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Lattice heat capacity of low-dimensional systems: A pseudoelastic approximation

K. Kopinga, P. van der Leeden, and W. J. M. de Jonge
Department of Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

(Received 7 July 1975)

The lattice heat capacity of both layered and chainlike compounds has been inferred from an ap-

proximation of the vibrational spectrum, which is based upon a pseudoelastic approach. From
continuum elasticity theory three modes of vibration are obtained, which are modified by the in-

clusion of the most dominant dispersion effects. Manageable expressions for the heat capacity are
obtained, which were found to be of rather general applicability. They were used to describe the

heat capacity of the chainlike diamagnetic (CH3)4NCdC13, and were found to give an excellent de-
scription of the lattice contribution to the heat capacity of a variety of low-dimensional magneti. c
substances.

I. INTRODUCTION

In the past years, a considerable number of

compounds whose thermal behavior could be fairly
well described by one- or two-dimensional model

systems have been studied extensively. ' ' Es-
pecially in the field of magnetism, low-dimen-
sional characteristics have received much atten-
tion.

The analysis of the thermal properties of a
substance generally requires a separation of the
lattice heat capacity from the other contributions.
Although the lattice specific heat of low-dimen-

sional systems with a simple crystallographic
structure may be calculated rather straightfor-
wardly, the majority of the low-dimensional com-
pounds have rather complex chemical structures,
which precludes a rigorous calculation of the

frequency distribution of the lattice vibrations.
Fortunately, the lattice heat capacity appears

to be rather insensitive to the detailed structure
of the vibrational spectrum, and approximate

spectrum calculations may provide a very satis-
factory description in many cases. This is dem-

onstrated by the fact that the overall lattice heat

capacity of a large number of rather isotropic
compounds can be successfully described by a
linear superposition of suitably normalized three-
dimensional Debye functions. '

General and simple expressions for the lattice
heat capacity of layered and chainlike structures
have been proposed by Tarasov. ' Although his

theory, in which the heat capacity is expressed as
a linear combination of Debye functions of suit-
able dimensionality, contains a number of rather
drastic simplifications, it correctly predicts some
qualitative features of the overall heat capacity.
However, in general the accuracy is not sufficient
to enable a reliable separation of the magnetic and

the lattice contribution to the heat capacity. "'
In several cases the experimental data within a

limited temperature region can be represented by

a linear superposition of suitably normalized one-,
two-, and three-dimensional Debye functions. In

this kind of procedure, however, the Debye func-
tions are merely used as mathematical basis func-

tions, the normalization factors and 9 values be-
ing inferred from a least-squares fit to the ex-
perimental data. Apart from the fact that such a
procedure lacks a physical background, an accu-
rate description over a large temperature interval
requires a rather large number of adjustable

parameters. On the other hand, the experimental
data on several pseudo-low-dimensional systems' "
indicate that at lower temperatures the lattice
heat capacity should be represented by higher-
order terms than just T'. This behavior cannot be
described by a linear superposition of Debye func-

tions, unless one admits rather unphysical values

of the parameters.
Detailed calculations on the vibrational spectrum

and thermal properties of strongly anisotropic
compounds have been performed only in a few

special cases, mostly dealing with layered struc-
tures, particularly graphite. " Most of the results,
however, cannot be applied to other substances,
since they strongly depend on the characteristic
lattice structure and the ratio of the atomic force
constants. The purpose of this paper is to present

a rather general description of the lattice heat

capacity of both layered and chainlike compounds,

involving only a minimum of adjustable param-
eters. The theory will be based upon an elastic

approach, in which only the most dominant dis-
persion effects will be taken into account.

For a large variety of layered or chainlike com-

pounds, the elastic anisotropy within the layers
or perpendicular to the chains appears to be sma. ll

compared to the anisotropy in a plane perpendicu-
lar to the layers or parallel to the chains. A fair
integral description of the long-wavelength be-
havior of such compounds may therefore be pos-
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sible if they are approximated by a system with

purely uniaxial elastic anisotropy, such as a hexag-
onal 6/mmm structure.

The organization of the paper is as follows. The

dynamical behavior of media with uniaxial elastic

anisotropy will be considered in See. II, while in

Sec.III the frequency distribution funeti. on and the

heat capacity of layexed structures mill be calcula-

ted. Section IV will be devoted to the heat capacity
of chainlike structures. In Sec. V the inferred

expressions for the heat capacity will be confront-

ed with some experimental results.

