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LATTICE POINTS IN SIMPLE POLYTOPES

MICHEL BRION AND MICHÈLE VERGNE

1. Introduction

Consider a convex n-dimensional polytope P in Rn with all vertices in the lattice
Zn. In this article, we give a formula for the number of lattice points in P , in the
case where P is simple, that is, if there are exactly n edges through each vertex of
P . More generally, for any polynomial function φ on Rn, we express∑

m∈Zn∩P
φ(m)

in terms of
∫
P (h)

φ(x)dx where the polytope P (h) is obtained from P by independent

parallel motions of all facets. This extends to simple lattice polytopes the Euler-
Maclaurin summation formula of Khovanskii and Pukhlikov [8] (valid for lattice
polytopes such that the primitive vectors on edges through each vertex of P form
a basis of the lattice). As a corollary, we recover results of Pommersheim [9] and
Kantor-Khovanskii [6] on the coefficients of the Ehrhart polynomial of P . Our proof
is elementary. In a subsequent article, we will show how to adapt it to compute the
equivariant Todd class of any complete toric variety with quotient singularities.

The Euler-Maclaurin summation formula for simple lattice polytopes has been
obtained independently by Ginzburg-Guillemin-Karshon [4]. They used the dictio-
nary between convex polytopes and projective toric varieties with an ample divisor
class, in combination with the Riemann-Roch-Kawasaki formula ([1], [7]) for com-
plex manifolds with quotient singularities. A counting formula for lattice points in
lattice simplices has been announced by Cappell and Shaneson [2], as a consequence
of their computation of the Todd class of toric varieties with quotient singularities.

2. Euler-Maclaurin formula for polytopes

Let V be a real vector space of dimension n. Let M be a lattice in V . Points
of M will be called integral points. The vector space V has a canonical Lebesgue
measure dx giving volume 1 to a fundamental domain for M . More precisely, let
e1, e2, . . . , en be a basis of V such that

M = Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zen.

If x = x1e
1 + x2e

2 + · · ·+ xne
n is a point in V , then dx = dx1dx2 · · · dxn.
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372 MICHEL BRION AND MICHÈLE VERGNE

We denote by V ∗ the dual vector space to V . If L is a lattice in a vector space
W , we denote by L∗ its dual lattice in the dual vector space W ∗:

L∗ = {y ∈W ∗, (x, y) ∈ Z, for allx ∈ L}.
We will denote M∗ by N . Then N is a lattice in V ∗.

Let P be a convex polytope contained in V with nonempty interior P 0. We
denote by vol(P ) the volume of P with respect to the measure dx on V .

We denote by F the set of closed faces of P . We have

F =

n⋃
k=0

F(k),

where F(k) is the set of faces of dimension k. We have F(n) = {P}. By definition,
the set F(0) of extremal points of P is the set of vertices of P . The set F(1) is the
set of edges of P . A face of codimension 1 is called a facet. A facet F ∈ F(n− 1) is
the intersection of P with an affine hyperplane {y; (uF , y)+λF = 0}. We choose the
normal vector uF ∈ V ∗ to the facet F such that P is contained in {y, (uF , y)+λF ≥
0}. In other words, we choose the inward-pointing normal vector uF . This normal
vector is determined modulo multiplication by an element of R+.

If f is a face of P , we define

Ff = {F ∈ F(n− 1); f ⊂ F}.(2.1)

We denote by 〈f〉 the vector space generated by elements p− q where p ∈ f and
q ∈ f . If f is in F(k), then 〈f〉 is of dimension k.

Definition 2.1. Define Cf to be the convex cone generated by elements p− q with
p ∈ P and q ∈ f . We say that Cf is the tangent cone to P at its face f .

The cone Cf is also known as the barrier cone. It contains 〈f〉 as its largest
linear subspace.

Definition 2.2. Define σf to be the polar cone to Cf :

σf = {y ∈ V ∗|(x, y) ≥ 0 for allx ∈ Cf}.
The cone σf is also known as the normal cone.
We have

σf =
∑
F∈Ff

R+uF .

If f = {P}, then σf = {0}.
Definition 2.3. A convex polytope P is said to be simple if there are exactly n
edges through each vertex.

For example, in R3, a cube, a pyramid with triangular basis, and a dodecahedron
are simple.

Definition 2.4. A convex polytope P is a lattice polytope if all vertices of P are
in the lattice M .

Consider a convex lattice polytope P . We can then choose for each facet F the
normal vector uF in the dual lattice N . We normalize uF in order that uF be a
primitive element of N , that is, if tuF ∈ N , then t is an integer.
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LATTICE POINTS IN SIMPLE POLYTOPES 373

Let us number facets of P as F1, F2, . . . , Fd. We denote by ui ∈ N the normalized
normal vector uFi to Fi. Let λi = λFi . Thus P is the intersection of d half-spaces:

P = {x ∈ V, (ui, x) + λi ≥ 0, 1 ≤ i ≤ d}.
Consider h ∈ Rd, h = (h1, h2, . . . , hd). For h ∈ Rd, define

P (h) = {x ∈ V, (ui, x) + λi + hi ≥ 0, 1 ≤ i ≤ d}.(2.2)

Then P (h) is a convex polytope. Moreover, for small h, P (h) and P have the
same directions of faces. In particular, P (h) is simple if P is simple and h is small
enough.

Let C be a closed convex cone in a vector space W with a lattice L. We denote
by 〈C〉 the vector space spanned by C. The dimension of C is defined to be equal
to the dimension of the vector space 〈C〉. We say that C is acute (or pointed) if C
does not contain any nonzero linear subspace. A cone C is said to be polyhedral
(respectively, rational polyhedral) if C is generated by a finite number of elements
of W (respectively, of L). An acute polyhedral cone C of dimension k is said to be
simplicial if C has exactly k edges. If P is a convex lattice polytope, then cones Cf
associated to faces f of P , and their polar cones σf are rational and polyhedral.
The cone Cf is acute if and only if f is a vertex of P . The cones σf are acute for
all f ∈ F .

A finite collection Σ of rational polyhedral acute cones in V ∗ is called a fan if
1) for any face τ of an element σ ∈ Σ, we have τ ∈ Σ;
2) for σ, τ ∈ Σ, we have σ ∩ τ ∈ Σ.
The fan is complete if

⋃
σ∈Σ σ = V ∗.

We denote by Σ(k) the set of cones in the fan Σ of dimension k.
If P is a convex lattice polytope, the collection ΣP = {σf , f ∈ F} is a complete

fan, called the normal fan of P ([11]). If f ∈ F(n − k) is a face of codimension k
of P , then σf has dimension k. The fan ΣP depends only on the directions of the
faces of P . In particular, the homothetic polytope qP (q a positive integer) has the
same fan as P .

