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ABSTRACT

LATTICE METHODS FOR THE VALUATION OF OPTIONS WITH

REGIME SWITCHING

by

Atul Sancheti

Hongtao Yang, Examination Committee Chair

Associate Professor of Mathematical Science

University of Nevada, Las Vegas

In this thesis, we have developed two numerical methods for evaluating option

prices under the regime switching model of stock price processes: the Finite Di↵erence

lattice method and the Monte Carlo lattice method.

The Finite Di↵erence lattice method is based on the explicit finite di↵erence

scheme for parabolic problems. The Monte Carlo lattice method is based on the

simulation of the Markov chain. The advantage of these methods is their flexibility

to compute the option prices for any given stock price at any given time. Numeri-

cal examples are presented to examine these methods. It has been shown that the

proposed methods provides fast and accurate approximations of option prices. Hence

they should be helpful for practitioners working in this field.
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CHAPTER 1

INTRODUCTION

1.1 Options

An option is a contract that gives the holder the right - but not the obligation,

to buy or sell an underlying asset at a contractually specified strike price on a range

of future dates. There are two different types of options namely Call Options and

Put Options. Call Options give the right to buy the underlying asset, whereas Put

Options give the right to sell. The price is known as the strike price or exercise price

and the date is known as the expiration date or maturity. There are two major styles

of options that are traded at exchanges: the European and American options.

The European options can only be exercised at the end of its life or at the expi-

ration date of the contract. These options stop trading a day before than the third

friday of the expiration month. In addition, it is not easy to learn the official closing

price or the settlement price for the expiration period for European-style options.

Moreover, the settlement price is not published until hours after the market opens

for trading. Also, European options sometimes trade at a discount rate than its

comparable American Option.

The right to exercise is one of the key differences that set apart American op-

tions from European Options. These options can be exercised anytime before the

option expires. This allows investors more opportunities to exercise the contract and

therefore provides a relatively highly price than European Options. It was also inter-

esting to note that a majority of stocks, options and exchange traded funds (ETFs)
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have American-style options. The trading for American options cease at the close

of business on the third Friday of the expiration month. Also, the settlement price

with American options is the regular closing price, or the last trade before the market

closes on the third Friday.

There are the over-the-counter traded options such as Asian Options, Bermuda

options, and look-back options, which are referred as the exotic options.

The valuation and optimal exercise of derivatives with American-style exercise

features is one of the most important and challenging problems in option pricing the-

ory. These types of derivatives are found in all major financial markets including the

equity, commodity, foreign exchange, insurance, energy, sovereign, agency, municipal,

mortgage, credit, real estate, convertible, swap, and emerging markets. In spite of the

recent developments made in this emerging field, the valuation and optimal exercise

of American options remains one of the most difficult problems in derivatives finance.

This can be mainly attributed to the fact that finite difference and binomial tech-

niques become impractical when considering multiple factor models which provides a

better and more detailed description of practical financial problems [1, 2, 3].

1.2 Problems

Besides the classic Black-Scholes model for the underlying assets, various other

models have been proposed, for example, jump diffusion models, regime switching

models, and stochastic volatility models (see [4, 5, 6] and references cited therein). As

in [6], we suppose that the underlying economy switches among n states {1, 2, . . . , n},

which is modeled by a finite Markov chain X(t) with the rate matrix Q = (qij). Let

2



constant ri be the interest rate when the economy is in the i-th state at time t, that

is, X(t) = i. Assume that the stock pays the continuous dividend at constant rate

d. The stock price process S(t) is modeled by the following stochastic differential

equation (SDE):

dS(t) = S(t)
(
µX(t)dt+ σX(t)dW (t)

)
, t > 0, (1.1)

whereW (t) is a standard Brownian motion under the risk neutral measure, µi = ri−d,

and constant σi is the stock volatility in the i-th state of economy.

Consider an American call option with strike price $K and expiry date T years.

Denote by Ci(S, t) the call price in the i-th state. Let C(S, t) = (C1(S, t), . . . , Cn(S, t)
T ).

As usual, we have the following variational inequality problem:

Ci,t(S, t) +AiC(S, t) ≤ 0, S > 0, 0 < t ≤ T, (1.2)

Ci(S, t) ≥ (S −K)+, S ≥ 0, 0 ≤ t ≤ T, (1.3)

(Ci,t(S, t) +AiC(S, t))
(
Ci(S, t)− (S −K)+

)
= 0, S ≥ 0, 0 < t ≤ T, (1.4)

Ci,t(0, t) = 0, 0 ≤ t ≤ T, (1.5)

Ci(S, T ) = (S −K)+, S ≥ 0, (1.6)

for i = 1, . . . , n, where 〈·, ·〉 is the usual inner product on R2, and

AiC(S, t) =
1

2
σ2
i S

2Ci,SS(S, t) + µiSCi,S(S, t)− riCi(S, t) + 〈QC(S, t), ei〉.

Similarly, we have the variational inequality problem for the American put option:

Pi,t(S, t) +AiC(S, t) ≤ 0, S > 0, 0 < t ≤ T, (1.7)

Pi(S, t) ≥ (K − S)+, S ≥ 0, 0 ≤ t ≤ T, (1.8)
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(Pi,t(S, t) +AiC(S, t))
(
Pi(S, t)− (K − S)+

)
= 0, S ≥ 0, 0 < t ≤ T, (1.9)

Pi,t(0, t) = 0, 0 ≤ t ≤ T, (1.10)

Pi(S, T ) = (K − S)+, S ≥ 0, (1.11)

for i = 1, . . . , n.

1.3 Thesis Structure

Numerical methods have been extensively investigated for valuation of American

options and other path-dependent financial derivatives for more than three decades

(see [7], [8], [9], and references cited therein). In this thesis, we shall develop two lat-

tice methods for the above variational inequality problems. One is the generalization

of the lattice method proposed in [12] when there are only two states of economy.

The other is a lattice method based on the Monte Carlo simulation of the Markov

chain. Lattice methods are more attractive to practitioners since they can be easily

implemented. Moreover, it is more flexible to compute option prices and hedge ratios

at any given point. A favorable feature of our methods is that there is only one set

of nodes for stock price for all states.

The remaining of the thesis is outlined as follows. In Chapter 2, we shall review

basic theory about linear complementary problems (LCP) since these problems are

formed by discretizing variational inequality problems (1.2)–(1.6) and (1.7)–(1.11).

Especially, two pivoting algorithms: Chandrasekaran and Lemke methods are de-

scribed for LCPs with M -matrices. In Chapter 3, a Finite Difference lattice method
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is proposed to compute the option prices for the given stock prices at given times.

In Chaper 4, we shall develop a lattice method based on Monte Carlo simulation of

Markov Chain. Numerical examples are presented in Chapter 5 to examine our new

methods. The Conclusion remarks are given in the last chapter, Chapter 6.

5



CHAPTER 2

LINEAR COMPLEMENTARY PROBLEMS

2.1 Introduction

Let M be a n× n matrix in R
n×n and q a column vector in R

n. Then the linear

complementary problem, denoted by LCP(q,M), is to find w, z ∈ R
n such that

w −Mz = q, (2.1)

wT z = 0, (2.2)

w ≥ 0, z ≥ 0, (2.3)

where wT is the transpose of w and w ≥ 0 means that every component of w is

nonnegative.

The linear complementarity problems (LCPs) can be considered as a more general

case for linear, quadratic and bimatrix problems. The study of a LCP has led to devel-

opment of several highly effective algorithms which aids in solving the highly complex

problems in an efficient manner. In this Chapter, we introduce the complementary

pivot algorithm for solving LCPs, in particular, the Lemke method.