II. LATTKE DYNAMICS IN UNIAXIAL COMPOUNDS

The rather unusual temperature dependence of

the specific heat of graphite was explained by

Komatsu'"" by considering it as asystemof loose-

ly coupled layers. His basic idea was that, since

the covalent binding forces within the honeycomb

net planes are very strong compared to the inter-

layer interactions, dispersion effects in a direc-
tion perpendicular to the layers might already be

important for a wide x'ange of frequencies, in

which waves propagating within the layers still

could be treated in the elastic or small-k approxi-

mation. In the calculation of the heat capacity,
dispex sion effects due to the discrete nature of

the layers would therefore be negligible, and the

substance might be treated as a system consisting

of thin elastic plates spaced at a distance d. He

described the restoring forces due to the intra-

layer interactions by the elastic constants c», e»,
and c«[=z (c» —c»)], and apart from these a bend-

ing modulus K. The xestoring forces due to the

interaction between the layers were represented

by a compressional constant c33 and a shearing

constant c«. For relatively small values of c,4,
the following dispersion relations were inferred:

p&@,
' = c» (k,'+ k~) + (c«/d') sin'(k, d), (la)

p&a,
' = c«(kz+ k,') + (c«/d') sin'(k, d), (lb)

puP, = c„(k,'+ k,') + (c„/d') sin'(kP) + IP(k2+ k,')',

(lc)

where z denotes the direction perpendicular to
the layers, and k= (2v/X)e„a wave number in the

direction of the unit propagation vector e„.
Because in graphite purely two-dimensional

layers are present, which have strong covalent
internal forces and hence a large resistance
against bending, the fourth-power term in Eq.
(lc) may give rise to dispersion effects al-
ready for acoustic frequencies. For most layered
struetuxes, homever, Komatsu's theoxy may not

be used without some serious modifications, since
the majority of these compounds do not display

A. Small-k approximation

The equations of motion of elastic waves in a
continuum with uniaxial anisotropy are given by

BR BQ BQ 2v

P f2 elle 2 66 2 ( 12 «I s sx 9$ X

8 Q 8 sv
+ c44 2+ (ci3+ c«)

BxBz

v 92v 92v 8 8
66- 2+ ii s,2+ (ci2+ c66) s sBt Bx By BX8$

92v 8 Ml"
s "("""'ssBz 9$9g

(2a)

(2b)

such an extreme crystallographic anisotropy as
graphite. In fact, the constant c» may be of the

same order of magnitude as the constants c» and

c». On the other hand, the "layers" in the com-

pounds under investigation are often built up from

rather complicated clusters of atoms and hence

the influence of K may be relatively small at acous-

tic wavelengths.

In compounds with a large number of atoms per
unit cell (r), the acoustic modes of vibration only

account for a rather small fraction of the total

number of degrees of freedom. It has been sug-

gested to describe only the acoustic-mode spec-
trum by a Debye-like approximation and to de-

scribe the optical-mode spectrum by 3v —3 suitably

normalized 5 functions located at some "average"
optical-mode frequencies. However, apart from
the fact that a large number of unknown param-
eters would be introduced, experimental evidence

indicates that the optical-mode spectrum often

appears to be rather "smeared out."" Moreover,
the assignment of the different branches of the

dispersion relation of the lattice vibrations to
"optical" and "acoustical" modes is unimportant

for the calculation of the heat capacity. Therefore
we mill approximate the 3r branches of the dis-
persion relation within the first Brillouin zone by

three "pseudoelastic*' branches, which are located

within a modified Briflouin zone (MHZ).

The general problem will be treated as follows.

First, we will describe the system by continuum

elasticity theory, following a procedure somewhat

analogous to the treatment of Bowman and Krum-

hansl. " Next, the most dominating dispersion
effects will be included by some suitably chosen

MBZ boundaries. The dispersion at long wave-

lengths due to the intrinsic stiffness of layers or
chains will be briefly considered in See. II. For
the sake of clarity, the calculation below mill be

performed assuming a layered structure. The

majority of the results, however, may be applied

to chainlike compounds also, which will be pointed

out in Sec. IV.
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Bw ~w ew ~w
gg2 33 gz 2 44 gx2 gy2

Consider waves propagating in an infinite medi-
um:

a'u 8'v
+ (c„+c„) +'4 axez eyez ' (2c) ek(p7 ~ g-~ t)

0

where x= (x, y, z), and u, v, and w are the dis-
placements in the x, y, and z direction, respec-
tively.

w

Substitution into Eq. (2) yields the eigenvalue prob-
lem

(c»+ c«)k„k~

(c»+ c«)k„k,

(c»+ c«)k„k~

(c„+c«)k„kg

(c~~+ c«)k~kg

(c»+ c«)k,k,

c„(k„'+k,')+ c„k,' —p~'

=0. (4)

As a consequence of the hexagonal symmetry it is possible to separate out a solution corresponding to

p~2 = c«(k„+k ) + c«k (5)

This mode of vibration has a displacement in the xy plane "transverse" with respect to k. The remaining

eigenvalue problem is

(6)

$' is located in the xy plane at a direction perpen-
dicular to the eigenvector that corresponds to Eq.
(5).

If the off-diagonal elements in Eq. (6) are com-

pletely ignored, we obtain the approximate solu-

tions

p~,'= c„(k„'+k,')+ c«k,',

p&v,'= c«(k„'+ k,') + c»k2.

(7a)

(7b)

The mode of vibration denoted by co, has a dis-
placement in the plane "longitudinal" with respect
to k, while the mode denoted by ~, has a displace-
ment perpendicular to the xy plane. The constant

frequency contours of solutions (5) and (7) are
ellipsoids in the k space, which have rotational

symmetry around the 0, axis. For a large number

of layered compounds the constant c44 appears to
be relatively small, and hence the curves present-
ed in Fig. 1 may be fairly representative.