Definition 2.5. A fan Σ is said to be simplicial if each cone σ ∈ Σ is simplicial.

A lattice polytope is simple if and only if its fan is simplicial.
Let Σ be a simplicial fan. Let d be the cardinal of Σ(1). We denote elements

of Σ(1) as `1, `2, . . . , `d. Let ui, 1 ≤ i ≤ d, be the primitive integral vector (with
respect to N) on the half-line `i.

Definition 2.6. Let σ ∈ Σ. We denote by E(σ) the subset of the set {1, 2, . . . , d}
consisting of those i such that the half-line `i is an edge of σ.

The elements {ui, i ∈ E(σ)} are linearly independent. Let

U(σ) =
⊕
i∈E(σ)

Zui(2.3)

and

T (σ) = 〈σ〉/U(σ).

Let k be the dimension of σ. Then U(σ) = Zk is a lattice in 〈σ〉 = Rk, and
T (σ) = Rk/Zk is a k-dimensional torus.
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Consider the lattice N(σ) = N ∩ 〈σ〉 of 〈σ〉. Then U(σ) is a sublattice of N(σ),
which is usually different from N(σ). Define

G(σ) = N(σ)/U(σ).(2.4)

Then G(σ) is a finite subgroup of T (σ). The order of G(σ) is called the multiplicity
of σ in toric geometry.

If τ is a face of σ, we have U(τ) = 〈τ〉 ∩ U(σ) since E(τ) ⊂ E(σ) and the
elements ui, i ∈ E(σ), are linearly independent. Thus we have a natural inclusion
T (τ) ⊂ T (σ). This induces a natural inclusion of the finite group G(τ) in G(σ).
By the definition of ui as a primitive vector, the group G(σ) is trivial if σ ∈ Σ(1).

Definition 2.7. Let Σ be a simplicial fan. We denote by TΣ the set obtained from
the disjoint union of the tori T (σ) (σ ∈ Σ) by identifying the subsets T (σ ∩ τ) of
T (σ) and T (τ) for all (σ, τ) ∈ Σ× Σ.

We write TΣ =
⋃
σ∈Σ T (σ). In TΣ, we have T (σ) ∩ T (τ) = T (σ ∩ τ). A visual

way to represent the set TΣ associated to a rational fan Σ is the following. We
denote by Q(σ) the subset

Q(σ) =
∑

i∈E(σ)

[0, 1[ui

of 〈σ〉. It is clear that the map Q(σ) 7→ T (σ) (restriction of the quotient map
〈σ〉 → 〈σ〉/U(σ)) is an isomorphism. Furthermore, Q(σ) ∩ Q(τ) = Q(σ ∩ τ).
Consider the subset QΣ of V ∗ defined by

QΣ =
⋃
σ∈Σ

Q(σ).(2.5)

Then the set QΣ is isomorphic to the set TΣ.
Consider the finite subgroup G(σ) ⊂ T (σ).

Definition 2.8. The subset ΓΣ of TΣ is defined to be

ΓΣ =
⋃
σ∈Σ

G(σ).

Thus we can think of ΓΣ as the union of all finite groups G(σ) (σ ∈ Σ) with
equivalence relations given by G(σ ∩ τ) = G(σ) ∩ G(τ) ⊂ TΣ. In particular, the
neutral elements of all the groups G(σ) are identified to a unique element of ΓΣ,
denoted by 1. In the identification of TΣ with the subset QΣ of V ∗, the subset ΓΣ

of TΣ is identified with QΣ ∩N.
Example 2.9. Let a, b, c be pairwise coprime integers, and let P (a, b, c) be the
simplex in R3 with vertices

O = (0, 0, 0), A = (a, 0, 0), B = (0, b, 0), C = (0, 0, c).

The rational fan ΣP associated to P has edges

`1 = R+e1, `2 = R+e2, `3 = R+e3, `0 = R+(−bce1 − cae2 − abe3),

where (e1, e2, e3) is the canonical basis of (R3)∗. Let us list the nontrivial abelian
groups G(σ) for σ ∈ ΣP . Denote by G(j, . . . , k) the group associated to a cone in
ΣP generated by (`j , . . . , `k). We have

G(0, 2, 3) = Z/bcZ, G(0, 3, 1) = Z/caZ, G(0, 1, 2) = Z/abZ
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LATTICE POINTS IN SIMPLE POLYTOPES 375

and

G(0, 1) = Z/aZ, G(0, 2) = Z/bZ, G(0, 3) = Z/cZ.
Our set ΓΣ is equal to

Γ = (Z/bcZ) ∪ (Z/acZ) ∪ (Z/abZ),

where we identify the common subsets Z/aZ, Z/bZ, Z/cZ.

Definition 2.10. A simple lattice polytope P is called a Delzant polytope if each
cone σ ∈ ΣP is spanned by a part of a basis of N , i.e., if G(σ) = {1} for each
element σ ∈ ΣP .

Equivalently, P is a Delzant polytope if the set ΓΣ constructed from the complete
fan ΣP of P is reduced to {1}. This is a very strong hypothesis. As shown by
the example above, many lattice simplices are not Delzant. As another example,
consider the lattice simplex P (a) in R3 with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0),
(1, 1, a), where a ≥ 2 is an integer. Then P (a) is not Delzant, and the only lattice
points in P (a) are its vertices. It follows that P (a) is not a union of Delzant
polytopes.

Remark 2.11. In the dictionary (that we do not use here) between convex polytopes
and toric varieties, a projective toric variety with quotient singularities is associated
to a simple lattice polytope P . This toric variety is nonsingular if and only if the
polytope P is a Delzant polytope (see [3]).

We now define for k ∈ {1, 2, . . . , d} functions ak on TΣ associated to the d
elements `k of Σ(1). The torus T (σ) = 〈σ〉/U(σ) comes equipped with a basis

of its lattice of characters: for each k ∈ E(σ), we define χkσ(g) = e2iπy
k
σ if y =∑

j∈E(σ) y
j
σuj is an element of 〈σ〉 representing g.

The following lemma is obvious.

Lemma 2.12. For any k ∈ {1, 2, . . . , d}, there exists a unique function ak : TΣ →
C∗ such that

1) if k /∈ E(σ), then ak(g) = 1 for all g ∈ T (σ) ⊂ TΣ;
2) if k ∈ E(σ), then ak(g) = χkσ(g) if g ∈ T (σ) ⊂ TΣ.

Observe that there exists a unique continuous function ξk on V ∗ which is linear
on each cone of Σ, and such that ξk(uk) = 1 and ξk(uj) = 0 for all j 6= k. Let us
identify TΣ with the subset QΣ of V ∗. Then if g ∈ TΣ is represented by the element

y ∈ QΣ, we have ak(g) = e2iπξ
k(y).