2.2 Solution Existence and Uniqueness

A matrix is called a P -matrix if its principal minors are positive. In other words,

a matrix is a P -matrix if and only if the real eigen values of the principal submatrices

of M are positive. Thus positive definite matrices are P -matrices. Concerning the

solution existence and uniqueness of the LCP (2.1)–(2.3), we have the following result

([10]).
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Theorem 2.1. (Samelson, Thrall and Wesler) The LCP (q,M) has a unique solution

for every q if and only M is a P -matrix.

A matrix B is called nonnegative (write B ≥ 0) if all element of B are nonnegative

numbers. We say that a matrix A is an M -matrix if there is a positive number s and

a nonnegative matrix B such that A = sI−B and s > ρ(A). A matrix of form sI−B

is an M -matix if and only if all principal minors of A are positive. Hence, we have

the following corollary.

Corollary 2.1. If M is an M-matrix, then LCP (q,M) has a unique solution for

every q.

It should be pointed out that the corresponding matrix M is an M -matrix for our

lattice method for the regime-switching problems.

2.3 An Augmented LCP

Let d ∈ R
n be a positive vector and s be a positive number. For the LCP (q,M),

the corresponding augmented LCP, denoted by ALCP (q,M ; d, s) is LCP
(
q̃, M̃

)
,

where

q̃ =

[
s
q

]
, M̃ =

[
0 −dT
d M

]
.

Here d is called the covering vector. The LCP
(
q̃, M̃

)
reads as follows: Find z ∈ R

n

and t ∈ R such that

σ = s+ 0t− dT z ≥ 0, t ≥ 0, tσ ≥ 0,

w = q +Mz + td ≥ 0, z ≥ 0, zTw = 0.

7



We can see that a solution (t, z) of the ALCP (q,M ; d, s) with t = 0 provides a solution

z of the LCP (q,M). Furthermore, we have the following results ([10]).

Theorem 2.2. (a) For every given d > 0 and s > 0, the ALCP (q,M ; d, s) has a

solution.

(b) Suppose that there is a positive number k such that if x ≥ 0 and eTx =

k then xT (q + Mx) ≥ 0, where e = (1, . . . , 1)T . Let (t, z) be a solution of the

ALCP (q,M ; e, k). Then t = 0 and thus z is a solution of the LCP (q,M).

2.4 Pivoting Methods for the LCP (q,M)

From now on, we shall assume that M is an P -matrix. Let w = (w1, . . . , wn)
T

and z = (z1, . . . , zn)
T be a solution of the LCP (q,M). Notice that equation (2.3)

implies that one element of each pair (wj, zj) must be zero. If one is positive then the

other must be zero. Hence the pair (wj, zj) is called the j-th complementary pair of

variables.

Denoted by Ij̇ andMj̇ the j−th columns of the identity matrix I andM , repectviely.

Then we can rewrite (2.1) as follows

q = Iw + (−M)z =

n∑

j=1

wjIj̇ +
n∑

j=1

zj(−Mj̇). (2.1)

Thus solving the LCP (q,M) can be interpreted as finding a complementary pair of

nonnegative vectors w and z such that q is a linear combination of n vectors consisting

of the column vectors of I and M . This intepretation leads to pivoting methods for

the LCP (q,M).

We shall group the 2n variables {w, z} = {w1, . . . , wn, z1, . . . , zn} into basic vari-

8



ables {y1, . . . , yn} and nonbasic variables {v1, . . . , vn}. It follows from equation (2.1)

that

w = q +Mz. (2.2)

Here variables {w1, . . . , wn} are basic and {z1, . . . , zn} are nonbasic. That is, the

basic variables are the variables that depends on the nonbasic ones. Consider the

r-th equation of the system (2.2):

wr = qq +mr1z1 + . . .+ wrnzn.

If mrs 6= 0, we can solve for zs in terms of wr and all the other nonbasic varibales zj

with j 6= s. Then we have

zs = −
qr
mrs

+
∑

j 6=s

(
−mrj

mrs

)
zj +

1

mrs

wr.

After substituting this expression for zs into all the other eqaution in (2.2), we have

wi = qi − qr
mis

mrs

+
∑

j 6=s

(
mij −mrj

mis

mrs

)
zj +

mis

mrs

wr, i 6= r.

This operation is called simple pivoting, which exchanges the roles of ws and zs.

Namely, ws and zs becomes nonbasic and basic, respectively. Now the basic variables

are {w1, . . . , ws−1, zs, ws+1, . . . , wn} and the nonbasic variables are {z1, . . . , zs−1, ws,

zs+1, . . . , zn}. The LCP (q,M) can be represented by the following tableau:

w z
I −M q
w ≥ 0, z ≥ 0

(2.3)

A pivoting method consists of a sequences of pivoting steps to transform the above

initial tableau. Let the resulting tableau be as follows:

v y

I −M̃ q̃
v ≥ 0, y ≥ 0

(2.4)
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where v is the vector for the basic variables and y is the vector for the nonbasic ones.

If q̃ ≥ 0, a solution has been found and it can be obtained by letting all the nonbasic

variables be 0 and basic ones be equal to the corresponding elements of q̃.

A detailed account in pivoting method can be found in Cottle et al [10]. For our

purpose, we only need the Chandrasekaran and Lemke methods.

2.5 Chandrasekaran Method

The following Chandrasekaran’s Method is a drect application of the above piv-

oting method to the LCP (q,M) when M is a Z-matrix.

Algorithm 1. Chandrasekaran’s Method to solve LCP

Consider the LCP (q,M) as represented by the initial tableau (2.3) with

w = (w1, w2, ..., wn) as the initial complementary basic vector.

if q ≥ 0, i.e. w is a feasible basis, then

(w, z) = (q, 0) (Complementary Basic Feasible Solution);

break;

else do

Display the tableau: tab = [eye(M) −M q]

q̄ = tab(:,end);

if q̄ ≥ 0;

Present basic vector is a complementary feasible basic vector;

break;

else do

Find t, such that q̄t ≤ 0;

if −mtt ≥ 0

No nonnegative solution or LCP (q,M) has no solution;

break;

else do

Update the tableau by pivoting at row t and column t+ n;

end do

10



A matrix M = (mij) is a Z-matrix if all its off diagonal entries are nonpositive,

that is mij ≤ 0 for all i 6= j. It can be easily verified that in tableau (2.3) for any t

= 1 to n, all the entries in row t are nonnegative except for the entry in column zt.

Hence, all the pivot elements encountered during the Chandrasekaran’s algorithm are

strictly negative. In addition, once a pivot has been performed in a row, the value

of the updated right hand side constant remains negative for all subsequent steps.

Moreoever, once a variable zt has been made a basic variable, it stays as a basic

variable and its value remain nonnegative in all subsequent steps. As at most one

principal pivot step is performed in each row, hence the algorithm terminates in at

most n pivot steps either with the conclusion of infeasibility or with a complementary

feasible basis [11].

2.6 The Lemke Method

The Lemke method is a pivoting methods for the ALCP (q,M ; e, s), where s will

be determined by the algorithm. The advantage of considering the ALCP (q,M ; e, s)

instead of the LCP (q,M) is that the ALCP (q,M ; e, s) has a solution (see Theorem

2.2. Also, the Lemke method will either find a solution or indicate no solution for the

LCP (q,M).

