical computers and represents one of the key open quests for quantum

simulation approaches to particle physics phenomena. In this work, we show how recent experiments done

on Rydberg atom chains naturally realize the real-time dynamics of a lattice gauge theory at system

sizes at the boundary of classical computational methods. We prove that the constrained Hamiltonian

dynamics induced by strong Rydberg interactions maps exactly onto the one of a U(1) lattice gauge theory.

Building on this correspondence, we show that the recently observed anomalously slow dynamics

corresponds to a string-inversion mechanism, reminiscent of the string breaking typically observed in

gauge theories. This underlies the generality of this slow dynamics, which we illustrate in the context

of one-dimensional quantum electrodynamics on the lattice. Within the same platform, we propose a

set of experiments that generically show long-lived oscillations, including the evolution of particle-

antiparticle pairs, and discuss how a tunable topological angle can be realized, further affecting the

dynamics following a quench. Our work shows that the state of the art for quantum simulation of lattice

gauge theories is at 51 qubits and connects the recently observed slow dynamics in atomic systems to

archetypal phenomena in particle physics.
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I. INTRODUCTION

Lattice gauge theories (LGTs) [1] represent one of the

most successful frameworks for describing fundamental

interactions within the standard model of particle physics.

Numerical simulations of their Euclidean formulation [2]

have shed light on paradigmatic equilibrium properties of

strong interactions, including the low-lying spectrum of

quantum chromodynamics [3], and the nature of its phase

diagram [4,5]. Nonequilibrium properties, instead, are a

notable challenge [6], due to the lack of generically appli-

cable methods to simulate the real-time dynamics of

extended, strongly interacting systems [7]. This has stimu-

lated an intense theoretical activity aimed at quantum simu-

lating LGTs via atomic quantum systems [8–10], leading to

the first door-opener experimental realization in a system
of four trapped ions [11]. While such quantum simulators
have already challenged the most advanced computational
techniques for studying condensed-matter motivated mod-
els [12,13], there is presently no experimental evidence
that atomic systems can be used to simulate LGTs at large
scales, nor that they can display physical phenomena with
a direct counterpart in LGTs. This limitation stems from
the very characteristic aspect that distinguishes LGTs from
other statistical mechanics models, i.e., the presence of
local constraints on the possible configurations, in the form
of a Gauss law, which cannot be easily implemented in
actual experimental realizations [8,9].

Here, we show that (1þ 1)-dimensional LGTs akin to

quantum electrodynamics are naturally realized in state-of-

the-art experiments with Rydberg atom arrays [14,15]. In

particular, we show how the dynamics of Rydberg exci-

tations in these chains is exactly mapped onto a spin-1=2
quantum link model (QLM), a U(1) LGT where the gauge

fields span a finite-dimensional Hilbert space, equivalent to

a lattice Schwinger model in the presence of a topological
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term [16]. The key element of our mapping, which is

schematically illustrated in Fig. 1, is that gauge invariance

has a natural counterpart in the Rydberg blockade mecha-

nism, which constrains the Hilbert space in the sameway as

Gauss law does in gauge theories. This provides an

immediate interpretation of the recent experiment with

Rydberg-blockaded atom arrays in Ref. [14] as the first

large-scale quantum simulation of a LGT at the edge of

classical computational methods [7].

From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow

relaxation recently observed in experiments: the long-lived

oscillations in the population of excited Rydberg atoms

correspond to a string inversion, a phenomenon which is

directly tied to string breaking [6,17,18] prototypical of

gauge theories including dynamical matter [cf. Figs. 1(d)

and 1(e)]. Themapping indicates that this phenomenon has a

natural interpretation in the LGT framework and suggests

the occurrence of slow dynamics in other U(1) gauge

theories, such as higher-spin QLMs [19], Higgs theories

[20,21], and the Schwinger model [22,23]. These theories

have been widely discussed in the context of Schwinger pair

production taking place at high-intensity laser facilities, thus

providing a highly unexpected, direct link between appa-

rently unrelated experimental platforms [18,24–27].

We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence

of relaxation on all timescales corresponding to any micro-

scopic coupling present in the system. As initial states, we

focus on those consisting of particle-antiparticle pairs,

corresponding to regular configurations of the Rydberg

atom arrays with localized defects, which are accessible

within the setup of Ref. [14]. We show that these defects

propagate ballistically with long-lived coherent interfer-

ence patterns. This behavior is found to be governed by

special bands of highly excited eigenstates characterized

by a regularity in the energy-momentum dispersion rela-

tion. These findings open up a novel perspective which

complements and extends toward gauge theories recent

approaches to slow relaxation in Rydberg-blockaded

atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-

sional array of L optical traps, each of them hosting a single

atom, as schematically illustrated in Fig. 1(a). The atoms

are trapped in their electronic ground state (black circle),

denoted by j↓ij, where j numbers the trap. These ground

states are quasiresonantly coupled to a single Rydberg

state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is

governed by the following Ising-type Hamiltonian [13,34]:

(b)

(c)
Gauge fields

Matter fields

Odd sites Even sites

=

=

=

=

Quantum link model(a) Rydberg atom chain
Mapping

Rydberg Rydberg QLM

Odd-even bonds Even-odd bonds

CDW1

CDW2

Empty

QLM

(d) (e)

=

=

FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential

well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two

levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of

freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing

on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a

quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping

between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the

staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-

density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,

respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their

ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the

effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map

exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,

bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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ĤRyd ¼
X

L

j¼1

ðΩσ̂xj þ δσ̂zjÞ þ
X

L

j<l¼1

Vj;ln̂jn̂l; ð1Þ

where σ̂αj are Pauli matrices at site j, the operator n̂j ¼
ðσ̂zj þ 1Þ=2 signals the presence of a Rydberg excitation at

site j, 2Ω and 2δ are the Rabi frequency and the detuning of

the laser excitation scheme, respectively, and Vj;l describes

the interactions between atoms in their Rydberg states at

sites ðj;lÞ. For the cases of interest here, this interaction is

strong at short distances and decays as 1=jj − lj6 at large

distances. The dynamics described by ĤRyd has already

been realized in several experiments utilizing either optical

lattices or optical tweezers [14,15,35]. In particular,

Ref. [14] investigated the case in which Vj;jþ1 is much

larger than all other energy scales of the system, resulting in

the so-called Rybderg blockade effect: atoms on neighbor-

ing sites cannot be simultaneously excited to the Rydberg

state, hence the constraint n̂jn̂jþ1 ¼ 0.

In this regime, the resulting Hamiltonian—introduced by

Fendley, Sengupta, and Sachdev (FSS) in Ref. [36]—is

ĤFSS ¼
X

L

j¼1

ðΩσ̂xj þ 2δn̂jÞ; ð2Þ

where we neglect longer-range terms which do not affect

qualitatively the dynamics. ĤFSS acts on the constrained

Hilbert space without double occupancies on nearest-

neighbor sites, as illustrated in Fig. 1(a). As we show

below, the direct connection between Rydberg atomic

systems and gauge theories is indeed provided by this

constraint at the level of the Hilbert space.