We can characterize the subset G(σ) of ΓΣ as follows.

Lemma 2.13. Let σ ∈ Σ. We have

G(σ) = {γ ∈ ΓΣ, a
k(γ) = 1 for all k /∈ E(σ)}.

Now we turn to the definition of Todd operators. Consider the analytic function

Todd(z) =
z

1− exp(−z) = 1 +
1

2
z +

∞∑
k=1

(−1)k−1 Bk

(2k)!
z2k,

where Bk are the Bernoulli numbers.
Let a be a complex number. Consider more generally the function

Todd(a, z) =
z

1− a exp(−z) .
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This function is analytic in a neighborhood of 0. Consider its Taylor expansion

Todd(a, z) =

∞∑
k=0

c(a, k)zk

for z small.
Let h be a real variable. For any a ∈ C, consider the operator

Todd(a, ∂/∂h) =

∞∑
k=0

c(a, k)(∂/∂h)k.

We have

Todd(1, ∂/∂h) = 1 +
1

2
∂/∂h+

∞∑
k=1

(−1)k−1 Bk

(2k)!
(∂/∂h)2k,(2.6)

while for a 6= 1,

Todd(a, ∂/∂h) = (1− a)−1∂/∂h+

∞∑
k=2

c(a, k)(∂/∂h)k.(2.7)

We denote Todd(1, ∂/∂h) simply by Todd(∂/∂h). If φ is a polynomial function of
h, then Todd(a, ∂/∂h)φ(h) is well defined, as (∂/∂h)kφ = 0 for large k.

Definition 2.14. Let Σ be a complete simplicial fan. For g ∈ TΣ, define

Todd(g, ∂/∂h) =

d∏
k=1

Todd(ak(g), ∂/∂hk).

Define

Todd(Σ, ∂/∂h) =
∑
γ∈ΓΣ

Todd(γ, ∂/∂h).

Recall a version of the Euler-Maclaurin formula. If φ(x) is a polynomial function
on R and s ≤ t are integers, then

t∑
k=s

φ(k) = Todd(∂/∂h1)Todd(∂/∂h2)

(∫ t+h2

s−h1

φ(x)dx

) ∣∣∣∣
h1=h2=0

.(2.8)

We will generalize this formula to simple lattice polytopes.
Let P be a simple lattice polytope with d facets. Let |M ∩ P | be the number

of lattice points in P , and |M ∩ P 0| the number of lattice points in the interior
P 0 of P . Let P (h) be the deformed polytope obtained from P after d independent
parallel motions of its facets (formula (2.2)). The main theorem of this article is

Theorem 2.15. Let V be a vector space with a lattice M . Let P be a simple
lattice polytope in V , and let Σ be its associated fan. Then, for small h, the volume
vol(P (h)) of the deformed polytope P (h) is a polynomial function of h, and we have

|M ∩ P | = Todd(Σ, ∂/∂h) vol(P (h))|h=0,

while

|M ∩ P 0| = Todd(Σ,−∂/∂h) vol(P (h))|h=0.

More generally, if φ is a polynomial function on V , then

I(φ)(h) =

∫
P (h)

φ(x)dx
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is a polynomial function of h for small h, and∑
m∈M∩P

φ(m) = Todd(Σ, ∂/∂h)I(φ)(h)|h=0,

while ∑
m∈M∩P 0

φ(m) = Todd(Σ,−∂/∂h)I(φ)(h)|h=0.

Remark 2.16. If, moreover, P is a Delzant polytope, then the corresponding set
ΓΣ is reduced to {1}, Todd(Σ, ∂/∂h) is the usual Todd operator considered by
Khovanskii and Pukhlikov [8] and Theorem 2.15 is due to them in this case.

We will prove Theorem 2.15 in the next section.

3. Integral formulas

As an example of our method, let us first prove identity (2.8). It will be conve-
nient to extend the action of Todd operators to exponential functions h 7→ ehz, for
z a small complex number. Indeed, for z small, the series

Todd(∂/∂h)ehz = ehz

(
1 +

1

2
z +

∞∑
k=1

(−1)k−1 Bk

(2k)!
z2k

)
is convergent and equal to Todd(z)ehz.

Let [s, t] be an interval. Then we have∫ t

s

ezxdx =
etz

z
− esz

z
.(3.1)

Assume t and s are integers; then

t∑
k=s

ekz = esz(1 + ez + · · ·+ e(t−s)z) = esz
1− e(t−s+1)z

1− ez
,

that is,

t∑
k=s

ekz =
etz

1− e−z
+

esz

1− ez
.(3.2)

On the other hand, ∫ t+h2

s−h1

ezxdx = eh2z
etz

z
− e−h1z

esz

z
.(3.3)

Therefore

Todd(∂/∂h1)Todd(∂/∂h2)

(∫ t+h2

s−h1

ezxdx

) ∣∣∣∣
h1=h2=0

= Todd(z)
etz

z
− Todd(−z)e

sz

z
.

Comparing with formula (3.2), we obtain

Todd(∂/∂h1)Todd(∂/∂h2)

(∫ t+h2

s−h1

ezxdx

) ∣∣∣∣
h1=h2=0

=

t∑
k=s

ekz.
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If we take the Taylor expansion at the origin of this identity in z, we obtain
formula (2.8).

Our proof of Theorem 2.15 for an n-dimensional lattice polytope P will be based
on the same approach. Let y ∈ V ∗

C , and let P ⊂ V be a polytope (not necessarily
a lattice polytope). Define

E(P )(y) =

∫
P

e(x,y)dx.

Then the volume of P is the value of E(P ) at y = 0.
If, moreover, P is a lattice polytope, define

D(P )(y) =
∑

m∈M∩P
e(m,y)

and

D(P 0)(y) =
∑

m∈M∩P 0

e(m,y).

Then the number |M ∩ P | of lattice points in P is the value of D(P ) at y =
0. Although E(P )(y), D(P )(y) and D(P 0)(y) are analytic functions of y, “sim-
ple” expressions (similar to formulae (3.1) and (3.2)) for E(P )(y), D(P )(y) and
D(P 0)(y) will be given only when P is simple and y is “generic”. On this for-
mula for E(P (h))(y), it will be easy to analyze the action of the Todd operator
Todd(Σ, ∂/∂h) and to compare it with D(P )(y).

Recall that Cf denotes the tangent cone to P at its face f . Choose v0 ∈ f . Set

C+
P (f) = v0 + Cf .

As Cf is invariant by translation by vectors in 〈f〉, the affine cone C+
P (f) does not

depend of the choice of v0 ∈ f . We call it the inward pointing affine cone tangent
to P at f . Thus C+

P (f) contains P and P =
⋂
f∈F C

+
P (f).

