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A lattice model is proposed in order to investigate the superfl.uid phase transition and 

the phase separation in liquid mixtures of He3 and He4. The Matsubara-Matsuda model for 

pure liquid He4 is generalized. An effective Hamiltonian is expressed in terms of spin operators 

with the magnitude unity. It is solved with the aid of molecular field approximation. A 

phase diagram thus constructed reproduces characteristic features of liquid He3-He4 mixtures. 

Namely, the lambda line, the critical point of the phase separation and the stratification curves 

are obtained in good agreement with experiments. In addition, it is shown in a unified 

manner that the lambda temperatures exhibit a qualitatively correct dependence on He3-

concentration and pressure. 

§ I. Introduction 

The phase diagram of liquid He 3-He4 mixtures has been extensively studied 

experimentally. For a theoretical analysis, it is convenient to divide the phase 

diagram into two partt;, low-temperature and high-temperature regions. At low 

temperatures near the absolute zero, the Fermi statistics play an essential role. 

He3 atoms tend to be distributed uniformly in space in order to reduce their 

Fermi energy. On the other hand, He4 atoms prefer to push away He3 atoms 

to gain more of the superfluid condensation energy. Thus the Fermi energy 

competes with the superfluid condensation- energy, which leads to an incomplete 

phase separation even at the absolute zero of temperature.1
) At higher temper

atures,_ below 2.2K, a superfluid. phase transition takes place. The transition 

temperature, or the lambda temperature, T"A., decreases with the increasing He3
-

concentration x.2
> The lambda line T"A (x) in the T-x plane ends up at a point 

(T~0.87 K, x.:::::0.67), where the stratification into two phases begins, namely, 

into a superfluid phase and a normal phase~ It coincides with the critical point 

(Tc, Xc) of the phase separation.3
> In this high-temperature region, including the 

critical point, the Fermi statistics may not be so important as in low temperature. 

In fact an effective Fermi temperature of the mixture with x=xc is estimated 

to be so low that it is comparable to the critical temperatureTc.4
> (The effec

tive magnetic Fermi temperature is even much lower as suggested from the data 

on pure He3
•
5>) He4 atoms are already degenerate, as manifested by the existence 

of the superfluid phase transition. 

Recently, Van Leeuwen and Cohen6
> proposed a theoretical phase diagram 

which simulates the empirical one. They. derived it, treating the mixtures of 
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Lattice Model for Quantum Liquid Mixtures 23 

imperfect Bose-Fermi .gases up to the first order with respect to the gas para~ 

meter, while statistics were fully taken into account. In this respect, their. work 

demonstrated the importance of the statistics. As for pressure ·dependences 

of the lambda line, the solubility at the absolute zero of temperature, and so 

forth, however, the theory does not agree with experiment. It is because they 

neglected the strong inter-particle correlations due to the hard core repulsion. 

In this report we limit ourselves to the high-temperature region. Our 

aim is twofold: to explain the dependence of the lambda temperature on He3
-

concentration as well as on pressure, and to gain an insight into mechanisms of 

the phase separation in connection with the superfluid phase transition. 

Let us consider physical origins of the phase separation. 

i) . Phase separation in He3-He4 systems occurs not only in liquid mixtures 

but also in solid mixtures. In the latter, quantum statistical effects show up through 

zero point motions, namely, as the difference in molar· volumes between the two 

isotopes. This reflects the difference in mass and statistics,. and brings about a 

phase separation.7
) These quantum statistical effects may be described phenomenolo

gically in terms of effective interactions among the isotopes. We call the phase 

separation due to this mechanism "Interaction Driven Stratification (I.D.S.) ". 

I.D.S. should be present in the liquid mixtures, too. 

ii) What is characteristic of the liquid mixtures, however, is the superfluid 

phase transition. The superfluid phase transition markedly deforms the stratifica

tion curve. The smooth round curve observed in solid He3-'He4 mixtures, which is 

rather close to that obtained in the theory of regular solutions, is shifted upwards 

and meets the lambda line at the critical point, where the curve .is not smooth any 

longer.3
) Theoretically speaking, He3 impurities constitute an obstacle to the 

superfluid condensation, because of the excluded volume effect. It partially re

moves the phase coherence of the superfluid. As the temperature is lowered, 

the loss in the superfluid condensation energy is expected to overcompensates 

the mixing free energy. This mechanism also gives rise to a phase separation, 

which may be named "Superfluid Driven Stratification (S.D.S.) ". 

