LATTICE POLYGONS AND GREEN'S THEOREM

HAL SCHENCK

(Communicated by Michael Stillman)

Abstract

Associated to an n-dimensional integral convex polytope P is a toric variety X and divisor D, such that the integral points of P represent $H^{0}\left(\mathcal{O}_{X}(D)\right)$. We study the free resolution of the homogeneous coordinate ring $\bigoplus_{m \in \mathbb{Z}} H^{0}(m D)$ as a module over $\operatorname{Sym}\left(H^{0}\left(\mathcal{O}_{X}(D)\right)\right)$. It turns out that a simple application of Green's theorem yields good bounds for the linear syzygies of a projective toric surface. In particular, for a planar polytope $P=H^{0}\left(\mathcal{O}_{X}(D)\right), D$ satisfies Green's condition N_{p} if ∂P contains at least $p+3$ lattice points.

1. Green's theorem and hyperplane sections

For a curve C of genus g, a divisor D of degree $d \geq 2 g+1$ is very ample, so gives an embedding of C into projective space. In fact, when $d \geq 2 g+1$, work of Castelnuovo, Mattuck and Mumford shows that the embedding is projectively normal, which means that $S=\operatorname{Sym}\left(H^{0}\left(\mathcal{O}_{X}(D)\right)\right.$) surjects onto $\bigoplus_{m \in \mathbb{Z}} H^{0}(m D)=R$. When $d \geq 2 g+2$, results of Fujita and St. Donat show that the homogeneous ideal of I_{C} is generated by quadrics. Let F_{\bullet} be a minimal free resolution of R over S. A very ample divisor is said to satisfy property N_{p} if $F_{0}=S$ and $F_{q} \simeq \bigoplus S(-q-1)$ for all $q \in\{1, \ldots, p\}$. Thus, N_{0} means projectively normal, N_{1} means that the homogeneous ideal is generated by quadrics, N_{2} means that the minimal syzygies on the quadrics are linear, and so on. In [7], Green used Koszul cohomology to give a beautiful generalization of the classical results above: if $\operatorname{deg}(D) \geq 2 g+p+1$, then D satisfies N_{p}.

In this brief note, we investigate the N_{p} property for toric varieties. For any divisor D and variety X such that R is arithmetically Cohen-Macaulay, it is natural to slice with hyperplanes until X has been reduced to a curve, and then apply Green's theorem. Results of Hochster [8] show that projectively normal toric varieties are always arithmetically Cohen-Macaulay. So it makes sense to apply the technique in this setting. In [4], Ewald and Wessels prove that if D is an ample divisor on a toric variety of dimension n, then $(n-1) D$ is very ample and satisfies N_{0}. Bruns, Gubeladze and Trung [2] give another proof and also show that $n D$ satisfies property N_{1}. While it is often difficult to determine if a given divisor satisfies N_{0}, for a lattice polygon P and corresponding divisor on a toric surface, the property N_{0} holds "for free".

[^0]In [6] Gallego and Purnaprajna give criteria for the N_{p} property for smooth rational surfaces. Toric varieties are rational, and in the case of smooth surfaces the result we obtain is a toric restatement of the result in [6]. However, the proof is simpler in the toric case, applies to singular surfaces, and extends several results in the toric literature. For example, in [10] Koelman proves that a toric surface defined by P satisfies N_{1} iff ∂P contains at least four lattice points, and Ewald and Schmeink [3] prove that certain polytopes associated to smooth toric varieties with $\operatorname{Pic}(X)=2$ satisfy N_{1}.
Theorem 1.1. Let P be an n-dimensional lattice polytope, and X, D the associated projective toric variety and ample divisor; so $P=H^{0}\left(\mathcal{O}_{X}(D)\right)$. If D satisfies N_{0}, then D satisfies N_{p} if P satisfies

$$
\sum_{f a c e t s F_{i}} \operatorname{vol}\left(F_{i}\right) \geq n(n-2) \operatorname{vol}(P)+\frac{p+3}{(n-1)!}
$$

Proof. Hochster's results mentioned earlier show that R is arithmetically CohenMacaulay. In [9], Khovanskii shows that a toric variety X defined by a lattice polytope P is normal iff the Hilbert polynomial of X and the Ehrhart polynomial of P agree. Projective normality implies normality, and so X is normal. Hence, the singular locus of X is of codimension at least two. So a general member of $|D|$ is smooth. Slicing with $n-1$ general hyperplanes, we obtain a smooth curve C with the same minimal free resolution as X. By Khovanskii's result,

$$
\chi\left(\mathcal{O}_{X}(m D)\right)=\left|m P \cap \mathbb{Z}^{n}\right|=a m^{n}+b m^{n-1}+\cdots
$$

After slicing with $n-1$ general hyperplanes, the resulting curve C has

$$
\chi\left(\mathcal{O}_{C}(m)\right)=n!a m+(n-1)!b-(n-1)!\binom{n}{2} a
$$

The first two coefficients of the Ehrhart polynomial are

$$
\begin{aligned}
& a= \\
& b=\frac{1}{2} \sum_{\text {facets }_{i}} \operatorname{vol}(P) \\
& \operatorname{vol}\left(F_{i}\right) .
\end{aligned}
$$

Thus, applying Green's theorem, the divisor D associated to P satisfies N_{p} if

$$
\sum_{\text {facets } F_{i}} \operatorname{vol}\left(F_{i}\right) \geq n(n-2) \operatorname{vol}(P)+\frac{p+3}{(n-1)!}
$$

2. Applications

In [12, Wills shows that an n-dimensional lattice polytope P that contains an interior point satisfies $n \cdot \operatorname{vol}(P) \geq \sum_{f a c e t s} \operatorname{vol}\left(F_{i}\right)$. So at first glance the bound above seems useless. However, when $n=2$ the term $n(n-2) \operatorname{vol}(P)$ vanishes, and by [4] the divisor associated to a lattice polygon P satisfies N_{0}. So we obtain:

Corollary 2.1. The divisor D associated to a lattice polygon P satisfies N_{p} if

$$
\# \text { integral points in } \partial P \geq p+3
$$

Example 2.2. If P is the unit lattice two-simplex, then $d P$ defines the d-uple Veronese embedding of \mathbb{P}^{2}. By Corollary $2.1, d P$ satisfies N_{p} if $p \leq 3 d-3$, recovering a result of [1]. In fact, Ottaviani and Paoletti [11] show that this bound is tight.