III. RYDBERG BLOCKADE AS A GAUGE

SYMMETRY CONSTRAINT

We establish here the exact mapping between the FSS

Hamiltonian in Eq. (2) governing the dynamics of the

Rydberg atom quantum simulator in Ref. [14] and a U(1)

LGT. The latter describes the interaction between fermionic

particles, denoted by Φ̂j and residing on the lattice site j,

mediated by a U(1) gauge field, i.e., the electric field Êj;jþ1,

defined on lattice bonds, as depicted in Fig. 1(b). We use

here Kogut-Susskind (staggered) fermions [23], with the

conventions that holes on odd sites represent antiquarks q̄,
while particles on even sites represent quarks q. Their

dynamics is described by

Ĥ ¼ −w
X

L−1

j¼1

ðΦ̂†
jÛj;jþ1Φ̂jþ1 þ H:c:Þ

þm
X

L

j¼1

ð−1ÞjΦ̂†
jΦ̂j þ J

X

L−1

j¼1

Ê2

j;jþ1; ð3Þ

where the first term provides the minimal coupling between

gauge and matter fields through the parallel transporter

Ûj;jþ1 with ½Êj;jþ1; Ûj;jþ1� ¼ Ûj;jþ1, the second term is the

fermion mass, and the last one is the electric field energy.

The generators of the U(1) gauge symmetry are defined as

Ĝj ¼ Êj;jþ1 − Êj−1;j − Φ̂
†
jΦ̂j þ

1 − ð−1Þj
2

; ð4Þ

and satisfy ½Ĥ; Ĝj� ¼ 0, so that gauge invariant states jΨi
satisfy Gauss law ĜjjΨi ¼ 0 for all values of j. Restricting

the dynamics to their subspace is by far the most chal-

lenging task for quantum simulators.

Different formulations of U(1) LGTs are obtained for

different representations of gauge degrees of freedom

Êj;jþ1. While in the standard Wilsonian formulation—i.e.,

the lattice Schwinger model—they span infinite-

dimensional Hilbert spaces, here we first focus on the U(1)

QLM formulation [19,37], where they are represented

by spin variables, i.e., Êj;jþ1¼Ŝzj;jþ1
and Ûj;jþ1 ¼ Ŝþj;jþ1

,

so that ½Êj;jþ1; Ŝ
þ
j;jþ1

� ¼ Ŝþj;jþ1
. As noted in Ref. [38], this

formulation is particularly suited for quantum simulation

purposes.

In the following, we consider the QLM with spin

S ¼ 1=2, in which all the possible configurations of the

electric field have the same electrostatic energy, rendering

the value of J inconsequential; in Sec. IV B we show that

this model is equivalent to the lattice Schwinger model in

the presence of a θ angle with θ ¼ π [39]. The Hilbert space

structure following Gauss law is particularly simple in this

case [38]: as depicted in Fig. 1(c), for each block along the

chain consisting of two electric fields neighboring a matter

field at site j, there are only three possible states, depending
on the parity of j. In fact, in a general (1þ 1)-dimensional

U(1) LGT, the configuration of the electric field along the

chain determines the configuration of the charges via the

Gauss law. Accordingly, Ĥ in Eq. (3) can be recast into a

form in which the matter fields Φ̂j are integrated out.

We now provide a transformation which maps exactly the

latter form into the FSS Hamiltonian Eq. (2). The corre-

spondence between the two Hilbert spaces is realized by

identifying, alternately on odd and even lattice sites, the

computational basis configurations of the atomic qubits

allowed by the Rydberg blockade with the classical con-

figurations of the electric field allowed by theGauss law [see

Fig. 1(c)]. In terms of the twoHamiltonians, Eqs. (2) and (3),

this unitary transformation consists in identifying the

operators σ̂zj↔ð−1Þj2Ŝzj−1;j, σ̂xj ↔ ðΦ̂†

j−1Ŝ
þ
j−1;jΦ̂j þ H:c:Þ,

σ̂
y
j ↔ −ið−1ÞjðΦ̂†

j−1Ŝ
þ
j−1;jΦ̂j − H:c:Þ and the parameters

Ω ¼ −w, δ ¼ −m. This mapping can be applied both for

open and periodic boundary conditions and it overcomes

the most challenging task in quantum simulating gauge

theories, by restricting the dynamics directly within the

gauge-invariant Hilbert space.
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Compared to the opposite strategy of integrating out the

gauge fields, our procedure based on integrating out matter

degrees of freedom has major experimental implications.

With the first approach, one would obtain linearly raising

potentials which do not appear easily in the synthetic

quantum systems, and lead to very large energy scales (of

the order of the system size). Since the overall timescale of

most experiments is limited by noise, having couplings

with relative ratios of order L is a severe limitation for

analog experiments and partially affects also digital efforts.

With our approach, the only states that would violate Gauss

law are nearest-neighbor occupied sites which are strongly

suppressed by the Rydberg blockade. Additional terms in

the Hamiltonian, such as next-nearest neighbor interactions

of Rydberg excitations, are mapped to gauge-invariant

terms (e.g., next-nearest neighbor interactions between

electric fields). From a theoretical viewpoint, the line of

thought of our scheme is similar to the one used in hybrid

Monte Carlo schemes, where one first integrates out the

matter fields and then deals with a purely bosonic action.

Beyond providing a direct link between Gauss law and

the Rydberg blockade mechanism, the most important

feature of the mapping is that, differently from other

remarkable relations between ĤFSS and lattice models with

gauge symmetries [40,41], it provides an immediate con-

nection between Rydberg experiments and particle physics

phenomena, as we describe below.

IV. REAL-TIME DYNAMICS OF LATTICE

GAUGE THEORIES IN RYDBERG

ATOM EXPERIMENTS

A. Gauge-theory interpretation of slow dynamics

The exact description of Rydberg-blockaded chains in

terms of a U(1) LGT allows us to shed a new light on the

slow dynamics reported in Ref. [14], by interpreting them

in terms of well-studied phenomena in high-energy phys-

ics, related to the production of particle-antiparticle pairs

after a quench akin to the Schwinger mechanism.

In the experiment, the system was initialized in a charge-

density wave state [CDW1 in Fig. 1(c)], and subsequently,

the Hamiltonian was quenched, inducing slowly decaying

oscillations between CDW1 and CDW2. As shown in

Fig. 1(c), CDW1 and CDW2 are mapped onto the two

states of the S ¼ 1=2 QLM with uniform electric field

Ŝzj;jþ1
¼ �1=2. The experimental results in Ref. [14] may

thus be interpreted as the evolution starting from one of the

two degenerate bare particle vacua j0�i (i.e., the vacua in

the absence of quantum fluctuations, w ¼ 0) of the gauge

theory. In Fig. 1(d) and in the first column of Fig. 2, we

illustrate these dynamics as it would be observed in the

excitation density hnji along the Rydberg atom quantum

simulators (“Rydberg”) and compare it with that of the

electric field hEj;jþ1i within its gauge-theory description

(“Quantum link model”) in Fig. 1(e) and in the second

column of Fig. 2, respectively, utilizing exact diagonaliza-

tion [42].

