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ABSTRACT. Similar to how standard Young tableaux represent paths in the Young lat-
tice, Latin rectangles may be use to enumerate paths in the poset of semi-magic squares
with entries zero or one. The symmetries associated to determinant preserve this poset,
and we completely describe the orbits, covering data, and maximal chains for squares of
size 4, 5, and 6. The last item gives the number of Latin squares in these cases. To cal-
culate efficiently for size 6, we in turn identify orbits with certain equivalence classes of
hypergraphs.

1. INTRODUCTION

In the Young lattice, paths starting at the minimum element 0̂ may be identified with
standard Young tableaux in the following manner (for instance, [18], Ch. 8):

0̂ Ñ
1

Ñ
1 2

Ñ
1 2

3
Ñ

1 2 4

3
Ñ

1 2 4

3 5
.

In turn, the standard tableaux for a given shape are enumerated by the hook length formula.
A similar identification of paths may be made in the finite graded poset of semi-magic

squares of size n. By the Birkhoff-von Neumann theorem ([2], [20]), every semi-magic
square may be constructed by iterated addition of permutation matrices; if we represent
these permutation matrices in single line notation, a path of semi-magic squares is given
by a list of these lines, and, if the entries of the semi-magic square are zero or one, these
lists form Latin rectangles.

In [7], basic properties of this poset were considered for size three. For small order,
it is reasonable to display the poset diagram of orbits under a familiar group action, and
relevant poset data may be summarized efficiently using homogeneity.

Key to this work is the ability to draw connections between the following objects:
(1) semi-magic squares with entries zero or one,
(2) Latin rectangles and Latin squares, and
(3) hypergraphs that are both k-uniform and k-regular.

For methodology, we favor the language of groups, permutation matrices, and semi-magic
squares. We leave it to the reader to recast the language for the other poset models when
not explicit. For example, cycle switching for Latin rectangles (for instance, [21]) changes
the representation of a semi-magic square as a sum of permutation matrices, and total path
numbers in a given rank correspond to Latin rectangle counts, for which many formulas
exist. Other related issues of interest include the face structure of the Birkhoff polytope
(for instance, [1], or Chapters 8 and 9 in [5]) and the role of bipartite graphs there [12].
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In Section 2, we recall basic properties of semi-magic squares, the partial ordering, and
the group action. Section 3 notes the definition of Latin rectangles, and general formulas
specific to derangements are given in Section 4. Sections 5 and 6 describe the poset dia-
grams for sizes four and five, respectively, while size six occupies sections 7 through 11.
In particular, sections 9 and 10 note basic hypergraph definitions and properties. Finally,
we note some basic connections to syzygies and representations of semi-magic squares in
Section 12.

An unplanned by-product of this work is the enumeration of Latin squares as maximal
chains (Corollary 12.2). The initial motivation for this project was to find non-trivial appli-
cations of Chu-Vandermonde convolution for finite graded posets; for each case, it is noted
as a side comment, but in practice its repeated use was essential to stabilize numerical data
and computations.

For notation, we denote by Sn the symmetric group on t1, . . . ,nu and by D2n the dihedral
group with 2n elements. Typically, when we identify a subgroup of dihedral type, we give
generating elements of order n and 2, leaving the reader to verify the defining relation
yxy´1 “ x´1.

2. SEMI-MAGIC SQUARES AND THE POSET Mpn,sq

Definition 2.1. An square matrix M of size n with non-negative integer entries is called a
semi-magic square with line sum ρpMq if the sum along any row or column equals ρpMq.
Let Mpnq denote the monoid of all semi-magic squares of size n under addition.

As implied by the definition, the set of semi-magic squares is closed under addition and
multiplication by non-negative integers. In fact, every linear combination of permutation
matrices with non-negative integral weights is a semi-magic square, and, by the Birkhoff-
von Neumann theorem, the converse also holds.

Denote by G be the automorphism group AutpMpnqq of the monoid of semi-magic
squares of size n. If g is in G, we denote the action of g on the semi-magic square M
by g ¨M. Then g is a bijection on the set of semi-magic squares that respects the operation
of addition and preserves the zero matrix:

g ¨ pM`Nq “ g ¨M`g ¨N, g ¨0“ 0.

In fact, we have

Theorem 2.2 ([10], Theorem 2.2). Let G be the group of automorphisms of Mpnq. Then
G is isomorphic to the wreath product Sn oZ{2. This finite group, generated by row and
column permutations and transpose, has order 2pn!q2.