Let

C−P (f) = v0 − Cf

be the outward pointing affine cone at f .
If E is a subset of V , we denote by χE its characteristic function.

Proposition 3.1. Let P be a convex polytope with non empty interior P 0. Then
we have the identities

(1)

χP =
∑
f∈F

(−1)dim fχC+
P (f),

(2)

(−1)nχP 0 =
∑
f∈F

(−1)dim fχC−
P (f),

(3)

χ{0} =
∑
f∈F

(−1)dim fχCf .
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Proof. A version of these identities can be found in [5]. We give another proof,
based on the Euler identities

∑
f∈F

(−1)dim f = 1(3.4)

and, for any point m in the boundary of P ,

∑
f∈F ,m∈f

(−1)dim f = 0.(3.5)

Let m be an arbitrary point of V . We have to prove the relations
(1) If m ∈ P , then ∑

f∈F ,m∈C+
P (f)

(−1)dim f = 1.

(2) If m /∈ P , then ∑
f∈F ,m∈C+

P (f)

(−1)dim f = 0.

(3) If m ∈ P 0, then ∑
f∈F ,m∈C−

P (f)

(−1)dim f = (−1)n.

(4) If m /∈ P 0, then ∑
f∈F ,m∈C−

P (f)

(−1)dim f = 0.

(5) ∑
f∈F ,0∈Cf

(−1)dim f = 1.

(6) If m 6= 0, then ∑
f∈F ,m∈Cf

(−1)dim f = 0.

First observe that m ∈ P if and only if m ∈ C+
P (f) for all f ∈ F . So assertion

(1) is just the Euler identity (3.4), and the same holds for (5). For (3), if m ∈ P 0,
then the unique face f such that m ∈ C−P (f) is f = P .

Let us prove (4). Let m /∈ P 0. Consider the convex hull H of P and m. Let
F(H) be the set of faces of H . Let Fm(H) be the set of faces of H containing m.
Write F(H) as the disjoint union Fm(H) ∪ Fn(H). Using relations (3.4), (3.5) for
the polytope H and its boundary point m, we obtain

∑
g∈Fn(H)(−1)dim g = 1. It

is easy to see that the faces g in Fn(H) are faces of P and that these are all the
faces f of P such that m /∈ C−P (f). Thus we have

∑
f∈F ,m/∈C−

P (f)(−1)dim f = 1.

Subtracting the Euler identity for P , we obtain (4).
Let us prove (2). Let m /∈ P . Consider the convex hull H of P and m. Let R

be the closure of H \ P . The set R is not convex in general; however, it can be
contracted to m. Therefore, the Euler identities holds for R. Let F(R) be the set
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of faces of R. Let Fm(R) be the set of faces of R containing m. Write F(R) as the
disjoint union Fm(R) ∪ Fn(R). Using relations (3.4), (3.5) for the polytope R and
its vertex m, we obtain

∑
g∈Fn(R)(−1)dim g = 1. It is easy to see that the faces g in

Fn(R) are faces of P and that these are all the faces f of P such that m /∈ C+
P (f).

Thus we have
∑

f∈F ,m/∈C+
P (f)(−1)dim f = 1. Subtracting the Euler identity for P ,

we obtain relation (2).
Finally, let us prove (6). We may assume that 0 is an interior point of P . Let

m 6= 0. Choose a small positive number t. Recall that C+
tP (tf) denotes the inward

pointing affine cone for the face tf of tP , where t is a small positive number. Then
there exists t sufficiently small such that m ∈ Cf if and only if m ∈ C+

tP (tf). Thus
the last relation is deduced from relation (2) by considering the polytope tP for t
sufficiently small.

To a point m of V , we associate its δ-measure δ(m), defined as follows. For any
continuous function φ on V , we have (δ(m), φ) = φ(m). If S is a discrete subset of
V , we denote by δ(S) =

∑
s∈S δ(s) its δ-measure.

The following proposition follows immediately from Proposition 3.1.

Proposition 3.2. Let P be a convex lattice polytope. We have the equalities
(1)

δ(M ∩ P ) =
∑
f∈F

(−1)dim fδ(M ∩ C+
P (f)),

(2)

(−1)nδ(M ∩ P 0) =
∑
f∈F

(−1)dim fδ(M ∩ C−P (f)),

(3)

δ({0}) =
∑
f∈F

(−1)dim fδ(M ∩ Cf ).

We will consider Fourier transforms of the measures δ(M∩Cf ). They make sense
in the framework of generalized functions. We will use the function notation Θ(y)
for a generalized function Θ on V ∗, although the value of Θ at a particular point
y may not have a meaning. We denote by

∫
V ∗ Θ(y)φ(y)dy the value of Θ on a test

density φ(y)dy. We will say that Θ is smooth on an open subset U of V ∗ if there
exists a smooth function θ(y) on U such that

∫
V ∗ Θ(y)φ(y)dy =

∫
V ∗ θ(y)φ(y)dy for

all test functions φ with compact support contained in U . Then the value of Θ at
y ∈ U is defined to be θ(y). If there exist two smooth functions f, g on V ∗, with
g not identically 0, such that the equation g(y)Θ(y) = f(y) holds in the space of
generalized functions on V ∗, then Θ is smooth on the open set U = {y, g(y) 6= 0}
and Θ(y) = f(y)/g(y) on U .

Consider for example V = R. Consider the discrete measure δ(Z) =
∑

n∈Z δ(n).

We denote its Fourier transform by Θ(y) =
∑

k∈Z e
iky . This means that the gener-

alized function Θ(y) is the limit in the space of generalized functions of the smooth
functions

∑
|k|≤K eiky . We have thus for a smooth test function φ on R∫

R
Θ(y)φ(y)dy =

∑
k∈Z

∫
R
eikyφ(y)dy.
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Clearly (1 − eiy)(
∑

k∈Z e
iky) = 0 so that Θ(y) is supported on 2πZ. In fact,

Poisson summation formula is

(2π)−1

∫
R

Θ(y)φ(y)dy =
∑
k∈Z

φ(2πk).

Let

Z+ = {0, 1, 2, 3, . . .}.
Let a be a complex number of modulus 1. Consider the discrete measure h(a) =∑

n∈Z+ anδ(n) and its Fourier transform Θ+
a (y) =

∑
n∈Z+ aneiny. We have the

equality

(1− aeiy)Θ+
a (y) = 1.(3.6)

Thus the generalized function Θ+
a (y) is smooth outside the set iLoga + 2πZ, and

for y /∈ iLoga + 2πZ,

Θ+
a (y) =

1

1− aeiy
.(3.7)

In particular, Θ+
a (y) is a rational function of eiy. We will generalize this formula

to higher dimensions.
We call a meromorphic function Φ(y) on V ∗

C a rational function of ey if for some
basis (e1, . . . , en) of N , writing y =

∑n
i=1 y

∗
i ei, Φ(y∗1 , . . . , y

∗
n) is a rational function

of ey
∗
1 , . . . , ey

∗
n . This does not depend on the choice of the basis of N .