The qualitative features of this evolution are strongly

affected by quantum fluctuations, whose impact is quanti-

fied by the ratio between the coupling constant w and the

particles massm. For small values ofm=w [Figs. 2(a) and 2

(b)], production of particle-antiparticle pairs occurs at a

finite rate. We remark that this effect is reminiscent of the

Schwinger mechanism [6], which, however, concerns pair

creation from the true (and not the bare) vacuum. These

particles get accelerated by the electric field and progres-

sively screen it, until coherent pair annihilation takes place

(a) Rydberg Quantum link Schwinger

(b)

(c)

(d)

FIG. 2. Slow dynamics in Rydberg atoms, the U(1) quantum

link model (QLM), and the lattice Schwinger model. Coherent

quantum evolution of the local Rydberg excitation density profile

(first column) njðtÞ ¼ hn̂jðtÞi in the FSS model [see Eq. (2)],

starting from a charge-density wave, of the local electric field

profile (second column) Ej;jþ1ðtÞ ¼ hŜzj;jþ1
ðtÞi in the QLM, and

(third column) hL̂j;jþ1ðtÞ − θ=ð2πÞi (see main text) in the lattice

Schwinger model [see Eq. (3)] with J=w ¼ 1.5 and θ ¼ π. The

four rows correspond to increasing values of the detuning δ

(Rydberg) or, equivalently, of the particles mass m ¼ −δ (QLM

and Schwinger model). Figures 1(d) and 1(e) correspond to the

first two plots in (a) here. Data in the first and second columns are

connected by a unitary transformation, while a remarkable

similarity is manifest between the second and third column

despite the larger Hilbert space of the gauge degrees of freedom in

the Schwinger model. The persistent string inversions observed

within the symmetric phase with m < mc ¼ 0.655jwj in rows (a)

and (b) are suppressed as the quantum critical point is ap-

proached. The dynamics in the third column feature edge effects

due to the imposed open boundary conditions.
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and eventually brings the system to a state with opposite

electric flux. This process, referred to as string inversion,

occurs several times in a coherent fashion; similarly to what

is observed in string-breaking scenarios (e.g., in other

LGTs [26,43]), this causes a dramatic slowdown of

thermalization and of quantum information propagation.

As a further evidence, we compute both the total electric

flux and the vacuum persistence amplitude (or Loschmidt

echo), defined as GþðtÞ ¼ jh0þje−iĤtj0þij2, whose large

value ≃1 was already noted in Ref. [44]. The anomalous

long-lived oscillations of these quantities experimentally

detected with Rydberg atom arrays in Ref. [14] show a clear

analogy with several previous numerical studies of the real-

time dynamics of higher-spin QLMs [26] as well as of the

Schwinger model [24,25,45] and Higgs theories [21]. In

addition, as noted in Ref. [38], the dynamics discussed here

describes the coherent oscillations of the parity-symmetric

order parameter (in our case, hÊj;jþ1i) as a function of time,

reminiscent of the decay of a chiral condensate in QCD

[27]. We thus provide here a bridge among all these

observations.

However, if fermionic particles are sufficiently heavy,

with m=w exceeding a critical threshold, pair production is

a virtual process and string inversion cannot be triggered, as

shown in Figs. 2(c) and 2(d). We find that this behavior is

related to the quantum phase transition occurring in the FSS

model at δc ¼ −0.655jΩj [36]. This transition corresponds

to the spontaneous breaking of the chiral symmetry in the

LGT Eq. (4) at mc ¼ 0.655jwj [46]. Figure 2 shows the

temporal evolution of the same initial uniform flux con-

figuration [CDW or “string” in Fig. 1(c)] upon increasing

values of the mass m=w ¼ 0, 0.25, 0.655, 1.5 correspond-

ing to the dynamics at m < mc [Figs. 2(a) and 2(b)], at the

quantum critical point m ¼ mc [Fig. 2(c)], and at m > mc

[Fig. 2(d)].

Figure 3 further illustrates the appearance of string

inversions for m < mc and the corresponding slow dynam-

ics. Figure 3(a) shows the long-lived revivals of the many-

body wave function in terms of the evolution of the

probability G�ðtÞ of finding the system at time t in the

initial bare vacuum state j0þi or in the opposite one j0−i,
corresponding to Gþ or G−, respectively, as well as in terms

of the time-dependent density ρ of particle-antiparticle pairs.

The entanglement entropy of half system also displays an

oscillatory behavior (see Appendix A). Figure 3(b) shows

the scaling of the collective oscillations of the electric field

with respect to the system size L, as well as their persistence
with a small but nonvanishing fermion mass m < mc.

B. Slow dynamics in the Schwinger model

The above phenomenology is not restricted to QLMs, but

is expected to be a generic feature of LGTs including

dynamical matter. We show this in the context of a

Wilsonian LGT, i.e., the lattice version of the Schwinger

model in Eq. (3). As discussed below, the model dynamics

is, at the lattice level, remarkably different from the FSS

model (no constraints when written in spin language,

different Hilbert space scaling, different interactions,

etc.). The key aspect is, instead, the common field-theo-

retical framework.

In this case, Ûj;jþ1 ¼ eiϑ̂j;jþ1 are U(1) parallel transport-

ers with vector potential ϑ̂j;jþ1, and the corresponding

electric field operator is Êj;jþ1 ¼ L̂j;jþ1 − θ=ð2πÞ, where
L̂j;jþ1 have integer spectrum and θ=ð2πÞ represents

a uniform classical background field parametrized by the

θ angle. Canonical commutation relations for the gauge

degrees of freedom read ½ϑ̂j;jþ1; L̂p;pþ1� ¼ iδjp. In our

numerical simulations, we utilize the spin formulation of

the model obtained upon integration of the gauge fields

under open boundary conditions [47,48].

We consider the case of a θ angle with θ ¼ π, such that

the electric field Êj;jþ1 has half-integer spectrum. Then, in

the limit J=w → ∞, the term JÊ2

j;jþ1 in the Hamiltonian

suppresses all the values of the electric field that are

different from �1=2. This implies that the electric field

can be represented by a spin-1=2 Ŝz operator and that the

lattice Schwinger model is equivalent to the spin-1=2 QLM
discussed above. We find evidence that the corresponding

behavior persists qualitatively down to J ≃ w, when the

electrostatic energy competes with the matter-field inter-

action, as shown in the third column of Fig. 2. Despite the

strong quantum fluctuations allowed in principle by the

exploration of a locally infinite-dimensional Hilbert space,

a qualitative similarity with the case of the locally finite-

dimensional Hilbert space of the QLM is manifest in the

second column of Fig. 2, related to the observed dynamics

in Ref. [14]. At a more quantitative level, we see that the

periods of the oscillations in the lattice Schwinger model

E
n
ta

n
g
le

m
e
n
t
e
n
tr

o
p
y

E
le

c
tr

ic
fi
e
ld

(a) (b)

FIG. 3. Characterization of slow dynamics in the FSS model.