The Lemke method uses complementary pivoting schemes and provide a choice

of driving variable. One of the major advantages of these complementary pivoting

schemes is the very fact that these are relatively easy to state, more versatile and

does not depend on the invariance of matrix classes under principal pivoting.
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Algorithm 2. Lemke Method to solve LCP

Initialization Step:

if q ≥ 0, then

(w, z) = (q, 0) (Complementary Basic Feasible Solution);

break;

else do

Display the tableau: tab = [eye(M) −M − z0 q]

let qs = min {qi : 1 ≤ i ≤ n}
Update the tableau by pivoting at row s and column z0
tab(s :, ) = tab(s, :)./tab(s, tm − 1)

for i = 1, . . . ,m, do

if i 6= s, tab(i, :) = tab(i, :)− tab(s, :)∗ tab(i, tm−1)/tab(s, tm−1)

end do

Let ys = zs, GOTO Main Step

end do

Main Step

STEP 1: Let ds be the updated column under variable ys,

while(ds > 0)

Determine index r by the minimum ratio test:

q̄r
drs

= min
1≤i≤m

{
q̄i
dis

: dis > 0

}

If the basic variable at row r is z0, GOTO STEP 3

else GOTO STEP 2.

STEP 2: Update the tableau by pivoting at row r and column ys
if the variable leaving the basis is wl, then let ys = zl

else if the variable leaving the basis is zl, then let ys = wl

GOTO STEP 1

STEP 3: Update the tableau by pivoting at row ys column and z0 row,

break; (Complementary Basic Feasible Solution)

STEP 4: Ray R = {(w, z, z0) + λd : λ ≥ 0},
where every point in R satisfies equations (2.1), (2.2), and (2.3)

end do (Almost Complementary Basic Feasible Solution)
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We have the following results about the convergence of the Lemke method.

Theorem 2.3. When applied to a nondegenerate instance of (q, d,M), Lemke’s Al-

gorithm will terminate in finitely many steps with either a secondary ray or else a

complementary feasible solution of (q, d,M) and hence with a solution of (q,M) [10].

When Lemke’s algorithm terminates with a secondary ray, it usually requires the

strict positivity of the covering vector d.

Theorem 2.4. If Lemke’s Algorithm applied to (q, d,M) terminates with a secondary

ray, then M reverses the sign of some nonzero nonnegative vecotr (̄z) [10], that is

z̄i(Mz̄i) ≤ 0 i = 1, ..., n. (2.1)

Hence the above theorem implies that the Lemke’s Algorithm cannot terminate in

a secondary ray when M ∈ P , as in a P the sign of a nonzero vector is never reversed

[10]. Thus for any nondegenrate linear complimentarity problem of the P -matrix

type, Lemke’s Algorithm will obtain its solution.
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CHAPTER 3

A FINITE DIFFERENCE LATTICE METHOD

In this chapter, we extend the simple lattice method proposed in [12] to compute the

option prices for the given stock price S0 and time to the expiration date T0. Since

the method is based on the forward Euler scheme for parabolic problems, we call it

the Finite Difference lattice method. We only consider the call option problem since

the put option problem can be treated in the same fashion.

Consider the variable transforms

S = Kex, Ci(S, T − t) = Kui(x, t), i = 1, . . . , n.

The variational inequality problem (1.2)-(1.6) can be reformulated into

∂ui

∂t
+ Biui −

n∑

j=1

ξijui ≥ 0, −∞ < x <∞, 0 ≤ t < T, (3.1)

ui(x, t) ≥ f(x), −∞ < x <∞, 0 ≤ t < T, (3.2)
(
∂ui

∂t
+ Biui −

n∑

j=1

qijui

)
(ui(x, t)− fi(x)) = 0, −∞ < x <∞, 0 ≤ t < T, (3.3)

ui(−∞, t) = 0, 0 ≤ t ≤ T, (3.4)

ui(x, 0) = fi(x), −∞ < x <∞, (3.5)

for i = 1, . . . , n, where

Biui = −γi
∂2ui

∂x2
+ νi

∂ui

∂x
+ riui,

γi =
1

2
σ2
i , νi = γi − µi, fi(x, t) = (ex − 1)+.

For a given positive integer M , let k = T0/M and tm = mk for m = 0, 1, . . . ,M .
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For a positive number σ, let h = σ
√
k be the mesh size in x, and let

xj = log

(
S0

K

)
+ jh, j = −M, ...,M.

Denote by um
i,j be the approximation of u (xj, tm). Discretizing (3.1)–(3.3) using the

finite difference methods, we have the following LCP:

um
i,j − um−1

i,j

k
+ Liu

m−1
i,j + riu

m
i,j −

n∑

j=1

ξiju
m
i,j ≥ 0, um

i,j ≥ fi,j,

(
um
i,j − um−1

i,j

k
+ Liu

m−1
i,j + riu

m
i,j −

n∑

j=1

ξiju
m
i,j

)
(
um
i,j − fn,j

)
= 0,

for i = 1, 2, ..., n, where fi,j = fi(xj) and

Liu
m−1
i,j = −γi

um−1
i,j+1 − 2um−1

i,j + um−1
i,j−1

h2
+ νi

um−1
i,j+1 − um−1

i,j−1

2h
.

The above LCP can be rewritten into the following matrix form:

AUm
j ≥ Gm

j , Um
j ≥ Fj, (3.6)

(
AUm

j −Gm
j

) (
Um
j − Fj

)
= 0, (3.7)

where

A =




1 + k(r1 + q11) −kq12 · · · −kq1n
−kq21 1 + k(r2 + q22) · · · −kq2n

...
...

...

−kqn1 −kqn2 · · · 1 + k(rn + qnn)


 ,

Um
j =




um
1,j

um
2,j

. . .
um
n,j


 , Fj =




f1,j
f2,j
· · ·
fn,j


 , Gm−1

j =




gm−11,j

gm−12,j

. . .
gm−1n,j


 ,

gm−1i,j = P+
i um−1

i,j+1 + P 0
i u

m−1
i,j + P−i um−1

i,j−1,

P+
i =

γi
σ2
−
√
kνi
2σ

, P 0
i = 1− 2γi

σ2
, P−i =

γi
σ2

+

√
kνi
2σ

.
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Notice that

P+
i + P 0

i + P−i = 1, ∀i = 1, 2, . . . , n. (3.8)

We can regard P−i and P+
i as the probabilities for which the stock price goes down

and up and P 0
i as the probability for which the stock price does not change when the

underlying economy is in the i-th state. To this end, we shall choose σ and M such

that

P−i ≥ 0, P 0
i ≥ 0, P+

i ≥ 0,

which are equivalent to the following constraints on σ and M :

σ ≥ max
1≤i≤n

σi, M ≥ σ2T0 max
1≤i≤n

ν2
i

σ4
i

. (3.9)

Let Sj = S0e
xj for j = −M, . . . ,M . Denote by Cm

i,j the approximation of

Ci(Sj, T − tm). Let

C̃m
i,j = P+

i Cm−1
i,j+1 + P 0

i C
m−1
i,j + P−i Cm−1

i,j−1, i = 1, . . . , n. (3.10)

Recall that C(S, T − t; ei) = Kui(x, t) for x = log(S/K). The LCP for Um
j becomes

the following LCP for Cm
j =

(
Cm

1,j, . . . , C
m
n,j

)T
:

ACm
j ≥ C̃m

j , Cm
j ≥ Φj, (3.11)

(
AUm

j − C̃m
j

) (
Um
j − Φj

)
= 0, (3.12)

where

C̃m
j =

(
C̃m

1,j, . . . , C̃
m
n,j

)T
, Φj =

(
(Sj −K)+, . . . , (Sj −K)+

)T
.

We have the following algorithm to compute CM
i,0, the approximation of Ci(S0, T−T0):
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Algorithm 3. A Finite Difference lattice algorithm for the American call

1. Set

CM
i,j = (Sj −K)+, j = −M, . . . ,M, i = 1, . . . , n.

