PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 12, Pages 3509–3512 S 0002-9939(04)07523-9 Article electronically published on May 21, 2004

LATTICE POLYGONS AND GREEN'S THEOREM

HAL SCHENCK

(Communicated by Michael Stillman)

ABSTRACT. Associated to an n-dimensional integral convex polytope P is a toric variety X and divisor D, such that the integral points of P represent $H^0(\mathcal{O}_X(D))$. We study the free resolution of the homogeneous coordinate ring $\bigoplus_{m\in\mathbb{Z}}H^0(mD)$ as a module over $Sym(H^0(\mathcal{O}_X(D)))$. It turns out that a simple application of Green's theorem yields good bounds for the linear syzygies of a projective toric surface. In particular, for a planar polytope $P=H^0(\mathcal{O}_X(D))$, D satisfies Green's condition N_p if ∂P contains at least p+3 lattice points.

1. Green's theorem and hyperplane sections

For a curve C of genus g, a divisor D of degree $d \geq 2g+1$ is very ample, so gives an embedding of C into projective space. In fact, when $d \geq 2g+1$, work of Castelnuovo, Mattuck and Mumford shows that the embedding is projectively normal, which means that $S = Sym(H^0(\mathcal{O}_X(D)))$ surjects onto $\bigoplus_{m \in \mathbb{Z}} H^0(mD) = R$. When $d \geq 2g+2$, results of Fujita and St. Donat show that the homogeneous ideal of I_C is generated by quadrics. Let F_{\bullet} be a minimal free resolution of R over S. A very ample divisor is said to satisfy property N_p if $F_0 = S$ and $F_q \simeq \bigoplus S(-q-1)$ for all $q \in \{1, \ldots, p\}$. Thus, N_0 means projectively normal, N_1 means that the homogeneous ideal is generated by quadrics, N_2 means that the minimal syzygies on the quadrics are linear, and so on. In [7], Green used Koszul cohomology to give a beautiful generalization of the classical results above: if $\deg(D) \geq 2g+p+1$, then D satisfies N_p .

In this brief note, we investigate the N_p property for toric varieties. For any divisor D and variety X such that R is arithmetically Cohen-Macaulay, it is natural to slice with hyperplanes until X has been reduced to a curve, and then apply Green's theorem. Results of Hochster [8] show that projectively normal toric varieties are always arithmetically Cohen-Macaulay. So it makes sense to apply the technique in this setting. In [4], Ewald and Wessels prove that if D is an ample divisor on a toric variety of dimension n, then (n-1)D is very ample and satisfies N_0 . Bruns, Gubeladze and Trung [2] give another proof and also show that nD satisfies property N_1 . While it is often difficult to determine if a given divisor satisfies N_0 , for a lattice polygon P and corresponding divisor on a toric surface, the property N_0 holds "for free".

Received by the editors April 10, 2002 and, in revised form, August 26, 2003. 2000 Mathematics Subject Classification. Primary 14M25; Secondary 14J30, 52B35. Key words and phrases. Toric variety, Green's theorem, free resolution, syzygy. The author was supported in part by NSA Grant #MDA904-03-1-0006.

©2004 American Mathematical Society

In [6] Gallego and Purnaprajna give criteria for the N_p property for smooth rational surfaces. Toric varieties are rational, and in the case of smooth surfaces the result we obtain is a toric restatement of the result in [6]. However, the proof is simpler in the toric case, applies to singular surfaces, and extends several results in the toric literature. For example, in [10] Koelman proves that a toric surface defined by P satisfies N_1 iff ∂P contains at least four lattice points, and Ewald and Schmeink [3] prove that certain polytopes associated to smooth toric varieties with Pic(X) = 2 satisfy N_1 .

Theorem 1.1. Let P be an n-dimensional lattice polytope, and X, D the associated projective toric variety and ample divisor; so $P = H^0(\mathcal{O}_X(D))$. If D satisfies N_0 , then D satisfies N_p if P satisfies

$$\sum_{facetsF_i} vol(F_i) \ge n(n-2)vol(P) + \frac{p+3}{(n-1)!}.$$

Proof. Hochster's results mentioned earlier show that R is arithmetically Cohen-Macaulay. In [9], Khovanskii shows that a toric variety X defined by a lattice polytope P is normal iff the Hilbert polynomial of X and the Ehrhart polynomial of P agree. Projective normality implies normality, and so P is normal. Hence, the singular locus of P is of codimension at least two. So a general member of P is smooth. Slicing with P is general hyperplanes, we obtain a smooth curve P with the same minimal free resolution as P is P is P in the same minimal free resolution as P is P in the same minimal free resolution as P is P in the same minimal free resolution as P is P in the same minimal free resolution as P is P in the same minimal free resolution as P is P in the same minimal free resolution as P is P in the same minimal free resolution as P is P in the same minimal free resolution as P is P in the same minimal free resolution as P is P in the same minimal free resolution as P is P in the same minimal free resolution as P is P in the same minimal free resolution as P is P in the same minimal free resolution as P in the same minimal free resolution as P in the same minimal free resolution as P in the same minimal free resolution P is P in the same minimal free resolution P in the same minimal free resolution P is P in the same minimal free resolution P in the same minimal free resolution P is P in the same minimal free resolution P in the same minimal free resolution P is P in the same minimal f

$$\chi(\mathcal{O}_X(mD)) = |mP \cap \mathbb{Z}^n| = am^n + bm^{n-1} + \cdots$$

After slicing with n-1 general hyperplanes, the resulting curve C has

$$\chi(\mathcal{O}_C(m)) = n!am + (n-1)!b - (n-1)!\binom{n}{2}a.$$

The first two coefficients of the Ehrhart polynomial are

$$\begin{array}{rcl} a & = & vol(P), \\ b & = & \frac{1}{2} \sum_{facets F_i} vol(F_i). \end{array}$$