(a) Hilbert space characterization of the persistent string inver-

sions (m ¼ 0, L ¼ 28): alternating strong revivals of the overlaps

G�ðtÞ ¼ jh0�je−iĤtj0þij2 with the two bare vacuum states j0�i,
corresponding to the two charge-density wave configurations of

Rydberg atom arrays. Both the total density ρ ¼ hρ̂ji of particle-
antiparticle pairs, with ρ̂j ¼ ð−1ÞjΦ̂†

j Φ̂j þ ½1 − ð−1Þj�=2, and the
half-chain entanglement entropy (see the Appendix A) have

regularly spaced maxima between the peaks. (b) Persistent

oscillations of electric field for two values of the mass and of

the system size.
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and in the QLM (for the same couplings) are in good

agreement.

Even more drastically, we observe persistent oscilla-

tions also down to J ≪ w (see Fig. 4), a regime in which

the period becomes longer upon decreasing J. As we

discuss below, the reasons why such oscillations persist

for values of the parameters at the opposite regime with

respect to the constrained one is related to the field-

theoretical origin of such behavior, which can be even

captured at a quantitative level via simple analytical

approximations.

We remark that the lattice Schwinger model with

unbounded levels of the gauge fields is substantially

different from the QLM: not only the Hilbert space is

much larger, but also the effective spin-1=2 model describ-

ing it (see Appendix C) features long-range Coulomb

interactions. Therefore, the generality of the occurrence

of oscillations which do not decay on timescales immedi-

ately related to the microscopic couplings points to a rather

robust underlying mechanism. In fact, we suggest here that

this behavior may arise from a universal field-theoretical

description of the nonequilibrium dynamics of states

possessing a well-defined continuum limit.

Concerning the U(1) LGTs discussed in this work, the

reference continuum field-theory description is provided by

the Schwinger model, representing quantum electrodynam-

ics in one spatial dimension [16]. In the massless limit

m ¼ 0, this model can be exactly mapped by bosonization

to a free scalar bosonic field theory [6]. For a nonzero mass,

the model is described in terms of the canonically conjugate

fields Π̂ and ϕ̂ by the Hamiltonian

ĤB ¼
Z

dx

�

1

2
Π̂

2 þ 1

2
ð∂xϕ̂Þ2 þ

1

2

e2

π
ϕ̂2

− cmω0 cosð2
ffiffiffi

π
p

ϕ̂ − θÞ
�

: ð5Þ

Within this bosonized description, the field ϕ̂ðx; tÞ repre-

sents the electric field, and for m ¼ 0 all its Fourier modes

ϕ̃ðkÞ correspond to decoupled harmonic oscillators. In this

case, the evolution starting from a false vacuum with a

uniform string of nonvanishing electric field hϕ̂ðx;t¼ 0Þi¼
const≠ 0 represents an excitation of the single uniform

mode with k ¼ 0, and hence the electric field will show

uniform periodic string inversions around zero, with a

frequency ω0 ¼ e=
ffiffiffi

π
p

, where e is the charge of the

fermion. A nonvanishing value of m leads to the additional

anharmonic term in Eq. (5). The resulting total potential

shows a transition from a shape with a single minimum for

m < mc to two symmetric minima for m > mc, analogous

to the spontaneous breaking of chiral symmetry on the

lattice (see the Appendix C for details). The weak local

nonlinearity introduced by a small m couples the various

Fourier modes and hence induces a weak integrability

breaking. In this case, the uniform string inversions of the

electric field evolving from a false vacuum configuration

with hϕ̃ðk ¼ 0Þi ≠ 0 are expected to be superseded by slow

thermalization processes at long times (see, e.g., Ref. [49]).

In the context of cold gases, a reminiscent slow relaxation

has been observed in interfering bosonic Luttinger liquids,

whose Hamiltonian dynamics has some similarities to the

one discussed here [50].

We suggest that a remnant of this slow dynamics induced

by the underlying integrable field theory may persist in

lattice versions of this gauge theory as long as initial states

with a well-defined continuum limit are considered. With

the latter, we mean states whose field configuration is

smooth at the level of the lattice spacing: for our case here,

the two Néel states represent the smoother ones, as they

correspond to the bare vacuum of the fermionic fields, and

no electric field excitations. At a qualitative level, the effect

of integrability breaking induced by lattice effects is

expected to be much weaker in the small Hilbert space

sector involving uniform excitations with k ¼ 0 only,

where the long-lived string inversion dynamics take place.

The number of states in this sector grows linearly with the

lattice size L, and their energy spans an extensive range of

the spectrum, in agreement with the characteristics of

“many-body quantum scars”; see Ref. [28] and Sec. IV D.

At a quantitative level, we test our prediction on the

lattice Schwinger model with θ ¼ π and m ¼ 0, whose

continuum limit is obtained by scaling the parameters with

the lattice spacing a in such a way that J ¼ e2a=2,
w ¼ 1=ð2aÞ, and a → 0 [51]. In order to address this

regime, we perform a scaling analysis as a function of J=w.
According to the field theory, in this limit the period T of

(a) (b)

FIG. 4. Oscillation of the electric field in the Schwinger model

with θ ¼ π. (a) Time evolution of the average electric field. The

initial state is the bare vacuum with Ej;jþ1 ¼ 1=2 and the chain

has periodic boundary conditions. The solid and dashed lines

correspond to L ¼ 14 and L ¼ 12, respectively. Exact simula-

tions are performed via truncation of the local Hilbert space to

dimension 16, i.e., jEj;jþ1j < 15=2, and the constrained Hamil-

tonian for the electric field is obtained by eliminating matter

degrees of freedom. (b) Period T of the oscillations as a function

of J and w. Data points correspond to values of the logarithm of

the half period T obtained for L ¼ 14. The solid line is the

function b logðJ=wÞ þ c, where b ¼ −0.526 and c ¼ 4.2 are

obtained through a fit in the region J=w < 0.1.
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the oscillations scales as T ∝ 1=
ffiffiffiffiffiffi

Jw
p

: as shown in Fig. 4,

this scaling is indeed satisfied for J ≪ w, where we obtain a

fitting dependence of T ∝ ðJwÞ−0.526 within a few percent

form the expected exponent.

C. Propagation of particle-antiparticle pairs

States of the QLM corresponding to particle-antiparticle

pairs in the bare vacuum can be constructed in Rydberg

atom quantum simulators by preparing two or more defects

in a charge-density wave configuration, each corresponding

to pairs of adjacent nonexcited Rydberg atoms.