2. For m = 1, 2, . . . ,M , do

For j = −(M −m), . . . ,M −m, do

(1) Compute C̃m
j by (3.10).

(2) Solve the LCP (3.11)–(3.12) for Cm
j by Algorithm 1

or 2.

End do

End do

The inequalities in (3.1) and (3.2) become equalities for the European call option

problem. Then we have the following algorithm to compute cMi,0, the approximation

of the European call price ci(S0, T − T0):

Algorithm 4. A Finite Difference lattice algorithm for the European call

1. Set

cMi,j = (Sj −K)+, j = −M, . . . ,M, i = 1, . . . , n.

2. For m = 1, 2, . . . ,M , do

For j = −(M −m), . . . ,M −m, do

(i) Compute c̃mj by

c̃mi,j = P+
i cm−1i,j+1 + P 0

i c
m−1
i,j + P−i cm−1i,j−1, i = 1, . . . , n.

(ii) Solve the following equation for cmj :

Acmj = c̃mj .

End do

End do
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CHAPTER 4

MONTE CARLO METHODS

In this chapter, we develop two new methods that are based on the Monte Carlo

simulation of the markov chain. In particular, the method will be named as the Monte

Carlo lattice method (the MC lattice method for simplicity) for American options.

Again, we only consider the call option problem since the put option problem can be

treated in the same fashion.

4.1 American call options

Consider the American call options with strike price $K and expiration date T

years. Its price is denote by C (S0, t0) when the stock price is equal to S0 at time t0.

We shall follow the idea in the introduction section of [6]. For a given sample path

X(t) of the Markov chain, we let

σ(t) = σX(t), µ(t) = µX(t).

Solving the following SDE

dS(t) = S(t) (µ(t)dt+ σ(t)dW (t)) ,

we get

S(T ) = S(t) exp

(∫ T

t

(
µ(s)− 1

2
σ(s)2

)
ds+

∫ T

t

σ(s)dW (t)

)

Then the American call price at time t when X(t) = i and S(t) = S is given by

Ci(S, t) = E
[
C(S, t,X(·))

∣∣GT
]
,

18



where the c(S, t,X(·) is the American call price with given sample path X(·) and

GT = σ{X(s) : t ≤ s ≤ T}. As usual, we have

C(S, t,X(·)) = max
t≤τ≤T

E

[
exp

(
−
∫ τ

t

r(s)ds

)
(S(τ)−K)

+

∣∣∣∣Ft

]
, (4.1)

where τ is a stopping time taking value in interval [t, T ].

Now let us show how to compute C(S, t,X(·)) by a lattice method. Let Y (t) =

log(S(x)). It follows from Itō’s Lemma that

dY (t) = ν(t)dx+ σ(t)dW (t), (4.2)

where

ν(t) = µ(t)− 1

2
σ(t)2.

Recall that the sample path X(t) is a piecewise right-continuous functon with values

in the set {1, . . . , n}. Let

t0 < t1 < . . . < tm = T

be a partion of the interval [t0, T ], where M is a positive integer. Here we have

assumed that the discontinuity of X(t) occurs at the partition nodes. Discretizing

the SDE (4.2) by the Euler-Maruyama scheme, we have

Ym − Ym−1 = ν (tm−1)∆t+ σ (tm−1)
√
∆tξm−1, m = 1, 2, . . . ,M,

where Ym is the approximation of Y (tm) and ξm ∼ N(0, 1). Let ∆y be positive

number. Assume that P+
m , P 0

m and P−m are the probabilities under which Ym takes

values Ym−1 +∆y, Ym−1 and Ym−1 −∆y, repectively. Then we have by matching the
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mean and variance of the change Ym − Ym−1:

P+
m + P 0

m + P−m = 1,

(∆y)P+
m + (0)P 0

m + (−dy)P−m = ν (tm−1)∆t,

(∆y)2P+
m + (0)2P 0

m + (−dy)2P−m = σ (tm−1)
2
∆t.

Sovling the above system for P+
m , P 0

m and P−m , we obtain

P+
m =

σ (tm−1)
2
∆t

2∆y2
+

ν (tm−1)∆t

2∆y
,

P 0
m = 1− σ (tm−1)

2
∆t

∆y2

P−m =
σ (tm−1)

2
∆t

2∆y2
− ν (tm−1)∆t

2∆y
.

If ∆y is chosen such that

∆y ≥ σ̄
√
∆t and σ̄2 ≤ ν̄∆y, (4.3)

where σ̄ = max
t0≤t≤T

σ(t) and ν̄ = max
t0≤t≤T

|ν(t)|. Then P+
m , P 0

m and P−m are nonnegative.

Let Sj = S0e
j∆y for j = −M, . . . ,M . Denote by Cm

j the approximations of option

price C (Sj, tm, X). Let rm = r (tm), where r(t) is the interest rate a time t. We have

Algorithm 5 to compute CM
0 , the approximation of C(S0, t0, X). Furthermore, we

have Algorithm 6 to compute the approximation of call price Ci(S0, t0). We should

point out that these algorithms can be applied to European options. Indeed, we just

need to remove step (ii) in Algorithm 5.
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Algorithm 5. A lattice algorithm to compute C(S0, t0, X)

1. Set

CM
j = (Sj −K)+, j = −M, . . . ,M .

2. For m = 1, 2, . . . ,M , do

For j = −(M −m), . . . ,M −m, do

(i) C̃m
j = e−rj∆t

(
P−mCm−1

j−1 + P 0
mC

m−1
j + P+

mCm−1
j+1

)
,

(ii) Cm
j = max

(
C̃m

j , Sj −K
)
.

End do

End do

Algorithm 6. A MC lattice algorithm for the American call

1. Input a positive integer N .

2. Set C = 0.

3. For m = 1, 2, . . . , N , do

(i) Generate a sample path {X(s) : t0 ≤ s ≤ T} with X(t0) = i.

(ii) Compute C (S0, t0, X(·)) by Algorithm 5.

(iii) Let C = C + C (S0, t0, X(·)).

End do

4. The American call price at state i is given by
C

N
.
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4.2 European call options

Consider the European with strike price $K and expiration date T years. Denote

by c (S, t) the European call price when the stock price is equal to S at time t. For

a given sample path X(t) of the Markov chain, the European call price at time t is

([6]):

c(S(t), t, X(·)) = E

[
exp

(
−
∫ T

t

r(s)ds

)
(S(T )−K)

+

∣∣∣∣Ft

]
(4.1)

= S(t)N (d1(t, T ))− exp (−R(t, T ))N (d2(t, T )) ,

where

Ft = σ{W (s) : 0 ≤ s ≤ t},

r(t) = rX(t), R(t, T ) =

∫ T

t

r(s)ds,

Θ(t, T ) =

∫ T

t

µ(s)ds, V (t, T ) =

∫ T

t

σ(s)2ds,

d1(t, T ) =
log(S(t)/K) + Θ(t, T ) + 1

2
V (t, T )√

V (t, T )
,

d2(t, T ) = d1(t, T )−
√

V (t, T ).

Hence, the European call price at time t when X(t) = i and S(t) = S is given by

ci(S, t) = E
[
c(S, t,X(·))

∣∣GT
]
.

We have the following Monte Carlo algorithm for the European option price ci(S, t).
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Algorithm 7. An Monte Carlo algorithm for the European call

1. Input a positive integer N .

2. Set c = 0.

3. For m = 1, 2, . . . , N , do

(i) Generate a sample path {X(s) : t ≤ s ≤ T} with X(t) = i.

(ii) Compute c(S, t,X(·)) by formula (4.1).

(iii) Let c = c+ c(S0, t, X(·).

