LATTICE OF IDEMPOTENT SEPARATING CONGRUENCES IN A \mathbb{P}-REGULAR SEMIGROUP

M.K. Sen and A. Seth

In this paper we introduce the concept of \mathbb{P}-regular, normal subset of a \mathbb{P}-regular semigroup, give an alternate characterisation of the maximum idempotent separating congruence in a \mathbb{P}-regular semigroup and finally describe the lattice of the idempotent separating congruences in a \mathbb{P}-regular semigroup.

1. Introduction

Yamada and Sen introduced the concept of \mathbb{P}-regularity [4] in a regular semigroup as a generalisation of both the concept of "orthodox" and the concept of "(special) involution" [3]. In [4] they characterised the maximum idempotent separating congruence τ on a \mathbb{P}-regular semigroup S. In this paper firstly we give an alternate characterisation of τ and secondly we give a description of the lattice of idempotent separating congruences on a \mathbb{P}-regular semigroup S, which generalises Feigenbaum's result [1] for orthodox semigroups. Unless otherwise defined, our notation will be that of [2].

2. Preliminary results and definitions

Let S be a regular semigroup and E_{S} the set of idempotents of S. Let $P \subseteq E_{S}$. Then (S, P) is called a \mathbb{P}-regular semigroup [5] if it satisfies the following:
(1) $P^{2} \subseteq E_{S}$
(2) for each $q \in P, q P q \subseteq P$.
(3) for any $a \in S$, there exists $a^{+} \in V(a)$ such that $a P^{1} a^{+} \subseteq P$ and $a^{+} P^{1} a \subseteq P .\left(P^{1}=P \cup\{1\}\right.$ and $V(a)=\left\{a^{+} \in S: a a^{+} a=a, a^{+} a a^{+}=\right.$ $\left.a^{+}\right\}$).

Hereafter (S, P) will be denoted by $S(P)$. Let $S(P)$ be a \mathbb{P}-regular semigroup. For any $a \in S, a^{+} \in V(a)$ such that $a P^{1} a^{+} \subseteq P$ and $a^{+} P^{1} a \subseteq P$ is called a \mathbb{P}-inverse of a and $V_{P}(a)$ denotes the set of all \mathbb{P}-inverses of a. Now $V_{P}(a) \neq \emptyset$ for any $a \in S$. Also for any $p \in P, p \in V(P)$ and $p P^{1} p \subseteq P$. So $p \in V_{P}(p)$. The following lemma follows from Lemma 2.5 of [5].

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

Lemma 2.1. In a \mathbb{P}-regular semigroup $S(P)$, if $a^{+} \in V_{P}(a), b^{+} \in V_{P}(b)$, then $b^{+} a^{+} \in V_{P}(a b)$.

The following lemma, which will be used frequently in this paper, is taken from [5].

Lemma 2.2. Let a, b be two elements of a \mathbb{P}-regular semigroup $S(P)$. Then $a \mathcal{H} b$ (where \mathcal{H} is Green's \mathcal{H}-relation) if and only if there exist $a^{+} \in V_{P}(a), b^{+} \in V_{P}(b)$ such that $a a^{+}=b b^{+}$and $a^{+} a=b^{+} b$.

Note. Actually if $a \mathcal{H} b$ then for all $a^{+} \in V_{P}(a)$ there exists $b^{+} \in V_{P}(b)$ such that $a a^{+}=b b^{+}$and $a^{+} a=b^{+} b$. Because for any $a^{+} \in V_{P}(a)$ we have $a^{+} a \mathcal{L} a \mathcal{R} a a^{+}$. Consequently $a^{+} a \mathcal{L} b \mathcal{R} a a^{+}$. So by Lemma 2.7 of [5] there exists a unique $b^{+} \in V_{P}(b)$ such that $b b^{+}=a a^{+}$and $b^{+} b=a^{+} a$. Moreover we notice that if $(a, p) \in \mathcal{H}$ for some $p \in P$ then as $p \in V_{P}(p)$ there exists a unique $a^{+} \in V_{P}(a)$ such that $a a^{+}=p p(=p)=$ $a^{+} a$. But this implies $\left(a^{+}, p\right) \in \mathcal{H}$ by Lemma 2.2. Hence $a^{+} \in V_{P}(a) \cap H_{a}$.