As an illustration, we discuss how the time evolution of

one or two particle-antiparticle pairs for m < mc features

the emergence of slow dynamics. In Fig. 5, we show the

time evolution of both the particle density in the QLM and

the corresponding density of excitations in the Rydberg

chain, fixing for simplicity m ¼ 0. The pairs in the initial

state break and ballistic spreading of quark and antiquark

takes place. The string inversion dynamics induced by this

propagation shows coherent interference patterns with long-

lived oscillations. Because of retardation effects induced by

the constrained dynamics, these oscillations are shifted by

half a period with respect to the vacuum oscillation, as

captured by second-order perturbation theory.

These unusual dynamics turn out to be robust under

experimentally realistic conditions: In Fig. 6, we consider

the evolution of a particle-antiparticle pair, the simulated

dynamics of which is not constrained to the subspace

satisfying n̂jn̂jþ1 ¼ 0 but includes the effect of the long-

range Rydberg interactions between atoms. The evolution

is performed via Krylov subspace techniques in the uncon-

strained Hilbert space with the Hamiltonian in Eq. (1), with

δ ¼ 0 and Vj;k ¼ V1jj − kj−6. The value of V1=Ω ¼ 25.6 is

the same as considered in Ref. [14]. The dynamics

displayed in Fig. 6 is similar to the constrained one in

Figs. 5(b) and 5(c) at short times, after which the effects of

having realistic interactions gradually kick in.

D. Spectral properties and bands of non-thermal states

We characterize the anomalous ballistic spreading of

particle-antiparticle pairs discussed in the previous section

in terms of the emergence of corresponding anomalous

spectral properties of the FSS model, which generalize

those recently observed [28] in the special case m ¼ 0,

involving families of special energy eigenstates referred to

as “many-body quantum scars.” The latter are constituted

by towers of regularly spaced states in the many-body

spectrum with alternating pseudomomentum k ¼ 0 and

k ¼ π, characterized by nonthermal expectation values of

local observables as well as by anomalously large overlaps

with the charge-density wave initial states. The long-lived

coherent oscillating behavior has been attributed in

Ref. [28] to the existence of these “scarred” eigenstates.

Quantum link Quantum link

Rydberg Rydberg

(a)

(b)

(c)

FIG. 5. Slow dynamics of particle-antiparticle pairs. (a) Illus-

tration of the states involved in the propagation of particle-

antiparticle pairs q − q̄. The notation is the same as in Fig. 1(c),

while the yellow stripes denote regions of space with largest

particle density and therefore hÊj;jþ1i ≃ 0. (b): Evolution of the

particle density in the QLM starting from a bare vacuum or

“string” state, see Fig. 1(c), with initial particle-antiparticle pairs.

(c) Same as in (b), but in the Rydberg excitation density

representation. Left-hand column: The oscillations observed in

the light-cone-shaped region originating from the particles is

observed to be out of phase with respect to those of the bare

vacuum. Right-hand column: In the presence of two q − q̄ pairs,

an additional change of periodicity is expected in correspondence

of elastic scattering. In these simulations, m ¼ δ ¼ 0.

FIG. 6. Propagation of a particle-antiparticle pair q − q̄
with realistic Rydberg interactions. Left-hand panel: Density

of Rydberg excitations. Right-hand panel: Density of particles

or antiparticles (ρ in the QLM language). Results are obtained

for a chain of L ¼ 23 sites governed by the realistic Hamiltonian

Eq. (1) with Vij ¼ V1ji − jj−6 and no constraints in the Hilbert

space. Parameters are δ ¼ 0, V1=Ω ¼ 25.6. We checked explic-

itly that the violation of Rydberg blockade is always small, with

hnjnjþ1i < 10−2.
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Figure 7(a) shows that the modulus of the overlap

between the energy eigenstate jψi with energy E and

the inhomogeneous states jϕqq̄i indicating a particle-

antiparticle pair with momentum k clearly identifies a

number of special bands of highly excited energy

eigenstates characterized each by an emerging functional

relationship EðkÞ. As shown in Fig. 7(d), the occupation

hnji of some of the states in these bands strongly

deviate from the thermal value hnjith ≃ 0.276. This fact

has already been observed in the previously studied

quantum-scarred eigenstates, which coincide with the

extremal points of these bands at momenta k ¼ 0 and

k ¼ π. A closer inspection of these energy-momentum

relations, presented in Fig. 7(b), shows that they are

close to cosine-shaped bands, suggesting the emergence

of single-particle excitations in the middle of the many-

body energy spectrum.

We further characterize this spectral structure by con-

structing a quasiparticle variational ansatz jχki on top of

the exact matrix-product-state zero-energy eigenstate

of the Hamiltonian (2) with δ ¼ 0, recently put forward

in Ref. [30] (see the Appendix B). As shown in Fig. 7(c),

the optimal quasiparticle ansatz has the largest overlap

with the states on the energy-momentum bands of special

eigenstates closest to zero energy, thus reinforcing the

above emergent quasiparticle picture.

E. Tuning the topological θ angle

in Rydberg experiments

So far, our discussion has focused exclusively on the

relation between Rydberg experiments and the Schwinger

model with topological angle θ ¼ π. A natural question to

ask is whether, within the present setting, it is possible to

realize genuinely confining theories, i.e., generic values of

the topological angle θ ≠ π.

This is possible within the strong coupling limit upon

introducing a linear term in the electric field. With reference

to the lattice Schwinger model introduced in Sec. IV B and

notations therein, we see that the two lowest degenerate

energy states of the local electric field for θ ¼ π (i.e.,

Lj;jþ1 ¼ 0, þ1) are split when θ deviates from π, with an

energy gap Δ ¼ Jjθ=π − 1j. In order to keep the structure

of the Hilbert space compatible with the FSS model, one

requires this Δ to be much smaller than the gaps with the

other states, which are of the order of J. This implies that,

within the QLM formulation, we can only access very

small deviations from θ ¼ π: this is not a limiting factor,

and we will show how this simple setting already allows

us to witness the effects of confinement in the dynamics.

The confining nature of the potential can be intuitively

understood as follows: starting from the bare vacuum (the

“string” state in Fig. 1), creating and separating a particle-

antiparticle pair at a distance l entails the creation,

between the two, of a string of length l with opposite

electric field. The corresponding energy cost is propor-

tional to lΔ, signaling the confining nature of the

potential. Accordingly, the lattice Schwinger model with

strong J ≫ Ω, m, Δ and with a topological angle θ ¼
πð1� Δ=JÞ is efficiently approximated by the QLM with

an additional term linear in the electric field and propor-

tional to Δ.

In turn, within the exact mapping outlined in Sec. III and

illustrated in Fig. 1, this θ-angle term corresponds to an

additional staggered field in the FSS model, leading to the

Hamiltonian:

ĤRyd ¼
X

L

j¼1

ðΩσ̂xj þ δσ̂zjÞ þ
X

L

j¼1

ð−1Þj Δ
2
σzj: ð6Þ

(a) (c) (d)

(b)

FIG. 7. Emergent quasiparticle description of highly excited

states. (a) Largest overlaps of the initial state jϕqq̄i with a

localized defect in a charge-density wave configuration of the

Rydberg atom chain with the energy eigenstates jψi of the FSS

Hamiltonian (δ ¼ 0, L ¼ 20) in Eq. (2), as a function of their

corresponding momentum and energy. Within the gauge-theory

description, the initial state corresponds to having a localized

particle-antiparticle pair q − q̄. (b) The eigenstates with the

largest overlaps display a regular functional dependence of

energy on momentum that is remarkably close to a simple cosine

band. (c) The largest overlaps of the optimal matrix-product state

quasiparticle ansatz jχki built on an exact eigenstate with zero

energy (see the main text) accurately reproduce the corresponding

emergent quasiparticle band of (a). (d) Anomalous (nonthermal)

expectation values of a local observable in energy eigenstates.