End do

4. The European call price is given by
c

N
.
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CHAPTER 5

NUMERICAL RESULTS

In this section, we examine our Finite Difference lattice method (FDLM), Monte

Carlo lattice method (MCLM) amd Monte Carlo method (MCM) developed in the

previous chapters. Again, we only consider call options as the put options follow

a similar trend. The option expiration date is 1 year and the strike price is $100.

Numerical results are presented when the number of states of economy is 2 and 4.

Since no exact solutions are available, we use the numerical soltuions obtained by

the FDLM with 10000 steps as “exact values”. The accuracy of our FDLM has been

checked by using the finite element methods of [12].

For the MC lattice method, we set N = 10M for the given positive integer M ,

the number of steps for the lattice method in Algorithm 5.

Example 5.1. In this example, we assume that there are two states of economy. The

rate matrix for the Markov chain is assumed to be

Q =

[
−2 2

3 −3

]
and .

The other parameters are as follows:

σ =

[
0.3
0.2

]
, r =

[
0.05
0.05

]
, d = 0.05.

It means that the stock price volatility changes as the economy switches from one

state to the other while the interest rate keeps constant.

We display the computed option values and its maximum absolute error (MAE)
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at 9 stock prices in Tables 5.1 – 5.8. We observe that the FDLM converges linearly

and the MCLM and MCM converge with the speed of 1/
√
N , which is as expected.

Table 5.1. The FD lattice method for American call option: State 1

S C1 M = 500 M = 1000 M = 2000 M = 4000

80 2.6783 2.6793 2.6788 2.6785 2.6783

85 4.0308 4.0305 4.0312 4.0310 4.0309

90 5.7589 5.7592 5.7594 5.7593 5.7590

95 7.8734 7.8742 7.8747 7.8739 7.8737

100 10.3692 10.3681 10.3687 10.3689 10.3690

105 13.2281 13.2302 13.2289 13.2287 13.2283

110 16.4229 16.4241 16.4227 16.4232 16.4229

115 19.9212 19.9231 19.9221 19.9216 19.9215

120 23.6884 23.6899 23.6891 23.6887 23.6886

MAE 2.15e− 03 1.23e− 03 5.77e− 04 2.65e− 04

Table 5.2. The FD lattice method for American call option: State 2

S C2 M = 500 M = 1000 M = 2000 M = 4000

80 2.2304 2.2312 2.2309 2.2305 2.2303

85 3.4766 3.4766 3.4766 3.4768 3.4767

90 5.1142 5.1148 5.1143 5.1146 5.1144

95 7.1621 7.1631 7.1632 7.1626 7.1622

100 9.6187 9.6180 9.6184 9.6185 9.6186

105 12.4660 12.4682 12.4664 12.4665 12.4662

110 15.6736 15.6740 15.6735 15.6739 15.6736

115 19.2043 19.2063 19.2050 19.2045 19.2046

120 23.0185 23.0201 23.0189 23.0187 23.0187

MAE 2.26e− 03 1.11e− 03 5.19e− 04 2.54e− 04
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Table 5.3. The MC lattice method for American call option: State 1

S C1 M = 250 M = 500 M = 1000 M = 2000

80 2.6783 2.6870 2.6907 2.6792 2.6757

85 4.0308 4.0407 4.0423 4.0411 4.0337

90 5.7589 5.7711 5.7884 5.7643 5.7696

95 7.8734 7.8857 7.8777 7.8733 7.8630

100 10.3692 10.3815 10.3882 10.3721 10.3806

105 13.2281 13.2482 13.2427 13.2290 13.2387

110 16.4229 16.4389 16.4446 16.4395 16.4269

115 19.9212 19.9466 19.9330 19.9262 19.9446

120 23.6884 23.7173 23.7100 23.7014 23.7092

MAE 2.88e− 02 2.95e− 02 1.65e− 02 2.34e− 02

Table 5.4. The MC lattice method for American call option: State 2

S C2 M = 250 M = 500 M = 1000 M = 2000

80 2.2304 2.1173 2.2352 2.2270 2.2260

85 3.4766 3.3362 3.4496 3.4718 3.4764

90 5.1142 4.9475 5.1273 5.1164 5.1177

95 7.1621 6.9811 7.1697 7.1701 7.1616

100 9.6187 9.4278 9.6007 9.6189 9.6203

105 12.4660 12.2782 12.4828 12.4800 12.4767

110 15.6736 15.4890 15.6917 15.6837 15.6757

115 19.2043 19.0434 19.2267 19.2241 19.2144

120 23.0185 22.8789 23.0272 23.0318 23.0308

MAE 1.91e− 01 2.70e− 02 1.98e− 02 1.23e− 02
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Table 5.5. The FD lattice method for European call option: State 1

S C1 M = 500 M = 1000 M = 2000 M = 4000

80 2.6604 2.6613 2.6609 2.6606 2.6604

85 3.9997 3.9993 4.0000 3.9998 3.9998

90 5.7078 5.7079 5.7082 5.7081 5.7078

95 7.7932 7.7938 7.7944 7.7937 7.7934

100 10.2485 10.2471 10.2478 10.2482 10.2484

105 13.0531 13.0551 13.0538 13.0536 13.0533

110 16.1771 16.1780 16.1766 16.1773 16.1770

115 19.5852 19.5870 19.5861 19.5855 19.5855

120 23.2404 23.2419 23.2410 23.2407 23.2407

MAE 2.02e− 03 1.17e− 03 5.40e− 04 2.60e− 04

Table 5.6. The FD lattice method for European call option: State 2

S C2 M = 500 M = 1000 M = 2000 M = 4000

80 2.2180 2.2187 2.2184 2.2181 2.2179

85 3.4541 3.4540 3.4541 3.4542 3.4542

90 5.0759 5.0763 5.0759 5.0762 5.0760

95 7.1000 7.1008 7.1010 7.1005 7.1001

100 9.5226 9.5216 9.5221 9.5224 9.5225

105 12.3229 12.3250 12.3232 12.3233 12.3231

110 15.4675 15.4676 15.4672 15.4677 15.4675

115 18.9160 18.9178 18.9166 18.9161 18.9162

120 22.6253 22.6267 22.6256 22.6254 22.6255

MAE 2.10e− 03 1.02e− 03 4.59e− 04 2.39e− 04
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Table 5.7. The MC method for European call option: State 1

S C1 M = 250000 M = 500000 M = 1000000 M = 2000000

80 2.6604 2.6050 2.6593 2.6604 2.6605

85 3.9997 3.9297 3.9980 3.9996 3.9988

90 5.7078 5.6255 5.7076 5.7082 5.7071

95 7.7932 7.7022 7.7940 7.7943 7.7934

100 10.2485 10.1530 10.2461 10.2483 10.2478

105 13.0531 12.9571 13.0541 13.0543 13.0527

110 16.1771 16.0845 16.1772 16.1768 16.1765

115 19.5852 19.4988 19.5843 19.5864 19.5839

120 23.2404 23.1622 23.2407 23.2409 23.2409

MAE 9.60e− 02 2.43e− 03 1.22e− 03 1.29e− 03

Table 5.8. The MC method for European call option: State 2

S C2 M = 250000 M = 500000 M = 1000000 M = 2000000

80 2.2180 2.1777 2.2186 2.2180 2.2187

85 3.4541 3.4002 3.4531 3.4534 3.4540

90 5.0759 5.0103 5.0737 5.0759 5.0747

95 7.1000 7.0261 7.0999 7.1009 7.0997

100 9.5226 9.4445 9.5204 9.5237 9.5219

105 12.3229 12.2449 12.3218 12.3206 12.3241

110 15.4675 15.3934 15.4675 15.4687 15.4684

115 18.9160 18.8485 18.9161 18.9159 18.9161

120 22.6253 22.5660 22.6247 22.6250 22.6254

MAE 7.81e− 02 2.20e− 03 2.22e− 03 1.23e− 03
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Example 5.2. In this example, we assume that there are two states of economy. The

rate matrix for the Markov chain is the same as in Example 5.1. The other parameters

are as follows:

σ =

[
0.2
0.2

]
, r =

[
0.1
0.05

]
, d = 0.08.