What are implied by the terms" effective interactions," "I.D.S." and "S.D.S." 

will be much clarified in the next section, where an explicit formulation of the 

problem is presented. Our actual analysis will be mainly concerned with S.D.S. 

Next, we note that a many-body theoretical investigation of superfluid phase 

transition is not practicable as yet. But a qualitative explanation has been suc

cessfully given to the pressure dependence of the lambda temperature of pure 

liquid He4 by Matsubara and Matsuda8
) (abbreviated to M. M. hereafter). M. 

M. established the equivalence betw~en a 1~any-boson system with the hard core 

repulsion and an anisotropic Heisenberg ferromagnet with spin one half, in the 

framework of a lattice model. The M. · M. model offers a quantum mechanical 

extension of the Ising-model formalism for a classical lattice fluid due to Lee 

and Yang.
9

) We will further generali!je the M, M. model to consider the Booe 
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24 S. Takagi 

system containing other classical (non-degenerate) particles. Two equivalent 

formulations are possible. One is to place two distinct spins, S and s, both of 

the magnitude one half, at each lattice site.10
> The spin S represents the bosons 

and is treated in the M. M. scheme, and the other spin s describes the classical 

particles to which the Lee-Yang scheme is applied. In order to take account of 

the hard core repulsion between bosons and classical particles, an infinite coupl

ing energy between the two spins should be included at the same site. Namely 

an interaction Hamiltonian of the form, .I ~i (S/ + t) X (s/ + t) with I~+ oo, is 

at be added. (Here we follow the convention that the spin up state stands 

for an occupied state and the spin down for a vacancy. The summation is over 

the lattice sites.) The other formulation puts a spin of the magnitude unity 

at each site. The three distinct states, corresponding to the three eigenvalues 

of the z-component of the spin operator, refer to the occupancy by a boson, the 

vacancy, and the occupancy by a classical particle, respectively. The latter 

approach will be made in this report. 

In § 3, the generalized lattice model is solved by means of molecular field 

approximation. Section 4 will be devoted to analyze the molecular-field solution. 

We shall obtain a phase diagram which exhibits noticeable features in good 

accord with experimental observations. The phase separation takes place. One 

of the two phases after the stratification is a normal fluid and the other a super

fluid. The Res-concentration of the former is greater than that of the latter. 

The lambda temperature, whose expression reduces to that obtained by M. M. 

when Hes atoms are absent, shows a reasonable dependence on Res-concentration 

and pressure. The relative positions and orientations of the lambda line, the 

stratification curves and the critical point also agree with empirical data. These 

points will be discussed more extensively in §§ 4 and 5. 

§ 2. Formulation of the lattice model 

The Hamiltonian for a mixture of bosons (called He4
) and classical particles 

(called Hes) is given by 

(2·1) 

where T 4 and Ts are kinetic energies of He4 and He3
, respectively. V represents 

the two-body interaction, including both the hard core and the attractive tail. 

We are interested in calculating the grand partition function 

(2·2) 

where f.La and Na are the chemical potential and the number of Hea atoms, respec

tively, and (3 = l/knT. Since Hes atoms are treated as classical, Ts commutes 

with the rest of the Hamiltonian. Therefore in the expression (2 · 2), Tr exp 

(- f3Ts) can be calculated separately, which gives 

E= Tr exp (- (3.!f{), (2·3) 
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where 

Lattice Model for Quantum Liquid Mixtures 

Jl = T4 + V- fJ.4N4- 71aNa , 

71a= /J.a +~__!_log (ma/2n{3h2
), 

2 {3 

h is the Planck's constant divided by 2-n, and m 3 is the mass of He3
• 

25 

(2·4) 

(2·5) 

In order to evaluate (2 · 3), the hard core part in the interaction V should 

be seriously taken into consideration. At the hard core exp (- {3Jl) vanishes, 

which reflects the most important effect of the strong inter-particle correlation. 