The red boxes highlight the correspondence between the most

relevant eigenstates building up jϕqq̄i (a) and the most non-

thermal eigenstates (d). The emergent spectral structure illus-

trated here underlies the clean ballistic spreading of particle-

antiparticle pairs displayed in Fig. 5.
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The new term can be experimentally realized, e.g.,

by utilizing a position-dependent ac Stark shift or, alter-

natively, a space-dependent detuning on the transition

between ground and Rydberg states (it was realized, for

example, in a recent work reported in Ref. [52]).

In Fig. 8, we show the effect of the θ angle on the

evolution of the total electric field in the QLM starting from

a uniform string state. Also in this case, the dynamics

observed can be understood using the bosonized field

theory in Eq. (5). As explained in Sec. IV B, the integra-

bility-breaking term which appears form > 0 has the effect

of damping the oscillations. Moreover, from the same

equation we can predict that the impact of a variation

of the θ term on the dynamics is enhanced when we

increase the mass, as data clearly show. This enhancement

of the θ dependence becomes more evident when we

cross the transition point: while in the symmetric phase

withm < mc, the explicit symmetry breaking caused by the

electric field energy imbalance leads to damping of the

string inversions, in the broken-symmetry (chiral) phase

with m > mc, the effect of confinement is dramatic,

causing the persistence of the initial electric string, with

small long-lived oscillations. Focusing on the latter phase,

in Fig. 9 we show the dynamical evolution of a finite

electric string generated by a particle-antiparticle pair (left-

hand panels), at the deconfined point θ ¼ π (top) and in the

confined phase with θ ≠ π (bottom). The right-hand panels

show the same evolution as it would appear in terms of

measurements of Rydberg atom excitations. While for

Δ ¼ 0 nothing prevents the initially localized bare particles

to propagate along the chain (top panels), the presence of a

linear confining potential proportional to Δ between them

stabilizes the electric string, leading to effective Bloch

oscillations of the edges and to a surprisingly long lifetime

[53] (bottom panels). This effect signals that confinement

can dramatically affect the nonequilibrium dynamics,

potentially slowing it down as observed in both gauge

theories [54] and statistical mechanics models [53,55,56].

In this regime, the model shows the same qualitative

signatures of confinement as the quantum Ising chain in

transverse and longitudinal field: the long-lived coherent

oscillations, the suppression of the light-cone spreading

[55], and the presence of anomalous eigenstates [56].

V. CONCLUSIONS

We proved that the large-scale quantum simulation of

lattice gauge theories has already been achieved in state-of-

the-art experiments with Rydberg atoms, as it can be

realized by establishing a mapping between a U(1) gauge

theory and Rydberg atom arrays. At the theoretical level,

we showed that this novel interpretation provides additional

insight into the exotic dynamics observed in experiments,

linking it to archetypal phenomena in particle physics.

Our field-theoretic description immediately implies the

generality and applicability to a wide variety of model

Hamiltonians within experimental reach, and among them

we extensively discuss the example of the lattice Schwinger

model in the Wilson formulation. We expect that future

studies can further deepen the connection between the

statistical mechanics description of such behavior and its

FIG. 8. Effect of the θ angle on the dynamics of the electric

field from uniform string states of the QLM. Data are shown for a

chain of L ¼ 28 sites, for increasing values of the particle mass

m=w and of the parameter Δ, quantifying the deviation of the θ

angle from π (see the main text). Dynamics for Δ ¼ 0 correspond

to the second column of Fig. 2.

Quantum link Rydberg

Quantum link Rydberg

FIG. 9. θ angle and string-breaking dynamics. The evolution of

a bare particle-antiparticle pair state is displayed in terms of

space- and time-dependent electric field in the QLM (left-hand

panels) and of the density of excited atoms in the Rydberg array

(right-hand panels), with m ¼ −δ ¼ 1.5 Ω and L ¼ 28. Simu-

lations in the top row have Δ ¼ 0, corresponding to the

deconfined field theory with θ ¼ π. Effects of confinement

emerge in the second row, where a nonvanishing Δ ¼ 0.3 Ω

stabilizes the electric string.
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gauge-theoretic interpretation, for instance, elucidating the

effects of nonthermal states [28–31] and emergent integra-

bility [32,33], and the role of confinement in slowing down

the dynamics [53–57]. At the experimental level, our

findings immediately motivate further experiments along

this direction that can probe different aspects of gauge

theories, such as the decay of unstable particle-antiparticle

states after a quench, and might be combined with other

quantum information protocols [58]. We show how by

tuning the θ angle—a possibility that is already available

with current technologies—the different dynamical regimes

expected from the field theory can be accessed. A particu-

larly interesting perspective in this direction is the possibility

of dynamically probing confinement via quantum quenches

starting from a string embedded in the (bare) vacuum, a

prototypical gedanken experiment in particle physics [24].

The quantum simulation strategy we propose is based on

the elimination of the matter degrees of freedom by

exploiting Gauss law: This method does not rely on the

specific formulation of the model and is in principle

applicable to other lattice gauge theories (for a recent work

along these lines see, e.g., Ref. [59]). An intriguing future

extension is represented by theories with non-Abelian

gauge symmetries, an example of which can be found in

Ref. [60], where links with finite-dimensional Hilbert

spaces are utilized. The integration of matter degrees of

freedom is equally well suited for higher dimensions, and

Rydberg atoms are a promising platform for pursuing this

direction [61,62], with the additional advantage that the

major complication in realizing non-Abelian theories (i.e.,

engineering complicated and fine-tuned Gauss laws) is

replaced by considerably simpler dynamical constraints.