In particular, if σ ,τ are in Sn and T represents the transpose operation, then the group
elements and their corresponding action may be uniquely expressed by either

RpσqCpτq ¨M “ Pσ MP´1
τ , or RpσqCpτqT ¨M “ Pσ MT P´1

τ ;

the commuting elements Rpσq and Cpτq represent row and column permutations, respec-
tively, and non-commutativity is expressed by the relation

RpσqT “ TCpσq.

Define J to be the matrix with all entries equal to 1. Note that J is in Mpnqwith ρpJq“ n.
The fixed points of the action of G are precisely the multiples of J.

Now Mpnq admits a partial ordering using entry-wise comparison; that is, M ď N if
mi j ď ni j for all 1ď i, j ď n. For sě 0, define

Mpn,sq “ tM PMpnq | M ď sJu.
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With the induced partial order, Mpn,sq is a finite graded poset with unique minimum 0̂“ 0J
and unique maximum 1̂“ sJ (for instance, [17] or [18]). The rank function ρpMq is given
by line sum, and N covers M if and only if N “M`Pσ for some permutation matrix Pσ .
Furthermore, since M ď N implies g ¨M ď g ¨N, the action of G preserves Mpn,sq.

This poset is self-dual with involution

M1 “ sJ´M.

Now

ρpM1q “ ns´ρpMq

and, for g in G,

pg ¨Mq1 “ g ¨ pM1q.

Considering Mpnq as a subset of Zn2
, for which permutation matrices generate the lattice

paths of interest, we denote the number of maximal chains between 0̂ and M by the path
number vpMq. We denote the number of elements in the orbit corresponding to M by oM.
The path number vpMq depends only on the orbit of M, as does covering data corresponding
to M.

3. LATIN RECTANGLES AND THE POSET Mpn,1q

We now consider the finite graded poset Mpn,1q. These semi-magic squares are both
p0,1q-matrices and sums of permutation matrices. That is, if we write these permutations
in single line notation, the entries in columns are distinct when listed.

Definition 3.1. Suppose 0ď mď n. A mˆn matrix L with entries in t1, . . . ,nu is called a
Latin rectangle if each value occurs once in each row and at most once in each column.
If m“ n, we call L a Latin square.

Thus we may first realize a path from 0̂ to M in Mpn,1q as a iterated sum of permuta-
tion matrices, and then transcribe this sequence into single line notation to obtain a Latin
rectangle; the length of the path is the line sum of M, which is also the height of the cor-
responding Latin rectangle. If the order of addition is recorded top-down, then every Latin
square represents a distinct path from 0̂ to J. For instance, in the poset Mp3,1q, we have

0̂ Ñ 2 3 1 Ñ
2 3 1
1 2 3 Ñ

2 3 1
1 2 3
3 1 2

»

–

0 0 0
0 0 0
0 0 0

fi

fl Ñ

»

–

0 0 1
1 0 0
0 1 0

fi

fl Ñ

»

–

1 0 1
1 1 0
0 1 1

fi

fl Ñ

»

–

1 1 1
1 1 1
1 1 1

fi

fl .

Latin squares were named for the characters used in Euler’s work. The number of Latin
squares of size n ([15], A002860) remains an open problem, with exact values known up to
size 11 at the time of this writing. See, for instance, [6] and [9] for general theory, [14] for
a general formula using permanents, and [11] for an overview with computational results
to size 11. Our total Latin rectangle counts are verified by formula (1) and Figure 3 in [19];
see also [3], [8], and [13] for counting formulas for Latin rectangles.
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4. THE SECOND RANK AND DERANGEMENTS

Our main goal is to construct the poset diagrams for Mpn,1q for 4ď nď 6. When n“ 3,
the full diagram may be displayed easily, and the diagram for orbits is a chain with four
elements; see Figures 1 and 3 in [7]. Otherwise our general goal consists of two parts:
determine the orbit data for each rank, and determine the covering data for the orbits.

Under the group action, the orbits for ranks 0 and 1 are evident, and, by duality, so are
the top two ranks. For rank two, we first consider general sums of pairs of permutation
matrices to obtain path counts.

Definition 4.1. We say the pair of distinct permutation matrices Pσ1 ,Pσ2 is uniquely sum-
mable if, when Pσ1`Pσ2 “ Pτ1`Pτ2 , we have either σ1 “ τ1, σ2 “ τ2, or σ1 “ τ2, σ2 “ τ1.

It is immediate that the notion of unique summability is invariant under G. Next com-
pare the following with Corollary 2.1 of [1].

