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Abstract. This paper explores some aspects of the algebraic theory of mathematical morphology from the view-

points of minimax algebra and translation-invariant systems and extends them to a more general algebraic structure

that includes generalized Minkowski operators and lattice fuzzy image operators. This algebraic structure is based on

signal spaces that combine the sup-inf lattice structure with a scalar semi-ring arithmetic that possesses generalized

‘additions’ and ⋆-‘multiplications’. A unified analysis is developed for: (i) representations of translation-invariant

operators compatible with these generalized algebraic structures as nonlinear sup-⋆ convolutions, and (ii) kernel

representations of increasing translation-invariant operators as suprema of erosion-like nonlinear convolutions by

kernel elements. The theoretical results of this paper develop foundations for unifying large classes of nonlinear

translation-invariant image and signal processing systems of the max or min type. The envisioned applications lie

in the broad intersection of mathematical morphology, minimax signal algebra and fuzzy logic.
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1. Introduction

Classic Mathematical Morphology (MM), as a field

of nonlinear geometric image analysis, was developed

initially by Matheron and Serra [29, 37] and their col-

laborators and was applied successfully to biomedi-

cal and geological problems of image analysis. In the

1980s, extensions of classic MM and connections to

other fields were developed by several research groups

worldwide along various directions including: applica-

tions to pattern recognition and computer vision prob-

lems; unified nonlinear filtering of the morphologi-

cal/rank/stack type; multiscale image processing and

shape and texture analysis; statistical analysis and op-

timal design of morphological filters. Detailed accounts

and references can be found in books [9, 13, 15, 29, 37,

38] or tutorial papers [11, 23, 24, 40] that deal with MM.

This ‘classic MM’ was Euclidean translation-invariant

and had a max-sum arithmetic.

The need to unify its analysis tools for both binary

and gray images as well as to use it for more abstract

data types such as graphs led MM researchers in

the late 1980s—early 1990s to extend its theory by

generalizing the image space to a complete lattice and

viewing all image transformations as lattice operators.

The theoretical foundations of complete lattice MM

were developed by Matheron and Serra [38] and ex-

tended further by Heijmans and Ronse [15, 16, 36] and

Roerdink [35]. A relatively new algebraic approach to

morphology was developed by Keshet [18] based not

on complete lattices but on inf-semilattices. The basic

advance of lattice MM was to develop more general op-

erators that shared with the standard dilation, erosion,

opening and closing only a few algebraic properties.

One such fundamental algebraic structure is a pair

of erosion/dilation operators that form an adjunction

[15, 38]. This guarantees the formation of openings

and closings via composition of the adjunction con-

stituents. Both classic and lattice MM have focused

on and exploited mainly the lattice structure (sup/inf).

Although some useful operations in MM combine

the sup/inf with max-plus arithmetic (e.g., Minkowski
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operations with gray structuring elements, chamfer dis-

tance transforms), such cases have always remained a

minority.

In parallel to the development of MM, there has

been another independent effort in the 1980’s by Rit-

ter and co-workers [32, 33], called image algebra,

to unify image operations using algebraic structures

such as lattices, semirings and concepts from min-

imax algebra. Minimax (also called ‘max-plus’) al-

gebra [7] has exploited the interaction of the lattice

(sup/inf) with the group structure of real addition +
and has developed analogies with linear algebra that

has a product-of-sums structure. There exist many ap-

plications of minimax algebra in operations research,

scheduling and discrete event control systems [6, 7].

Both image algebra and minimax algebra use con-

cepts from lattices but have not exploited the lat-

tice structure to the level that MM has and have

not focused on the concept of lattice operators and

adjunctions.

In this paper we bridge the above gaps and join MM

with minimax (max-plus) algebra. Further, we gener-

alize MM to a max-⋆ signal algebra that has both a

sup/inf structure and two semigroup ‘multiplication’-

type operations ⋆ and its dual ⋆′ that distribute over sup

and inf, respectively. First we develop this generalized

algebraic structure, which we call ‘clodum’ (complete

lattice-ordered double monoid) and unifies four main

cases: (1) Max-Sum MM: classic translation-invariant

max-sum operations. (2) Max-Product MM: Lattice

extensions of Minkowski dilations-erosions with mul-

tiplicative structuring elements. (3) Fuzzy image oper-

ations and convolutions, where ⋆ (⋆′) becomes a fuzzy

intersection (union). (4) Binary translation-invariant

MM: this can be seen as a special case of (1) or (3).

Further, within this unified clodum structure we derive

theoretical results in two areas: (A) Representations of

translation-invariant operators that obey superpositions

compatible with the clodum structure via generalized

sup-⋆ convolutions. (B) Representations of increasing

translation-invariant operators over a clodum via gen-

eralized kernels as suprema of erosion-type inf-⋆′ con-

volutions. (C) Extensions of (A) and (B) to the special

case of lattice fuzzy operators. Some parts of our re-

sults have appeared before either as special cases, e.g.

the max-sum case of (A) and (B) in [21, 22], or in

conference papers without proofs, e.g. the case (C) in

[25, 27, 28]. Finally, we briefly discuss some benefits of

our unified algebraic framework for max/min systems.

2. Elements from Lattice and Minimax Algebra

2.1. Lattices

The material in this section follows [3]. A partially-

ordered set, briefly poset (P, ≤), is a set P in which

a binary relation ≤ is defined that is a partial order-

ing, i.e., satisfies the following three properties for all

X, Y, Z ∈ P:

(P1). X ≤ X (reflexive)

(P2). X ≤ Y and Y ≤ X imply X = Y (antisymmetric)

(P3). X ≤ Y and Y ≤ Z imply X ≤ Z (transitive)

If ≤ has the additional property that, for any two

elements we have either X ≤ Y or Y ≤ X , then P is

called a totally-ordered set or chain. To every partial

ordering ≤ on P there corresponds a converse partial

ordering ≤′ defined by “X ≤′ Y iff X ≥ Y ”. If (P, ≤)

is a poset, then (P, ≤′) is also a poset, called the dual

poset; this is the Duality Principle.

Let S be a subset of a poset P . An upper bound

(resp. lower bound) of S is an element B ∈ P such

that X ≤ B (resp. X ≥ B) for all X ∈ S; if B ∈ S,

then it is the greatest element or maximum (resp. least

element or minimum) ofS. An element M ∈ S is called

maximal (resp. minimal) if there is no element in S that

is greater (resp. smaller) than M . The least upper bound

of S is called its supremum and denoted by supS or
∨

S. By using the duality principle, we can also define

the greatest lower bound of S, called its infimum and

denoted by infS or
∧

S. The supremum and infimum

are unique if they exist.

A lattice is a poset (L, ≤) any two of whose el-

ements have a supremum, denoted by X ∨ Y , and an

infimum, denoted by X ∧Y . We often denote the lattice

structure by (L, ∨, ∧). A lattice L is complete if each

of its subsets has a supremum and an infimum in L.

Any nonempty complete lattice is universally bounded

because it contains its greatest element (the ‘unit’)

I =
∨

L and its least element (the ‘zero’) O =
∧

L.

Duality in Lattices: In any lattice L, by replacing the

partial ordering ≤ with its dual ≤′ and by interchanging

the roles of the supremum and infinum, i.e., by consid-

ering the dual operations ∨′ = ∧ and ∧′ = ∨, we can

form a new lattice (L, ∨′, ∧′), called the dual lattice and

often denoted just by L′. The duality principle dictates

that to every definition, property and statement that ap-

plies to the lattice L and involves its partial ordering
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Table 1. Properties of lattice operations.

Sup-semilattice Inf-semilattice Description

L1. X ∨ X = X L1′. X ∧ X = X Idempotence

L2. X ∨ Y = Y ∨ X L2′. X ∧ Y = Y ∧ X Commutativity

L3. X ∨ (Y ∨ Z ) = (X ∨ Y ) ∨ Z L3′. X ∧ (Y ∧ Z ) = (X ∧ Y ) ∧ Z Associativity

L4. X ∨ (X ∧ Y ) = X L4′. X ∧ (X ∨ Y ) = X Absorption

L5. X ≤ Y ⇔ Y = X ∨ Y L5′. X ≤ Y ⇔ X = X ∧ Y Consistency

L6. A ∧
(
∨

i∈J X i

)

=
∨

i∈J (A ∧ X i ) L6′. A ∨
(
∧

i∈J X i

)

=
∧

i∈J (A ∨ X i ) Distributivity

(if J is finite†)

†If J is infinite, the lattice is called infinitely distributive.

and sup/inf, there corresponds a dual one that applies

to the dual lattice L′ by interchanging ≤ with ≤′ and

∨ with ∧.

The lattice operations satisfy many properties; the

four fundamentals are listed as (L1, L1′)–(L4, L4′) in

Table 1. Conversely, a set L equipped with two binary

operations ∨ and ∧ that satisfy these first four pairs of

properties is a lattice whose supremum is ∨, infimum

is ∧, and partial ordering ≤ is given by L5.

A lattice L is called distributive if property L6 of

Table 1, or equivalently its dual L6′, holds for any finite

index set J and any A, X i ∈ L. If it also holds for an

infinite index set, then the lattice is called infinitely

distributive.