After the present analysis, the experiments performed in

Ref. [14] represent a stepping stone toward the ambitious

realization of non-Abelian gauge theories in three spatial

dimension, which remains an outstanding quest [7,10].
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APPENDIX A: ENTANGLEMENT EVOLUTION

IN THE FSS MODEL

We consider the FSS model defined in Eq. (2) and we

investigate the time evolution of the bipartite entanglement

entropy SðtÞ of the chain. We consider as initial state the

CDW, which is equivalent to considering the QLM evolv-

ing from one of the two uniform string configurations; see

Fig. 1. In order to determine S, we compute the time-

dependent reduced density matrix ρ̂RðtÞ of a subsystem

consisting of L=2 consecutive sites of the chain, by tracing

out the degrees of freedom of the remaining complemen-

tary L=2 sites. In these terms, the von Neumann entangle-

ment entropy is defined by SðtÞ ¼ −Tr½ρ̂RðtÞ ln ρ̂RðtÞ�.
Figures 10(a) and 10(b) show the evolution of S for

various values of the mass m and of the chain length L,
respectively. Information spreading is directly tied to par-

ticle production: it is fast at the critical pointm ¼ mc [green

curve in Fig. 10(a)] withmc=w ¼ 0.655, or above itm > mc

(red curve), where particles are not confined. For m < mc

(yellow and blue curves), instead, it slows down consid-

erably, as was already observed in the spin-1 QLM [26]. For

m=w ¼ 0, the change in the original slope of the curvewhich

occurs around tw ≃ 12 is due to a finite-volume effect, as

demonstrated in Fig. 10(b), where such a change progres-

sively disappears upon increasing L. In all cases, the fast

oscillations correspond to different stages of pair

production.

APPENDIX B: SPECTRAL PROPERTIES

OF THE FSS MODEL

1. Robustness of the spectral structure

As shown in the main text, the FSS model for m ¼ 0

features the emergence of regular structures in the middle

of the spectrum in terms of energy-momentum bands. We

here show that these structures are generically present for

sufficiently small values of jm=wj. Figure 11 shows the

energy-momentum relation of the eigenstates which have

the largest overlaps with the inhomogeneous state jϕqq̄i
defined in Sec. IV D. For m=w ¼ 0.1 and m=w ¼ −0.2,

similar dispersion relations to the case m=w ¼ 0 are

observed, the main difference being an overall energy shift.

S

(a)

S

(b)

FIG. 10. Evolution of entanglement entropy in the FSS model.

(a) Growth of the half-chain entanglement entropy for various

values of the particle mass m. Initial state is CDW or, equiv-

alently, a string, and L ¼ 28. (b) Growth of entanglement entropy

for different sizes L. Initial state is CDWor, equivalently, a string,

and m ¼ 0.
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2. Quasiparticle ansatz for emergent excitations

In order to obtain physical intuition on the emergence of

regular energy-momentum bands in highly excited states

which govern the nonequilibrium evolution of localized

defects, we propose the following wave function,

jχki ¼
X

L

j¼1

e−ikjÔj−1;j;jþ1jΦk¼0i; ðB1Þ

where jΦk¼0i is the exact eigenstate found in Ref. [30] with
momentum k ¼ 0 and energy 0, and Ôj−1;j;jþ1 is a three-

site operator depending on a number of variational param-

eters. Because of the constraints, the space where this

operator acts is reduced from dimension 23 to 5. The

inversion symmetry with respect to site j reduces the

number or free variational parameters in Ôj−1;j;jþ1 to 11.

We choose a basis of operators fM̂α
j−1;j;jþ1g11α¼1

for para-

metrizing Ôj−1;j;jþ1 and define

jϕα
ki ¼

X

L

j¼1

e−ikjM̂α
j−1;j;jþ1

jΦk¼0i: ðB2Þ

For each k, we minimize the energy variance in the

space spanned by the states jϕα
ki. To this aim, we compute

the three matrices Nk
αβ¼hϕα

kjϕ
β
ki, Pk

αβ¼hϕα
k jĤjϕβ

ki, Qk
αβ¼

hϕα
kjĤ2jϕβ

ki. In order to prevent numerical issues in the

minimization, we diagonalize the matrix of the norms

Nk and we compute the (rectangular) matrix Uk whose

columns are the eigenvectors of Nk having nonzero

eigenvalues. We then find the vector ck ¼ ðc1k;…; cmk Þ that
minimizes

σ2
Ĥ
¼ ck

†Uk†QkUkck

ck
†Uk†NkUkck

−

�

ck
†Uk†PkUkck

ck
†Uk†NkUkck

�

2

: ðB3Þ

Note that by introducing the matrix Uk we restrict the

minimization to states with nonzero norms, thus further

reducing the number of variational parameters to

mðkÞ ≤ 11. The optimal wave function is then obtained as

jχki ¼
X

11

α¼1

X

m

β¼1

Uk
αβc

β
kjϕ

β
ki: ðB4Þ

APPENDIX C: DYNAMICS OF THE

SCHWINGER MODEL

1. Mapping onto a long-range interacting spin chain

The lattice Schwinger model in Eq. (3) in the gauge-

invariant subspace spanned by wave functions jψi which

satisfy the Gauss laws Ĝjjψi ¼ 0 can be conveniently

simulated by exactly mapping it onto an unconstrained

chain of spin-1=2 degrees of freedom in the case of open

boundary conditions [51]. These spins are obtained

from the fermionic operators via a combination of a

Jordan-Wigner transformation and a gauge transformation,

expressed as

Φ̂j ¼
Y

j−1

l¼1

ðσ̂zl Û†

l;lþ1
Þσ̂−j : ðC1Þ

This transformation decouples spins and gauge degrees of

freedom, and thus the Hamiltonian Eq. (3) takes the form

Ĥ¼−w
X

L−1

j¼1

ðσ̂þj σ̂−jþ1
þH:c:Þþm

2

X

L

j¼1

ð−1Þjσ̂zjþJ
X

L−1

j¼1

Ê2

j;jþ1:

ðC2Þ

The electric field can be rewritten in terms of the spin

operators and of the background field α by means of the

Gauss law:

Êj;jþ1 ¼
1

2

X

j

l¼1

½σ̂zl þ ð−1Þl� − α: ðC3Þ

Inserting Eq. (C3) into Eq. (C2), we obtain three additional

terms: a long-range spin-spin interaction corresponding to a

Coulomb interaction, a local energy offset that modifies the

effective mass of the fermions, and a linear potential given

by the constant background field. The electric field part of

the Hamiltonian can be cast in the form:

ĤE
lat ¼

J

2

X

L−2

n¼1

X

L−1

l¼nþ1

ðL − lÞσ̂znσ̂zl −
J

4

X

L−1

n¼1

½1 − ð−1Þn�
X

n

l¼1

σ̂zl

− Jα
X

L−1

j¼1

ðL − jÞσ̂zj: ðC4Þ

(a) (b) (c)

FIG. 11. Robustness of the spectral structure. Energy-momen-

tum relation of eigenstates around E ¼ 0 for L ¼ 20. For each

eigenstate jψi, the color indicates the value of log10 ðjhψ jϕqq̄ijÞ
(eigenstates with smallest overlaps are not plotted). The

dispersion observed for m=w ¼ 0 in (a) is shifted but persists

when we introduce a nonzero mass as in (b) and (c).
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In this form, the nonequilibrium dynamics of the lattice

Schwinger model can be efficiently simulated with stan-

dard algorithms of quantum many-body physics.