Theorem 4.2. Suppose σ
´1
1 σ2 is a product of c disjoint cycles in Sn. Then Pσ1 ,Pσ2 is a

uniquely summable pair if and only if c “ 1. Furthermore, the matrix Pσ1 `Pσ2 may be
expressed in 2c ways as an ordered sum of permutation matrices.

Proof. Since left translation preserves pairwise sums of permutation matrices, we may
assume Pσ1 “ I. By conjugation, we may assume σ2 is represented as a product of disjoint
cycles with first cycle p1 . . . iq and fixed points at the end. Now M “ I ` Pσ2 is block
diagonal, with blocks corresponding to cycles, followed by diagonal entries of two for the
fixed points.

If we rewrite M “ Pτ1 `Pτ2 , then τ1p1q equals 1 or 2, and the line sum of 2 determines
all other values for τ1 on t2, . . . , iu. That is, τ1 is either the identity or p1 . . . iq on t1, . . . , iu.
Generalizing, we have shown that cycles may exchange and that only products of cycles
may exchange. Hence the count follows. �

Restated in terms of path numbers, we have

Corollary 4.3. Suppose σ´1τ is a product of c disjoint cycles. Then there are 2c paths
from 0̂ to Pσ `Pτ in Mpnq.

Specializing these sums to respect the maximum property, we now characterize the orbit
types in rank two.

Theorem 4.4. The orbits in the second rank of Mpn,1q are in one-one correspondence
with the conjugacy classes of derangements of t1, . . . ,nu.

Proof. Recall that σ is a derangement if it has no fixed points. If M “ Pτ1 ` Pτ2 is in
Mpn,1q, left-multiplying by P

τ
´1
1

yields I`Pσ for some σ ; the derangement property of σ

follows since the maximum entry is still one.
Next, conjugations by elements in Sn fix the identity and act transitively on permutations

with the same cycle structure. Thus each orbit in rank two corresponds to at least one
derangement class. Furthermore, σ and σ´1 have the same cycle structure, so orbits can
be determined without using transpose. Finally, since we only need to calculate up to
conjugacy, it is enough to consider only left multiplication to show the derangement class
is unique.

Suppose Pσ ¨ pI`Pτ1q “ I`Pτ2 , where the τi are derangements. Since τ2 is a derange-
ment, the fixed points of σ and στ1 partition t1, . . . ,nu, and τ2 is the disjoint product of
the cycles in σ and στ1. When the partition is trivial, we have σ “ e or σ “ τ

´1
1 , and the

τi belong to the same class.



LATTICE PATH ENUMERATION 5

If each element has at least one fixed point, then we may relabel the indices by conju-
gating, so that the fixed points of στ1 are t1, . . . ,ku. Since σ “ τ2 on t1, . . . ,ku, τ1 “ τ

´1
2

there by the equation. Thus the corresponding cycles have the same structure. Likewise,
on the other set of fixed points, we have τ1 “ τ2. �

Next, the size of an orbit may be computed using the Orbit-Stabilizer Theorem. The
following theorem and corollaries handle all cases needed here.

Theorem 4.5. Suppose n ą 2, and let σ “ p1 . . .nq. The stabilizer of M “ I ` Pσ is
isomorphic to D4n, the dihedral group with 4n elements. The corresponding orbit has
oM “ pn´1q!n!{2 elements.

Proof. As a cycle, σ is centralized by precisely its own powers in Sn, and, as a permu-
tation matrix, further stabilized by RpτqCpτqT with τ “ p1nqp2 n´ 1q . . . . This stabilizer
element corresponds to reflection across the counter-diagonal; after transposing, we rotate
the matrix by 180 degrees. The cyclic subgroup is in fact a subgroup of the cyclic subgroup
of order 2n generated by Rpn . . .1qT, and these two elements with factors of T generate a
stabilizing subgroup isomorphic to D4n.

The stabilizer contains no other elements. Consider the one in the upper-right corner of
I`Pσ . Under a stabilizing element, there are 2n choices to replace it. If we suppose this
one is fixed, then the elements in the same row and column are either fixed or interchange.
Since the line sum is 2, the positions of the remaining ones are fixed by this choice, so the
symmetry is the identity or counter-transpose. Thus the order of the stabilizer is at most
4n. �

These symmetries may also be modeled by the isometries of a bounder right cylinder
over a regular n-gon. Effectively, every symmetry above is composed of at most three
operations: translation along the main diagonal, interchange of diagonals of ones, and
counter-transpose. For a general derangement, each cycle of size k generates a stabilizing
subgroup of itself of size k; these correspond to translations along the main diagonal within
a block.