One may be able to estimate E by introducing a lattice space, where operators 

are defined only at discrete lattice sites and multiple occupancy of a site is 

completely forbidden. The annihilation and creation operators for He4 at the 

j-th site are denoted by bi and bi+· Similarly we write the number operators 

for He4 and He3 as n4i and n3i. One may pass from the continuum to the dis

crete lattice space in exactly the same way as M. M. Differentiations in the 

kinetic energy part are replaced by finite differences and space integrations by 

summations over discrete lattice sites. Thus 

fit 1 " b.+ -bj+ b·-b· 
..:n = 2m4 .t...J<ii> ~ d . ~ d J 

(2·6) 

where dis the lattice constant, and ~<ii> denotes a summation over· the nearest-

__.neighbor pairs. It is understood that the hard core repulsion, namely, the pro

hibition of multiple occupancy of a site, is to be taken into account by a 

kinematical constraint on the operators b, na and n4, as will be explained below. 

Consequently the terms of - va13 are now supposed to express effective residual 

(i.e., excluding the hard core repulsion) interactions between Hea and He 13 • 

Since there are two species of particles, the complete set of states associated 

with each lattice site is composed of three states, which may be denoted by 

three vectors: 

(~)-··occupied by He' 

( ~ )-··vacant , (2·7) 

(~}··occupied by He'. 
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26 S. Takagi 

These vectors are eigenstates of the z-component of a spin operator with the 

magnitude unity, corresponding to the eigenvalues 1, 0 and -1. A He4 atom 

is created when the spin-raising operator is operated on the state with sz = 0, but 

not on the state with sz = -1. Therefore the creation operator for a He4 atom 

may be expressed by the spin-raising operator multiplied by a suitable projection 

operator. The number operators are easily constructed in terms of the operator 

sz. Thus the kinematical requirement on the operators due to the hard core 

repulsion is fulfilled by the following identification: 

n4=tszcsz+ 1), 

ns=tSz (Sz-1). 

(2·8) 

It is of course easy to check that b+b = n4 by the use of the spin algebra. 

When (2 · 8) Is substituted into JC, (2 · 6). one obtains, after some rearrange-

ments, 

3Cs= _ _!_ ""i:.<ij>S/Si+sj-S/, 
2ro 

3C1=- K ~<ii> (S/)
2
(S/)

2 -I ""i:.<ij>S/S/ -L "'f:.<ij>(S/)
2
S/, 

SCa = - Ht"'f:.jS/- H2"'f:.j (S/)
2
, 

(2·9) 

(2 ·10) 

where ro is the number of the nearest-neighbor sites. Some new notations have 

been introduced: 

J = roh2/m4d 2
, 

K = t (v44 + Vss + 2v34), 

I= t (v44 + V3s- 2v34), 

L= t (v44- V:Js), 

H _1 (~ ~) 
1 - 2 /.14 - f.l.s , 

714 = /.14 - tJ . 

(2 ·11) 

(2·12) 

(2·13) 

Now the distinction between S.D.S. and I.D.S. can be stated without ambiguity. 

In (2 · 9), 3(8 is responsible for the superfluid transition, while 3C1 represents 

the ·effective interactions and SCa arises because .we work in the grand canonical 

ensemble. S.D.S. is the phase separation caused by SC8 + 3{0 , and I.D.S. is that 

by 3C1 + 3(0 • As mentioned in § 1, we are interested in S.D.S. which is charac

teristic of the liquid He3-He4 mixtures. In the following sections we will neglect 

SC1 and investigate the properties of S.D.S. 

Before closing the section, two remarks are in order, 
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Lattice Model for Quantum Liquid Mixtures 27 

i) The Hamiltonian (2 · 9) is expressed in terms of spin opetators. Various 

physical quantities obtained in the language of magnetism must be translated 

back into that of liquid mixtures.8
),

9
) Let p be the reduced density, namely 

(N3 + N 4) / NL, where NL is the total number of the lattice sites, and x be the 

He3-concentration N 3/ (N3 + N 4). From the operator equivalence (2 · 8), it is 

immediately seen that 

p= ( (Sz)2), 

x = 1_(1- (Sz) ) 
2 ((Sz)2) . 

If f is the free energy per spin defined by 

f = - ~~L log E, 

then the pressure P of the liquid mixtures is given by 

P=- NLJ 
SJ ' 

(2·14) 

(2·15) 

(2 ·16) 

where SJ is the volume of the mixtures. Also it follows from the identity 

and Eqs. (2 ·14) and (2 ·16) that 

P= NL SH2 < (SZ)2)dH,.){J,H,. 
SJ -(X) 

(2·17) 

ii) The order parameter ~ characterizing the superfluid phase IS given by 

(2·18) 

In order to assure the existence of nonvanishing ~' and to make a complete 

thermodynamic consideration possible, we introduce a fictitious external field H 

conjugate to ~.
11

) This adds an off~diagonal interaction Hamiltonian !]{' to !J(: 

!JC' = - H ~ibi ++h. c. 