A lattice contains two weaker substructures, i.e., two

semilattices. In general, a semilattice (P, ◦) is a set P

equipped with a binary operation ◦ that is idempotent,

commutative, and associative. Actually, any semilat-

tice (P, ◦) is a poset in which the partial ordering is

defined by X ≤ Y iff Y = X ◦ Y and any two elements

possess a supremum1 defined by X ∨ Y = X ◦ Y ; such

a semilattice is called a sup-semilattice. Conversely,

if (P, ≤) is a poset in which any two elements X, Y

have a supremum X ◦ Y , then P is a semilattice with

respect to the binary operation ◦. It now becomes evi-

dent that a lattice (L, ∨, ∧) contains a sup-semilattice

(L, ∨) that satisfies properties L1–L3 of Table 1, an

inf-semilattice (L, ∧) that satisfies properties L1′–L3′,

and the two binary operations of supremum and infi-

mum are related via properties L4, L4′ that make them

dual to each other.

In a lattice L with universal bounds O and I , an el-

ement X ∈ L is said to have a complement X c ∈ L

if X ∨ X c = I and X ∧ X c = O . If all the ele-

ments of L have complements, then L is called com-

plemented. A lattice is called Boolean if it is com-

plemented and distributive. In any Boolean lattice the

complement of each element is unique and involutive:

(X c)c = X .

A subset A of a complete lattice L is called sup-

generating (resp. inf-generating) if each lattice element

can be expressed as a supremum (resp. infimum) of

members of A. Such generators can be found if the

lattice has atom-like elements. Specifically, an element

A ∈ L is called an atom if it is a minimal element of

L\{O}. Respectively, a dual atom is called any maxi-

mal element of L\{I }. Atoms may not exist in a lattice.

A weaker concept is the semi-atom: a nonzero element

A ∈ L is called a semi-atom if A ≤ X ∨ Y implies

A ≤ X or A ≤ Y . A lattice is called atomic (resp. semi-

atomic) if the class of its atoms (resp. semi-atoms) is

sup-generating. Dually, we can also define dual (semi)

atoms, which, if they form an inf-generating class, cre-

ate a dual (semi) atomic lattice.

In this paper we deal mainly with function lattices.

The underlying set of these lattices is the setS = V
E of

all functions F : E → V whose domain is an arbitrary

nonempty set E and range is a subset of the value set

V; this function class is also denoted by Fun(E, V).

The value set V is always a complete lattice; let its

partial order, supremum and infimum be ≤, ∨, and

∧, respectively. Then, the complete lattice structure of

V is also inherited by the function space Fun(E, V)

by extending the partial order, supremum and infimum

among points in V to functions pointwise:

F ≤ G ⇔ F(x) ≤ G(x) ∀x ∈ E
(

∨

i∈J

Fi

)

(x) �
∨

i∈J

Fi (x), x ∈ E (1)

(

∧

i∈J

Fi

)

(x) �
∧

i∈J

Fi (x), x ∈ E

where F, G, Fi ∈ Fun(E, V) and J is an abritrary in-

dex set. Thus the function Fun(E, V) lattice inherits
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many of the extra properties that the value lattice

may have, such as its distributivity type or Boolean

nature. An important example is the function lattice

Fun(Rm, R̄), i.e. the class of m-dimensional extended

real-valued signals.

2.2. Monotone Lattice Operators

The material in this section follows [3, 15, 38]. Let

L be a complete distributive lattice and let O(L) be

the set of all operators on L, i.e., mappings from L to

itself. This is an example of a function lattice where

the domain and value set are both equal to L. Given

two such operators � and �, we can consider their

composition ��(X ) = �(�(X )). Also we can define a

partial ordering ≤ between them, their supremum �∨
� and infimum � ∧ � in the obvious way induced by

the corresponding operations on L. Equipped with the

above ordering, supremum and infimum, the set O(L)

becomes a lattice which inherits many of the possible

properties ofL, such as completeness and distributivity.

Next follow some definitions for lattice operators. The

identity operator is id(X ) = X . An operator � is called:

extensive (resp. anti-extensive) if id ≤ � (resp. � ≤
id); idempotent if �2 = � where �n denotes the n-fold

composition of � with itself; involution if �2 = id.

Of great interest are the monotone operators. A lat-

tice operator � is called increasing or isotone (resp.

decreasing or antitone) if it is order-preserving (resp.

order-inverting), i.e., ∀X, Y ,

increasing: X ≤ Y ⇒ �(X ) ≤ �(Y )

decreasing: X ≤ Y ⇒ �(X ) ≥ �(Y )

Examples of monotone operators are the morphisms. A

lattice homomorphism is any operator that preserves (fi-

nite) suprema and infima; if in addition it is a bijection,

then it is called an automorphism. Homomorphisms are

increasing. Conversely, a dual homomorphism inverts

suprema and infima. It can be shown that an operator

� is an automorphism (resp. dual automorphism) if it

is a bijection and both � and its inverse �−1 are in-

creasing (resp. decreasing). Finally, a negation ν is a

non-identity dual automorphism that is also involutive,

i.e., ν2 = id; we often write X∗ = ν(X ) for the negative

of a lattice element. Given a lattice operator �, its cor-

responding negative operator is defined as �∗ = ν�ν;

i.e., �∗(X ) = [�(X∗)]∗.

Four important types of increasing operators, which

are fundamental for unifying lattice image processing,

are the following:

δ is dilation iff δ(
∨

i∈J Xi) =
∨

i∈J δ(Xi)

ε is erosion iff ε(
∧

i∈J Xi) =
∧

i∈J ε(Xi)

α is opening iff α is increasing, idempotent &

anti-extensive

β is closing iff β is increasing, idempotent

& extensive

The first two definitions require arbitrary (possibly in-

finite) collections {X i : i ∈ J } of lattice elements;

hence, the dilation and erosion operators need com-

plete lattices.

Dilations and erosions come in pairs as the following

concept reveals. The operator pair (ε, δ) is called an

adjunction [15, 38] if

δ(X ) ≤ Y ⇔ X ≤ ε(Y ) ∀X, Y ∈ L (2)

Given a dilation δ, there is a unique erosion

εδ(Y ) =
∨

{X : δ(X ) ≤ Y } (3)

such that (εδ, δ) is adjunction. Conversely, given an

erosion ε, there is a unique dilation

δε(X ) =
∧

{Y : X ≤ ε(Y )} (4)

such that (ε, δε) is adjunction. Some useful facts about

adjunctions are given next:

Proposition 1 ([15, 38]). Let (ε, δ) be an adjunction.

Then:

(i) δ is a dilation with δ(O) = O and ε is an erosion

with ε(I ) = I .

(ii) δε is an opening, and εδ is a closing.

(iii) If (ε j , δ j ), j ∈ J , are adjunctions, then (
∧

j ε j ,
∨

j δ j ) is an adjunction.

(iv) If ψ is a lattice automorphism, then (ψ, ψ−1) is an

adjunction.

2.3. Lattice-Ordered Monoids

The following material follows [3, 7]. A poset, lat-

tice, or semilattice L is often endowed with additional

structure of the group type. Namely, L may have an

additional binary operation, called symbolically the

‘multiplication’ ⋆, under which (L, ⋆) is any of the

following:
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Semigroup if ⋆ is associative.

Monoid if ⋆ is associative and has identity element.

Group if ⋆ is associative, has identity, and each element

has an inverse.

In addition, if ⋆ is also commutative, we obtain a com-

mutative semigroup/monoid/group. Henceforth, we

shall deal only with commutative (semi)group oper-

ations ⋆.

A lattice-ordered group is an algebra (L, ∨, ∧, ⋆) in

which (L, ∨, ∧) is a lattice, (L, ⋆) is a group, and the

group ‘multiplication’ is increasing. It follows that any

group translation X → A⋆X is a lattice automorphism.

An algebra (M, ∨, ⋆) is called a semilattice-ordered

monoid if M is a sup-semilattice under ∨, monoid

under ⋆, and ⋆ distributes over ∨:

A ⋆ (X ∨ Y ) = (A ⋆ X ) ∨ (A ⋆ Y ) (5)

for all A, B, X, Y ∈M. If M also has an infimum

∧ that (together with ∨) makes it a lattice, then

(M, ∨, ∧, ⋆) is called a lattice-ordered monoid. Sup-

pose now that M is also a monoid under a ‘dual mul-

tiplication’ operation ⋆′ that distributes over infimum:

A ⋆′ (X ∧ Y ) = (A ⋆′ X ) ∧ (A ⋆′ Y ) (6)

Now M has four binary operations. We call the result-

ing algebra (M, ∨, ∧, ⋆, ⋆′) a lattice-ordered double

monoid. To the above definitions we add the word com-

plete if M a complete lattice and the distributivities

involved are infinite. For algebraic structures similar

to the above definitions alternative names2 have been

used in previous works related to discrete-event control

systems.

In any lattice-ordered double monoid the distributiv-

ity of ⋆ over ∨ and of ⋆′ over ∧ imply that both ⋆ and

⋆′ are increasing; i.e.,

X ≤ Y ⇒ A ⋆ X ≤ A ⋆ Y

X ≤ Y ⇒ A ⋆′ X ≤ A ⋆′ Y
(7)

These properties imply in turn that

A ⋆ (X ∧ Y ) ≤ (A ⋆ X ) ∧ (A ⋆ Y )

A ⋆′ (X ∨ Y ) ≥ (A ⋆′ X ) ∨ (A ⋆′ Y )
(8)

If ⋆ = ⋆′, we have a self-dual ‘multiplication’. This

always happens if (M, ⋆) is a group; in this case we

obtain a lattice-ordered group, and the inequalities (8)

become equalities.