It means that the interest rate changes as the economy switches from one state to the

other while the the stock price volatility keeps constant.

We display the computed option values and its maximum absolute error at 9 stock

prices in Tables 5.9 – 5.16. Again, we observe that the FDLM converges linearly and

the MCLM and MCM converge with the speed of 1/
√
N .

Table 5.9. The FD lattice method for American call option: State 1

S C1 M = 500 M = 1000 M = 2000 M = 4000

80 1.1570 1.1580 1.1574 1.1566 1.1571

85 2.1011 2.0997 2.1010 2.1011 2.1013

90 3.4807 3.4800 3.4816 3.4809 3.4809

95 5.3455 5.3454 5.3446 5.3460 5.3454

100 7.7118 7.7089 7.7104 7.7111 7.7115

105 10.5650 10.5668 10.5650 10.5658 10.5652

110 13.8670 13.8691 13.8683 13.8675 13.8669

115 17.5663 17.5664 17.5655 17.5667 17.5662

120 21.6055 21.6055 21.6061 21.6058 21.6055

MAE 2.90e− 03 1.45e− 03 8.02e− 04 3.60e− 04
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Table 5.10. The FD lattice method for American call option: State 2

S C2 M = 500 M = 1000 M = 2000 M = 4000

80 1.0544 1.0553 1.0548 1.0540 1.0544

85 1.9351 1.9338 1.9350 1.9351 1.9353

90 3.2364 3.2358 3.2374 3.2366 3.2367

95 5.0132 5.0133 5.0124 5.0137 5.0132

100 7.2889 7.2860 7.2874 7.2882 7.2885

105 10.0565 10.0585 10.0566 10.0574 10.0568

110 13.2871 13.2894 13.2885 13.2877 13.2870

115 16.9392 16.9396 16.9385 16.9397 16.9391

120 20.9695 20.9697 20.9702 20.9698 20.9695

MAE 2.82e− 03 1.44e− 03 8.39e− 04 3.50e− 04

Table 5.11. The MC lattice method for Americanu call option: State 1

S C1 M = 250 M = 500 M = 1000 M = 2000

80 1.1570 1.1744 1.1619 1.1716 1.1749

85 2.1011 2.1307 2.1115 2.1251 2.1296

90 3.4807 3.5255 3.4958 3.5151 3.5218

95 5.3455 5.4041 5.3661 5.3902 5.4001

100 7.7118 7.7840 7.7345 7.7657 7.7790

105 10.5650 10.6499 10.5923 10.6263 10.6438

110 13.8670 13.9613 13.8949 13.9308 13.9546

115 17.5663 17.6609 17.5960 17.6285 17.6593

120 21.6055 21.6983 21.6377 21.6624 21.6998

MAE 9.47e− 02 3.22e− 02 6.38e− 02 9.43e− 02

30



Table 5.12. The MC lattice method for American call option: State 2

S C2 M = 250 M = 500 M = 1000 M = 2000

80 1.0544 1.0341 1.0561 1.0524 1.0301

85 1.9351 1.9029 1.9396 1.9327 1.8957

90 3.2364 3.1921 3.2444 3.2339 3.1781

95 5.0132 4.9540 5.0252 5.0114 4.9341

100 7.2889 7.2184 7.3047 7.2899 7.1898

105 10.0565 9.9826 10.0795 10.0641 9.9427

110 13.2871 13.2188 13.3160 13.3039 13.1685

115 16.9392 16.8862 16.9765 16.9701 16.8311

120 20.9695 20.9485 21.0199 21.0203 20.8924

MAE 7.39e− 02 5.04e− 02 5.08e− 02 1.19e− 01

Table 5.13. The FD lattice method for European call option: State 1

S C1 M = 500 M = 1000 M = 2000 M = 4000

80 1.1427 1.1438 1.1431 1.1423 1.1428

85 2.0708 2.0692 2.0705 2.0707 2.0709

90 3.4218 3.4208 3.4227 3.4220 3.4220

95 5.2398 5.2395 5.2388 5.2403 5.2397

100 7.5342 7.5307 7.5325 7.5334 7.5339

105 10.2830 10.2851 10.2829 10.2839 10.2833

110 13.4402 13.4426 13.4418 13.4408 13.4400

115 16.9469 16.9472 16.9457 16.9475 16.9467

120 20.7400 20.7399 20.7409 20.7404 20.7399

MAE 3.55e− 03 1.73e− 03 8.36e− 04 3.64e− 04
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Table 5.14. The FD lattice method for European call option: State 2

S C2 M = 500 M = 1000 M = 2000 M = 4000

80 1.0412 1.0422 1.0416 1.0408 1.0413

85 1.9068 1.9054 1.9066 1.9067 1.9069

90 3.1807 3.1798 3.1817 3.1809 3.1809

95 4.9117 4.9114 4.9107 4.9122 4.9116

100 7.1152 7.1116 7.1134 7.1143 7.1148

105 9.7750 9.7770 9.7748 9.7758 9.7752

110 12.8498 12.8521 12.8514 12.8504 12.8495

115 16.2841 16.2842 16.2828 16.2846 16.2838

120 20.0160 20.0158 20.0168 20.0164 20.0159

MAE 3.57e− 03 1.74e− 03 8.39e− 04 3.67e− 04

Table 5.15. The MC method for European call option: State 1

S C1 M = 250000 M = 500000 M = 1000000 M = 2000000

80 1.1427 1.1602 1.1592 1.1437 1.1380

85 2.0708 2.0989 2.0973 2.0724 2.0629

90 3.4218 3.4631 3.4607 3.4241 3.4101

95 5.2398 5.2960 5.2928 5.2431 5.2239

100 7.5342 7.6061 7.6020 7.5386 7.5138

105 10.2830 10.3699 10.3650 10.2883 10.2580

110 13.4402 13.5412 13.5355 13.4464 13.4110

115 16.9469 17.0602 17.0539 16.9540 16.9139

120 20.7400 20.8637 20.8568 20.7477 20.7038

MAE 1.24e− 01 1.17e− 01 7.73e− 03 3.62e− 02
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Table 5.16. The MC method for European call option: State 2

S C2 M = 250000 M = 500000 M = 1000000 M = 2000000

80 1.0412 1.0333 1.0357 1.0385 1.0570

85 1.9068 1.8939 1.8979 1.9022 1.9323

90 3.1807 3.1618 3.1676 3.1738 3.2184

95 4.9117 4.8860 4.8940 4.9021 4.9633

100 7.1152 7.0824 7.0926 7.1028 7.1814

105 9.7750 9.7351 9.7475 9.7595 9.8554

110 12.8498 12.8035 12.8180 12.8317 12.9437

115 16.2841 16.2320 16.2483 16.2635 16.3897

120 20.0160 19.9592 19.9770 19.9933 20.1317

MAE 5.68e− 02 3.90e− 02 2.27e− 02 1.16e− 01

Example 5.3. In this example, we assume that there are four states of economy.

The rate matrix for the Markov chain is assumed to be

Q =




−1.8 0.80 0.40 0.60
0.70 −1.50 0.30 0.50
0.24 0.45 −1.24 0.55
0.25 0.70 0.40 −1.35


 .