Corollary 4.6. Suppose the derangement σ is a product of two disjoint cycles σ1 and σ2.
Let M “ I`Pσ .

(a) If σ1 and σ2 have lengths n1 ą n2 ě 2, then the stabilizer of M has order 8n1n2. The
corresponding orbit has oM “ pn!q2{4n1n2 elements.

(b) If ną 4 and n1 “ n2, the stabilizer of M has order 4n2, and the corresponding orbit
has oM “ pn´1q!2{2 elements.

Proof. We may assume the cycles have consecutive indexing. For part (a), first suppose
n1 “ 2. Since the block of size 2 is preserved by transpose, all stabilizing symmetries of the
larger block occur. In turn, this subgroup normalizes the four element subgroup generated
by transpositions on the block of size 2.

If n1 ą 2, there are at most 16n1n2 symmetries by Theorem 4.5. Furthermore, the
actions on each block either both use transpose or neither do. From the proof of Theorem
4.5, there are 4n1n2 elements of each types. Since this subgroup is a proper subgroup of
the direct product, the result follows.

For part (b), a similar argument holds, but now the subgroup is further normalized by
counter-transpose, which switches blocks. �

Next, we have
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Corollary 4.7. Suppose n “ 2m and the derangement σ is an involution. Then the sta-
bilizer of M “ I`Pσ has order m!2n`1, and the corresponding orbit has pn!q2{m!2n ele-
ments.

Proof. As before, we assume consecutive indexing of cycles in σ . The subgroup that
preserves blocks has a pZ{2ˆZ{2qm subgroup generated by transpositions as row and
column switches, which is further normalized by T . It is then straightforward to find
a subgroup isomorphic to Sm that permutes the blocks of M. For instance, a transposi-
tion that exchanges blocks k and k`1 on the main diagonal is given by RpτqCpτq, where
τ “ p2k´1 2k`1qp2k 2k`2q. �

Finally, we give the general formula for the path numbers in rank n´1 and n, assuming
all path numbers in rank n´2 are known. Implicit in path counting for higher ranks is the
use of an order-raising operator (or “up” operator) for graded posets (for instance, [18]);
generalizing Pascal’s identity, the path number at a given element M is the sum of the path
numbers of all elements covered by M.

Proposition 4.8. Suppose M “ J´ I in Mpn,1q, and let Mσ “ J´ I´Pσ , where tσu is a
set of representatives for each class of derangements in Sn. Then the path number for M is
given by

vpMq “
ÿ

σ

cσ ¨ vpMσ q,

where cσ is the number of elements in the conjugacy class for σ . Additionally,

vpJq “ n! ¨ vpJ´ Iq,

which also equals the number of Latin squares of size n.

Proof. Since there are non-nonzero diagonal elements, the only contributions to the path
number of M occur from derangements, and each element of a derangement class con-
tributes the same path number by homogeneity. Likewise, the second statement follows
since each permutation matrix contributes exactly once to vpJq. �

5. THE POSET Mp4,1q

J

J´ I

I`Pp12qp34qI`Pp1234q

Pσ

0

1,576

24,24

18,472,2

24,1

1,1

FIGURE 1. Poset diagrams for orbits in Mp4,1q

Consider the case when n “ 4, for which Figure 1 gives the poset diagrams of orbits.
The numbers on the right give the corresponding orbit size and path number. In this case,
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1

2

3

4

4

3

3

2

4

4

X

2

1

3

4

4

3

3

4

1

4

1

2

3

3

X

2

3

1

3

2

1

FIGURE 2. Downward increments for J´Pp13qp24q in Mp4,1q

all of these numbers are addressed in Section 4. We confirm that vpJq “ 576, the number
of Latin squares of size 4.

Although the path number for rank 3 follows from Proposition 4.8 with

cp1234q “ 6, cp12qp34q “ 3,

the entirety of the underlying process to be adapted may be seen with maximum clarity
here. We fix the element M “ J´Pp13qp24q and consider all elements covered by it. These
elements correspond to derangements of type pabcdq and pabqpcdq, with path numbers 2
and 4, respectively. Once enumerated, we add the path numbers.