3. Minimax Signal and System Representations

3.1. Algebraic Structures on the Scalars

We henceforth assume that all vector elements or sig-

nals involved in the description of the systems exam-

ined herein take their values from a set V of scalars,

which in general will be a subset of the set R̄ =
R ∪ {−∞, ∞} of extended real numbers. Under the

standard real number ordering ≤, V is a chain, and
∨

and
∧

become the standard supremum and infi-

mum on the reals. We assume that V is universally

bounded, i.e., contains its least Vinf �
∧

V and great-

est element Vsup �
∨

V. For the unified lattice signal

processing model we need to equip V with four binary

operations:

(A). A generalized ‘addition’ under which V be-

comes a complete sup-semilattice. We shall henceforth

fix this ‘addition’ to be the standard supremum ∨ on

R̄.

(A′). A ‘dual addition’ which makes V a complete

inf-semilattice and is related to the generalized ‘addi-

tion’ via the absorption law L4 of Table 1. The stan-

dard infimum ∧ on R̄ will henceforth be this ‘dual

addition’.

(M). A commutative generalized ‘multiplication’ ⋆

under which: (i) V is a monoid with identity element

Vid and null element Vinf, i.e.,

a ⋆ Vid = a, a ⋆ Vinf = Vinf, ∀a ∈ V, (9)

and (ii) ⋆ is a scalar dilation, i.e., distributes over any

supremum

a ⋆

(

∨

i∈J

xi

)

=
∨

i∈J

(a ⋆ xi ) (10)

for any (possibly infinite) index set J . Namely,

(V, ∨, ∧, ⋆) is a dioid [6].

(M′). A commutative ‘dual multiplication’ ⋆′ under

which: (i) V is a monoid with identity V
′
id and a null

element Vsup, i.e.,

a ⋆′
V

′
id = a, a ⋆′

Vsup = Vsup, ∀a ∈ V, (11)

and (ii) ⋆′ is a scalar erosion, i.e., distributes over any

infimum.

We group the above requirements into the following

sets of conditions:
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(C1). (V, ∨, ∧) is a complete infinitely-distributive lat-

tice.

(C2). (V, ⋆) is a commutative monoid, and ⋆ is a dila-

tion.

(C3). (V, ⋆′) is a commutative monoid, and ⋆′ is an

erosion.

Under the above assumptions (V, ∨, ∧, ⋆, ⋆′) be-

comes a commutative complete lattice-ordered dou-

ble monoid, in short clodum. This will be the most

general and minimally required algebraic structure

we consider for the set of scalars. We avoid degen-

erate cases by henceforth assuming that each ‘addi-

tion’ is different from its corresponding ‘multiplica-

tion’, i.e., ∨ �= ⋆ and ∧ �= ⋆′. However, ⋆ may be

the same as ⋆′, in which case we have a self-dual

‘multiplication’.

In some cases we may have some additional alge-

braic structure in V. This occurs if we assume that

V = VG ∪ {Vinf, Vsup} where (VG, ⋆) is a commutative

group. Then, for each element a ∈ VG there exists its

‘multiplicative’ inverse a−1 such that a ⋆ a−1 = Vid.

Further, (VG, ∨, ∧, ⋆, ⋆) is a lattice-ordered group with

self-dual ‘multiplication’. The ‘multiplication’ ⋆ and its

self-dual ⋆′ (which coincide over VG) can be extended

over the entire V by adding the rules in (9) and (11)

involving the null elements. The resulting richer struc-

ture (V, ∨, ∧, ⋆, ⋆) is called a bounded lattice-ordered

group [7], in short blog.

A clodum V is called self-conjugate if it has a

negation, i.e. an involutive dual automorphism that

maps each element a to its conjugate element a∗ such

that

(a ∨ b)∗ = a∗ ∧ b∗

(a ⋆ b)∗ = a∗ ⋆′ b∗ (12)

If V is a blog, then it becomes self-conjugate by setting

a∗ =











a−1 if Vinf < a < Vsup

Vsup if a = Vinf

Vinf if a = Vsup

(13)

3.2. Signal Space and Impulse Representations

The space S = Fun(E, V) of signals with values in

the lattice V is a special case of a function lattice. Of

main importance is the case E = R
2 or E = Z

2,

where S becomes the set of all image signals defined

on the continuous or discrete image plane and taking

scalar values in V. But E could also be a finite index

set for matrix-based image processing or the set of ver-

tices of a graph in cases of images defined on a graph.

The signal space S becomes a complete infinitely dis-

tributive lattice if we define on it a partial ordering ≤,

supremum
∨

i Fi , and infimum
∧

i Fi by extending the

corresponding scalar operations to signals pointwise as

in (2). If we now consider that V is not only a lattice but

a clodum, then we can define a signal ‘multiplication’

⋆ and its dual ⋆′ pointwise

(F ⋆ G)(x) � F(x) ⋆ G(x),

(F ⋆′ G)(x) � F(x) ⋆′ G(x)

Now the signal space S = Fun(E, V) equipped under

the four binary operations ∨, ∧, ⋆ and ⋆′ becomes a

clodum. The corresponding signal ‘additions’ are pro-

vided by the supremum and infimum. Henceforth, our

signal space will be the above clodum.

Viewed as a lattice, the signal clodum S possesses

semi-atoms qy,v and dual semi-atoms q ′
y,v which are

the following elementary pulse signals

qy,v(x) �

{

v, x = y

Vinf, x �= y
,

(14)

q ′
y,v(x) �

{

v, x = y

Vsup, x �= y

Further, since S also has a monoid structure, we

can consider translations of signal values via their

‘⋆-multiplication’ by constants v, denoted as λv :

a → a ⋆ v; we call them vertical translations, in short

V-translations, since geometrically they affect the sig-

nal graph in the vertical direction. Similarly we can

define dual vertical translations λ′
v : a → a ⋆′ v. The

scalar mappings λ,λ′
can be extended to signals point-

wise; we keep the same symbol for both scalar and

signal operations:

λv(F)(x) � λv[F(x)] = v ⋆ F(x),

λ′
v(F)(x) � λ′

v[F(x)] = v ⋆′ F(x)

Now, the signal semi-atoms can be expressed as

V-translations of only those whose height equals the

identity. Namely, if we define

qy(x) �

{

Vid, x = y

Vinf, x �= y
, q ′

y(x) �

{

V
′
id, x = y

Vsup, x �= y

(15)
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as the impulse and dual impulse signals, respectively,

then all semi-atoms can be expressed as V-translations

of the impulse signals:

qy,v(x) = v ⋆ qy(x), q ′
y,v(x) = v ⋆′ q ′

y(x) (16)

Hence, since S is a semi-atomic lattice, every sig-

nal F(x) admits a representation as a supremum of

V-translated impulses placed at all points of the signal

domain or as infimum of dual V-translated impulses:

F(x) =
∨

y∈E

F(y) ⋆ qy(x) =
∧

y∈E

F(y) ⋆′ q ′
y(x)

(17)

3.3. Increasing Systems Invariant Under Vertical

⋆-Translations

We are interested in increasing operators on the signal

clodum S = Fun(E, V). The previous V-translations

λv : F → v ⋆ F of signals F via ‘multiplication’

by constants v are increasing operators. Actually they

are dilations of the simplest type, which we shall often

call elementary signal dilations. Their collection Tv =
{λv : v ∈ VG} forms under composition a commutative

monoid of signal dilations; i.e., λaλb = λa⋆b, where

VG =

{

V \ {Vinf, Vsup} if V is blog

V if otherwise

A signal mapping ψ is called V-translation invariant

operator, in short Tv-operator, if it commutes with any

V-translation, i.e., ψλv =λvψ for all v. All the above

concepts apply as well for signal translations via dual

‘multiplication’. Each dual V-translation λ′
v : F →

v ⋆′ F is an elementary signal erosion, and their collec-

tion T
′
v = {λ′

v : v ∈ VG} is a monoid of signal erosions.

Namely, we call an operator dual V-translation invari-

ant iff it commutes with any such dual V-translation. If

V is a blog, the above two monoids Tv, T
′
v become the

same group of automorphisms on the signal lattice.

Important examples of increasing operators are the

dilations and erosions. The following provides a de-

composition of signal dilations and erosions on the

function lattice S into suprema and infima of scalar

dilations and erosions on V, respectively.

Proposition 2 ([15]). Let V be a complete lattice and

E an arbitrary nonempty set. The pair (ε, δ) is an ad-

junction on the function lattice Fun(E, V) iff for every

x, y ∈ E there exists an adjunction (ex,y, dy,x ) on V

such that

δ(F)(x) =
∨

y∈E

dy,x (F(y)),

(18)
ε(G)(y) =

∧

x∈E

ex,y(G(x))

for x, y ∈ E and F, G ∈ Fun(E, V).

In the signal clodum S, if we consider the impulse

signals qy(x) and their duals q ′
y(x) in (15), we can en-

able the decomposition (18) by defining the scalar di-

lations to be

dy,x (v) = δ(qy,v)(x) = δ(v ⋆ qy)(x), x, y ∈ E, v ∈ V

(19)

and ex,y to be the adjoint erosion of dy,x .