If the off-diagonal elements in Eq. (6) are taken

into account, a rigorous calculation of the eigen-
values and eigenvectors shows that the modes of

vibration given by Eq. (7) are coupled. The effect
of such a coupling is shown in Fig. 2 for some

representative values of the elastic constants. The

drawn curves denote the constant-frequency con-
tours in the diagonal approximation, while the dots

represent the results obtained from a numerical

calculation of the eigenvalues. The effect of the

coupling is rather pronounced in the region where
the drawn curves inter sect, which corre sponds to
a cone in the k space given by

(k2+ k2)/k~2= (c„—c„)/(c„—c„).
It can be seen from Fig. 2, however, that the cor-
rection is much smaller for most of the k space.
Qf course the direction of polarization is very
sensitive to the coupling between the two different

modes of vibration, but this has no consequence

for the calculation of the heat capacity, and we

feel that the diagonal approximation (7) provides

a fair description of the dynamical behavior of

the model.

B. Dispersion effects

As can be seen from Fig. 1 relatively small k

vectors are associated with the "in-plane" modes

propagating in the xy plane. In the neighborhood

of the z direction, where the k vector is relatively
large, the elastic continuum approximation may

very likely be incorrect, since the contours will
reach the MBZ boundary for moderate values of m,

which may give rise to rather drastic dispersion
effects. In order to describe these effects we

assert that for this mode of vibration, waves prop-
agating in the layers may be considered as purely
elastic, while dispersion effects near the z direc-
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FIG. 1. Constant-frequency contours in the k space,
which result from the diagonal approximation of the

eigenvalue problem describing the equhtions of motion

of elastic waves in a hexagonal layered structure. The

meaning of the different vibrational modes is explained
in the text.

kx/(PC)t) ~(d

FIG. 2. An example of the effect of the introduction of
the nondiagonal elements in the eigenvalue problem des-
cribing the elastic waves in a hexagonal medium.

tion may be taken into account by a MBZ parallel
to the xy plane located at k, = +n/2d. "Truncation"

at this boundary will occur if k, in Eq. (5) and (7a)
is modified to d sin(k, d), while k„and k, remain

unchanged. This modification yields the set of

equations

p~,'= c„(k„'+k,')+ (c«/d') sin'(k, d),

ptd', = c«(k„'+ k,')+ (c«/d') sin'(k, d).

(9a)

(9b)

Obviously these equations correspond exactly to
the set of equations (la) and (lb), which have been

derived from a "thin-plate" model.
For the "out of plane" mode of vibration, how-

ever, the situation is quite different. The con-
stant-frequency contour, given by Eq. (7b), ap-
pears to be more or less disc shaped, and hence

dispersion effects will be important near the xy
plane rather than along the z axis. These effects
may be described bya cylinder shaped MBZ bound-

ary located parallel to the z axis at a radius v/2d„
which transforms Eq. (7b) to

assumption that the layer might be considered as
a thin elastic plate. The validity of this assump-
tion may be suitably examined by the atomistic
model shown in Fig. 3, which represents a cross
section perpendicular to the layers.

The different atoms —denoted by n, m —are ar-
ranged in a rectangular array, the spacing between

adjacent atoms along the x and z axis being equal

to a and d, respectively. The array is assumed
to resist variations of both the bond lengths and

bond angles. Only nearest-neighbor interactions
will be considered. In Fig. 4 the elementary de-

paP, = (c«/d') sin [(k'+ k')' 'd ]+c k'.
n-1, m-2 n-1, rn-1 n-1, m n-l, m+1 n-1, m+2

C. Bending stiffness

Komatsu's treatment of the bond-bending prob-
lem of a monoatomic layer was based upon the

FIG. 3. A simple atomistic model used to describe the
various interactions in an arbitrary plane perpendicular
to the xy layers.
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formations are given together with the correspon-
ding increase in potential energy.

If both the kinetic energy T and the potential

energy V are expressed in u„and ao„, which

denote the atomic displacements along the x and

z axis, respectively, the equations of motion may

be found by applying Hamilton's principle

5 (T —V) dt = 0.

The result is

B u„C, 4Cq
M "; +—', (2u„-u„„-u„,)+,'(2u„-u~, , -u„„)

gd 1 g
$4 f d n ( nial, m-l +n bmol +ntlqm+1 +n I,m 1)+ f4 t(4un, m untl, m+1 n-bm 1 n+1, m i n 1,m+1)

4Cq

ef2 dn ( num ml ~ m n Rim) 2 ( nim onym+i num-1)

gd 1
fn I d n ( n+lym 1 n lym+1 Rlsm+1 n lym-1) Tn I ( n m wlem+l n Rim I n+1ym 1 n 1am+1

B Q 2g B'Q 4g'd' B'ZUM, = (C,+, C,),+ 4C,+, C,

2gd BR 2BQ
+ 4Cq+ 4 C, 2+C (13a)