= - H_ ~jS/Si ++h. c. {2 ·19) 
. .J2 

!JC' represents a coupling with an external boson source. The physical situations 

correspond to the limit H--;.0. 

§ 3. Molecular field approximation 

We shall apply molecular field approximation to the spin Hamiltonian 

!JCs+ !JCo+ !JC'. That is, the spin operators are first divided into mean values 
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28 S. Takagi 

and deviations from the mean: 

s-sz= v'2~+ cs-sz_ v'2~), 

(Sz)2 = < (Sz)2) + ( (Sz)2 _ < (Sz)2)), 

sz = (Sz)+ (Sz- (Sz)). 

(3·1) . 

Then the terms of the second order in the deviations are discarded. Thus we 

are left with the molecular field approximant for the free energy per spm: 

f = - -
1
-log Tr exp {- (3 (!JCs+ !/{a+!/{')} 

(3NL 

:::::: _1_ log Tr exp (- {3h), 
(3 

where h is given by 

(3·2) 

h= -~(a*S-Sz+aSzS+) -H2(Sz)2-H1Sz+l_(H1+H2), (3·3) 
2v'2 2 

a=J~+2H. (3·4) 

The last constant term in h has been included for computational convenience. 

The effective single-site Hamiltonian h may be written in a · 3 X 3 matrix 

form with respect to the basis vectors (2 · 7): 

On diagonalyzing the matrix, one obtains three eigenvalues of h: 

l_E 
2 '. 

where 

1 
--E 

2 ' 

(3·5) 

(3·6) 

The unknown quantities ~' < (Sz)2
) and <Sz) are determined by the self-consist

ency condition: 

(3·7) 
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Lattice Model for Quantum Liquid Mixtures 29 

When translated back into the language of the liquid mixtures with the aid of 

Eqs. (2 ·14) and (2 ·13), Eqs. (3 · 7) become 

where 

e: = .!!:_ sinh tf3E 
'i" E ,... ' 

.ttl 

1 _ p =cosh tSE- (2!~/ E) sinh !SE , 
.ttl . 

1 _ px = 2cosh !SE 
,... ' 
.ttl 

E = ..Jial 2 + P42
, 

81 = exp {tS (22!a- tl4)} + 2 cosh tf3E, 

and a= J~ + 2H as before. 

(3·8·1) 

(3·8·2) 

(3·8·3) 

As is well known, the molecular field approximation is contained within 

the general scheme of the Landau's theory of the second order phase transition.12
) 

Following Landau, we will expand the free energy in terms of the order para

meter near the super:fluid phase transition points. The procedure enables us to 

obtain explicit forms for the formal expansion coefficients in the Landau's theory 

and to investigate the properties of the phase transitions analytically. This will 

be done in the next section. 

§ 4. Phase transitions 

The free energy f is a function of intensive parameters H, 714, P.s and {3. 

Because of· the possibility of off-diagonal long range order, ~ is not a single

valued function of H, while ~ determines H uniquely. Therefore we prefer to 

work with ~ as an independent variable instead of H. Eventually we move on 

to discuss a phase separation. In that occasion relevant variables are the 

chemical potentials and the temperature, since the stratification curves are de

termined by the condition that each of the components of the mixtures has a 

common chemical potential in all the phases in equilibrium at a given temperature. 

So that we retain /14, 71s and {3 as independent parameters. 

An appropriate thermodynamic function g may be obtained by a Legendre 

transformation from f: 

(4·1) 

It holds that 

au) =H. 
a~ tr 4• tra. p 

(4·2) 

(In this section we choose H and ~ to be real just to avoid extra complications. 
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30 S. Takagi 

The results ar.e independent of the choice of the . phases of these parameters.) 

Equation (3 · 8 ·1) shows that H is an odd function of ~- This equation may be 

used to construct the following expansion in the vicinity of the super:fluid phase 

transition points: 

H = 2Af+ 4B~ 3 + 6C~ 5
.+ .... (4·3) 

Using Eqs. ( 4 · 2) and ( 4 · 3) one obtains 

U=Uo+ A~ 2
+ B~

4
+ C~

6
+ .... (4·4) 

The calculation of the coefficients A, B and C is tedious but straightforward. 