Dually we can define the scalar erosions εx,y from

the action of ε on the dual impulses q ′, i.e.

ex,y(v) = ε(q ′
x,v)(y) = ε(v ⋆′ qx )(y), x, y ∈ E, v ∈ V

(20)

and then define the scalar dilations dy,x as adjoints of

ex,y .

An important outcome from the above discussion

is that the output signals from dilation (resp. erosion)

operators excited by V-translated impulses are suffi-

cient for the supremal (resp. infimal) representation of

the operators. Henceforth we assume that these op-

erators are V-translation invariant. For dilations and

erosions this invariance implies that they obey an in-

teresting nonlinear superposition principle which has

direct conceptual analogies with the linear superposi-

tion obeyed by linear operators. Specifically, it is simple

to show that an operator δ is a V-translation invariant

dilation iff

δ

(

∨

i∈J

ci ⋆ Fi

)

=
∨

i∈J

ci ⋆ δ(Fi ), ci ∈ V, Fi ∈ S

(21)

for any index set J . Dually, an operator ε is a dual

V-translation invariant erosion iff

ε

(

∧

i∈J

ci ⋆′ Fi

)

=
∧

i∈J

ci ⋆′ ε(Fi ), ci ∈ V, Fi ∈ S

(22)
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Compare the two above nonlinear superpositions

with the linear superposition obeyed by a linear op-

erator ψ :

ψ

(

∑

i∈J

ai · Fi

)

=
∑

i∈J

ai · ψ(Fi ) (23)

where J is a finite index set, ai are constants from a

field (e.g. the set of reals or complex numbers) and Fi

are field-valued signals from a linear space.

If we assume that our operators are V-translation in-

variant, then their outputs obtain a simplified structure

which is best described by defining next the opera-

tor’s impulse responses. Given a dilation operator δ,

its impulse response function is the parametrized map

Hy : E → Fun(E, V) defined at each y ∈ E as the

output signal from δ when the input is the impulse qy .

Dually, for an erosion operator ε we define its dual im-

pulse response function H ′ via its outputs when excited

by dual impulses:

Hy(x) � δ(qy)(x), H ′
y(x) � ε(q ′

y)(x), x, y ∈ E

(24)

The following gives a unified representation for all

V-translation invariant dilations and erosions on a sig-

nal clodum.

Theorem 1. Consider a clodum (V, ∨, ∧, ⋆, ⋆′) of

scalars and let S = Fun(E, V) be the corresponding

signal clodum space where E is an arbitrary nonempty

set. Then:

(a) An operator δ on S is a dilation invariant to V-

translations, i.e. obeys (21), if and only if it can be

expressed as

δ(F)(x) =
∨

y∈E

F(y) ⋆ Hy(x) (25)

where Hy is its impulse response function in (24).

(b) An operator ε on S is an erosion invariant to dual

V-translations, i.e. obeys (22), if and only if it can

be expressed as

ε(F)(x) =
∧

y∈E

F(y) ⋆′ H ′
y(x) (26)

where H ′
y is its dual impulse response function in

(24).

Proof: ‘Only If part’: (a) Assume that δ is a

V-translation invariant dilation. Then by representing

the input signal F via impulses as in (17) we obtain

δ(F)(x) =
∨

y

δ(F(y) ⋆ qy)(x) =
∨

y

F(y) ⋆ Hy(x)

(b) If ε is a dual V-translation invariant erosion, then

by dual impulse representation of the input as in (17)

we obtain

ε(F)(x) =
∧

y

ε(F(y) ⋆′ q ′
y)(x) =

∧

y

F(y) ⋆′ H ′
y(x)

‘If part’: (a) Consider an operator δ defined as in (25).

By identifying the terms F(y) ⋆ Hy(x) as the scalar di-

lations dy,x (F(y)) used in Proposition 2 we conclude

that δ is a signal dilation. Further, since the group

⋆-‘multiplication’ distributes over suprema, δ com-

mutes with ⋆-‘multiplication’ by constants. (b) Sim-

ilarly, if an operator ε is defined as in (26), by using

the dual arguments of those used in (a), it follows that

ε is a dual V-translation invariant erosion.

Note that the operations in (25) and (26) are like

adaptive nonlinear convolutions where a dilation (resp.

erosion) system’s output is obtained as supremum

(resp. infimum) of various impulse response signals

produced by exciting with impulses at all points and

weighted by the input signal values via a group-like

⋆-‘multiplication’.

4. Translation-Invariant Lattice Image

Processing Systems

Henceforth we shall work with the signal clo-

dum (S, ∨, ∧, ⋆, ⋆′) where the underlying set S =
Fun(E, V) consists of all signals with values from a

scalar clodum V ⊆ R̄ and defined on a multidimen-

sional Euclidean domain E that is a subset of R
m

or Z
m , m = 1, 2, . . .. We shall consider monoids

of generalized signal translations, which include both

horizontal and vertical translations, and shall prove

that signal dilations (resp. erosions) invariant under

such translations are equivalent to generalized supre-

mal (resp. infimal) convolutions. Related adjunctions

will also be found from pairs of such operators.

These results generalize Heijman’s work [15] where

the vertical translations were constrained to form a

scalar group and T was constrained to be group of

automorphisms.
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4.1. Generalized Translations

The signal domain E possesses various commutative

group structures which allow us to define correspond-

ing horizontal motions that form two major types

of Euclidean motions. The most obvious and practi-

cal choice is to set E = R
m or Z

m and consider the

horizontal translations on the image plane where each

such operator µh(F)(x) = F(x − h) performs a pla-

nar shift of an input signal F(x) along the vector h.

The class Tht = {µh : h ∈ E} of all horizontal trans-

lations under composition is a commutative group of

automorphisms both on the Boolean lattice P(E) (the

collection of all subsets of E) as well as on the signal

lattice S; i.e. µxµy = µx+y . A second choice, only

for the case where E = R
2 \ {(0, 0)}, is to consider po-

lar motions µr,θ : that transform the support of an input

signal via a rotation by θ and a radial multiplication

by r . The class Thr = {µr,θ : r > 0, θ ∈ [0, 2π )} of

all polar motions is also a commutative group of au-

tomorphisms; i.e. µr,θµρ,φ = µrρ,θ+φ . Both of these

choices were studied in [14, 15]. As a third possibil-

ity we can consider the group of all Euclidean planar

motions, i.e. combined translations and rotations; this

is a non-commutative group of automorphisms stud-

ied in [35]. Henceforth, we focus only on the com-

mutative cases, i.e. the first two choices. However, for

notational simplicity, we shall use only the horizon-

tal translation group and write it simply as Th , even

if our results will also include the case of polar mo-

tions. Note also that the horizontal translations apply

to more general signal domains, both continuous and

discrete.

In the previous section we worked with vertical

translations λv[F(x)] = F(x) ⋆ v whose collection Tv

forms a commutative monoid of signal dilations, as well

as with dual vertical translations λ′
v[F(x)] = F(x) ⋆′ v

which are erosions. The composition of these two (hor-

izontal and vertical) types of translations yields a gen-

eral translation τ and its dual τ ′:

τ h,v(F)(x) � F(x − h) ⋆ v,
(27)

τ ′
h,v(F)(x) � F(x − h) ⋆′ v

Note that the horizontal and vertical translations com-

mute:

τ h,v = µhλv = λvµh, τ ′
h,v = µhλ

′
v = λ′

vµh

(28)

The collection of all such translations

T = Th × Tv = {τ h,v : h ∈ E, v ∈ VG} (29)

forms a monoid under composition:

τ x,aτ y,b = τ x+y,a⋆b (30)

If V is a blog, then T becomes a group of automor-

phisms. However, in the general case, T is just a com-

mutative monoid of elementary signal dilations on S.

Dually, the collection T
′ = {τ ′

h,v : h ∈ E, v ∈ VG}
forms a monoid of signal erosions. We call an opera-

tor ψ translation-invariant, in short T-invariant if it

commutes with all translations τ ∈ T; i.e. ψτ = τψ .

Consider now two elementary signals, called the im-

pulse q and the dual impulse q ′

q(x)�

{

Vid, x = �0

Vinf, x �= �0
, q ′(x)�

{

V
′
id, x = �0

Vsup, x �= �0

(31)

which are the pulse semi-atoms of S placed at the ori-

gin and with identity height. Then every signal can be

represented as a supremum of translated impulses or as

infimum of dual-translated impulses:

F(x) =
∨

y∈E

F(y) ⋆ q(x − y) =
∧

y∈E

F(y) ⋆′ q ′(x − y)

(32)

4.2. Generalized Convolution Representation

of T-Invariant Dilations and Erosions

Consider now a translation-invariant dilation on S,

i.e. an operator � that obeys the nonlinear superpo-

sition (21) and is horizontally tranlation-invariant, or

equivalently distributes over suprema and obeys the

T-invariance. We call � a dilation translation-

invariant (DTI) system. Let H = �(q) be the system’s

impulse response. We shall show next that, the DTI

system’s output �(F) due to an input signal F equals

the following nonlinear sup-⋆ convolution ©⋆ of the

input with the impulse response:

(F ©⋆ H )(x) �
∨

y∈E

F(y) ⋆ H (x − y) (33)

Dually, consider a translation-invariant signal erosion,

i.e. an operator E that distributes over infima and obeys
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the T
′-invariance; we call E an erosion translation-

invariant (ETI) system. Let H ′ = E(q ′) be the system’s

dual impulse response. As shown next, the ETI sys-

tem’s output E(F) equals the following nonlinear inf-⋆′

convolution ©⋆ ′ of the input F with the dual impulse

response H ′:

(F ©⋆ ′ H ′)(x) �
∧

y∈E

F(y) ⋆′ H ′(x − y) (34)

Thus, DTI and ETI systems are represented by the

above nonlinear convolutions, and conversely. Overall,

we have the following fundamental result.