B'N 2d B $0 4g2d2 B g

2g d PK B4gg
4C (13b)

As may be inferred from Eq. 2, continuum elas-
ticity theory yields for the corresponding two-di-

mensional case

BQ BR BSO BQ
P Sfn && S~n ( &n «Sgez «as~ '=c (14a)

B K B R
P n C» n

+ (Cyn+ C«) + C«n (14b)
8 BxBz Bx

where M denotes the atomic mass.
For long wavelengths the relative differences

between the atomic displacements may be replaced

by the corresponding derivatives to x and z, and

we obtain

description of the long-wavelength limit of the

vibrational spectrum. lt appears, however, that

the stiffness of 180 bonds does not enter into the

elastic constants. If the corresponding bending

constants are extremely large, the influence of the

fourth-power terms in (13) may be important al-
ready for acoustic frequencies, although such a
drastic effect is likely to occur only for very an-

isotropic covalent substances like, for instance,
graphite and boron nitride. For a description of

the vibrational spectrum of these compounds, we

may generalize Eq. (13) to three dimensions, and

follow the procedure described in Sec. IIB to ob-

tain the dispersion relation

p 4&',= c«(k„'+ k,') + (c»/dn) sin'(kp)

+ Cna'(kn+ k,')'.

The prime at C~ is added to avoid confusion with

the purely two-dimensional atomistic case. Equa-
tion (16) appears to be completely analogous to

Eq. (lc) if we put IP= Cna'. Equation (13a) will

transform to Eq. (Qa), because for a layered struc-
ture the effect of C& is negligible.

It is obvious that

2g p 2d p
ll 0 $4 l & c33 Cff +

~4 Cl

2a d p~ 2g2d2 pl'M» c,4= 4C~+
&4

C, M,

and continuum elasticity theory gives a correct

III. CALCULATION OF THE HEAT CAPACITY

A. General

In the diagonal approximation, the three modes

of vibration are decoupled completely, and each

mode will account for one third of the total num-

ber of degrees of freedom. In the calculation of
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n, m 1 n, m+1

6 0
AC@ Z (h0()

l,

I=1

0 (P, O 0 I
n+1,m r n+1,m+1

/

0 IN. 0
l

g l3 gl/

n -1,m-1 n-1, m+1

2C, Z (—')
)1

4n'

g(tu) = p» &uarcsin(ur/u&, ), for &u
~

&u, (19a)

g(&u) = p, (2n'/n'd)&u, for ~~ ~, (19b)

In these expressions u, is written for P/d, the

frequency at which "truncation" at the MBZ bound-

ary occurs. The frequency distribution function

is plotted in Fig. 5, where ~ denotes the "cutoff"
frequency at which the normalization condition

0 0 0 0„,, „6 0
d1

0.

p„g(&u) dto = rN«
Np

is satisfied. Substitution of Eq. (19) in (2o)

yields

p, (m'/n 'd)(&u' —,' (u2) = r—N„»,

from which it follows that

(20)

(21)

0 0 0
1C -~ha)2 (~ha )2a'a

+ 2Cg(&g)
1 2

d12 kd2 2

2 d d dCd(—) +(

+
2

C tt) ( 6 y )
2

FIG. 4. Some contributions to the increase of the po-

tential energy, arising from variations of the bond

angles and bond lengths in the atomistic model presented

in Fig. 3.

the molar heat capacity, this number is assumed

to amount to S'N», where N„v is Avogadro's num-

ber and r is the number of vibrating units in a
formula unit. The total specific heat may be ob-

tained by a summation of the three properly nor-
malized contributions arising from the different

modes of vibration.
The dispersion relations (9) and (10) are of two

different types, given by

uP = n'(k', + k,')+ (P/d)' sin'(kP},

—x/2d ~ k, - m/2d, (17)

~2 (y/d )2 sin2[(k2 y k2)1l2d ) y 82k2

0 ~ (k„'+ k')' ~' ~ v/2d, . (18)

In these equations a. ', P', y', and 6' are combina-

tions of the various elastic constants c„,/p. Since
the sample size is normally very large compared

to atomic dimensions, we will define a uniform

density of states in the k space, denoted by p, . The

different contributions to the heat capacity may

then be evaluated rather straightforwardly. Let
us consider Eq. (17}first.

By differentiating the number of vibrations with

(d'& ~ with respect to (d, the frequency distribution
function g(ru) can be found as

g(u&) = 2, &uarcsin(u/to, ), fora~ &o„(22a)SrNAv

4rNAvg((u)=, "v, (u, for sr~ (u, .
2 (dm —(d~

(22b)

C(T)=k
""gg g((g)(jf~/kT)2e""~~r

(
tlta IRT I)2 t (23)

where ks is the Boltzmann constant. If Eq. (22) is

m

FIG. 5. The frequency distribution function g (~) aris-
ing from a mode of vibration, for which dispersion
effects near the z axis are dominant.