The other parameters are as follows:

σ =




0.3
0.2
0.4
0.18


 , r =




0.05
0.05
0.05
0.05


 , d = 0.05.

As in Example 5.1, the stock price volatility changes as the economy switches from

one state to the other while the interest rate keeps constant.

We display the computed option values for the first two states and their maximum

absolute error at 9 stock prices in Tables 5.9 – 5.16. We have the same observation
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about the convergence of our methods as in previous examples.

Table 5.17. The FD lattice method for American call option: State 1

S C1 M = 500 M = 1000 M = 2000 M = 4000

80 2.8635 2.8647 2.8639 2.8631 2.8635

85 4.2271 4.2258 4.2269 4.2270 4.2272

90 5.9623 5.9613 5.9629 5.9623 5.9624

95 8.0819 8.0812 8.0809 8.0821 8.0817

100 10.5820 10.5790 10.5806 10.5814 10.5818

105 13.4453 13.4463 13.4450 13.4458 13.4455

110 16.6437 16.6450 16.6446 16.6440 16.6434

115 20.1435 20.1433 20.1425 20.1439 20.1434

120 23.9094 23.9090 23.9099 23.9096 23.9093

MAE 3.01e− 03 1.43e− 03 6.34e− 04 2.38e− 04

Table 5.18. The FD lattice method for American call option: State 2

S C2 M = 500 M = 1000 M = 2000 M = 4000

80 1.9741 1.9757 1.9748 1.9738 1.9742

85 3.1164 3.1152 3.1163 3.1164 3.1165

90 4.6622 4.6612 4.6629 4.6623 4.6623

95 6.6433 6.6426 6.6422 6.6436 6.6432

100 9.0659 9.0624 9.0643 9.0652 9.0657

105 11.9132 11.9144 11.9129 11.9138 11.9134

110 15.1501 15.1518 15.1513 15.1506 15.1499

115 18.7324 18.7324 18.7314 18.7329 18.7323

120 22.6125 22.6124 22.6132 22.6128 22.6124

MAE 3.54e− 03 1.68e− 03 7.46e− 04 2.80e− 04
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Table 5.19. The MC lattice method for American call option: State 1

S C1 M = 250 M = 500 M = 1000 M = 2000

80 2.8635 2.8189 2.8052 2.6861 3.0678

85 4.2271 4.1706 4.1464 4.0105 4.4768

90 5.9623 5.8998 5.8662 5.7183 6.2503

95 8.0819 8.0104 7.9745 7.8186 8.3985

100 10.5820 10.5015 10.4714 10.3103 10.9147

105 13.4453 13.3840 13.3450 13.1811 13.7843

110 16.6437 16.5869 16.5602 16.3951 16.9777

115 20.1435 20.1031 20.0757 19.9204 20.4643

120 23.9094 23.8959 23.8714 23.7190 24.2117

MAE 8.05e− 02 1.11e− 01 2.72e− 01 3.39e− 01

Table 5.20. The MC lattice method for American call option: State 2

S C2 M = 250 M = 500 M = 1000 M = 2000

80 1.9741 2.0293 2.1358 1.9160 1.9107

85 3.1164 3.1874 3.3116 3.0459 3.0415

90 4.6622 4.7408 4.8893 4.5827 4.5790

95 6.6433 6.7381 6.8963 6.5582 6.5551

100 9.0659 9.1557 9.3300 8.9804 8.9766

105 11.9132 12.0143 12.1850 11.8333 11.8298

110 15.1501 15.2651 15.4223 15.0839 15.0763

115 18.7324 18.8540 19.0030 18.6823 18.6750

120 22.6125 22.7354 22.8776 22.5863 22.5760

MAE 1.23e− 01 2.72e− 01 8.55e− 02 8.93e− 02
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Table 5.21. The FD lattice method for European call option: State 1

S C1 M = 500 M = 1000 M = 2000 M = 4000

80 2.8438 2.8451 2.8443 2.8434 2.8439

85 4.1940 4.1927 4.1937 4.1939 4.1941

90 5.9091 5.9080 5.9097 5.9091 5.9092

95 7.9998 7.9992 7.9988 8.0001 7.9997

100 10.4601 10.4570 10.4586 10.4595 10.4599

105 13.2703 13.2715 13.2700 13.2708 13.2704

110 16.3995 16.4011 16.4007 16.4000 16.3993

115 19.8120 19.8122 19.8110 19.8125 19.8120

120 23.4699 23.4699 23.4707 23.4703 23.4698

MAE 3.08e− 03 1.46e− 03 6.49e− 04 2.43e− 04

Table 5.22. The FD lattice method for European call option: State 2

S C2 M = 500 M = 1000 M = 2000 M = 4000

80 1.9638 1.9654 1.9644 1.9634 1.9639

85 3.0977 3.0965 3.0976 3.0977 3.0978

90 4.6300 4.6289 4.6308 4.6301 4.6301

95 6.5903 6.5895 6.5891 6.5906 6.5901

100 8.9820 8.9783 8.9803 8.9812 8.9817

105 11.7853 11.7868 11.7850 11.7860 11.7855

110 14.9617 14.9637 14.9631 14.9622 14.9615

115 18.4630 18.4635 18.4620 18.4637 18.4630

120 22.2379 22.2381 22.2388 22.2383 22.2378

MAE 3.63e− 03 1.72e− 03 7.64e− 04 2.87e− 04
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Table 5.23. The MC method for European call option: State 1

S C1 M = 250000 M = 500000 M = 1000000 M = 2000000

80 2.8438 2.9349 2.8451 2.8899 2.9006

85 4.1940 4.3068 4.1991 4.2531 4.2650

90 5.9091 6.0403 5.9177 5.9795 5.9920

95 7.9998 8.1443 8.0110 8.0783 8.0913

100 10.4601 10.6118 10.4726 10.5429 10.5562

105 13.2703 13.4225 13.2821 13.3530 13.3666

110 16.3995 16.5471 16.4097 16.4790 16.4928

115 19.8120 19.9508 19.8197 19.8856 19.8996

120 23.4699 23.5969 23.4745 23.5358 23.5496

MAE 1.52e− 01 1.25e− 02 8.28e− 02 9.63e− 02

Table 5.24. The MC method for European call option: State 2

S C2 M = 250000 M = 500000 M = 1000000 M = 2000000

80 1.9638 1.9626 1.9294 2.0065 2.0451

85 3.0977 3.0983 3.0550 3.1568 3.1974

90 4.6300 4.6323 4.5804 4.7033 4.7453

95 6.5903 6.5940 6.5360 6.6739 6.7168

100 8.9820 8.9866 8.9253 9.0707 9.1147

105 11.7853 11.7893 11.7281 11.8735 11.9186

110 14.9617 14.9647 14.9061 15.0449 15.0913

115 18.4630 18.4647 18.4108 18.5380 18.5854

120 22.2379 22.2377 22.1898 22.3023 22.3504

MAE 4.59e− 03 5.72e− 02 8.88e− 02 1.33e− 01
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Example 5.4. In this example, we assume that there are four states of economy.

The rate matrix for the Markov chain is the same as in Example 5.3. The other

parameters are as follows:

σ =




0.2
0.2
0.2
0.2


 , r =




0.05
0.10
0.08
0.05


 , d = 0.08.

As in Example 5.2, the interest rate changes as the economy switches from one state

to the other while the the stock price volatility keeps constant.

As in Example 3, we display the computed option values for the first two states

and their maximum absolute error at 9 stock prices in Tables 5.25 – 5.32. Also, we

observe that the FDLM converges linearly and the MCLM and MCM converge with

the speed of 1/
√
N , which is as expected.