First we note how to extract a permutation from M. For M it is possible to subtract the
permutation σ “ p12qp34q, given in single line notation 2134. The extraction process looks
like the following:

»

—

—

–

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

fi

ffi

ffi

fl

Ñ

1 2 3 4
2 3 4 1
4 1 2 3

Ñ
1 2 4 3
4 3 2 1 Ñ

1 2 3 4
4 3 1 2

The second entry, the Latin rectangle for M, records the row positions of the ones in the
corresponding column, arranged to reflect the Latin rectangle property. The third entry is
the Latin rectangle with the string 2134 removed, each digit corresponding to the same
column. Finally, we rearrange columns to obtain the string 1234 in the first row, giving a
derangement in the second row. In any case, the covered element is I`Pp1423q.

We enumerate all such permutations with a tree, in which each level corresponds to a
column of the Latin rectangle and each branch corresponds to a permutation of t1,2,3,4u
to be extracted. The tree for M is given in Figure 2, with M covering 6 elements with path
number 2 and 3 elements with path number 4. Thus the path number of M is 24.

Finally, one verifies the poset convolution formula for orbits in this case ([7], Section
6):

vpJq “
ÿ

ρpMq“k

oM ¨ vpMq ¨ vpJ´Mq “ 1 ¨24 ¨24 “ 72 ¨2 ¨2`18 ¨4 ¨4 “ 576.

Here 0ď kď 4 is fixed, M ranges over a set of representatives for each orbit in rank k, and
oM denotes the number of elements in the orbit for M.
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J

P1
σ

J´ I´Pp12345q J´ I´Pp12qp345q

I`Pp12qp345q I`Pp12345q

Pσ

0

1,161280

120,1344

600,241440,36

600,4 1440,2

120,1

1,1

FIGURE 3. Poset diagrams for orbits in Mp5,1q

6. THE POSET Mp5,1q

For n“ 5, we proceed in a similar manner to construct the poset diagrams in Figure 3.
In this case, at issue are the path numbers in rank 3. Here we proceed as in the previous
section.

For rank 3, the class of a covered element in rank 2 is quickly determined by checking
for columns with the same entries. When M “ J´ I´Pp12345q, M covers 8 elements with
path number 2 and 5 elements with path number 4, giving M a path number of 36. For the
other class, M covers exactly 12 elements with path number 2, giving a path number of 24.

Finally, the convolution formula verifies the Latin square count:

161,280“ 120 ¨1344“ 600 ¨4 ¨24`1440 ¨2 ¨36.

7. THE POSET Mp6,1q

Finally we construct the poset diagram for Mp6,1q (Figure 4) and verify that the number
of Latin squares of size 6 is 812,851,200. Description of the classes for each label appear in
the following sections. The general procedures for computing orbit data and path numbers
are as in previous sections, but now we introduce hypergraphs to describe the classes in
rank 3.

The entirety of the poset data is summarized in Table 1, with specific covering data
listed in Tables 2 and 3. For Tables 2 and 3, the entries denote the number of elements
by type covered (column) by a given element (row). Since the path number is the sum
of all path numbers covered, we obtain the total path number for an entry in a given row
by taking the dot product of the given row (multiplicities of type) with the top row (path
numbers of covered types). The last column of Table 3 is the top line of Table 2.

Finally the verification of the poset convolution formula is

812,851,200“ 16200 ¨4 ¨4224`43200 ¨2 ¨4032`7200 ¨4 ¨4608`1350 ¨8 ¨5376

“ 86400 ¨482`129600 ¨482`16200 ¨482`43200 ¨722

`200 ¨1442`21600 ¨482
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rJs

rP1
σ s

rA1s rB1s rC1s rD1s

rIVs rVsrIIs rV IsrIs rIIIs

rAs rBs rCs rDs

rPσ s

r0s

FIGURE 4. Poset diagram for orbits in Mp6,1q

TABLE 1. Orbit data for Mp6,1q

M ρpMq oM vpMq M ρpMq oM vpMq
0̂ 0 1 1 Pσ 1 720 1
A 2 16200 4 I 3 86400 48
B 2 43200 2 II 3 129600 48
C 2 7200 4 III 3 16200 48
D 2 1350 8 IV 3 43200 72
A1 4 16200 4224 V 3 200 144
B1 4 43200 4032 V I 3 21600 48
C1 4 7200 4608 P1σ 5 720 1128960
D1 4 1350 5376 J 6 1 812851200

8. ORBIT SIZES FOR THE SECOND RANK

First we indicate the indexing for orbit representatives of type I`Pσ , where σ is given
by

A : p12qp3456q, B : p123456q, C : p123qp456q, D : p12qp34qp56q,

and, in rank 4, orbit representatives are given by, for instance, A1“ J´I´Pσ . Path numbers
in rank 2 are given by Corollary 4.3. To use Proposition 4.8, the conjugacy classes of
derangements have orders

A : 90, B : 120, C : 40, D : 15.