A subset B of a \mathbb{P}-regular semigroup $S(P)$ will be called \mathbb{P}-regular if for every $x \in B$ there exists $x^{+} \in V_{P}(x)$ such that $x^{+} \in B$.

A subset N of a \mathbb{P}-regular semigroup $S(P)$ will be called normal if for any $a, b \in S$, and $a^{+} \in V_{P}(a), b^{+} \in V_{P}(b)$, such that $a a^{+}=b b^{+}, a^{+} a=b^{+} b$ then $a b^{+}, a^{+} b \in N$ imply $a N b^{+} \subseteq N$ and $a^{+} N b \subseteq N$.

Lemma 2.3. In a \mathbb{P}-regular semigroup $S(P)$ the set P is a \mathbb{P}-regular normal subset of S.

Proof: For each $p \in P, p \in V(p)$ and $p P^{1} p \subseteq P$. So $p \in V_{P}(p) \cap P$. Thus P is a \mathbb{P}-regular subset of S. Also we note that if for any $a, b \in S$ there exist $a^{+} \in V_{P}(a), b^{+} \in V_{P}(b)$ such that $a a^{+}=b b^{+}$and $a^{+} a=b^{+} b$ then $a b^{+}$, $a^{+} b \in P$ imply $a P b^{+}=a a^{+} a P b^{+} b b^{+}=b b^{+}\left(a P a^{+}\right) a b^{+}=b b^{+} b b^{+}\left(a P a^{+}\right) a b^{+} a b^{+}=$ $b\left(a^{+}\left(a b^{+}\left(a P a^{+}\right) a b^{+}\right) a\right) b^{+} \subseteq P$ and $a^{+} P b=a^{+} a a^{+} P b b^{+} b=a^{+} b\left(b^{+} P b\right) a^{+} a=$ $a^{+} b a^{+} b\left(b^{+} P b\right) a^{+} a a^{+} a=a^{+}\left(b\left(a^{+} b\left(b^{+} P b\right) a^{+} b\right) b^{+}\right) a \subseteq P$. Thus P is a normal subset of S.

3. The lattice of idempotent separating congruences

Yamada and Sen [4] characterised τ, the maximum idempotent separating congruence on a \mathbb{P}-regular semigroup $S(P)$, as $\tau=\left\{(a, b) \in S \times S\right.$: there exist $a^{+} \in$ $V_{P}(a)$ and $b^{+} \in V_{P}(b)$ such that $a x a^{+}=b x b^{+}$and $a^{+} x a=b^{+} x b$ for all $\left.x \in P\right\}$. Here we shall present an alternate characterisation of τ. For this we define centraliser of P to be $C(P)=\{x \in S:(x, p) \in \tau$ for some $p \in P\}$.

Theorem 3.1. Let $\delta=\left\{(a, b) \in S \times S:\right.$ there exists $a^{+} \in V_{P}(a), b^{+} \in$ $V_{P}(b)$ such that $\left.a a^{+}=b b^{+}, a^{+} a=b^{+} b, a b^{+}, a^{+} b \in C(P)\right\}$. Then $\tau=\delta$.

Proof: Let $(a, b) \in \tau$. Then as τ is an idempotent separating congruence on a regular semigroup, $\tau \subseteq \mathcal{H}$. Hence by Lemma 2.2, there exist $a^{+} \in V_{P}(a), b^{+} \in V_{P}(b)$ such that $a a^{+}=b b^{+}, a^{+} a=b^{+} b$. Also $\left(a b^{+}, b b^{+}\right) \in \tau,\left(a^{+} a, a^{+} b\right) \in \tau$ where $b b^{+}$and $a^{+} a \in P$. Therefore $a b^{+}, a^{+} b \in C(P)$ and so $(a, b) \in \delta$. Conversely let $(a, b) \in \delta$. Then there are inverses $a^{+} \in V_{P}(a), b^{+} \in V_{P}(b)$ such that $a a^{+}=b b^{+}, a^{+} a=b^{+} b$ and $a b^{+}, a^{+} b \in C(P)$. So $a \mathcal{H} b$ and $a^{+} \mathcal{H} b^{+}$which gives $a b^{+} \mathcal{H} b b^{+}$. Since $a b^{+} \in C(P)$, we have $\left(a b^{+}\right) \tau=\left(b b^{+}\right) \tau$. Therefore $a \tau=(a \tau)\left(a^{+} a\right) \tau=(a \tau)\left(b^{+} b\right) \tau=\left(a b^{+}\right) \tau \dot{b} \tau=$ $\left(b b^{+}\right) \tau b \tau=b \tau$. Thus $\delta=\tau$.