We introduce, .for brevity, the following dimensionless variables: 

t=_!_ 
{3J ' 

W= i/3/14, 

u = i exp {!{3 (2/13 -/14)} +cosh w. 

Then the coefficients are expessed, in unit of 1/ {3, as 

w 1 
A= .u--, 

sinh w t 

B= . w u2 {w sinh w-u(w coth w-1)}, 
smh3w 

- 9uw sinh w ( w coth w -1) + 4w2sinh2w}. 

(4·5) 

(4 ·6·1) 

(4 ·6· 2) 

(4. 6. 3) 

It is immediately seen that at sufficiently high temperatures A is positive, 

since uw/sinh w>O. This should be the case, since at high temperatures there is 

no spontaneous long range order, and g must have its minimum at ~ = 0. In 

the subsequent analysis we approach the transition points from the normal phase, 

namely from above in the T-x plane. In the norrrral phase, density p<n) and He3
-

concentration x(n) are related to the independent variables by 

2 (1 - p<nl) =cosh w- sinh w , 

u 

1 _ p<n) x<n) =cosh w , 

u 

(4·7·1) 

(4·7 ·2) 

which result from Eqs. (3 · 8 · 2) and (3 · 8 · 3) when ~ and H vanish. For sim

plicity we let t, u and w vary, while keeping the normal-phase density p<n) 

constant. Then u can be eliminated and we are left with w and t as independent 

parameters. The values of B, C and the normal-phase concentration x<n) are 
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Lattice Model for Quantum Liquid Mixtures 31 

11 '21 3' 
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\ \ -·-· ... --.-.+~~-

-2.0 
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\ 

' '""""""'---

-1.0 

3 

-a 
""---c 

Fig. 1. Plot of B (solid curve), C (dashed 

curve) and x<n> (dot-dashed curve) versus 

w for three values of p<n>. B and C are 

arbitrarily normalized. The numbers 1, 2 

and 3 refer to p<n> =0.65, 0.75 and 0.85, 

respectively. The point where the curve 

for B crosses the abscissa gives w c· w is 

plotted versus w in Fig. 1. It is seen 

that there are two distinct cases for the 

behavior of the free energy g depending 

on the sign of B: 

Case (a) For w>fifw0 (w0 depends on 

p<n>), B>O and C>O. 

As one decreases t, keeping w fixed, 

A goes through zero at t = 21tA. from 

positive to negative. The behavior of g 

is described in Fig. 2. It exhibits a 

continuous transition from a state with 

~ = 0 to another with ~=1=0. This may 

be identified as the superfluid phase tran

sition. Thus the lambda temperature tA. 

is determined by 

A=O. (4 ·8) 

physically meaningful only in the interval Case (b) For w<wa, B<O and C>O. 

where O<x<n><l. In this case, before t reaches tA. from 

above, namely at t = fifts>tA., A becomes so small and positive tha:t the equation 

(4·9) B 2 -4AC=O 

holds. A typical example is shown in Fig. 

(wa=- 0.45 for this value of p<n>). When 

Eq. ( 4 · 9) holds, g is equal to Uo both at 

~=0 and ~=~ 8 =( -2A/BY12
• Thus the free 

energy g behaves in quite a different manner 

from case (a) (see Fig. 4). We see that 

3 for p<n> = 0. 75 and w = -0.50 

a discontinuous transition occurs at t = t 8 

from a phase with ~ = 0 to another with 

~ = ~ 8 • These two phases coexist at t = t 8 

with the same values of the chemical poten-

0 -
a. 

Fig. 2. a. Behavior of 9 for w>wc as the temperature is lowered. 

equilibrium point corresponding to the minimum point of 9· 

X 

b. 
b. 

1.0 

Locus of the 
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32 S. Takagi 

tials, smce the curves for g are drawn at con

stant u, w and t. The transition, therefore, 

corresponds to the phase separation into a 

normal and a superfluid phases. It is also clear 

from the foregoing arguments that the strati

fication temperature t 8 is determined by Eq. 