To determine orbit sizes, again we apply the results of Section 4. Classes A and C
are given by Corollary 4.6, while Theorem 4.5 calculates class B. Type D follows from
Corollary 4.7. The rank 4 class sizes now follow by duality.
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TABLE 2. Covering relations for rank 4 over rank 3

Rank 4{3 I II III IV V V I vpMq
vpMq 48 48 48 72 144 48
A1 32 32 0 16 0 0 4224
B1 24 36 6 8 0 6 4032
C1 0 36 9 24 1 12 4608
D1 0 0 0 64 0 16 5376

TABLE 3. Covering relations for rank 3 over rank 2

Rank 3{2 A B C D vpMq
vpMq 4 2 4 8
I 6 12 0 0 48
II 4 12 2 0 48
III 0 16 4 0 48
IV 6 8 4 2 72
V 0 0 36 0 144
V I 0 12 4 1 48

9. BASIC NOTIONS FOR HYPERGRAPHS

In the third rank, the new issue is how to both determine and distinguish the orbits, and
compute stabilizers of representative elements.

We review the basic notions of hypergraphs. See, for instance, [4] for general theory,
but here we need little more than basic definitions.

A hypergraph H is a pair of sets pX ,Eq, where the elements of X are called the vertices
of H and the elements of E, called hyperedges, are subsets of X . We suppose H has
both finitely many vertices x1, . . . ,xn and hyperedges e1, . . . ,em. This definition allows for
repeated hyperedges.

Definition 9.1. The incidence matrix M of H is the nˆm matrix with non-zero entries
mi j “ 1 when xi P e j. That is, the columns of M record the vertices in each hyperedge.

Definition 9.2. Let H be a hypergraph on n vertices.
(a) We call H k-uniform if every hyperedge contains k-vertices. That is, the incidence

matrix has exactly k ones in each column.
(b) We call H k-regular if every vertex is contained in k hyperedges. That is, the

incidence matrix has exactly k ones in each row.
(c) Suppose 0 ď k ď n. We call H semi-magic (of rank k) if it is both k-uniform and

k-regular. That is, the incidence matrix of H is an element of Mpn,1q with line sum k.

A semi-magic hypergraph of rank 2 is a union of cycles without isolated vertices, with
an obvious correspondence to derangements. For rank 3, we have an arrangement of n
triangles in an regular n-gon, where exactly three triangles abut each vertex.

Definition 9.3. The dual of the hypergraph H, denoted H˚, is the hypergraph with inci-
dence matrix MT .

The properties of k-uniformity and k-regularity interchange under duality. Of course,
the dual of a semi-magic hypergraph of rank k is also semi-magic of rank k. In this case, it
will be convenient to assume that H and H˚ have the same sets of vertices.
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In a similar manner, we can define complements.

Definition 9.4. The complement of the hypergraph H, denoted by H 1, is the hypergraph
with incidence matrix M1 “ J ´M. That is, the hyperedges of H 1 are given by the set
complements e1i “ Xzei.

If H is semi-magic of rank k, then H 1 is semi-magic of rank n´k, and complementation
of semi-magic hypergraphs corresponds to duality in Mpn,1q.

Finally, we note when two hypergraphs are the same up to indexing.

Definition 9.5. Two hypergraphs H1, H2 with vertex set X are said to be equivalent if
there exists a bijection on X that induces bijections between the hyperedges of H1 and H2.

The set of all equivalences of H with itself is called the automorphism group of H,
denoted by GH .

10. THE ACTION OF G ON HYPERGRAPHS

With the language of hypergraphs in place, we characterize the orbits of Mpn,1q in rank
k with respect to the notion of equivalence of semi-magic hypergraphs of rank k. The action
of G on Mpn,1q induces an action on hypergraphs by way of the incidence matrix M. While
this action applies to any hypergraph with a square incidence matrix, we assume M is in
Mpn,1q, so the hypergraph is semi-magic. While the hypergraph is entirely determined by
the incidence matrix, we will find it useful to consider hypergraph pairs generated by the
row and column vectors.

Definition 10.1. Suppose M is in Mpn,1q and H is the hypergraph associated to M. We
call pH,H˚q the hypergraph pair associated to M.

The following proposition characterizes the equivalence of hypergraphs entirely as row
and column switches of M. In the next section, we will see an example where H and H˚

are not equivalent.