Table 5.25. The FD lattice method for American call option: State 1

S C1 M = 500 M = 1000 M = 2000 M = 4000

80 0.9592 0.9602 0.9596 0.9588 0.9592

85 1.7828 1.7816 1.7827 1.7827 1.7829

90 3.0165 3.0161 3.0174 3.0167 3.0167

95 4.7232 4.7234 4.7224 4.7237 4.7231

100 6.9361 6.9338 6.9350 6.9356 6.9359

105 9.6600 9.6620 9.6601 9.6608 9.6602

110 12.8759 12.8782 12.8772 12.8764 12.8757

115 16.5516 16.5521 16.5512 16.5521 16.5516

120 20.6513 20.6514 20.6517 20.6515 20.6512

MAE 2.32e− 03 1.39e− 03 7.79e− 04 2.20e− 04

38



Table 5.26. The FD lattice method for American call option: State 2

S C2 M = 500 M = 1000 M = 2000 M = 4000

80 1.1488 1.1498 1.1492 1.1484 1.1489

85 2.0891 2.0875 2.0889 2.0890 2.0892

90 3.4653 3.4645 3.4661 3.4654 3.4654

95 5.3286 5.3285 5.3277 5.3290 5.3285

100 7.6966 7.6938 7.6953 7.6960 7.6964

105 10.5559 10.5575 10.5558 10.5566 10.5561

110 13.8679 13.8698 13.8691 13.8684 13.8678

115 17.5799 17.5799 17.5791 17.5803 17.5798

120 21.6320 21.6318 21.6325 21.6322 21.6319

MAE 2.81e− 03 1.33e− 03 6.94e− 04 2.21e− 04

Table 5.27. The MC lattice method for American call option: State 1

S C1 M = 250 M = 500 M = 1000 M = 2000

80 0.9592 0.9684 0.9434 0.9586 0.9563

85 1.7828 1.7981 1.7591 1.7821 1.7785

90 3.0165 3.0406 2.9836 3.0156 3.0558

95 4.7232 4.7527 4.6823 4.7215 4.7749

100 6.9361 6.9735 6.8857 6.9342 6.9984

105 9.6600 9.7048 9.6095 9.6592 9.7059

110 12.8759 12.9258 12.8298 12.8772 12.9308

115 16.5516 16.6039 16.5158 16.5586 16.6140

120 20.6513 20.7082 20.6382 20.6693 20.7201

MAE 5.70e− 02 5.05e− 02 1.81e− 02 6.88e− 02
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Table 5.28. The MC lattice method for American call option: State 2

S C2 M = 250 M = 500 M = 1000 M = 2000

80 1.1488 1.1719 1.1450 1.1728 1.1559

85 2.0891 2.1245 2.0843 2.1266 2.1004

90 3.4653 3.5202 3.4609 3.5177 3.4699

95 5.3286 5.3978 5.3262 5.3945 5.3358

100 7.6966 7.7850 7.6964 7.7728 7.7069

105 10.5559 10.6593 10.5615 10.6373 10.5049

110 13.8679 13.9827 13.8802 13.9470 13.8171

115 17.5799 17.6947 17.6009 17.6516 17.5340

120 21.6320 21.7370 21.6587 21.6923 21.5958

MAE 1.15e− 01 2.67e− 02 8.14e− 02 5.10e− 02

Table 5.29. The FD lattice method for European call option: State 1

S C1 M = 500 M = 1000 M = 2000 M = 4000

80 0.9412 0.9423 0.9416 0.9408 0.9413

85 1.7434 1.7420 1.7432 1.7433 1.7435

90 2.9378 2.9370 2.9387 2.9380 2.9380

95 4.5778 4.5776 4.5768 4.5783 4.5777

100 6.6849 6.6815 6.6833 6.6842 6.6846

105 9.2494 9.2516 9.2494 9.2503 9.2497

110 12.2351 12.2376 12.2368 12.2358 12.2349

115 15.5898 15.5903 15.5887 15.5906 15.5898

120 19.2543 19.2542 19.2552 19.2547 19.2542

MAE 3.40e− 03 1.66e− 03 8.68e− 04 2.68e− 04
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Table 5.30. The FD lattice method for European call option: State 2

S C2 M = 500 M = 1000 M = 2000 M = 4000

80 1.1315 1.1325 1.1319 1.1310 1.1316

85 2.0522 2.0505 2.0518 2.0520 2.0522

90 3.3937 3.3926 3.3946 3.3938 3.3939

95 5.2008 5.2003 5.1996 5.2012 5.2006

100 7.4834 7.4797 7.4816 7.4826 7.4831

105 10.2205 10.2223 10.2203 10.2213 10.2207

110 13.3666 13.3686 13.3680 13.3671 13.3663

115 16.8632 16.8633 16.8620 16.8638 16.8631

120 20.6479 20.6474 20.6485 20.6482 20.6477

MAE 3.67e− 03 1.74e− 03 7.80e− 04 2.89e− 04

Table 5.31. The MC method for European call option: State 1

S C1 M = 250000 M = 500000 M = 1000000 M = 2000000

80 0.9412 0.9535 0.9507 0.9332 0.9419

85 1.7434 1.7636 1.7587 1.7299 1.7441

90 2.9378 2.9680 2.9604 2.9175 2.9385

95 4.5778 4.6197 4.6088 4.5497 4.5785

100 6.6849 6.7393 6.7248 6.6486 6.6854

105 9.2494 9.3160 9.2977 9.2044 9.2493

110 12.2351 12.3133 12.2913 12.1820 12.2344

115 15.5898 15.6786 15.6533 15.5297 15.5886

120 19.2543 19.3518 19.3234 19.1877 19.2522

MAE 9.75e− 02 6.91e− 02 6.66e− 02 2.14e− 03
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Table 5.32. The MC method for European call option: State 2

S C1 M = 250000 M = 500000 M = 1000000 M = 2000000

80 1.1315 1.1044 1.1313 1.1403 1.1304

85 2.0522 2.0086 2.0515 2.0660 2.0500

90 3.3937 3.3302 3.3926 3.4137 3.3903

95 5.2008 5.1150 5.1991 5.2276 5.1960

100 7.4834 7.3746 7.4811 7.5173 7.4770

105 10.2205 10.0890 10.2172 10.2609 10.2121

110 13.3666 13.2145 13.3624 13.4130 13.3564

115 16.8632 16.6932 16.8583 16.9149 16.8515

120 20.6479 20.4627 20.6421 20.7036 20.6346

MAE 1.85e− 01 5.79e− 03 5.57e− 02 1.33e− 02
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CHAPTER 6

CONCLUSIONS

We have considered the problems of pricing options under regime switching model of

stock price processes. Since the option prices can be computed by either solving the

variational inequality problem or evaluating the expectation by Monte Carlo simu-

lation, we have proposed and implemented two numerical methods correspondingly.

The advantage of these methods is their flexibility to compute the option prices for

any given stock price at any given time.

The first method is based on discretizing the partial differential inequalities by

the explicit finite difference scheme. The method is called the finite difference lat-

tice method, which is studied in Chapter 3. In order to solve the resulting linear

complimentary problems, we have given a detailed account for the Chandrasekaran

and Lemke Methods in Chapter 2. The second method is based on the Monte Carlo

simulation of the Markov chain. It is named as the Monte Carlo lattice method and

studied in Chapter 4. Numerical examples are given to examine these methods in

Chapter 5. It has been shown that the proposed methods provides fast and accu-

rate approximations of option prices. Hence they should be helpful for practitioners

working in this field.

The future work will be extended our methods for pricing of options under the

regime switching model with jumps ([7]).
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