As can be seen from these equations, the frequen-

cy distribution function g(u) is determined com-

pletely by the magnitude of +, and (d, which will

be considered as independent parameters in the

calculation of the heat capacity.
In general, the molar heat capacity C(T) may be

inferred from a normalized frequency distribution

function g(&u) with the formula
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inserted in this expression, we obtain a contribu-
tion E,(B,B„T)to the heat capacity, given by

E,(B,B„T)

3(2B' e')

24R T2 ec~~ x'
},a resin(x T/e, ) dx

0 (e

+ 2B'Il, (e /T) 2e,'D-,(o,/T) .

p~ = 4dd, rN„»/v'. (26)

Of course, from a physical point of view, this

assumption is not quite compatible with Eq. (17),
since in this equation dispersion effects near the

xy plane are not taken into account, but in the

present derivation of an approximate relation
between e and n the resulting error in the cut-
off frequency of about a factor 2m is of no impor-
tance. Substitution of Eq. (26) in (21) yields the

relation

In this expression the usual substitutions

x= her/kT, e,=he, /0, B„=R'&u /0,

have been made, while D,(e/T) denotes the two-
dimensional Debye function, defined in the Appen-
dix.

Before we proceed with the evaluation of Eq.
(18), we would like to make some remarks about
the interpretation of the numerical values of ~,
and &() . While ((), has been defined as P/d [cf. Eq.
(19)], there is no direct relation between u and

the constant n. Although it is not basically impor-
tant for the calculation of the heat capacity, the
value of ~ may, to a certain extent, be associated
with the magnitude of a, which can be seen as
follows. If we assume a cylinder shaped MBZ with

height x/d and radius»/2d„ the volume of the

MBZ will amount to w'/4dd, ', and the correspond-
ing density of states in the k space, p~, is found

as

b=-,'n for ~~ ~,. Since an analytical evaluation
of the integral in this equation is not possible, the
frequency distribution function has been computed
numerically, and the result is plotted in Fig. 6.
The dashed line denotes the limit for cv-~, in

which case Eq. (28) reduces to

r/2 2m3
(~} P))

g dg Pk

Qd1 0 1
(29)

BrNAv«)=, . (. 8f,),
b

f[l —(((),/2(())' sin'g] '~'d&,
0

(32a)

with

In order to obtain a rather simple and manageable
expression for the heat capacity involving only
linear combinations of Debye functions, similar
to Eq. (24), Eq. (28) will be used for ~& 2&v„and
the limiting behavior (29) in the frequency range
~~ 2~,. It may be shown that this approximation
produces only a small error in the magnitude of
the heat capacity. For +& co, the number of vibra-
tions 1(e) with &u'«u is equal to

j.6np v
I(&u) = ~,

' t'[(u/&u )' — isnf]'~'dl,
0

(30)

and hence the normalization condition (20) yields

ff/2
g r2

y2
(4 — i )U" (d*8( *( ~— .))Q4 0 2

=rN„», (31}

in which expression co, has been substituted for
2~, . If we denote the integral in Eq. (31) by I„
the frequency distribution function

2P2y2
1

p2~ 2/2 (27)

Given the fact that e &P and that d, and d are of
the same order of magnitude, Eq. (27) shows that

the value of ~„may be used as an indication of

the ratio n/d, .
Next we will consider Eq. (18). Following the

same procedure as described above the frequency
distribution function g(&u) may be found as

g(co)=,' &[1 —(~,/&o)' sin'0] '~'dg, (28)
1 0

with ((), =y/d„b=arcsin(u/u&, ) for (() ~ (()„and

2 ()()C

FIG. 6. The frequency distribution function g(~) aris-
ing from a mode of vibration, for which dispersion ef-
fects near the xy plane are dominant. The dashed line
denotes the limiting behavior for ~
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b = arcsin(2&v/m, ), for m ~ —,
'

u&,

1 1= pw for g (d «+ (tp «+ (08,

is obtained. Again, g(&u) is completely determined

by the magnitude of e and v . The same argu-
ments that were applied in the evaluation of Eq.
(17) may be used to show that the value of ~ may
now be associated with the ratio 3/d.

If Eq. (32) is substituted in Eq. (23), we obta. in a
contribution E,(9„,9„T)to the heat capacity given

y
2(

illa'

st )
3[ gP (v2 Sf )0 )

x [ HIP), G,(T /9, )+n'8+, (9 /T)

—~'O, D, (9, /T)], (33)

where D, (0/T) denotes the one-dimensional Debye

function, defined in the Appendix, where the func-

tion G,(T/0) will be treated also.