Theorem 2. Consider a clodum (V, ∨, ∧, ⋆, ⋆′) of

scalars and let S = Fun(E, V) be the correspond-

ing signal clodum space where E = R
m or Z

m ,

m = 1, 2, .... Over this clodum, consider the monoid

T of generalized translations defined in (29) and the

monoid T
′ of dual translations. Then:

(a) (DTI Systems): A signal operator � onS is a trans-

lation invariant dilation iff it can be represented as

the sup-⋆ convolution of the input signal with the

system’s impulse response H = �(q).

(b) (ETI Systems): A signal operator E on S is a trans-

lation invariant erosion iff it can be represented as

the inf-⋆′ convolution of the input signal with the

system’s dual impulse response H ′ = E(q ′).

Proof: (a) ‘Only If part’: Assume that � is a

T-invariant dilation. Then by applying � to the im-

pulse sup-representation (32) of an input signal F(x),

we obtain

�(F)(x) =
∨

y

�[F(y) ⋆ q(x − y)]

=
∨

y

F(y) ⋆ �[q(x − y)]

=
∨

y

F(y) ⋆ H (x − y) = (F ©⋆ H )(x)

Thus, �(F) = F ©⋆ H . ‘If part’: Assume now that

�(F) = F ©⋆ H . Then, it is simple to show that the

sup-⋆ convolution ©⋆ is T-invariant, since it commutes

with any horizontal translation as well as with any ver-

tical ⋆-translation. Further, the sup-⋆ convolution dis-

tributes over suprema, and hence it is a signal dilation.

(b) The proof for ETI systems is the dual of that for

DTI systems and follows by applying the T
′-invariant

erosion E to the impulse inf-representation (32) of the

input signal F .

The above theorem has a direct conceptual anal-

ogy with Riesz’s representation theorem for lin-

ear operators, which states that linear and horizon-

tally translation-invariant (in short, LTI) operators are

uniquely represented as linear (sum-product) convolu-

tions of the input F with their impulse response H :

ψ is LTI ⇔ ψ(F)(x) = (F∗H )(x)

=
∑

y

F(y)H (x − y) (35)

4.3. Generalized Convolution Adjunctions

Let us now find the adjoint operators of the above non-

linear convolutions. A T-invariant dilation �H (F) =
F ©⋆ H can be represented via scalar dilations as

�H (F)(x) =
∨

y∈E

F(y) ⋆ H (x − y)

=
∨

y∈E

λH (x−y)(F(y)) (36)

where the V-translation λa(v) = a ⋆ v is a scalar di-

lation. Let λ←
a be the scalar adjoint erosion of λa . By

setting

λH (x−y)(v) = dy,x (v), λ←
H (x−y)(w) = ex,y(w)

(37)

we can identify the scalar adjunction (λ←
H (x−y),

λH (x−y)) of V-translations with the scalar adjunction

(ex,y, dy,x ) of Proposition 2. Then, it follows that the

adjoint signal erosion of �H is

EH (G)(y) =
∧

x∈E

λ←
H (x−y)(G(x)) (38)

If V is a blog, i.e. VG = V \{Vinf, Vsup} is a group under

⋆-‘multiplication’, let v∗ denote the conjugate of each

scalar v ∈ V; this coincides with the group inverse if v

is a group element. Then, the scalar adjoint erosion can

be written as λ←
a (w) = a∗ ⋆ w, and hence the adjoint

signal erosion becomes

EH (G)(y) =
∧

x∈E

G(x) ⋆ [H (x − y)]∗ (39)
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By interchanging x with y we can write this as

EH (G)(x) =
∧

y∈E

G(y) ⋆ [H (y − x)]∗ (40)

which, when compared with (36), reveals that the ad-

joint of a signal sup-⋆ convolution has the computa-

tional structure of an inf-⋆ correlation.

Similarly, if we consider a T
′-erosion EH ′ (G) =

G ©⋆ ′ H ′ and decompose it into scalar erosions as

EH ′ (G)(x) =
∧

y∈E

G(y) ⋆′ H ′(x − y)

=
∧

y∈E

λ′
H ′(x−y)(G(y)) (41)

where λ′
a(w) = a ⋆′ w are dual V-translations, then the

adjoint signal dilation of EH ′ is

�H ′ (F)(y) =
∨

x∈E

λ′←
H ′(x−y)(F(x)) (42)

where λ′←
a is the scalar adjoint dilation of λ′

a . If V is a

blog and its self-dual multiplication ⋆ = ⋆′ is a group

operation, each scalar v possesses a conjugate v∗ which

coincides with group inverses. Thus, for the group case,

the scalar adjoint dilation becomes as λ′←
a (v) = a∗ ⋆v.

Then, the adjoint signal dilation becomes

�H ′ (F)(y) =
∨

x∈E

F(x) ⋆ [H ′(x − y)]
∗

(43)

We see in both cases that while a T-invariant di-

lation (or T
′-invariant erosion) has the computational

structure of a signal convolution, its corresponding ad-

joint has the structure of a nonlinear signal correlation.

Now, are these adjoint operators translation-invariant?

The next result describes the limits of such invariances.

Proposition 3. Let (ε, δ) be an adjunction on the

clodum S. Then:

(a) δ is invariant to any horizontal translation µ iff ε
is invariant to such translation; i.e. δµ = µδ ⇔
εµ = µε.

(b) Consider a scalar adjunction (λ←
,λ) on V where

λ is a vertical translation and λ←
is its adjoint.

Then δ is invariant to a vertical translation λ iff

ε is invariant to the adjoint translation λ←
; i.e.

δλ = λδ ⇔ ελ←
= λ←ε.

(c) Consider a scalar adjunction (λ′
,λ′←

) on V where

λ′
is a dual vertical translation and λ′←

is its ad-

joint. Then ε is invariant to a dual vertical trans-

lation λ′
iff δ is invariant to the adjoint translation

λ′←
.

(d) If V is a blog, δ is T-invariant iff ε is T-invariant.

Proof: (a) This is a simple corollary of the fact that

µ is an automorphism. (b) From the two adjunctions

we obtain:

λδ(F) ≤ G ⇔ δ(F) ≤ λ←
(G) ⇔ F ≤ ελ←

(G)

δλ(F) ≤ G ⇔ λ(F) ≤ ε(G) ⇔ F ≤ λ←ε(G)

Since δλ = λδ and the above holds for all F, G, we

conclude that ελ←
= λ←ε. (c) This is the dual of (b).

(d) If V is a blog, then each vertical translation λ is

an automorphism and its adjoint λ←
coincides with its

inverse.

Concluding, our emphasis on working always with

adjunctions (ε, δ) is justified by the following rea-

sons: (i) If we have an adjunction, we can immedi-

ately create an opening α(F) = δε(F) and a closing

β(F) = εδ(F), by simply concatenating the erosion

and dilation. (ii) If a signal dilation (resp. erosion) is

not invertible, then its adjoint erosion (resp. dilation)

is the closest to an ‘inverse operator’. (iii) Adjunctions

provide us with many tools to analyze their constituent

operators.

4.4. Representation Theorems

Matheron [29] proved a famous representation theo-

rem stating that any set operator ψ on P(E) that is

translation-invariant (TI) and increasing can be repre-

sented as the union of erosions by all sets of its kernel

Ker(ψ) = {X : �0 ∈ ψ(X )} as well as an intersection of

dilations by all sets of the kernel of the negative opera-

tor ψ∗, where �0 is the origin of E. This representation

theory was extended by Maragos [21] to both func-

tion and set operators by using a basis for the kernel.

Specifically, if � is a TI signal operator on Fun(E, R̄)

its kernel is defined by

Ker(�) = {F : �(F)(�0) ≥ 0} (44)

and its basis consists of the minimal kernel functions.

Thus, increasing TI signal operators are represented

as supremum (infimum) of Minkowski erosions (dila-

tions) by functions in their kernel, or minimally (if they
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are also upper-semicontinuous) by functions in their

basis. Banon and Barrera [1] extended the kernel repre-

sentation theory to non-monotone operators by proving

that any TI set operator can be represented as a union

of hit-miss operators. A subclass of Maragos’ repre-

sentations dealt with flat operators commuting with

thresholding which admit sup-inf representations, i.e.

supremum of local infima. Applications of this case

led to the max-min representation of all rank operators

and stack filters [21, 24]. The sup-inf representation

of flat operators was extended by Guichard and Morel

[12] to contrast-invariant operators. The applications

of basis representations of increasing TI operators in-

clude: (i) System design as supremum (resp. infimum)

of Minkowski erosions (resp. dilations). Such sup-inf

operators have been applied to nonlinear filtering [9, 21,

24]. (ii) Development of analytic tools for nonlinear

operators. (iii) Approximation of nonlinear operators

via a finite sup-inf combination of erosions-dilations,

which are easy to implement, with many applications

to image restoration and document image analysis [20].