Thus, applying Green's theorem, the divisor D associated to P satisfies N_p if

$$\sum_{facetsF_i} vol(F_i) \ge n(n-2)vol(P) + \frac{p+3}{(n-1)!}.$$

2. Applications

In [12], Wills shows that an n-dimensional lattice polytope P that contains an interior point satisfies $n \cdot vol(P) \ge \sum_{facets} vol(F_i)$. So at first glance the bound above seems useless. However, when n=2 the term n(n-2)vol(P) vanishes, and by [4] the divisor associated to a lattice polygon P satisfies N_0 . So we obtain:

Corollary 2.1. The divisor D associated to a lattice polygon P satisfies N_p if # integral points in $\partial P > p + 3$.

Example 2.2. If P is the unit lattice two-simplex, then dP defines the d-uple Veronese embedding of \mathbb{P}^2 . By Corollary 2.1, dP satisfies N_p if $p \leq 3d-3$, recovering a result of [1]. In fact, Ottaviani and Paoletti [11] show that this bound is tight.

Example 2.3. The ideal sheaf of a projective toric surface X is two-regular iff N_p holds for all $p \leq codim(X)$. By Corollary 2.1, this is true if P has no interior points. In this case R is level with a-invariant -2, which gives half of Theorem 1.27 of [2]. If P has no interior points, then the corresponding divisor has arithmetic genus zero ([5], p. 91). Thus X is a surface of minimal degree. So if X is smooth, then it must be a rational normal scroll or the Veronese surface in \mathbb{P}^5 .

If P is three-dimensional, then P satisfies N_p if $2 \sum vol(F_i) - 6vol(P) - 3 \ge p$ and N_0 holds. In order to obtain a useful bound, we require that P have no interior points, so that the Ehrhart polynomial evaluated at -1 is zero. For such a polytope, this implies that $\sum vol(F_i) = \#$ integral points in P-2, which yields:

Corollary 2.4. A lattice three-polytope P with no interior points satisfies N_p if D is projectively normal and # integral points in $P \geq 3vol(P) + \frac{p+7}{2}$.

Example 2.5. Polytopes corresponding to smooth torics with Pic(X) = 2 are studied in [3]; for threefolds there are only two families. Ewald and Schmeinck show that the polytopes below satisfy N_1 :

$$\begin{array}{rcl} P_1(a) & = & conv\{\mathbf{0}, \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_1} + (a+1)\mathbf{e_3}, \mathbf{e_1} + (a+1)\mathbf{e_2}\}, \\ P_2(a,b) & = & conv\{\mathbf{0}, \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_1} + (a+1)\mathbf{e_3}, \mathbf{e_2} + (b+1)\mathbf{e_3}\}. \end{array}$$

A calculation shows that

$$vol(P_1(a)) = \frac{a^2+3a+3}{6}$$
, # integral points in $P = \frac{a^2+5a+12}{2}$, $vol(P_2(a,b)) = \frac{a+b+3}{6}$, # integral points in $P = a+b+6$.

Thus, $P_1(a)$ satisfies N_p if $p \le 2a + 2$, and $P_2(a, b)$ satisfies N_p if $p \le a + b + 2$.

Acknowledgement

I thank Greg Smith for useful comments.

References

- C. Birkenhake, Linear systems on projective spaces, Manuscripta Math. 88 (1995), 177–184.
 MR 96h:14003
- W. Bruns, J. Gubeladze, N. Trung, Normal polytopes, triangulations, and Koszul algebras, J. Reine Angew. Math. 485 (1997), 123–160. MR 99c:52016
- G. Ewald, A. Schmeinck, Representation of the Hirzebruch-Kleinschmidt varieties by quadrics, Beiträge Algebra Geom. 34 (1993), 151–156. MR 95b:14036
- G. Ewald, U. Wessels, On the ampleness of invertible sheaves in complete projective toric varieties, Results Math. 19 (1991), 275–278. MR 92b:14028
- W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton N.J., 1993. MR 94g:14028
- F. Gallego, B. Purnaprajna, Some results on rational surfaces and Fano varieties, J. Reine Angew. Math. 538 (2001), 25–55. MR 2002f:14024
- M. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geometry 19 (1984), 125–171. MR 85e:14022
- 8. M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (1972), 318–337. MR 46:3511
- A. Khovanskii, The Newton polytope, the Hilbert polynomial and sums of finite sets, Funct. Anal. Appl. 26 (1992), 276–281. MR 94e:14068
- R. Koelman, A criterion for the ideal of a projectively embedded toric surface to be generated by quadrics, Beiträge Algebra Geom. 34 (1993), 57–62. MR 94h:14051

- 11. G. Ottaviani, R. Paoletti, Syzygies of Veronese embeddings, Compositio Math. ${\bf 125}$ (2001), 31–37. MR 2002g:13023
- 12. J. Wills, On an analog to Minkowski's lattice point theorem. The geometric vein, Springer, New York-Berlin (1981), 285–288. MR 84b:52014

Department of Mathematics, Texas A&M University, College Station, Texas 77843 $E\text{-}mail\ address:}$ schenck@math.tamu.edu