B. Layered structures

As has been pointed out above, the lattice heat

capacity C~(T) may be found by a summation of

the three contributions arising from the different

modes of vibration which may be written as

C, (T)= Z, (9„9„T)+S,'(9„9„T)+F,(9„9„T).
(34)

In this expression e„e„and 8 are associated
with the cutoff frequencies of the "longitudinal in-

plane,
" the "transverse in-plane, "

and the "out

of plane" mode of vibration, respectively. The

number of adjustable parameters in Eq. (34)
amounts to 5, but in order to keep this expression
manageable in numerical fitting procedures, a
further reduction of this number is generally im-

perative. Fortunately, such a reduction is often

possible.
Firstly, the majority of the investigations on

low-dimensional magnetic systems have been per-
formed at rather low temperatures, in which case
one "average" characteristic temperature may be

used to describe the cutoff frequency of both the

longitudinal and transverse in-plane modes of

vibration. If the high-temperature region should

be described more accurately, one might use the

fact that the ratio 8,/8, is roughly equal to

v, /v„where v, and v, denote the propagation

velocities of the longitudinal and transverse waves

in the xy plane, which are proportional to (c»)'h
and (c«)'~', respectively. Since for a wide variety
of substances'6 the ratio c„/c«appears to range

between 3 and 6, the additional condition O, = ge„
with 1.5&g&2.5, seems rather realistic.

Secondly, when the dimensions of the MBZ in

the x, y, and z direction are not too different, the

problem will be simplified by the fact that "trun-
cation" of the "cigar-shaped" contours in the k

space occurs at the same frequency as the trunca-
tion of the "disc-shaped" contour, because for all
contours the maximum 0 value is proportional to

(c«) '@. This yields the additiona1 relation 8,
= 2e„which leaves only 3 independent parameters.

For extremely anisotropic substances, like

graphite, boron nitride, and perhaps (CH,NH, )2

CdC14, ' a bending modulus K should be included

[cf. Eq. (16)]. We will, however, not consider this

rather special case in the present treatment. For
a calculation of the frequency spectrum for the

out of plane mode of vibration and a discussion

of the contribution to the heat capacity, the reader
is referred to the literature. '""

Finally, we would like to make some remarks
about the application of Eq. (34) to the interpreta-
tion of experimental data. Both the integral on

the right-hand side of Eq. (24) and the function

G,(T/8), which has been substituted in Eq. (33),
cannot be evaluated analytically. With the aid of

a high-speed computer they may be approximated

with a very high degree of accuracy, but, espe-
cially when the functions E, and I'2 are used in

numerical fitting procedures, the time involved

with such a procedure is very large, since the

various integrals have to be computed for each

iteration and for all temperatures that correspond
to the data points. Given the fact that the accuracy
of most specific heat measurements is in the or-
der of 1%, we found it useful to deduce some

rather simple expressions, which describe the

various integrals with an accuracy of a few parts
in 10' for all values of T/8. The derivation of

these expressions will be given in the Appendix.

It should be noted that the functions E, and F,
are only physically meaningful when the ratio

8,/9 and the ratio 9,/9 are small compared to

unity. If the anisotropy for a particular mode of

vibration accidentally appears to be very small,
a description of the corresponding contribution

with a suitably normalized three-dimensional

Debye function is preferred.

IV. CHAINLIKE STRUCTURES

In principle, the evaluation of the lattice dynam-

ics of a chainlike structure is completely analo-

gous to the problem treated in Sees. II and III, if
the direction of the chains is chosen along the z

axis. Some modifications may arise from the fact
that the relative magnitude of the elastic constants

may be different from those of a layered structure.
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For a variety of anisotropic chainlike compounds,

however, the shearing constant c44 appears to be

small compared to c» c«and c33 Therefore
the contours presented in Fig. 1 will still be

representative, except for the fact that the con-

stant c33 which now represents the compressional
stiffness of the chains, will generally be larger
than c» and c«. As can easily be seen, this has

no drastic consequence for the description of the

dynamical behavior, given by continuum elasticity
theory, and the expressions (9) and (10) are still
valid. The dispersion relations denoted by (Jo] cop,

and ~3 are now associated with the "out of chain

longitudinal,
" the "out of chain transverse, " and

the "in chain" mode of vibration, respectively.
In general, the lattice heat capacity of chainlike

substances may be described by Eq. (34) with 5

independent parameters. For these compounds,

however, it is not obvious that both 8, and 0, are
high compared to the temperature region in which

the expression will be applied, and hence the ad-

ditional condition 8, = a8, may produce some inac-
curacies in the description of the heat capacity.
However, if the dimensions of the MBZ are not

too different, the number of parameters can be

reduced by the relation 8,=20„as has been

pointed out in Sec. III.
To our knowledge, no heat capacity measure-

ments have been reported on substances which are
built up from very covalently bound purely one-

dimensional chains. Therefore the bending con-

stant C~ [cf. Eq. (13)] has not been included in the

present treatment.

V. DISCUSSION

In the preceding sections an approximation has

been presented, which provides a rather general

description of the lattice heat capacity of both

layered and chainlike compounds. Since the

inferred expressions involve only a few adjustable
parameters, they are expected to be very useful

in the interpretation of the heat capacity of low-

dimensional magnetic substances. This is demon-

strated by applying the theory to the description
of the lattice contribution to the heat capacity of

the series of isomorphic antiferromagnetic sub-

stances CsMnC1, .2H,O, nRbMnCl, ' 2H,O, and

CsMnBr, 2H,O. These compounds may be con-
sidered as systems built up from layers of heavy

ions, which are mainly held together by hydrogen
bonds. " Because in the paramagnetic region the

magnetic properties of the different isomorphs are
rather well established and the lattice contribution
varies considerably, this series should offer a
good indication of the applicability of the theory.
Moreover, accurate experimental data were avail-

able below 52 K. We found that the lattice heat

capacity for this series could be described very
well between 9 and 52 K by Eq. (34) with 3 inde-

pendent parameters. In fact, the errors were
within the experimental uncertainty (1%). The

fitting procedure itself was found to be numeri-

cally stable, in contrast to a first attack on the

problem, which was based upon a modification of
the theory of Tarasov. '