(iv) Sup-inf operators applied to PDE-based modeling

and implementation of multiscale image operators [12].

All the above representations dealt with classical

morphology, based on the max-plus algebra. Gener-

alized representations of increasing TI operators on

complete lattices were developed by Serra [38] and

Heijmans [14, 15]. In particular, Heijmans developed

representations for increasing operators on complete

lattices that are invariant to a commutative group

of lattice automorphisms, e.g. translations or rota-

tions. Roerdink [35] extended these results to non-

commutative groups, e.g. combined translations and

rotations.

In this section we extend the kernel representation

theory for increasing T-invariant operators � on the

signal clodum S = Fun(E, V). The difficulty here is

that T is a group of automorphisms when V is a blog, but

otherwise it is only a monoid of dilations or erosions.

We define the kernel of � by

Ker(�) � {F : �(F) ≥ q} = {F : �(F)(�0) ≥ Vid}

(45)

where Vid is the identity element of the monoid (V, ⋆).

We can reconstruct the operator � from its kernel by

adding an extra condition: we henceforth assume that

� also commutes with adjoint operators λ←
of verti-

cal translations λ. Thus, � is invariant to all combina-

tions of horizontal translations µ and vertical transla-

tions λ as well as to adjoint vertical translations λ←
.

We abbreviate this combined invariance by saying that

� is Ta-invariant. Obviously, if V is a blog, then all

vertical translations λ are automorphisms whose in-

verses are the adjoints λ←
; hence, in the blog case, the

T-invariance is identical to the Ta-invariance. But in the

general case Ta-invariance places an extra constraint

on �.

Now observe that, for any semi-atom

qh,v(x) = q(x − h) ⋆ v = µhλv(q),

the adjunction (λ←
v ,λv) implies that

qh,v ≤ �(F) ⇔ λv(q) ≤ �(µ−h F) ⇔ q

≤ �(λ←
v µ−h F) (46)

Therefore, we can reconstruct the operator � from

knowledge of its kernel Ker(�) as follows:

�(F)(x) = sup{v ∈ V : λ←
v µ−x (F) ∈ Ker(�)}

(47)

The kernel has several properties outlined next.

Proposition 4. Consider Ta-operators on the signal

clodum.

(a) If � is increasing and F ∈ Ker(�), then G ∈
Ker(�) for all G ≥ F.

(b) If {�i : i ∈ J } is an indexed family of operators,

then

Ker(�) =
⋃

i

Ker(�i ) ⇒ � =
∨

i

�i (48)

(c) Ker(
∨

i �i ) ⊆
⋃

i Ker(�i ).

(d) Ker(
∧

i �i ) =
⋂

i Ker(�i ).

(e) �1 ≤ �2 ⇒ Ker(�1) ⊆ Ker(�2).

Proof: (a) If � is increasing, F∈Ker(�) and F ≤ G,

we have q ≤ �(F) ≤ �(G). Therefore, G ∈ Ker(�).

(b) Let K =
⋃

i Ki , where K = Ker(�) and Ki =
Ker(�i ). Then

�(F)(x) = sup{v : λ←
v µ−x (F) ∈ K}

= sup{v : λ←
v µ−x (F) ∈ Ki , some i}

= sup{v : �i (λ
←
v µ−x (F)) ≥ q, some i}

= sup{v : λ←
v �i (µ−x (F)) ≥ q, some i}

= sup{v : �i (µ−x (F)) ≥ λv(q), some i}
= sup{v : �i (F)(x) ≥ v, some i}
=

∨

i �i (F)(x) (49)
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Parts (c), (d) and (e) are straightforward corollaries of

the kernel definition.

Example: Let �H (F) = F ©⋆ H be a T-invariant

dilation as in (36) and let EH be its adjoint erosion in

(38). The kernel of this erosion is

KH � Ker(EH ) = {F : EH (F)(�0) ≥ Vid}

=

{

F :
∧

x

λ←
H (x)(F(x)) ≥ Vid

}

= {F : λ←
H (x)(F(x)) ≥ Vid ∀x}

=

{

F :
∨

{v : H (x) ⋆ v ≤ F(x)}

≥ Vid ∀x

}

= {F : H (x) ≤ F(x) ∀x}

= {F : F ≥ H} (50)

It turns out that the kernel of the above simple erosion

system is the building block of the kernel of a large class

of increasing operators. This leads us to the following

fundamental result.

Theorem 3. Let � be an increasing Ta-invariant op-

erator on the signal clodum S and let (EH , �H ) be

adjunctions where �H (F) = F ©⋆ H are sup-⋆ con-

volutions by functions H in the kernel of �. Then, �

can be represented as the supremum of all the adjoint

erosions:

�(F) =
∨

H∈Ker(�)

EH (F) (51)

Proof: Let K = Ker(�). Since � is increasing, if

H ∈ K and G ≥ H , then G ∈ K. Thus, see (50),

KH = {G : G ≥ H} ⊆ K. Hence,
⋃

H∈K KH ⊆ K.

Also, since {H} ⊆ KH , we have K ⊆
⋃

H KH . Thus,

K =
⋃

H∈K KH . Then (48) yields the final result (51).

Consider now increasing operators � that are

T
′
a-invariant, i.e. invariant to all compositions of hori-

zontal translationsµ and dual vertical translationsλ′
as

well as invariant to the adjoint λ′←
of any dual vertical

translation, where (λ′
,λ′←

) is a scalar adjunction. To

find kernel representations for such � we need to de-

fine the various kernel-related concepts in a dual way.

Next we list the basic ideas and results without proof.

(Their derivation can be obtained by using duality of

the previous roofs.) The dual kernel of a T
′
a-invariant

operator � is defined by

Ker′(�) � {F : �(F) ≤ q ′} = {F : �(F)(�0) ≤ V
′
id}

(52)

where V
′
id is the identity element of the monoid (V, ⋆′).

Example: Let EH ′ (F) = F ©⋆ ′ H ′ be a T
′-invariant

erosion as in (41) and let �H ′ be its adjoint dilation in

(42). The dual kernel of this dilation is

K′
H ′ � Ker′(�H ′ ) = {F : F ≤ H ′} (53)

The properties of the dual kernel include the following.

Proposition 4. Consider T
′
a-operators on the signal

clodum.

(a) If � is increasing and F ∈ Ker′(�), then G ∈
Ker′(�) for all G ≤ F.

(b) If {�i : i ∈ J } is an indexed family of operators,

then

Ker′(�) =
⋂

i

Ker′(�i ) ⇒ � =
⋂

i

�i (54)

The above results lead us to the following fundamen-

tal representation.

Theorem 4. Let � be an increasing T
′
a-invariant op-

erator on the signal clodum S and let (EH ′ , �H ′ ) be

adjunctions where EH ′ (F) = F ©⋆ ′ H ′ are inf-⋆′ con-

volutions by functions H ′ in the dual kernel of �. Then,

� can be represented as the infimum of all the adjoint

dilations:

�(F) =
∧

H ′∈Ker′(�)

�H ′ (F) (55)

5. Special Cases

By specifying V and the ‘multiplication’ ⋆ and its dual

⋆′, we obtain a large variety of classes of nonlinear

image processing systems that are described by the pre-

vious unified representations. Next we briefly describe

three such choises.
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5.1. Max-Sum Image Operators

We set V = R̄ = R ∪ {−∞, +∞}. The ‘multipli-

cations’ ⋆ and ⋆′ are the regular extended addition +
and its dual +′ over R̄, respectively; i.e., + and +′ are

identical for finite reals, but a + (−∞) = −∞ and

a +′ (+∞) = +∞ for all a ∈ R̄. Thus, the clodum

of scalars is ([−∞, ∞], ∨, ∧, +, +′). In this case V

is a blog and contains an additive group (R, +) where

each scalar a has an inverse −a that coincides with its

conjugate a∗. The adjunction (EH , �H ) of a sup-sum

convolution (dilation) �H and its adjoint erosion EH

become

�H (F)(x) = (F ⊕ H )(x) �
∨

y∈E

F(y) + H (x − y)

EH (F)(x) = (F ⊖ H )(x) �
∧

y∈E

F(y) − H (y − x)

(56)

These are the traditional Minkowski dilation and ero-

sion of an image F by an additive structuring func-

tion H , which have found numerous applications in

nonlinear filtering, image processing and computer vi-

sion [9, 13, 15, 24, 37, 40]. Similarly, the adjunction

(EH ′ , �H ′ ) of an inf-sum convolution (erosion) EH ′ and

its adjoint dilation �H ′ become

EH ′ (F)(x) = (F ⊕′ H )(x)�
∧

y∈E

F(y) +′ H ′(x − y)

�H ′ (F)(x) =
∨

y∈E

F(y) +′ [−H ′(y − x)]

(57)

Note that sup-sum ⊕ and inf-sum ⊕′ convolutions have

been known in optimization [2] and convex analysis

[34] under the names ‘supremal’ and ‘infimal convolu-

tion’.