Lemma 3.2. $C(P)$ is a \mathbb{P}-regular, normal subset of S.
Proof: Let $a \in C(P)$; then $(a, p) \in \tau$, for some $p \in P$. So $(a, p) \in \mathcal{H}$. Hence by the Note after Lemma 2.2 there exists $a^{+} \in V_{P}(a) \cap H_{a}$ such that $a a^{+}=a^{+} a=p$. Also $\left(a^{+} a, a^{+} p\right) \in \tau$ implies that $\left(p, a^{+}\right) \in \tau$. Thus $a^{+} \in C(P)$. Next let $a, b \in S$ be such that there exist $a^{+} \in V_{P}(a), b^{+} \in V_{P}(b)$ such that $a a^{+}=b b^{+}, a^{+} a=b^{+} b$ and $a b^{+}$, $a^{+} b \in C(P)$. Then by Theorem $3.1(a, b) \in \tau$. So $\left(a x b^{+}, b x b^{+}\right) \in \tau$ for all $x \in C(P)$. Now $x \in C(P)$ implies that $(x, p) \in \tau$ for some $p \in P$. So $\left(b x b^{+}, b p b^{+}\right) \in \tau$ where $b p b^{+} \in P$. Therefore $a x b^{+} \in C(P)$. Similarly, $a^{+} x b \in C(P)$ for all $x \in C(P)$. So $C(P)$ is a \mathbb{P}-regular, normal subset of S.

Lemma 3.3. Let $A=\left\{a \in S\right.$: there exists $a^{+} \in V_{P}(a)$ for which a^{+}pap $=$ $a a^{+} p$, and $p a p a^{+}=p a^{+} a$ for each $\left.p \in P\right\}$. Then $C(P)=A$.

Proof: Let $a \in C(P)$. Then $(a, q) \in \tau$ for some $q \in P$. Since $\tau \subseteq \mathcal{H}$ by the Note after Lemma 2.2 there exists $a^{+} \in V_{P}(a) \cap H_{a}$ such that $a a^{+}=a^{+} a=q$. Now $(a, q) \in \tau$ implies that $\left(a^{+} a, a^{+} q\right) \in \tau$, that is $\left(a^{+}, q\right) \in \tau$. For each $p \in P$, we have $\left(a p a^{+}, q p q\right) \in \tau$ and $\left(a^{+} p a, q p q\right) \in \tau$ which implies that $a p a^{+}=q p q=a^{+} p a$. So we have, $a^{+} p a p=q p q p=q p=a a^{+} p$ and $p a p a^{+}=p q p q=p q=p a^{+} a$. Conversely, if $a \in A$, then there exists $a^{+} \in V_{P}(a)$ such that $a^{+} p a p=a a^{+} p$ and $p a p a^{+}=p a^{+} a$ for all $p \in P$. Since $a a^{+} \in P, a^{+} a \in P$, we have $a a^{+}=a a^{+} a a^{+}=a^{+}\left(a a^{+}\right) a\left(a a^{+}\right)=$ $a^{+} a a a^{+}=\left(a^{+} a\right) a\left(a^{+} a\right) a^{+}=\left(a^{+} a\right) a^{+} a=a^{+} a$. So for any $p \in P, a p a^{+}=$ $a\left(a^{+} a\right) p a^{+}=a\left(a a^{+} p\right) a^{+}=a\left(a^{+} p a p\right) a^{+}=\left(a a^{+}\right)\left(p a p a^{+}\right)=a a^{+} p\left(a^{+} a\right)=a a^{+} p a a^{+}$ and $a^{+} p a=a^{+} p\left(a a^{+}\right) a=a^{+}\left(p a^{+} a\right) a=a^{+}\left(p a p a^{+}\right) a=\left(a^{+} p a p\right) a^{+} a=a a^{+} p\left(a^{+} a\right)=$ $\left(a a^{+}\right) p\left(a a^{+}\right)$. Hence $\left(a, a a^{+}\right) \in \tau$. Therefore $a \in C(P)$. Thus $A=C(P)$.