Of course, a more direct check on the correct-
ness of the description may be obtained by con-
fronting the inferred expressions with the low-

temperature heat capacity of an anisotropic dia-
magnetic substance. Therefore we will briefly
consider the heat capacity of (CH, ),NCdC1, (TMCC).
Since detailed results of the measurements have

been published elsewhere, "we will confine our-
selves to a discussion of the fitting procedure.
In the interpretation of the heat capacity of TMCC
one should note that this compound has been re-
ported" to consist of chains of the form-Cd-C13-
Cd-, which are separated by N(CH, ), complexes.
Because at low temperatures the CH, molecules
will vibrate as a whole, the number of vibrating
units in a formula unit was assumed to amount to
9. As a first attempt, the experimental data were
described with the full Eq. (34), involving 5 inde-

pendent parameters. The fitting procedure, how-

ever, revealed strong correlations between the

parameters 0, , 8, , and 6„which is caused by
the fact that the fit was performed at relatively low

temperatures (4& T&52 K) where accurate ex-
perimental data were available. Because espe-
cially 8„reflecting the in-chain stiffness, showed

a large standard deviation, we imposed the

additional condition 0,= 20, . With the simplifica-
tion 8,= 26, the experimental data could be de-
scribed withanaccuracy better than - 2'Po. Only a
slight improvement was obtained by considering

8, and 8, as independent variables, and hence the

expression with three parameters was preferred.
The result was

442+ 4 K, o-, = 154+1 K, O™c=

The same simplified form of Eq. (34) has been

used to describe the lattice heat capacity of the

isomorphic (CH, ),NMnCl, (TMMC)." An excellent
agreement with the experimental data was found,
yielding 0 values which are about 8% higher than
those for TMCC. This is consistent with the mass
difference between the Cd" and the Mn" ion, if we

assume that the binding forces are almost equal
for both compounds.

Finally, we would like to make some concluding
remarks. In the treatment of more complicated
structures, one has to assume an "effective" num-

ber of vibrating units in a formula unit, denoted
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by r. In general, r can be taken equal to the num-

ber of heavy atoms plus the number of molecular

groups that are assumed to vibrate as a whole,

at least within the temperature region that is of

interest in the description of the heat capacity.
The number of these groups —like H,O, CH3 or
NH 3 may often be found from inspe etion of the

crystallographic structure. Especially when the

expressions are used in the description of the low-

temperature heat capacity, the quality of the fit
appeared to be rather insensitive to small varia-
tions of the value of x. In the case of TMMC and

TMCC, this value was assumed to be equal to 9.
Specific-heat measurements which have been per-
formed on TMMC up till room temperature' re-
veal that even at 300 K the total number of degrees
of freedom hardly exceeds 27K„v, which strongly

indicates that the conjectured value of r is correct.
It has become common practice to describe ex-

perimental results with an apparent g, value, i.e. ,
the value of Q that should be inserted in a correct-
ly normalized three-dimensional Debye function

to predict the observed magnitude of the heat ca-
pacity at a given temperature T. The contribution
I'2 can be described by an apparent 8, value defined

by the equality

—,'D, (6./T) = Z,(B,B„T).
The result is presented in Fig. 7, where the ratio

6,/6 has been normalized to unity at T =0. A

similar behavior is found for the contribution E,.
It should be noted that even for small values of

the anisotropy our theory predicts a minimum of

6, in the temperature region 0.02& T/6 &0.2,
which has also been observed in a considerable
number of experimental investigations. " Hence

it appears that the most essential shortcoming of

the purely elastic Debye model in the description
of the low-temperature heat capacity may already
be removed by the inclusion of only the most dom-

inant dispersion effects. The limiting T depen-

dence of the heat capacity appears to occur only at
temperatures very low compared to the region in

which the "Debye T' law" mathematically holds.

If the compound under investigation has a fair
amount of anisotropy, conventional techniques to
separate the electronic or magnetic contribution

from the total specific heat, such as a G/T versus
T' or a CT' versus T' plot, respectively, should

only be applied with great care, since they are
based upon a purely T' dependence of the lattice
heat capacity.
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APPENDIX

The n-dimensional Debye function used in this

paper is defined as
+ 'II ~tl+lel

~0

where R denotes the molar gas constant.
The integral that appears at the right-hand side

of Eq. (24) can be evaluated as follows. Let us

define a function G, (T/6, ) as

T 24R T' ec~~ x'e"
~ YT

» arcsin —dx. (37)
ec +ec ~0 (e 1) C

1.6—
I I I I I I I I I I I I I I I I

Fp (8~,8, ,1)

r
/

/
/

/

/

0.4

TABLE I. Coefficients B&; of the polynomial series
P &(T/O, ) that relates the function G &(T/o", ) to a three-
dimensional Debye function.