The signal translations become τ h,v(F)(x) = F(x −
h) + v and their collection T is a commutative group

of automorphisms, studied in [15]. The kernel repre-

sentations of increasing T-operators as a supremum of

Minkowski erosions or as infimum of dilations has been

well studied in [21, 24].

In short, the max-sum case is the algebraically rich-

est and most well explored case in mathematical mor-

phology and in minimax algebra both in theory and in

applications.

5.2. Max-Product Image Operators

Another less explored paradigm, but equally alge-

braically rich with the max-sum case, results when we

choose as set of scalars the extended nonnegative num-

bers V = [0, +∞] and as self-dual ⋆-‘multiplication’

the standard product ‘×’ of nonnegative numbers ex-

tended to include the +∞. Thus, the clodum of scalars

is ([0, ∞], ∨, ∧, ×, ×′). The signal translations be-

come τ h,v(F)(x) = F(x −h)×v and their collection T

is a commutative group of automorphisms, studied in

[15]. As in the max-sum case, the scalar set V is again

a blog and contains a multiplicative group ((0, ∞), ·)
with inverses a−1 that coincide with the conjugate a∗

of each scalar a. Now, the adjunction (EH , �H ) of a

sup-product convolution (dilation) �H and its adjoint

erosion EH become

�H (F)(x) = (F ⊗ H )(x)�
∨

y∈E

F(y) × H (x − y)

(58)
EH (F)(x) =

∧

y∈E

F(y)/H (y − x)

These are translation-invariant Minkowski-like dila-

tion and erosion of an image F by a multiplicative

structuring function H . Some of its properties, their

translation-invariances and kernel representations of

such systems have been studied in [15].

Note that there is an isomorphism between the max-

sum and the max-product enabled by a logarithmic-

exponential pointwise bijection of the image signals.

Despite this isomorphism, we believe that there is a

significant applications potential in this algebraic sys-

tem, which has not been explored so far. This potential

can be appreciated by the following remarks: (i) Im-

age signals are naturally nonnegative and the max-

product dilations-erosions maintain this nonnegativity

of the input signals. (ii) In certain vision applications

there is sometimes the need to include in the visual

processing the logarithm of intensity images; e.g.,

such a nonlinearity approximates some of the early

stages in biological vision systems. This creates the

density (log-intensity) representation of images. Then,

max-sum dilations-erosions of the density image are

equivalent to max-product dilations-erosions of the in-

tensity image.

6. Lattice Operators Using Fuzzy Norms

This section presents an important special case of

our unified latice image processing systems which
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covers a broad area in the intersection of mathematical

morphology and fuzzy logic. We set V = [0, 1] and

the clodum of scalars is ([0, 1], ∨, ∧, T, T ′) where

T (T ′) is a fuzzy intersection (union). The signal

space S = Fun(E, [0, 1]) consists of all image signals

defined on E = R
m or Z

m and assuming real values

in [0, 1]; alternatively, these signals can be viewed as

membership functions of fuzzy sets. This is a more

difficult clodum case than the previous two (max-sum

and max-product) because it is not a blog. Thus, there

are no inverses under the ⋆-‘multiplication’.

6.1. Mathematical Morphology and Fuzzy Logic

Mathematical morphology (MM) and fuzzy sets share

many common theoretical concepts. As an earlier ex-

ample, the use of min/max to extend the intersec-

tion/union of ordinary (crisp) sets to fuzzy sets [41]

has also been used to extend the set-theoretic morpho-

logical shrink/expand operations on binary images to

min/max filtering on graylevel images [10, 31]. While

the field of morphological image analysis was matur-

ing, several researchers developed various other ap-

proaches using fuzzy logic ideas for extending or gen-

eralizing the morphological image operations [4, 39].

The main ingredients of these approaches have been

to (1) map the max-plus structure of Minkowski sig-

nal dilation to a sup-T signal convolution, where T is

some fuzzy intersection norm, and (2) use duality to

map the inf-minus structure of Minkowski signal ero-

sion to a inf-T ′ convolution, where T ′ is a dual fuzzy

union norm. We refer the reader to [30] for connections

and comparisons of all these approaches to fuzzy mor-

phologies. The main disadvantage of these approaches

is that composition of the operators from steps (1) and

(2) is not guaranteed to be an algebraic opening or clos-

ing. In addition to the above approaches, there have

been efforts to combine MM and fuzzy logic or lattices

and neuro-fuzzy systems by fuzzifying respectively the

inclusion indicator or the partial ordering of the lattice,

as done respectively in [5] and [17].

In some of our previous work [25, 27, 28] we used

lattice theory to develop generalizations of morpho-

logical signal and vector operations based on fuzzy

norms that have an adjunction structure. In this paper

we present these preliminary results as special cases of

the general algebraic structure. From fuzzy set theory

[19] we use t-norms and t-conorms to extend intersec-

tion and union of crisp sets to signal convolutions. To

form openings and closings we use pairs of t-norms and

fuzzy implications. (A work similar to our lattice-fuzzy

theoretical analysis appeared recently in [8].)

6.2. Fuzzy Intersection and Union Norms

A fuzzy intersection norm, in short a T -norm, is a

binary operation T : [0, 1]2 → [0, 1] that satisfies the

following conditions [19]: For all a, b, c ∈ [0, 1]

F1. T (a, 1) = a and T (a, 0) = 0 (boundary condi-

tions).

F2. T (a, T (b, c)) = T (T (a, b), c) (associativity).

F3. T (a, b) = T (b, a) (commutativity).

F4. b ≤ c ⇒ T (a, b) ≤ T (a, c) (increasing). For the

T -norm to be a scalar dilation (with respect to any

argument) on V, it must also satisfy [25]:

F5. T is a continuous function.

A fuzzy union norm [19] is a binary operation U :

[0, 1]2 → [0, 1] that satisfies F2-F5 and a dual bound-

ary condition:

F1′. U (a, 0) = a and U (a, 1) = 1.

Clearly, U is an erosion on V.

6.3. Lattice Fuzzy Convolutions and Adjunctions

We have built the general DTI or ETI systems (equiva-

lent to sup-⋆ or inf-⋆′ convolutions) as sup or inf of sig-

nal translations of the type τ h,v( f )(x) = f (x − y) ⋆ v.

In this section we shall use new translations where the

binary operation a ⋆ b is replaced by fuzzy intersection

norms T and the dual operation a ⋆′ b is replaced by

fuzzy union norms U . Namely, the new signal transla-

tions on S = Fun(E, [0, 1]) are the operators τ and the

dual translations are the operators τ ′:

τ h,v( f )(x) = T ( f (x − y), v) (59)

τ ′
h,v( f )(x) = U ( f (x − y), v) (60)

where (h, v) ∈ E× [0, 1] and f (x) is an arbitrary input

signal. These translations include both horizontal shifts

as well as vertical shifts induced by the fuzzy norms.

A signal operator on S is called translation invariant

(resp. dual-translation invariant) iff it commutes with

any such translation τ (resp. τ ′) based on a fuzzy norm.
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Consider now the two elementary signals, the impulse

q and the dual impulse q ′:

q(x)�

{

1, x = �0

0, x �= �0
, q ′(x)�

{

0, x = �0

1, x �= �0

Then every signal f can be represented as a supremum

of translated impulses or as infimum of dual-translated

dual impulses:

f (x) =
∨

y

T [q(x − y), f (y)]

=
∧

y

U [q ′(x − y), f (y)]

Translation invariant signal dilations and erosions

can result, respectively, from the sup-T convolution

©T and the inf-U convolution ©′
U of two signals f

and g defined by

( f ©T g)(x) �
∨

y

T [g(x − y), f (y)],

(61)
( f ©′

U g)(x) �
∧

y

U [g(x − y), f (y)]

The following results are a direct corollary of our con-

volution representation Theorem 2.

Theorem 5. (a) Given a fuzzy intersection norm T ,

an operator � on the signal clodum Fun(E, [0, 1]) is

a dilation invariant to the general translations (59)

iff it can be represented as the sup-T convolution of

the input signal with the operator’s impulse response

H = �(q).

(b) Given a fuzzy union norm U , an operator E on

the signal clodum Fun(E, [0, 1]) is an erosion invariant

to the dual translations (60) iff it can be represented

as the inf-U convolution of the input signal with the

system’s dual impulse response H ′ = E(q ′).

However, the erosion E of the above theorem may

not be the adjoint of the dilation �. To form an adjunc-

tion, we first define a signal fuzzy dilation as a sup-T

convolution:

�H,T (F)(x) �
∨

y∈E

T [H (x − y), F(y)]

= (F ©T H )(x) (62)

By recognizing T [H (x − y), F(y)] as the scalar dila-

tions dy,x (F(y)) in the general decomposition (19) of a

signal dilation, it follows that the adjoint signal fuzzy

erosion is

EH,�(G)(y) �
∧

x∈E

�[H (x − y), G(x)] (63)

where �[H (x − y), G(x)] represents the adjoint scalar

erosions ex,y(G(x)) in (19) and is actually the adjoint

of the fuzzy T -norm:

T (a, v) ≤ w ⇔ v ≤ �(a, w) (64)

An alternative interpretation of T [H (x − y), F(y)] and

�[H (x − y), G(x)] is that they are equal, respectively,

to a scalar V-translation λ and its adjoint λ←
of the

signal values:

T [H (x − y), F(y)] = λH (x−y)(F(y)),

�[H (x − y), G(x)] = λ←
H (x−y)(G(x)) (65)

Now, given T we can find its adjoint function � by

�(a, w) = sup{v ∈ [0, 1] : T (a, v) ≤ w} (66)

In fuzzy logic, the norm T can be interpreted as a logical

conjunction, whereas its corresponding adjoint � can

be interpreted as a logical implication [19].