Definition 3.3. Let C be a rational polyhedral convex cone in V . Denote by
Θ(C)(y) the Fourier transform of δ(M ∩ C):

Θ(C)(y) =
∑

m∈M∩C
ei(m,y).

Proposition 3.4. Let C be a rational polyhedral convex cone in V ; let W be the
largest linear subspace contained in C.

(1) The generalized function Θ(C) is supported on a discrete union of translates
of W⊥.

(2) If C is acute (i.e. W = 0), then there exists a meromorphic function φ on
V ∗C such that for y outside a union of a discrete set of affine hyperplanes

Θ(C)(y) = φ(iy).

The order at 0 of the function φ is at least −n. Moreover, φ(y) is a rational function
of ey.

Proof. Observe that W is a rational subspace of V . Moreover, for any m0 ∈M∩W ,
(1 − ei(m0,y))Θ(C)(y) = 0 as M ∩ C is invariant under translation by elements of
M ∩W . Hence the support of Θ is contained in the set

{y ∈ V ∗ | (y,m0) ∈ 2πZ for all m0 ∈M ∩W}
and this set is a discrete union of translates of W⊥.

It is enough to prove (2) when C is simplicial. Indeed, we can always subdivide
C by simplicial cones Cj , and then Θ(C) is a sum (with signs) of the generalized
functions Θ(Cj). Now consider a simplicial cone C ⊂ V , the intersection of n
distinct hyperplanes (wk, x) ≥ 0 with wk in the lattice N of V ∗. Let wk ∈ V be the
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dual basis of wk. An element x ∈ V is written as x =
∑

ηkw
k, with ηk = (wk, x).

Thus

C =
⊕
k

R+wk.

Let L =
⊕n

k=1 Zwk be the lattice of V spanned by wk. We have

L ∩ C =
⊕
k

Z+wk.

Let χ be a multiplicative character of L. Consider the discrete measure

h(C, χ, L) =
∑

m∈L∩C
χ(m)δ(m)

and its Fourier transform

Θ(C, χ, L)(y) =
∑

m∈L∩C
χ(m)ei(m,y).

Formula (3.6) gives
n∏

k=1

(1− χ(wk)ei(w
k,y))Θ(C, χ, L)(y) = 1.

This equation implies that Θ(C, χ, L) is smooth outside the zeroes of the analytic

function g(y) =
∏n

k=1(1− χ(wk)ei(w
k,y)). This zero set is a union of a discrete set

of hyperplanes. Thus we obtain

Lemma 3.5. For y outside a union of a discrete set of hyperplanes,

Θ(C, χ, L)(y) =
1∏n

k=1(1− χ(wk)ei(wk,y))
.

With the notation as above, a basis of the dual lattice L∗ to L consists of
w1, . . . , wn. Let T = V ∗/L∗ = V ∗/(

⊕
k Zwk). Then T is an n-dimensional torus.

Characters of L are parametrized by T : an element g ∈ T gives a character χg by

writing χg(x) = e2iπ(x,y) if x ∈ L and if y ∈ V ∗ represents g ∈ V ∗/L∗.
Consider the finite subgroup G = N/(

⊕
k Zwk) ⊂ T . Recall that N is the dual

lattice to M . Thus, for x ∈ L,

∑
g∈G

χg(x) = 0, if x /∈M,

∑
g∈G

χg(x) = |G|, if x ∈M.

We obtain

δ(M ∩ C) = |G|−1
∑
g∈G

h(C, χg , L).

From Lemma 3.5, we obtain

Lemma 3.6. Let C ⊂ V be a rational simplicial cone. Then, for y outside a union
of a discrete set of hyperplanes, we have

Θ(C)(y) = |G|−1
∑
g∈G

1∏n
k=1(1− χg(wk)ei(wk,y))

.
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This explicit formula for simplicial cones implies Proposition 3.4. To check that
φ(y) is a rational function of ey, let us state another formula for Θ(C)(y). Let
α1, . . . , αn be the primitive vectors of M on the edges R+w1, . . . ,R+wn of C.
Then the set

S(C) = M ∩
{

n∑
k=1

tkα
k | 0 ≤ tk < 1

}
is finite and

Θ(C)(y) ·
n∏

k=1

(1− ei(α
k,y)) =

∑
m∈S(C)

ei(m,y) .

In the sequel, we will say that a property holds for generic y ∈ V ∗ if there
exists some nonzero analytic function g such that the property holds for all y with
g(y) 6= 0.

Let P be a lattice polytope. Consider the Fourier transform of identities (1),
(2), and (3) of Proposition 3.2. By definition, the Fourier transform of δ(M ∩P ) is
the function y 7→ D(P )(iy). We choose an integral element v0 ∈M on each face f
of P . Then M ∩C+

P (f) = v0 + (M ∩ Cf ), while M ∩C−P (f) = v0 − (M ∩Cf ). We
obtain the following proposition.

Proposition 3.7. We have the equality of generalized functions:
(1)

D(P )(iy) =
∑
f∈F

(−1)dim fei(v0,y)Θ(Cf )(y),

(2)

(−1)nD(P 0)(iy) =
∑
f∈F

(−1)dim fei(v0,y)Θ(Cf )(−y),

(3)

1 =
∑
f∈F

(−1)dim fΘ(Cf )(y).

For each vertex s, consider the acute cone Cs. Proposition 3.4 shows that there
exists a meromorphic function φ(Cs) on V ∗

C (in fact, a rational function of ey) such
that Θ(Cs)(y) = φ(Cs)(iy) for y generic.

Proposition 3.8. We have the equalities of meromorphic functions on V ∗
C :

(1)

D(P )(y) =
∑

s∈F(0)

e(s,y)φ(Cs)(y),

(2)

D(P 0)(y) = (−1)n
∑

s∈F(0)

e(s,y)φ(Cs)(−y).
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Furthermore
(3) ∑

s∈F(0)

φ(Cs)(y) = 1.

Proof. Consider formulae (1) and (2) of Proposition 3.7. When f ∈ F is a face of
strictly positive dimension, the cone Cf contains the nonzero linear vector space
〈f〉, and Θ(Cf ) is supported on a union of affine spaces of dimension strictly less
than n. Thus we obtain the identities above for y ∈ iV ∗ generic. The last identity
is obtained from relation (3).