T/8, » 0.1 T/O, 0.1

The low-temperature behavior of G, (T/6, ) canbe

found by substitutingarcsin(xT/6, ) = xT/B„since the

integrand goes exponentially to zero for large values

08 I I I I I I I I I I I I I I I I I I I

103 16 10 1 10

~ /'em

FIG. 7. Description of the contribution to the specific
heat, axising from a mode of vibration for which disper-
sion effects near the xy plane are dominant, vrith an ap-
parent O, value. The different curves are characterized
by the ratio O, /O

B, o=+2.43502x102
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B

g
6=+ 1.184 07 x 10

B, ,=+ 1.31640
B( 8=+8.37847x10 2

Bg,9=+2.33086x10 ~

B& o=-5.63143
B« ——-1.942 11
B ( 2

= -5.322 41x 10

Bg 3=+3.3997lx10 2

Bg 4=-1.88309x10 2

B i 5
= + 7.530 21 x 10 ~

B
& 6

= -1.487 47 x 10 ~

B, ,=-5.640 74x10 '
B1,8 +4 33673x 10 ~

B&,=-4.445 69x10 '
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TABLE II. Coefficients 82, of the polynomial series P2(T/8, ) that relates the function
G 2(T/O, ) to a three-dimensional Debye function.

V/, OO3

82 p= 2.498 59x 104

82 (=-7.32324x 10

82, = -9.283 42 x 104

8, , = —6.70697x 104

82 4
——-3.05181x104

8
2 5

——-9.088 19x 10

82 6=-1.774 04x 10~

82? =-2.19161x102
8

2 8
=-1.556 37 x 10

8
2 9

= -4.844 91x 10

0 03~ T/Os~ 0 40

8
2 p

= -3.000 59

82 )=+8.17766
8, ,=+2.377 06x10
82 g

=+ 3.248 92 X 10

8, ,=+ 2.863 22x 1O

8
2 ~

= + 1.683 68 x 10

82 6=+6.57270
8 2? =+ 1.632 29
8

2 8
=+ 2.31085x 10 ~

8, ,=+1.40476x 10 '

0.40 a T/O~~

82 P
= -4.941 17

8, , = -2.001O1

8, ,=+ 7.11166x 10-'

8, ,=+4.36995x10 4

82 4=-1.73992x10 ~

82 5=+1.71293x10
82 6=-8.19824x10 4

82, ?
=+2.09085x10-4

82 8=-2.72743x 10 5

82, 9
=+ 1.43144 x 10-6

of x. The result is

G, (T/0, ) = (8/3w)D, (8,/T). (38)

At low temperatures, the function G, may also be

described by the equation G, (T/0, ) =D,(8/T), if

we put

8 = (3s/8)'!'O, . (39)

At higher temperatures, the relative differences
between the function G, (T/8, ) and the three-dimen-
sional Debye function D,[(3m/8)'!'8, /T] may now be

approximated with a function P( !T0,), for exam-

ple, a polynomial series in T/6, . The approxima-
tion

G, (T/8, ) = D,[(-,'7r)'!'8,/T][I P, (T/0, )] -(40)
was found to have a relative accuracy better than

2x 10 ' for 0& T,/e, &~ with the polynomial series

For &u« ~„Eq. (42) reduces to

g~/~

g(~)=, &[I -(~,/2~)'&'] '"dt
~SI1

The limiting low-temperature behavior of the heat

capacity may now be found as

G, (T/ O,) = 4/(3I, )D,(8,/T),

or alternatively,

G,(T,!e,) =D,[(3I,/4)~!'o, /T].

(44)

(45)

Following the same procedure as outlined above

the function G,(T/8, ) can be described with a rela-
tive accuracy better than 5 ~ 10~ for all tempera-
tures by the approximation

G, (T/8, ) =D,[(3I,/4)'!'8, /T][1 -p2(T/8, )).
P, (T/8, ) = exp B, ,[ln(T!8,)]' .

"0
(41)

(46)

The coefficients 8, „obtained by a least-squares
fit of approximation (40), are listed in Table I.

The function G,(T/C ), substituted in Eq. (33), is
equal to the heat capacity that is obtained if the

frequency distribution function

g(&u) = '

&[1 —(Id,/2&v)'sin'C] '!'dg, (42)
~aIi -0

with 8 = arcsin(2(u/ur, ) for &u
~ 2ur, and 5= —

2w for
a~-, u&„ issubstitutedinto Eq. (23) with &u = &a,.

The magnitude of I, has been numerically evaluated

as I, =1.1190677,while the constants B„,. in the

polynomial series P,(T/8, ), having the same func-

tional form as P, (T/8, ), are listed in Table II.
Given the fact that for the usual Debye functions

various series expansions are available, "the

results given by the relations (40) and (46) are
very suitable in numerical fitting procedures,
since the derivatives to the different parameters
may be inferred very easily.
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