Three examples of T -norms are:

Min : T1(a, v) = min(a, v)

Product : T2(a, v) = a · v

Yager : T3(a, v) = 1 −
(

1 ∧ [(1 − v)p

+ (1 − a)p]1/p
)

, p > 0.

The corresponding three adjoint functions are:

�1(a, w) =

{

w, w < a

1, w ≥ a

�2(a, w) =

{

min(w/a, 1), a > 0

1, a = 0

�3(a, w) =







1 − [(1 − w)p − (1 − a)p]1/p,

w < a

1, w ≥ a

Let us consider now the construction of lattice-fuzzy

openings and closings based on an adjunction (ε, δ) of
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Figure 1. Comparison of 1D basic morphological and lattice-fuzzy signal operators. Rows 1 and 2, left to right: flat, minimum, product, Yager.

Row 1: original signal (solid line), dilation (dashed line), erosion (dotted line). Row 2: closing (dashed line), opening (dotted line). Courtesy of

[27].

a lattice-fuzzy dilation δ and erosion ε. The adjunc-

tional lattice-fuzzy opening α and lattice-fuzzy closing

β are defined as

α( f ) � δ(ε( f )), β( f ) � ε(δ( f )) (67)

This is the correct approach to create openings and clos-

ings from fuzzy dilations and erosions. To compare it

with previous works, consider an involutive fuzzy com-

plement a → a∗, e.g. a∗ = 1−a. This is a negation (i.e.

conjugation) on the scalar clodum [0, 1] and induces a

negation on the signal clodum S too. If we define via

complementation an alternative erosion operator (as an

inf-U convolution) by

ε′( f )(y) =
∧

x

U [ f (x), h(y − x)] (68)

whereU (a, b) = 1−T (1−a, 1−b) is a fuzzy union that

is the dual (i.e. complement) of the fuzzy intersection

T , then ε′( f ) = 1 − δ(1 − f ) = δ∗
( f ), where ψ∗

denotes the negative operator of ψ ; i.e., this second

erosionε′ is the dual (i.e. negative) of the first dilationδ.

Further, the adjoint dilation δ′
of ε′ is an operator that is

dual (i.e. negative) of the first erosion ε. Many previous

works used pairs (ε′, δ) which are duality pairs (via

negation) but not adjunctions and hence cannot form

openings/closings via compositions.

6.4. Experiments

To gain some insight on the lattice-fuzzy image op-

erators, we briefly present a few experimental results

illustrating the differences between the classical mor-

phological operators and the lattice operators based on

fuzzy T -norms.

Figure 1 reports experiments with 1D images and

shows the outputs of dilation, erosion, opening and

closing operators, first for the morphological type using

a 51-pixel flat structuring element and second for the

fuzzy type (62), (63) and (67). For the fuzzy operations

in Fig. 1, we used three T -norms (the minimum norm,

the product norm and the Yager norm with parameter

p = 2) and a parabolic non-flat structuring function

H : Z → [0, 1]

H (x) =

{

1 − k(x/s)2, |x | ≤ s

0, |x | > s
(69)

The parameter s determines the scale, while k affects

the shape of H . (We used s = 25 and k = 0.5.) In gen-

eral, by experimenting with a large variety of T -norms

and structuring functions H we have observed that, the

fuzzy operators are more adaptive and track closer the

peaks/valleys of the signal than the corresponding flat

morphological operators of the same scale.

Figure 2 reports experiments with 2D images. For all

the fuzzy operations in this figure, we used the Yager
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Figure 2. (a) Original image F . (b) Morphological flat dilation F ⊕ B. (c) Morphological flat erosion F ⊖ B. (d) Fuzzy dilation δ(F). (c) Fuzzy

erosion ε(F). (f) Morphological gradient F ⊕ B − F ⊖ B. (g) δ(F) − ε(F). (h) Fuzzy min gradient min[δ(F), 1 − ε(F)]. (i) Fuzzy max

gradient max[δ(F), 1 − ε(F)]. Courtesy of [27].

T -norm with parameter p = 10 and a conical struc-

turing function H . The second row compares the mor-

phological flat dilation and erosion of an original im-

age in Fig. 2(a) with its fuzzy dilation and erosion. In

both cases the structuring element had a 7 × 7-pixel

support, being flat in the morphological case and con-

ical in the fuzzy case. The third row of Fig. 2 deals

with edge enhancement: Figure 2(f) shows the stan-

dard discrete morphological gradient F ⊕ B − F ⊖ B,

as the difference between the morphological flat dila-

tion and erosion, respectively, of F by a 3 × 3-pixel

square B. Figure 2(g) shows the same type of gradi-

ent but uses a fuzzy dilation δ and erosion ε with a

3×3-pixel structuring function H . Figures 2(h) and (i)

combine the fuzzy dilation and erosion differently to

derive respectively the following two types of new edge

gradients:

FuzzyEdgemin(F) = min[δ(F), 1 − ε(F)]

FuzzyEdgemax (F) = max[δ(F), 1 − ε(F)]
(70)

The new edge gradients were inspired by the standard

discrete morphological gradient F ⊕ B − F ⊖ B, but to

make the gradient operator more consistent with fuzzy

set theory we replaced the difference between dilation

and erosion with min (or max) of the dilation and the

fuzzy complement of the erosion. As shown in Fig. 2,

these new fuzzy gradient operators have a quite promis-

ing behavior since they yield cleaner and sharper edge

peaks than the morphological gradient.
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The power but also the difficulty in applying these

lattice fuzzy operators to image analysis is the large

variety of fuzzy norms and the absence of systematic

ways in selecting them. Towards this goal, we have

experimented in [27, 28] with applying these fuzzy op-

erators to various nonlinear filtering and image analysis

tasks, attempting to understand the effect that the type

of fuzzy norm and the shape-size of structuring func-

tion have on the resulting new image operators. This

preliminary work showed that, by experimenting with

the type of fuzzy norm and the shape-size of the struc-

turing function, it is possible to adapt the new fuzzy op-

erators so that their performance has many promising

aspects compared with the standard morphological op-

erators. For example, in the problem of edge detection,

it is possible to optimize the shape and size of the struc-

turing function so that the edge derivatives have sharper

peaks [27]. Further, the edge gradients based on lattice

fuzzy operators have shown improved performance in

noise [28]. Thus, by combining lattice-based MM and

fuzzy set theory, we can create new operators, like the

fuzzy edge gradients, that extend and improve the ca-

pabilities of the standard morphological operators.

7. Conclusions

We have obtained several results that extend the alge-

braic theory of mathematical morphology in three di-

rections: (1) Development of a general algebraic struc-

ture for signals and images that is minimally sufficient

for both translation-invariant morphology (max-sum

and max-product convolutions) as well as for minimax

signal algebra and nonlinear image processing based

on fuzzy logic. (2) Unification of convolutional repre-

sentations of translation-invariant signal operators that

obey max-⋆ superpositions via nonlinear sup-⋆ convo-

lutions over a clodum, i.e. a signal space which com-

bines the sup-inf lattice structure with a scalar semi-

ring arithmetic that possesses generalized ‘additions’

and ⋆-‘multiplications’. (3) Unification of kernel repre-

sentations of increasing and translation-invariant signal

operators over a clodum as suprema of erosion-type (or

infima of dilation-type) nonlinear convolutions.

Our results provide some theoretical support and

open the way in morphological image processing for

future applications that are based (i) on minimax signal

algebra (e.g. minimax signal matrix and eigenvalue-

eigenvector analysis) and (ii) on lattice fuzzy image

operators that are more adaptive than classic morpho-

logical operators, are amenable to optimal designs, and

are closely related to popular pattern recognition sys-

tems of the neuro-fuzzy network type. We also note

that the lattice fuzzy case includes as special case the

Boolean image algebra and hence all the morphologi-

cal operators used in binary image processing. Finally

we note that our results provide a bridge [25, 26] be-

tween morphological image and signal processing and

discrete event control systems based on minimax al-

gebra, both for the max-sum and the max-fuzzy cases.

This can cause a cross-fertilization of the two fields.
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Notes

1. If in the semilattice (P, ◦) we consider a different partial ordering

X ≤′ Y ↔ Y = X ◦ Y where X ◦ Y is interpreted as the infimum

X ∧ Y , then (P, ◦) becomes an inf-semilattice and vice-versa.

Obviously, (P, ≤′) is the dual poset of (P, ≤).

2. In minimax algebra [7], a semilattice is called a band. Further,

a semilattice-ordered semigroup is called a belt, and a lattice-

ordered double semigroup is called a belt with duality. A belt

(B, ∨, ⋆) with an identity element for the semigroup operation ⋆

and with an element ζ that is both the least element w.r.t. ≤ and

also a null, i.e. a ∨ ζ = a and a ⋆ ζ = ζ , ∀a ∈ B, is called a dioid

in [6].
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