(4·9), and that t8 >t-, .. , where t,.. implies the 

virtual lambda temperature when w< w 0 • (The 

superfluid phase transition does not occur for 

w< w 0 • Consequently t,.. does not actually exist. 

But one may formally extend the curve 

determined by Eq. ( 4 · 8) into this region. The 

extended part of the curve is called the virtual 

lambda line. See Fig. 5.) 

B
2
-4AC\ 
~ 

0.1 \ 
\ 
\ 
\ 

\ 
\ 

\0.3165 

- t$, 
t \ 

:9.05 
\ -0.2 

\ 
\ 
\ 
\ 

Fig. 3. Relation among A, B and C 

for p(n)=0.75 and w= -0.50 as t 

is varied. Qualitative features are 

the same for other values of p.Cn> 

and w(<wa). 

A critical point appears between the above two cases, and is determined by 

A=B=O. (4 ·10) 

This critical point marks the termination of the superfluid phase transition line 

and the subsequent onset of the phase separation. Thus it may be identified 

with the critical point observed experimantally. 

The rest of the section will be devoted to a detailed analysis of the phase 

transitions based on the equations derived above. 

i) Lambda line 

Along the lambda line the order para

meter ~ vanishes. Hence Eqs. ( 4 · 7) may 

be used to replace u and w in Eq. ( 4 · 8) 

with p and x measured along the lambda 

line. From Eqs. ( 4 · 7), 

0 -X 

& ~ 

1.0 

Fig. 4. a. Behavior of g for w<wc as the temperature is lowered. b. Locus of the equi

librium point corresponding to the minimum point of g. 
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Lattice Model for Quantum Liquid Mixtures 

sinh w 

u 
2p(1-x)- (1-px), 

tanh w = _2c_p -'---(1_-_x---')~---'(_1---'--p_xc__) 
1-px 

while Eqs. ( 4 · 6 ·1) and ( 4 · 8) give 

1 sinh w 
w=----

tA. u 

Combining these three equations, one obtains 

1 
2p(1-x)- (1-px) = (1-px)tanh-{2p(1-x)- (1-px)}. 

tA. 

33 

( 4 ·11) 

This formula reduces to that by M. M. when x = 0. It is to be remarked that, 

if a simple substitution p~p 4 = p (1- x) is made in the M. M. formula, then tA. 

increases with x for small x (we assume P> 1/2 as in M. M. since we are 

concerned with a liquid state). In ( 4 ·11), the correlation factor (1- px) guar

antees that tA. is a decreasing function of x. It takes account of the excluded 

volume effect exactly, apart from a possible resonance effect which cannot be 

treated within the molecular field approximation. As for the pressure or density 

dependence, the lambda line shifts downwards with increasing p (see Fig. 5). 

1.0 

Normal 

t 

0.5 

Superfluid 

0 1.0 -X 

Fig. 5. Theoretical phase diagrams for various 

values of p. At each curve p is kept con

stant all along the lambda line and the 

normal-phase boundary. The numbers 1, 2 

and 3 refer to p=0.65, 0.75 and 0.85, respec

tively. The dot-dashed curves give the 

virtual lambda lines. 

1.0 

fc 

-----felt a (x =0) 

0.5 

0 -X 
1.0 

Fig. 6. Migration of the critical point (solid 

curve) and the reduced critical point (dot

dashed curve) as p is varied. The points 

numbered 1, 2, 3, 4 and 5 refer to p=0.65, 

0.75, 5/6, 0.85 and 0.95. The empirical re

duced critical point taken from Ref. 3) is 

marked by an asterisk. 
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34 S. Takagi 

ii) Critical point 

Equations (4·6)and (4·10) give 

1 sinh w 
w=----

ta u 

w sinh w 
U=------

W coth w-1 

with w = wa. Since ~ = 0 at the critical point, u and w 0 are again related to 

p and x at the critical point by Eqs. ( 4 · 7). Elimination of u yields the follow

ing dependence of t 0 and x 0 on p in a parametrized form: 

t _ w coth w-1 
a- 2 ' 

w 

_
2 

w- (w coth w-1)coth w 
xa- ' 

2w- (w coth w-1) (coth w-1) 

2 (1 -p) = (w coth w-1) (coth w-1) . 

w 

(4 ·12) 

The quantities x 0 and p are decreasing and increasing functions of w, respec

tively, while t 0 is an even function of w. Thus, as p increases, ta increases 

for p<S/6 (p=5/6 corresponds to w=O, t0 =1/3 and x 0 =0.8), and decreases 

for p>S/6, whereas x 0 is a decreasing function of p. Figure 6 shows the 

migration of the critical point in T-x plane as p is varied. Also shown there is 

the migration of the reduced critical point (t0 /t-,., (x = 0), x 0 ). We also note 

that x 0<1j2 only when p>0.98. Therefore the critical point is practically 

always in the right half of T-x plane. This is one of the remarkable properties 

of S.D.S. 

iii) Phase separation 

Just below the critical point, Eq. ( 4 · 9) determines the stratification curves. 