Proposition 10.2. Suppose the hypergraph pair pH,H˚q is associated to M. Generators
of G act as follows

Rpσq : σ induces a bijection on X with respect to H, and the edges of H˚ are permuted,
Cpτq : τ induces a bijection of X with respect to H˚, and the edges of H are permuted,

and
T : transpose interchanges H and H˚.

That is, each orbit of G on Mpn,1q in rank k corresponds to an unordered pair of equiva-
lence classes of semi-magic hypergraphs of rank k on n vertices.

Now the stabilizer of M may be reduced to consideration of automorphism groups.

Proposition 10.3. Let pH,H˚q be the hypergraph pair associated to M.
(a) GH and GH˚ are isomorphic.
(b) If H and H˚ are inequivalent, then the stabilizer of M is isomorphic to GH .
(b) Otherwise, the stabilizer of M contains GH as a normal subgroup of index 2.

Proof. For part (a), the isomorphism is given by g ÞÑ T gT , or RpσqCpτq ÞÑ RpτqCpσq.
For part (b), inequivalence means no element in the stabilizer exchanges H and H˚, so the
elements cannot have a factor of T .

On the other hand, if H and H˚ are equivalent, RpσqCpτq ¨M “ T ¨M for some σ and
τ , and thus there exists an element T1 in the stabilizer of M that maps H to H˚. Since
elements of GH have no factor of T , GH is normalized by T1. Finally, the index assertion
follows since T 2

1 is in GH . �
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Ia :

»

—

—

—

—

—

—

–

1 1 0 0 1 0
1 1 0 1 0 0
0 0 1 1 1 0
0 0 1 1 0 1
0 0 1 0 1 1
1 1 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

1 2 3 4 5 6
2 6 4 3 1 5
6 1 5 2 3 4

Ñ

Ib :

»

—

—

—

—

—

—

–

1 0 0 0 1 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 0 1
0 1 0 1 1 0
1 0 0 0 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

1 2 3 4 5 6
2 5 4 3 6 1
6 3 2 5 1 4

Ñ

II :

»

—

—

—

—

—

—

–

1 1 0 0 0 1
1 1 0 0 1 0
1 0 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 1 1 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

1 2 3 4 5 6
2 1 6 3 4 5
3 6 4 5 2 1

Ñ

III :

»

—

—

—

—

—

—

–

1 1 1 0 0 0
1 1 0 0 0 1
0 0 1 1 1 0
0 0 0 1 1 1
0 0 1 1 1 0
1 1 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

1 2 3 4 5 6
2 6 1 5 3 4
6 1 5 3 4 2

Ñ

FIGURE 5. Orbits with rank 3: cases I´ III

11. ORBIT DATA FOR RANK 3

We now consider the rank 3 orbits. There are six orbits, and all but one pair correspond
to self-dual hypergraph classes. The hypergraphs are given in Figures 5 and 6; vertices
are labeled with a 1 at the top and increasing clockwise. For purposes of verification, the
representative M is chosen to exhibit as much symmetry as possible in the corresponding
hypergraph; we include the corresponding Latin rectangle for reference.
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IV :

»

—

—

—

—

—

—

–

1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

1 2 3 4 5 6
2 3 4 5 6 1
6 1 2 3 4 5

Ñ

V :

»

—

—

—

—

—

—

–

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5

Ñ

V I :

»

—

—

—

—

—

—

–

1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 1 0 0
0 1 1 1 0 0
0 0 1 0 1 1
0 0 0 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2

Ñ

FIGURE 6. Orbits for rank 3 : cases IV ´V I

Theorem 11.1. The orbits of Mp6,1q in rank 3 are given by the equivalence classes in
Figures 5 and 6. Only the pair tIa, Ibu has distinct hypergraph classes under transpose.
These classes may be distinguished by the following features:

Ia : one pair of repeated triangles, disjoint from a three-cycle of double edges,
Ib : three double edges at a vertex, disjoint from a unique triple edge,
II : two pairs of adjacent double edges,

III : two pairs of repeated triangles, each containing a triple edge,
IV : a six-cycle of double edges,
V : a disjoint pair of triangle triplets, and

V I : a triplet of disjoint double edges.