Consider a simple lattice polytope P with associated fan Σ. In this case, we
have explicit expressions for the meromorphic functions φ(Cs). Indeed Cs is the
intersection of the n half-spaces (uF , y) ≥ 0, F ∈ Fs. The elements uF belong to N .
Let σs ∈ Σ be the polar cone to Cs. Recall the definitions of U(σ) and of G(σ) by
formulae (2.3) and (2.4). The lattice U(σs) is the lattice with Z-basis (uF , F ∈ Fs)
and the group G(σs) is the group N/U(σs). Let (mF

s , F ∈ Fs) be the dual basis to
(uF , F ∈ Fs). Applying Lemma 3.6, we obtain

φ(Cs)(y) =
1

|G(σs)|
∑

g∈G(σs)

1∏
F∈Fs(1 − χg(mF

s )e(m
F
s ,y))

.

This leads to the following explicit formulae for D(P ) and D(P 0) as a sum of
meromorphic functions attached to each vertex s of P . These formulae are the
generalization of formula (3.2) in the 1-dimensional case.

Proposition 3.9. For y ∈ V ∗
C generic, we have∑

m∈M∩P
e(m,y) =

∑
s∈F(0)

e(s,y)

|G(σs)|
∑

g∈G(σs)

1∏
F∈Fs(1− χg(mF

s )e(m
F
s ,y))

,

while∑
m∈M∩P 0

e(m,y) == (−1)n
∑

s∈F(0)

e(s,y)

|G(σs)|
∑

g∈G(σs)

1∏
F∈Fs(1− χg(mF

s )e−(mF
s ,y))

.

Let P be a simple polytope in V . We now analyze the continuous version

E(P )(y) =

∫
P

e(x,y)dx

of D(P ). We do not assume that P is a lattice polytope, as we will have to consider
deformed polytopes P (h). Let s be a vertex of P . We choose inward pointing
normal vectors (uF , F ∈ Fs) and dual elements (mF

s , F ∈ Fs). Then the volume
of the parallelepiped constructed on (mF

s , F ∈ Fs) is equal to | det(mF
s )|F∈Fs . The

following formula expresses the analytic function E(P ) as a sum over all vertices of
meromorphic functions attached to each vertex s of P . This is the n-dimensional
analogue of formula (3.1).

Proposition 3.10. Let P be a simple polytope. Let y ∈ V ∗
C be such that (mF

s , y) 6=
0 for all vertices s and all F ∈ Fs. Then∫

P

e(x,y)dx = (−1)n
∑

s∈F(0)

e(s,y)(| det(mF
s )|F∈Fs)

1∏
F∈Fs(mF

s , y)
.
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Proof. It is possible to give a direct argument for this proposition using Proposi-
tion 3.1 and explicit formulas for Fourier transforms of characteristic functions of
simplicial cones. However, we can also deduce the value of E(P ) from the value
of D(P ) by a limit argument using Riemann sums to evaluate an integral. Indeed,
it is sufficient to prove this formula for lattice polytopes (choosing lattice M with
smaller and smaller fundamental domain). We have

E(P )(y) = lim
q→∞ q−n

∑
m∈(M/q)∩P

e(m,y)

when q becomes a large integer.
We replace M by M/q in the formula of Proposition 3.9. We obtain

q−n
∑

m∈(M/q)∩P
e(m,y) =

∑
s∈F(0)

e(s,y)

|G(σs)|
∑

g∈G(σs)

1∏
F∈Fs q(1− χg(mF

s )e(m
F
s ,y/q))

.

We see that only the trivial term g = 1 in each group G(σs) will contribute to
the limit at q = ∞, and we obtain our proposition, as we observe that |G(σs)|−1 is
the absolute value of det(mF

s )F∈Fs .

In particular, we have vol(P ) = limt→0 E(P )(ty), and we obtain that for any
generic y,

vol(P ) =
(−1)n

n!

∑
s∈F(0)

(| det(mF
s )|F∈Fs)

(s, y)n∏
F∈Fs(mF

s , y)
.(3.8)

Let P be a simple lattice polytope with facets F1, F2, . . . , Fd. Let h=(h1, . . . , hd)
be a small parameter of deformation.

Lemma 3.11. Let φ be a polynomial function on V . For h ∈ Rd small, the function
I(φ)(h) =

∫
P (h) φ(x)dx is polynomial in h.

Proof. Consider

E(y)(h) = E(P (h))(y) =

∫
P (h)

e(x,y)dx.

We compute E(y)(h) using Proposition 3.10. Let s be a vertex of P . Let σs be the
polar cone to Cs. We have

σs =
∑

j,Fj∈Fs

R+uj.

The subset of {1, 2, . . . , d} consisting of those j with Fj ∈ Fs is the set E(σs) of
Definition 2.6. We denote by (mj

s, j ∈ E(σs)) the dual basis to (uj, j ∈ E(σs)).
When h is small, the point s(h) given by

s(h) = s−
∑

j∈E(σs)

hjm
j
s

is a vertex of P (h). Thus, for generic y,

E(y)(h) =
∑

s∈F(0)

E(s, y)(h),(3.9)
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where

E(s, y)(h) =
(−1)n

|G(σs)|
e(s−

∑
j∈E(σs) hjm

j
s,y)∏

j∈E(σs)
(mj

s, y)
.

The function E(y)(h) is analytic in y. Considering the Taylor expansion of t 7→
E(ty)(h) at t = 0 , we obtain for every k and generic y,

1

k!

∫
P (h)

(x, y)kdx =
(−1)n

(n + k)!

∑
s∈F(0)

((s, y)−∑j∈E(σs)
hj(m

j
s, y))

n+k

|G(σs)|
∏
j∈E(σs)

(mj
s, y)

.(3.10)

The polynomial behaviour in h of
∫
P (h)(x, y)

kdx is apparent from this formula. As

this result holds for any generic y and any k, we obtain our lemma.

Remark that the Todd operator Todd(a, ∂/∂h) is well defined on functions h 7→
ehz provided z is sufficiently small. We rewrite also formula (3.9) as

E(y)(h) =
∑

s∈F(0)

E(s, y)(h)(3.11)

with

E(s, y)(h) = (−1)n

 ∏
j∈E(σs)

e−hj(m
j
s,y)

 e(s,y)

|G(σs)|
∏

j∈E(σs)

1

(mj
s, y)

.

This shows that Todd(Σ, ∂/∂h) is well defined on

E(y)(h) =

∫
P (h)

e(x,y)dx

provided that y is sufficiently small.

Theorem 3.12. Let P be a simple lattice polytope, and let Σ be the associated fan.
If y ∈ V ∗

C is small, then

Todd(Σ, ∂/∂h)

(∫
P (h)

e(x,y)dx

) ∣∣∣∣
h=0

=
∑

m∈M∩P
e(m,y),

while

Todd(Σ,−∂/∂h)

(∫
P (h)

e(x,y)dx

) ∣∣∣∣
h=0

=
∑

m∈M∩P 0

e(m,y).