The origin of long-range spin-spin interactions as a

consequence of the linear confining Coulomb potential

in one spatial dimension is made more evident when

Eq. (C4) is formulated in terms of the charges Q̂j ¼
½σ̂zj þ ð−1Þj�=2 [63]. In the neutral charge sector where
P

L
j¼1

Q̂j ¼ 0, we have

ĤE
lat ¼ −J

X

L−1

j¼1

X

L

k¼jþ1

ðk − jÞQ̂jQ̂k − J
X

L

j¼1

ðLþ 1 − jÞαQ̂j

þ J
X

L

j¼1

jαQ̂j: ðC5Þ

The first term describes the Coulomb interaction between

charges, while the remaining two terms can be interpreted

as interactions with two static charges −α and α, placed at

the boundaries of the chain (sites 0 and Lþ 1, respectively)

and effectively producing the constant background field.

2. Continuum limit of the massive

Schwinger model

The massive Schwinger model briefly introduced in the

main text describes the quantum electrodynamics of fer-

mions of mass m and charge e in 1þ 1 dimensions. Its

Lagrangian density is

L ¼ −
1

4
FμνF

μν þ ψ̄ði=∂ − e=A −mÞψ ; ðC6Þ

where Fμν ¼ ∂μAν − ∂μAν and Aμ is the vector potential.

The indices μ, ν ¼ 0, 1 indicate, respectively, the time and

space directions, and the slash notation indicates contrac-

tion with the Dirac matrices γμ. This model can be

formulated in terms of a bosonic field ϕ [47]. We briefly

recall here the main points of the derivation of the bosonic

Hamiltonian obtained in Ref. [16].

In the Coulomb gauge (A1 ¼ 0), the Euler-Lagrange

equation for A0 yields

∂2

1
A0 ¼ −ej0; ðC7Þ

where j0 ¼ ψ†ψ is the charge density. Integrating Eq. (C7),

we obtain the continuum version of Eq. (C3),

F01 ¼ −∂1A0 ¼ e∂−1
1
j0 þ F; ðC8Þ

where F is a number, representing a classical back-

ground field. The Hamiltonian density obtained from the

Lagrangian Eq. (C6) has the form

H ¼ ψ̄ðiγ1∂1 þmÞψ þ 1

2
F01

2: ðC9Þ

The interacting Hamiltonian for the fermions can be

formulated using Eq. (C8) to integrate out the gauge fields.

Integrating by parts in the zero charge sector, i.e.,
R

dx j0ðxÞ ¼ 0, we obtain

H ¼
Z

dx ψ̄ðiγ1∂1 þmÞψ −
e2

4

Z

dx dyj0ðxÞj0ðyÞjx − yj

− eF

Z

dx xj0ðxÞ: ðC10Þ

Similarly to the lattice version of this model [cf. Eqs. (C2)

and (C5)], the resulting Hamiltonian contains the energy of

massive free fermions, the Coulomb interaction between

charges (which increases linearly in one spatial dimension),

and the interactions between the charges and the back-

ground field.

The method of bosonization can be applied, by noting

that in 1þ 1 dimensions the conserved vector field jμ ¼
ψ̄γμψ can be written as the curl of a scalar field ϕ:

jμ ¼ π−1=2ϵμν∂
νϕ: ðC11Þ

By substituting in Eq. (C8), we get

F01 ¼ eπ−1=2ϕþ F; ðC12Þ

and, from the results obtained for a free massive Dirac field

[64], we know

ψ̄ðiγ1∂1 þmÞψ → Nm

�

1

2
Π

2 þ 1

2
ð∂1ϕÞ2

− cm2 cosð2π1=2ϕÞ
�

; ðC13Þ

where c ¼ eγ=ð2πÞ, γ ≃ 0.577 is the Euler constant,

and Nm indicates normal ordering with respect to the

mass m. Inserting Eqs. (C12) and (C13) in Eq. (C9), the

Hamiltonian density reads

H ¼ Nm

�

1

2
Π

2 þ 1

2
ð∂1ϕÞ2 − cm2 cosð2π1=2ϕÞ

þ e2

2π

�

ϕþ π1=2F

e

�

2
�

: ðC14Þ

By shifting the field ϕ → ϕ − π1=2F=e and defining a new

normal ordering with respect to the mass μ ¼ π−1=2e, we
finally obtain
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H¼Nμ

�

1

2
Π

2þ1

2
ð∂1ϕÞ2−cmμ cosð2π1=2ϕ−θÞþμ2

2
ϕ2

�

;

ðC15Þ

where θ ¼ 2πF=e. The latter form connects with the

discussion in the main text—cf. Eq. (5) therein.

[1] K. G. Wilson, Confinement of Quarks, Phys. Rev. D 10,

2445 (1974).

[2] I. Montvay and G. Muenster, Quantum Fields on a Lattice

(Cambridge University Press, Cambridge, England, 1994).

[3] Z. Fodor and C. Hoelbling, Light Hadron Masses from

Lattice QCD, Rev. Mod. Phys. 84, 449 (2012).

[4] K. Fukushima and T. Hatsuda, The Phase Diagram of Dense

QCD, Rep. Prog. Phys. 74, 014001 (2011).

[5] R. A. Soltz, C. DeTar, F. Karsch, S. Mukherjee, and P.

Vranas, Lattice QCD Thermodynamics with Physical Quark

Masses, Annu. Rev. Nucl. Part. Sci. 65, 379 (2015).

[6] E. A. Calzetta and B. L. Hu, Nonequilibrium Quantum Field

Theory (Cambridge University Press, Cambridge, England,

2008).

[7] U. J. Wiese, Ultracold Quantum Gases and Lattice Systems:

Quantum Simulation of Lattice Gauge Theories, Ann. Phys.

(Amsterdam) 525, 777 (2013).

[8] E. Zohar, I. I. Cirac, and B. Reznik, Quantum Simulations of

Lattice Gauge Theories Using Ultracold Atoms in Optical

Lattices, Rep. Prog. Phys. 79, 014401 (2016).

[9] M. Dalmonte and S. Montangero, Lattice Gauge Theories

Simulations in the Quantum Information Era, Contemp.

Phys. 57, 388 (2016).

[10] J. Preskill, Simulating Quantum Field Theory with a

Quantum Computer, arXiv:1811.10085.

[11] E. A. Martinez, C. A. Muschik, P. Schindler, D. Nigg, A.

Erhard, M. Heyl, P. Hauke, M. Dalmonte, T. Monz, P. Zoller

et al., Real-Time Dynamics of Lattice Gauge Theories with

a Few-Qubit Quantum Computer, Nature (London) 534,

516 (2016).

[12] S. Trotzky, Y-A. Chen, A. Flesch, I. P. McCulloch, U.

Schollwöck, J. Eisert, and I. Bloch, Probing the Relaxation

towards Equilibrium in an Isolated Strongly Correlated

One-Dimensional Bose Gas, Nat. Phys. 8, 325 (2012).

[13] I. Bloch, J. Dalibard, and S. Nascimbène, Quantum Sim-

ulations with Ultracold Quantum Gases, Nat. Phys. 8, 267

(2012).

[14] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,

H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner

et al., Probing Many-Body Dynamics on a 51-Atom Quan-

tum Simulator, Nature (London) 551, 579 (2017).

[15] D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and A.
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