The following lemma will be used frequently in the proof of the next theorem.
Lemma 3.4. Let K be a normal subset of a \mathbb{P}-regular semigroup $S(P)$ such that $P \subseteq K$. For $a, b \in S$ if there exist $a^{+} \in V_{P}(a), b^{+} \in V_{P}(b)$ such that $a a^{+}=b b^{+}$, $a^{+} a=b^{+} b$ and $a b^{+}, a^{+} b \in K$ then $b a^{+}, b^{+} a \in K$ and $a b^{*}, a^{*} b \in K$ for all $a^{*} \in V_{P}(a)$, $b^{*} \in V_{P}(b)$.

Proof: First we note that in a normal subset $K(\supseteq P), a K a^{+} \subseteq K$ for all $a \in S$,
$a^{+} \in V_{P}(a)$. Now
and,

$$
\begin{aligned}
b a^{+} & =b b^{+} b a^{+}=a a^{+} b a^{+} \in a K a^{+} \subseteq K, \\
b^{+} a & =b^{+} a a^{+} a=b^{+} a b^{+} b \in b^{+} K b \subseteq K, \\
a b^{*} & =a a^{+} a b^{*}=b b^{+} a b^{*} \in b K b^{*} \subseteq K, \\
a^{*} b & =a^{*} b b^{+} b=a^{*} b a^{+} a \in a^{*} K a \subseteq K .
\end{aligned}
$$

The following theorem gives a description of the lattice of idempotent separating congruences on a \mathbb{P}-regular semigroup $S(P)$.

Let $N_{r}=\{K \subseteq S: P \subseteq K \subseteq C(P)$ where K is normal and \mathbb{P}-regular $\}$. Clearly P and $C(P)$ belong to N_{r}.

Theorem 3.5. The map $K \rightarrow(K)=\left\{(a, b) \in S \times S:\right.$ there exist $a^{+} \in$ $V_{P}(a), b^{+} \in V_{P}(b)$ for which $a a^{+}=b b^{+}, a^{+} a=b^{+} b$ and $\left.a b^{+}, a^{+} b \in K\right\}$ is a one to one order preserving map of N_{r} onto the set of all idempotent separating congruences on S.