Example 2.3. The ideal sheaf of a projective toric surface X is two-regular iff N_{p} holds for all $p \leq \operatorname{codim}(X)$. By Corollary 2.1, this is true if P has no interior points. In this case R is level with a-invariant -2 , which gives half of Theorem 1.27 of [2]. If P has no interior points, then the corresponding divisor has arithmetic genus zero ([5], p. 91). Thus X is a surface of minimal degree. So if X is smooth, then it must be a rational normal scroll or the Veronese surface in \mathbb{P}^{5}.

If P is three-dimensional, then P satisfies N_{p} if $2 \sum \operatorname{vol}\left(F_{i}\right)-6 \operatorname{vol}(P)-3 \geq p$ and N_{0} holds. In order to obtain a useful bound, we require that P have no interior points, so that the Ehrhart polynomial evaluated at -1 is zero. For such a polytope, this implies that $\sum \operatorname{vol}\left(F_{i}\right)=\#$ integral points in $P-2$, which yields:

Corollary 2.4. A lattice three-polytope P with no interior points satisfies N_{p} if D is projectively normal and \# integral points in $P \geq 3 \operatorname{vol}(P)+\frac{p+7}{2}$.

Example 2.5. Polytopes corresponding to smooth torics with $\operatorname{Pic}(X)=2$ are studied in 3]; for threefolds there are only two families. Ewald and Schmeinck show that the polytopes below satisfy N_{1} :

$$
\begin{aligned}
P_{1}(a) & =\operatorname{conv}\left\{\mathbf{0}, \mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}, \mathbf{e}_{\mathbf{1}}+(a+1) \mathbf{e}_{\mathbf{3}}, \mathbf{e}_{\mathbf{1}}+(a+1) \mathbf{e}_{\mathbf{2}}\right\} \\
P_{2}(a, b) & =\operatorname{conv}\left\{\mathbf{0}, \mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}, \mathbf{e}_{\mathbf{1}}+(a+1) \mathbf{e}_{\mathbf{3}}, \mathbf{e}_{\mathbf{2}}+(b+1) \mathbf{e}_{\mathbf{3}}\right\}
\end{aligned}
$$

A calculation shows that

$$
\begin{aligned}
\operatorname{vol}\left(P_{1}(a)\right) & =\frac{a^{2}+3 a+3}{6}, \quad \# \text { integral points in } P \\
\operatorname{vol}\left(P_{2}(a, b)\right) & =\frac{a+b+3}{6}, \quad \text { \# integral points in } P
\end{aligned}=\frac{a^{2}+5 a+12}{2}, ~ a+b+6 . ~ \$
$$

Thus, $P_{1}(a)$ satisfies N_{p} if $p \leq 2 a+2$, and $P_{2}(a, b)$ satisfies N_{p} if $p \leq a+b+2$.

Acknowledgement

I thank Greg Smith for useful comments.

References

1. C. Birkenhake, Linear systems on projective spaces, Manuscripta Math. 88 (1995), 177-184. MR 96h:14003
2. W. Bruns, J. Gubeladze, N. Trung, Normal polytopes, triangulations, and Koszul algebras, J. Reine Angew. Math. 485 (1997), 123-160. MR 99c:52016
3. G. Ewald, A. Schmeinck, Representation of the Hirzebruch-Kleinschmidt varieties by quadrics, Beiträge Algebra Geom. 34 (1993), 151-156. MR 95b:14036
4. G. Ewald, U. Wessels, On the ampleness of invertible sheaves in complete projective toric varieties, Results Math. 19 (1991), 275-278. MR 92b:14028
5. W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton N.J., 1993. MR 94g:14028
6. F. Gallego, B. Purnaprajna, Some results on rational surfaces and Fano varieties, J. Reine Angew. Math. 538 (2001), 25-55. MR 2002f:14024
7. M. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geometry 19 (1984), 125-171. MR 85e:14022
8. M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (1972), 318-337. MR 46:3511
9. A. Khovanskii, The Newton polytope, the Hilbert polynomial and sums of finite sets, Funct. Anal. Appl. 26 (1992), 276-281. MR 94e:14068
10. R. Koelman, A criterion for the ideal of a projectively embedded toric surface to be generated by quadrics, Beiträge Algebra Geom. 34 (1993), 57-62. MR 94h:14051
11. G. Ottaviani, R. Paoletti, Syzygies of Veronese embeddings, Compositio Math. 125 (2001), 31-37. MR 2002g:13023
12. J. Wills, On an analog to Minkowski's lattice point theorem. The geometric vein, Springer, New York-Berlin (1981), 285-288. MR 84b:52014

Department of Mathematics, Texas A\&M University, College Station, Texas 77843
E-mail address: schenck@math.tamu.edu

[^0]: Received by the editors April 10, 2002 and, in revised form, August 26, 2003.
 2000 Mathematics Subject Classification. Primary 14M25; Secondary 14J30, 52B35.
 Key words and phrases. Toric variety, Green's theorem, free resolution, syzygy.
 The author was supported in part by NSA Grant \#MDA904-03-1-0006.