Proof. The last two statements are checked directly, and the second statement also holds
since the stabilizer order is preserved under transpose. That there are no other classes
may be seen by enumerating all possibilities for repeated triangles and shared edges while
keeping exactly 3 edges at a vertex. We see this also by exhaustion when performing the
extraction process to compute covering data in rank 4. �
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Noting Proposition 10.3, we calculate stabilizers as follows:
Ia and Ib: no elements exchange H and H˚, so the stabilizers for both cases are isomor-

phic to GH . In Ia, a subgroup isomorphic to S3 arises from permutations of the three cycle
of double edges. In turn, the exchange of the nested triangles centralizes this subgroup.
The stabilizer has order 12.

II: the double edge adjacencies must be preserved; there are eight symmetries of this
edge set, but only 4 come from elements of GH . The stabilizer has order 8.

III: there are 16 symmetries that preserve each of the doubly-repeated triangles, nor-
malized by the exchange. The stabilizer has 64 elements.

IV : the six-cycle of double edges must be preserved, so GH is isomorphic to D12. The
stabilizer has 24 elements.

V : here the blocks of M are preserved by pS3q
4, further normalized normalized by

switching blocks. Of course, each S3 either re-orients a triangle or permutes a triple of
nested triangles. The order of the stabilizer is 5184, and finally

V I : GH preserves the set of three double edges, for a maximum of 48 elements. Only
24 of these arise from elements of GH , so the stabilizer has 48 elements. Again this can be
deduced directly from M.

Finally, considering covering data, we need only modify the extraction technique for
rank 4 over rank 3. The only change occurs in the final step; an efficient visual identifica-
tion of the orbit in rank 3 is to sketch the hypergraph, noting first the occurrence of nested
triangles, and, if none, shared edges. Here 322 cases require checking.

For instance, extracting 432615 from J ´ I ´ Pp12qp3456q in class A1, we see that the
resultant class in rank 3 is Ib:

3 4 6 2 1 5
4 6 5 3 2 1
5 3 1 6 4 2
6 5 2 1 3 4

Ñ

3 5 6 1 4 2
5 6 1 2 3 4
6 4 5 3 2 1

Ñ .

12. SYZYGIES AND DISTINCT SUMS

Finally we briefly consider syzygies in Mpnq as a measure the non-uniqueness of M as a
sum. See [16] for the commutative algebra formulation, although we continue our elemen-
tary approach. A syzygy, or dependence relation with respect to the monoid structure, may
be represented by a triple pM,S1,S2q, where M is in Mpnq and Si is a multiset of permuta-
tion matrices that sums to M; we allow for repetitions in Si. If ΣpSq represents the sum of
the elements of S, then ΣpS1q´ΣpS2q “ 0 represents a non-trivial syzygy if S1 and S2 are
distinct.

One special feature of Mpn,1q is that, while there may be several sums that represent a
given M, the elements in a given sum for M are not repeated.

Theorem 12.1. Let M be in Mpn,1q, and let PpMq be the set of subsets of permutation
matrices that sum to M. Then the path number

vpMq “ ρpMq! ¨ |PpMq|,

and |PpMq| depends only on the orbit of M.

In terms of Latin rectangles as paths, rows may be ordered by increasing first elements.
For the orbits of Mpn,1q for 3ď nď 5, |PpMq| is given in Figure 7.

Applying the theorem to poset convolution, we obtain
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Corollary 12.2. In the notation of Theorem 12.1, the number of Latin squares of size n is
given by

vpJq “ pn´ kq! k!
ÿ

M

oM ¨ |PpMq| ¨ |PpJ´Mq|,

where 0 ď k ď n is fixed, M ranges over a set of representatives for the orbits in rank k,
and oM is the number of elements in the orbit for M.

2

1

1

1

24

4

21

1

1

1344

56

6 4

2 1

1

1

FIGURE 7. Number of distinct sums |PpMq| for M with 3ď nď 5

The extraction process of section 5 may be adapted to determine all elements of PpMq.
The resulting strings are the only permutations allowed in the construction of a sum for M.
If these strings are listed lexicographically, we may then implement a sorting method to
determine all combinations that sum to M. For instance, with M “ J´Pp13qp24q in Figure
2, the tree gives the nine strings

1234, 1243, 1324, 2134, 2143, 2341, 4123, 4231, 4321.

Using the tree in Figure 8, we obtain the 4 rectangles that represent J´Pp13qp24q :

1 2 3 4
2 1 4 3
4 3 2 1

1 2 3 4
2 3 4 1
4 1 2 3

1 2 4 3
2 1 3 4
4 3 2 1

1 3 2 4
2 1 4 3
4 2 3 1

.

1234

2143

4321

2341

4123

1243

2134

4321

1324

2143

4231

FIGURE 8. Distinct sums for J´Pp13qp24q in Mp4,1q
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