Consider the Taylor expansion of both members of the first equality above at
y = 0. We obtain

Todd(Σ, ∂/∂h)

(∫
P (h)

(x, y)kdx

) ∣∣∣∣
h=0

=
∑

m∈M∩P
(m, y)k

for all y ∈ V ∗
C and k ∈ N. Thus Theorem 3.12 implies Theorem 2.15.

Proof. Consider formula (3.11) for the function E(y)(h). For s a vertex of P , the
function E(s, y)(h) depends only of the variables hj such that j ∈ E(σs). Let k be
such that k /∈ E(σs). From formula (2.7), we see that Todd(ak, ∂/∂hk)E(s, y)(h) =
0 if ak 6= 1, while if ak = 1, we have Todd(1, ∂/∂hk)E(s, y)(h) = E(s, y)(h). By
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Lemma 2.13, if γ ∈ ΓΣ is not in G(σs), then there is k /∈ E(σs) such that ak(γ) is
not 1. Thus Todd(γ, ∂/∂h)E(s, y)(h) = 0 if γ /∈ G(σs). We obtain

Todd(Σ, ∂/∂h)E(s, y)(h) =
∑

γ∈G(σs)

Todd(γ, ∂/∂h)E(s, y)(h),

and for γ ∈ G(σs),

Todd(γ, ∂/∂h)E(s, y)(h) =

 ∏
j∈E(σs)

Todd(aj(γ), ∂/∂hj)

E(s, h).

We have

Todd(a, ∂/∂h)euh|h=0 = Todd(a, u) =
u

1− ae−u
.

We obtain, for γ ∈ G(σs),

Todd(γ, ∂/∂h)E(s, y)(h)|h=0

= (−1)n
∏

j∈E(σs)

−(mj
s, y)

(1 − aj(γ)e(m
j
s,y))

e(s,y)

|G(σs)|
∏

j∈E(σs)

1

(mj
s, y)

=
e(s,y)

|G(σs)|
∏
j∈E(σs)

(1− aj(γ)e(m
j
s,y))

.

By the definition of aj, aj(γ) = χγ(m
j
s). Comparing with the first formula of

Proposition 3.9, we obtain the first formula of our theorem. By a similar proof, we
obtain the second formula.

4. The coefficients of the Ehrhart polynomial

Let P be a convex lattice polytope in V with nonempty interior P 0. Consider,
for q a positive integer, the polytope qP . Let φ be a function on V . Let

i(φ, P )(q) =
∑

m∈M∩(qP )

φ(m)

and

i(φ, P 0)(q) =
∑

m∈M∩(qP 0)

φ(m).

As a consequence of Proposition 3.8, let us prove the following generalization of a
well-known theorem of Ehrhart.

Proposition 4.1. If φ is a homogeneous polynomial function of degree k, then
the functions q 7→ i(φ, P )(q) and q 7→ i(φ, P 0)(q) are polynomial of degree n + k.
Moreover, we have

i(φ, P 0)(q) = (−1)n+ki(φ, P )(−q)
and

i(φ, P )(0) = φ(0).
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Proof. Observe that the vertices of qP are the qs (s a vertex of P ) and that the
tangent cone at qs to qP is Cs. Therefore, using Proposition 3.8, we obtain for
generic y: ∑

m∈M∩(qP )

e(m,y) =
∑

s∈F(0)

e(qs,y)φ(Cs)(y)

and ∑
m∈M∩(qP 0)

e(m,y) = (−1)n
∑

s∈F(0)

e(qs,y)φ(Cs)(−y).

Now replace y by ty for small nonzero t and consider the expansion into Laurent
series in t. As φ(Cs)(y) is of order at least −n, we have φ(Cs)(ty) =

∑
j≥−n t

jasj(y),

where asj(y) are homogeneous rational functions of degree j. We thus see that

1

k!

∑
m∈M∩(qP )

(m, y)k =
∑

s∈F(0)

k+n∑
j=0

1

j!
qj(s, y)jask−j(y)

and that

1

k!

∑
m∈M∩(qP 0)

(m, y)k = (−1)n
∑

s∈F(0)

k+n∑
j=0

1

j!
qj(s, y)j(−1)k−jask−j(y).

We thus obtain the polynomial behaviour in q of i(φ, P )(q) and of i(φ, P 0)(q) for
the polynomial function φ(x) = (x, y)k and the first identity as well. As this result
holds for all y and k, it holds for all polynomial functions on V . We also obtain,
for q = 0 and for φ(x) = (x, y)k, that∑ tk

k!
i(φ, P )(0)

is equal to the Laurent series expansion of
∑

s∈F(0) φ(Cs)(ty). Thus we obtain

the second identity from formula (3) of Proposition 3.8 as we have identically∑
s∈F(0) φ(Cs) = 1.

For φ = 1, the polynomial i(φ, P )(q) is called the Ehrhart polynomial. We
denote it simply by i(P ). We write

i(P )(q) = |M ∩ (qP )| =
n∑

k=0

qkak(P ).

It follows from Proposition 4.1 that the term a0(P ) is equal to 1.
Let us give, for example, the values of ak(P ) for the simplex P (a, b, c) considered

in Example 2.9. Let p and q ≥ 1 be two coprime integers. Let s(p, q) be the
Dedekind sum, defined by

s(p, q) =

q∑
i=1

((
i

q

))((
pi

q

))
,(4.1)

where ((x)) = 0 if x is integral and ((x)) = x− [x]− 1
2 otherwise.

We have

a3(P ) = abc/6, a2(P ) = (ab + bc+ ca+ 1)/4, a0(P ) = 1,
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while a1(P ) is equal to

1

12

(
ab

c
+
bc

a
+
ca

b
+

1

abc

)
+ (a + b+ c)/4− s(bc, a)− s(ca, b)− s(ab, c) + 3/4.

This formula, originally due to Mordell, has been generalized recently by Pom-
mersheim [9] and Kantor-Khovanskii [6]: more generally, they computed the coeffi-
cient an−2(P ) of the Ehrhart polynomial. Let us show how to deduce their results
from Theorem 2.15, which gives (in principle) an explicit formula for the Ehrhart
polynomial of any simple polytope.

Let P be a simple lattice polytope, and let Σ be its fan. Consider the Todd
operator Todd(Σ, ∂/∂h). We write it as the sum of its homogeneous components

Todd(Σ, ∂/∂h) =

∞∑
k=0

Ak(∂/∂h).

Lemma 4.2. We have

an−k(P ) = Ak(∂/∂h) vol(P (h))|h=0.

Proof. Let q be a positive integer. We have

|M ∩ (qP )| = T (Σ, ∂/∂h) vol((qP )(h))|h=0.

Formula (3.8) shows that for any generic y,

vol((qP )(h)) =
(−1)n

n!