Proof: First we shall show that if $K \in N_{r}$ then (K) is an idempotent separating congruence on S. Since $P \subseteq K,(K)$ is a reflexive relation. Furthermore, $K \subseteq C(P)$ implies $(K) \subseteq \tau$ (by Theorem 3.1), so that (K) is an idempotent separating relation. Also if $(a, b) \in(K)$ then by Lemma $3.4(b, a) \in(K)$. Hence (K) is symmetric. To prove that (K) is transitive, let $(a, b) \in(K),(b, c) \in(K)$. Then there exist $a^{+} \in V_{P}(a), b^{+}, b^{*} \in V_{P}(b), c^{*} \in V_{P}(c)$ such that $a a^{+}=b b^{+}, a^{+} a=b^{+} b, b b^{*}=c c^{*}$, $b^{*} b=c^{*} c$. But $(K) \subseteq \tau \subseteq \mathcal{H}$ implies that $a \mathcal{H} b \mathcal{H} c$ so that by the Note after Lemma 2.2 there exists $c^{+} \in V_{P}(c)$ such that $a a^{+}=b b^{+}=c c^{+}$and $a^{+} a=b^{+} b=c^{+} c$. Also $a b^{+}$, $a^{+} b, b c^{+}, b^{+} c \in K$ by Lemma 3.4. Therefore $a c^{+}=a a^{+} a c^{+} c c^{+}=a b^{+} b c^{+} b b^{+} \in K$ and $a^{+} c=a^{+} a a^{+} c c^{+} c=a^{+} b b^{+} c b^{+} b \in K$, as K is normal. So (a, c) $\in(K)$. To see that (K) is compatible, let $(a, b) \in(K),(c, d) \in(K)$. Since $K \subseteq C(P)$ we have $(K) \subseteq \tau$. So $(a, b),(c, d) \in \tau$. Hence there exist $a^{+} \in V_{P}(a), b^{+} \in V_{P}(b)$, $c^{+} \in V_{P}(c), d^{+} \in V_{P}(d)$ such that $a p a^{+}=b p b^{+}, a^{+} p a=b^{+} p b, c p c^{+}=d p d^{+}$, $c^{+} p c=d^{+} p d$ for all $p \in P$. Then it follows that $a a^{+}=b b^{+}, a^{+} a=b^{+} b$, $c c^{+}=d d^{+}, c^{+} c=d^{+} d$ and by Lemma $2.1 c^{+} a^{+} \in V_{P}(a c), d^{+} b^{+} \in V_{P}(b d)$. Now $(a c)\left(c^{+} a^{+}\right)=a\left(c c^{+}\right) a^{+}=a\left(d d^{+}\right) a^{+}=b\left(d d^{+}\right) b^{+}=(b d)\left(d^{+} b^{+}\right),\left(c^{+} a^{+}\right)(a c)=$ $c^{+}\left(a^{+} a\right) c=c^{+}\left(b^{+} b\right) c=d^{+}\left(b^{+} b\right) d=\left(d^{+} b^{+}\right)(b d),(a c)\left(d^{+} b^{+}\right)=a\left(c d^{+}\right) b^{+} \in a K b^{+} \subseteq K$ and $\left(c^{+} a^{+}\right)(b d)=c^{+}\left(a^{+} b\right) d \in c^{+} K d \subseteq K$ as $c d^{+}$and $a^{+} b \in K$ by Lemma 3.4. Thus (ac,bd) $\in(K)$. Therefore (K) is an idempotent separating congruence. Now if μ is an idempotent separating congruence on S then we define the P-kernel of μ, written as P ker μ, by P-ker $\mu=\{a \in S: a \mu p$ for some $p \in P\}$. We shall show that P-ker $\mu \in N_{\tau}$ and $(P$-ker $\mu)=\mu$. To prove that P-ker μ is a \mathbb{P}-regular subset of S, let $a \in P$-ker
μ. Then $(a, p) \in \mu \subseteq \mathcal{H}$ for some $p \in P$. So by the Note after Lemma 2.2 there exists $a^{+} \in V_{P}(a) \cap H_{a}$ such that $a a^{+}=a^{+} a=p$. Now $\left(a^{+} a, a^{+} p\right) \in \mu$ or, $\left(p, a^{+}\right) \in \mu$. Therefore $a^{+} \in P$-ker μ. To prove that P-ker μ is normal, let $a, b \in S, a^{+} \in V_{P}(a)$, $b^{+} \in V_{P}(b)$ such that $a a^{+}=b b^{+}, a^{+} a=b^{+} b$ and $a^{+} b, a b^{+} \in P$-ker μ. We shall show that $a x b^{+}$and $a^{+} x b$ belong to P-ker μ for all $x \in P$-ker μ. From the given condition $a \mathcal{H} b, a^{+} \mathcal{H} b^{+}$. Therefore $a b^{+} \mathcal{H} b b^{+}$. As $a b^{+} \in P$-ker μ, we have $\left(a b^{+}\right) \mu=\left(b b^{+}\right) \mu$. Therefore $a \mu=a \mu\left(a^{+} a\right) \mu=a \mu\left(b^{+} b\right) \mu=\left(a b^{+}\right) \mu b \mu=\left(b b^{+}\right) \mu b \mu=b \mu$. Hence $(a, b) \in \mu$. So $\left(a x b^{+}, b x b^{+}\right) \in \mu$ for all $x \in P$-ker μ. Now $x \in P$-ker μ implies that $(x, p) \in \mu$ for some $p \in P$. Hence $\left(b x b^{+}, b p b^{+}\right) \in \mu$. Thus $\left(a x b^{+}, b p b^{+}\right) \in \mu$. But $b p b^{+} \in P$. So $a x b^{+} \in P$-ker μ. Similarly $a^{+} x b \in P$-ker μ for all $x \in P$-ker μ. Also $P \subseteq P$-ker $\mu \subseteq C(P)$. Therefore P-ker $\mu \in N_{r}$. Now we shall show that $(P$-ker $\mu)=\mu$. For this let $(a, b) \in(P$-ker $\mu)$; then there exist $a^{+} \in V_{P}(a), b^{+} \in V_{P}(b)$ such that $a a^{+}=b b^{+}, a^{+} a=b^{+} b$ and $a b^{+}, a^{+} b \in P$-ker μ. Therefore $a \mathcal{H} b, a^{+} \mathcal{H} b^{+}$ which implies that $a b^{+} \mathcal{H} b b^{+}$. As $a b^{+} \in P$-ker μ we have $\left(a b^{+}\right) \mu=\left(b b^{+}\right) \mu$. Therefore $a \mu=a \mu\left(a^{+} a\right) \mu=a \mu\left(b^{+} b\right) \mu=\left(a b^{+}\right) \mu b \mu=\left(b b^{+}\right) \mu b \mu=b \mu$. Next let $(a, b) \in \mu$. Then $(a, b) \in \mathcal{H}$. So there exist $a^{+} \in V_{P}(a), b^{+} \in V_{P}(b)$ such that $a a^{+}=b b^{+}, a^{+} a=b^{+} b$. Also $\left(a b^{+}, b b^{+}\right) \in \mu$ and $\left(a^{+} a, a^{+} b\right) \in \mu$. Therefore $a b^{+}, a^{+} b \in P$-ker μ. Hence $(a, b) \in(P$-ker $\mu)$. Thus the given map is onto. The given map is clearly order preserving. We shall now show that the given map is one to one. For this let $K, L \in N_{r}$ with $(K)=(L)$. Let $a \in K$, since $K \subseteq C(P), a \in C(P)$. Therefore $(a, p) \in \tau$ for some $p \in P$. Since $\tau \subseteq \mathcal{H}$ by the Note after Lemma 2.2 there exists $a^{+} \in V_{P}(a) \cap H_{a}$ such that $a a^{+}=a^{+} a=p$. Now K is \mathbb{P}-regular so there exists $a^{*} \in V_{P}(a) \cap K$. Then $a^{+}=a^{+} a a^{+}=\left(a^{+} a\right) a^{*}\left(a a^{+}\right)=p a^{*} p \in K$. Thus $a \mathcal{H} a^{+} a, a\left(a^{+} a\right)=a \in K$ and $a^{+}\left(a^{+} a\right)=a^{+}\left(a a^{+}\right)=a^{+} \in K$. Therefore $\left(a, a^{+} a\right) \in(K)=(L)$. So $a\left(a^{+} a\right)^{*} \in L$ for all $\left(a^{+} a\right)^{*} \in V_{P}\left(a^{+} a\right)$ by Lemma 3.4. So in particular $a a^{+} a \in L$ so that $a \in L$. Thus $K \subseteq L$. Similarly we can prove $L \subseteq K$. Thus $K=L$.