If we fix pCn) and t=[[[ts(<ta), then Eqs. (4·7·1) and (4·9) uniquely specify 

the values of u and w. Then x(n) is obtained from Eq. (4·7·2), which gives 

the stratification curve corresponding to the normal-phase boundary. Next, the 

same values of u and w, or 714 and 'jJ.3, together with ~s calculated from these, 

should be put into Eqs. (3 · 8 · 2) and (3 · 8 · 3) with H = 0, to obtain the density 

pCs) and the He3-concentration xCs) of the coexisting superfluid phase. In this 

way we get the other stratification curve corresponding to the superfluid-phase 

boundary. We have carried out the procedure numerically. The results are 

shown in Fig. 5. The superfluid-phase boundary finds itself to the left of the 

virtual lambda line. The normal-phase boundary joins smoothly to the lambda 

line, which is a general feature of the molecular field approximation.12
) At lower 

temperatures far from the critical point, expansion in power series of ~ is im-
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Lattice Model for Quantum Liquid Mixtures 35 

possible and we have to numerically analyze Eqs. (3 · 8) directly. Our model 

loses its validity in this region. 

§ 5. Concluding remarks 

The following results have been obtained in a unified manner within the 

framework of a generalized lattice model and molecular field approximation: 

1) There occur two kinds of phase transition: The super:fluid phase transi

tion and phase separation. 

2) The lambda line terminates just at the critical point of the phase sepa

ration. 

3) The lambda temperature is a decreasing function both of l-Ies-concentra

tion and density. 

4) When the phase separation takes place, two phases coexist: one is normal 

and the other superfluid. At constant temperature, the normal-phase boundary 

is located to the right of the virtual lambda line, and the superfluid-phase boundary 

to the left. At constant l-Ies-concentration, the normal-phase boundary lies above 

the virtual lambda line. 

5) The critical point lies in the right half of the phase diagram. 

These properties are all in qualitative agreement with empirical data. Thus 

it is seen that S.D.S. alone is sufficient to explain important general features 

of the phase diagram. However, when one asks about subtler problems, such 

as the density dependence of the position of the critical point or the magnitude 

of x 0 , I.D.S. cannot be neglected. In solid Hes-He4 mixtures,7
l where I.D.S. alone 

is operative, xo is slightly less than one half. As the pressure is increased, T 0 

decreases slightly while xa is expected to increase toward one half, because 

pressure reduces the difference in molar volumes between the isotopes. This 

effect should be more enhanced in the liquid mixtures, where the molar-volume 

difference is larger. Then it may well be that rather large values of x 0 (see 

Fig. 5) get reduced by I.D.S. Also the density dependence of the position of 

the critical point (see Fig. 6) might be compensated by I.D.S., resulting in a 

monotonous decrease in ta with little change in xa. More clear-cut experimental 

data than presently available1s) are desired on the behavior of the critical point. 

Some generalizations of our theory may be conceived: 

a) To include !f-C1 and discuss I.D.S. together with S.D.S. (It is easy to 

check that, within molecular field approximation, the inclusion of !f-C1 does not 

alter the formula for the lambda line, Eq. (4 ·11) .) 

b) To go beyond molecular field approximation. 

c) To take the Fermi statistics into account and treat the low-temperature 

region. 14
l 

Recently Blume, Emery and Griffiths15
l proposed a spin-one Ising model for 

Hes-He4 mixtures. They carried out a similar analysis on their model as we 
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36 S. Takagi 

have done here. As the authors admit it, however, the significance of their 

order parameter is not clear. It seems to be more natural to interpret that 

they treated a gas-liquid transition of one of the components of a binary mixture, 

while the other component has much lower gas-liquid critical temperature. 
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