∑
s∈F(0)

((qs, y)−∑j∈E(σs)
hj(m

j
s, y))

n

|G(σs)|
∏
j∈E(σs)

(mj
s, y)

.(4.2)

Thus the lemma follows.

Let us write

Todd(Σ, ∂/∂h) = Todd(∂/∂h) +R(∂/∂h)

with

Todd(∂/∂h) =

d∏
j=1

Todd(∂/∂hj)

and

R(∂/∂h) =
∑

γ∈ΓΣ,γ 6=1

Todd(γ, ∂/∂h).

We write

Todd(∂/∂h) =

∞∑
k=0

Tk(∂/∂h)

and

R(∂/∂h) =

∞∑
k=0

Rk(∂/∂h),

where Tk, Rk are homogeneous polynomials of degree k.
We have thus

an−k(P ) = mn−k(P ) + rd−k(P )
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with

mn−k(P ) = Tk(∂/∂h) · vol(∆(h))|h=0

and

rn−k(P ) = Rk(∂/∂h) · vol(∆(h))|h=0.

Lemma 4.3. We have

T0(∂/∂h) = I, T1(∂/∂h) =
1

2

d∑
j=1

∂/∂hj,

while

R0(∂/∂h) = 0, R1(∂/∂h) = 0.

Proof. The first two equalities follow readily from formula (2.6).
The groups G(σ) are trivial for σ ∈ Σ(1). Thus there is no element γ of ΓΣ with

ak(γ) = 1 for all k but one, and the last equalities follow from formula (2.7).

More generally, by the same argument, we obtain the following

Lemma 4.4. Assume G(σ) = {1} for all cones σ ∈ Σ of dimension at most K.
Then Rk(∂/∂h) = 0 and hence an−k(P ) = mn−k(P ) for all k ≤ K.

Let f ∈ F be a face of P . Consider the vector space 〈f〉 and its lattice M ∩ 〈f〉.
We denote by vol(f) the volume of the face f with respect to the Lebesgue measure
on 〈f〉 determined by this lattice.

Let f be a face of codimension 2. Then f is the intersection of two facets. To
simplify notation, we assume that f = F1 ∩ F2. Then σf (the polar cone of Cf )
is generated by two normal vectors u1 and u2 to F1 and F2. The elements u1, u2

generate a sublattice U(σf ) of N ∩ 〈σf 〉. We have

G(σf ) = (N ∩ 〈σf 〉)/U(σf ).

As u1 is primitive, we can always choose a Z-basis n1, n2 of N ∩ 〈σf 〉 such that
u1 = n1 and u2 = pn1 + qn2 with 1 ≤ p ≤ q. The integers (p, q) are coprime. We
have q = |G(σ)|. Recall formula (4.1) for s(p, q).

Definition 4.5. Let f be a face of codimension 2. Using notation above, define

µ(f) =
1

4
− 1

4q
+ s(p, q).

Proposition 4.6 ([9], [6]). We have

mn(P ) = vol(P ), rn(P ) = 0,

mn−1(P ) =
1

2

∑
F∈F(n−1)

volF, rn−1(P ) = 0,

rn−2(P ) =
∑

f∈F(n−2)

µ(f) vol(f).
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Proof. Let σ be an element of the fan Σ. Define

e(σ, ∂/∂h) =
∏

j∈E(σ)

∂/∂hj.

From formula (4.2), we readily obtain

Lemma 4.7. Let f be a face of P , and σf ∈ Σ the corresponding cone. Then we
have

e(σf , ∂/∂h) vol(P (h))|h=0 = |G(σf )|−1 vol(f).

The values of an(P ), an−1(P ) are well known and easily obtained from Lemmas
4.3 and 4.7. It remains to obtain the value of rn−2(P ). Consider the subset Γ2 of
ΓΣ defined by

Γ2 =
⋃

σ∈Σ(2)

G(σ).

Let Γ′2 = Γ2 − {1}. We have

R2(∂/∂h) =
∑
γ∈Γ′2

Todd(γ, ∂/∂h).

For σ ∈ Σ(2), let G(σ)′ = G(σ) − {1}. Then Γ′2 is the disjoint union of the sets
G(σ)′ when σ varies in Σ(2). We study

R2(σ, ∂/∂h) =
∑

γ∈G(σ)′
Todd(γ, ∂/∂h)

for σ ∈ Σ(2). To simplify notation, we write σ = R+u1 + R+u2, and as before we
choose a Z-basis n1, n2 of 〈σ〉 ∩ N such that u1 = n1, u2 = pn1 + qn2. Elements
of G(σ) = (〈σ〉 ∩ N)/U(σ) are represented by elements jn2 with 0 ≤ j < q. If
γ = jn2, we write γ = −(jp/q)u1 + (j/q)u2. By definition ak(γ) = 1 except for
k = 1, 2. We have a1(γ) = e−2πijp/q , while a2(γ) = e2iπj/q. Thus by formula (2.7)

R2(σ, ∂/∂h) =

q−1∑
j=1

(1− e−2πijp/q)−1(1− e2iπj/q)−1

 (∂/∂h1)(∂/∂h2).

If f is the face of P such that σ = σf , we have by Lemma 4.7,

(∂/∂h1)(∂/∂h2) vol(P (h))|h=0 = q−1 vol(f).

By formula (18a) of [10], we have

q−1

q∑
j=1

(1− e2iπjp/q)−1(1 − e−2iπj/q)−1

= −s(−p, q) +
q − 1

4q
= s(p, q)− 1

4q
+

1

4
.

Thus we obtain

R2(σf ) vol(P (h))h=0 = µ(f) vol(f).

Summing over all faces of codimension 2, we obtain the desired formula for
rn−2(P ).
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au polynôme d’Ehrhart des polytopes entiers de Rd, C. R. Acad. Sci. Paris , Série I 317 1993,
501-507. MR 94k:52018

[7] T. Kawasaki, The Riemann-Roch theorem for complex V -manifolds, Osaka J. Math. 16 1979,
151-159. MR 80f:58042

[8] A. G. Khovanskii, A. V. Pukhlikov, A Riemann-Roch theorem for integrals and sums of
quasipolynomials over virtual polytopes, St. Petersburg Math. J. 4 1993, 789-812. MR
94c:14044

[9] J. Pommersheim, Toric varieties, lattice points and Dedekind sums, Math. Ann. 295 1993,
1–24. MR 94c:14043

[10] H. Rademacher, E. Grosswald, Dedekind sums, The Carus Mathematical Monographs, 16,
Mathematical Association of America, 1972. MR 50:9767

[11] G. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag,
1995. MR 96a:52011

Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France

E-mail address: mbrion@fourier.ujf-grenoble.fr

DMI, Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France

E-mail address: vergne@dmi.ens.fr

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