Note. If we take $P=E$ then S becomes an orthodox semigroup and N_{r} becomes the collection of all self conjugate, regular subsemigroups K such that $E \subseteq K \subseteq C(E)$ so we get the Theorem 3.3 of [1] due to Feigenbaum, because in that case $a, b \in K$ implies $a, b \in C(E)$. So a $\boldsymbol{b} e, b \tau f$ for some $e, f \in E$ and there exist $a^{+} \in V(a), b^{+} \in V(b)$ such that $a a^{+}=a^{+} a=e, b b^{+}=b^{+} b=f$ and $a e=a \in K, a^{+} e=a^{+} \in K$ and $a b e f=a b=e f a b$. Since K is normal we have $a K e \subseteq K$. Therefore efabeef $\in e f K e f$ or, $a b \in$ efKef $\subseteq K$. If we take $P=\{e\}$ then S becomes a group and N_{τ} becomes the collection of all normal subgroups of the group S.

References

[1] R. Feigenbaum, 'Kernels of orthodox semigroup homomorphisms', J. Austral. Math. Soc. 22 (1976), 234-245.
[2] J.M. Howie, An introduction to semigroup theory (Academic Press, London, 1976).
[3] M. Yamada, 'Note on the construction of regular *-semigroups', Mem. Fac. Sci. Shimane Univ. 15 (1981), 17-22.
[4] M. Yamada and M.K. Sen, 'P-regularity in semigroups', Mem. Fac. Sci. Shimane Univ. 21 (1987), 47-54.
[5] M. Yamada and M.K. Sen, ' \mathbb{P}-regular semigroups', Semigroup Forum 39 (1989), 157-178.

Department of Pure Mathematics University of Calcutta
35, Ballygunge Circular Road
Calcutta - 700019
India

[^0]: Received 1 June 1991

