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LATTICE POLYGONS AND GREEN’S THEOREM

HAL SCHENCK

(Communicated by Michael Stillman)

Abstract. Associated to an n-dimensional integral convex polytope P is a
toric variety X and divisor D, such that the integral points of P represent
H0(OX(D)). We study the free resolution of the homogeneous coordinate
ring

⊕
m∈ZH

0(mD) as a module over Sym(H0(OX(D))). It turns out that
a simple application of Green’s theorem yields good bounds for the linear

syzygies of a projective toric surface. In particular, for a planar polytope
P = H0(OX(D)), D satisfies Green’s condition Np if ∂P contains at least
p + 3 lattice points.

1. Green’s theorem and hyperplane sections

For a curve C of genus g, a divisorD of degree d ≥ 2g+1 is very ample, so gives an
embedding of C into projective space. In fact, when d ≥ 2g+1, work of Castelnuovo,
Mattuck and Mumford shows that the embedding is projectively normal, which
means that S = Sym(H0(OX(D))) surjects onto

⊕
m∈ZH

0(mD) = R. When
d ≥ 2g + 2, results of Fujita and St. Donat show that the homogeneous ideal of
IC is generated by quadrics. Let F• be a minimal free resolution of R over S. A
very ample divisor is said to satisfy property Np if F0 = S and Fq '

⊕
S(−q − 1)

for all q ∈ {1, . . . , p}. Thus, N0 means projectively normal, N1 means that the
homogeneous ideal is generated by quadrics, N2 means that the minimal syzygies
on the quadrics are linear, and so on. In [7], Green used Koszul cohomology to give
a beautiful generalization of the classical results above: if deg(D) ≥ 2g+p+1, then
D satisfies Np.

In this brief note, we investigate the Np property for toric varieties. For any divi-
sor D and variety X such that R is arithmetically Cohen-Macaulay, it is natural to
slice with hyperplanes until X has been reduced to a curve, and then apply Green’s
theorem. Results of Hochster [8] show that projectively normal toric varieties are
always arithmetically Cohen-Macaulay. So it makes sense to apply the technique
in this setting. In [4], Ewald and Wessels prove that if D is an ample divisor on a
toric variety of dimension n, then (n− 1)D is very ample and satisfies N0. Bruns,
Gubeladze and Trung [2] give another proof and also show that nD satisfies prop-
erty N1. While it is often difficult to determine if a given divisor satisfies N0, for
a lattice polygon P and corresponding divisor on a toric surface, the property N0

holds “for free”.
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In [6] Gallego and Purnaprajna give criteria for the Np property for smooth
rational surfaces. Toric varieties are rational, and in the case of smooth surfaces
the result we obtain is a toric restatement of the result in [6]. However, the proof
is simpler in the toric case, applies to singular surfaces, and extends several results
in the toric literature. For example, in [10] Koelman proves that a toric surface
defined by P satisfies N1 iff ∂P contains at least four lattice points, and Ewald and
Schmeink [3] prove that certain polytopes associated to smooth toric varieties with
Pic(X) = 2 satisfy N1.

Theorem 1.1. Let P be an n-dimensional lattice polytope, and X, D the associated
projective toric variety and ample divisor; so P = H0(OX(D)). If D satisfies N0,
then D satisfies Np if P satisfies∑

facetsFi

vol(Fi) ≥ n(n− 2)vol(P ) +
p+ 3

(n− 1)!
.

Proof. Hochster’s results mentioned earlier show that R is arithmetically Cohen-
Macaulay. In [9], Khovanskii shows that a toric variety X defined by a lattice
polytope P is normal iff the Hilbert polynomial of X and the Ehrhart polynomial
of P agree. Projective normality implies normality, and so X is normal. Hence, the
singular locus of X is of codimension at least two. So a general member of |D| is
smooth. Slicing with n− 1 general hyperplanes, we obtain a smooth curve C with
the same minimal free resolution as X . By Khovanskii’s result,

χ(OX(mD)) = |mP ∩ Zn| = amn + bmn−1 + · · · .
After slicing with n− 1 general hyperplanes, the resulting curve C has

χ(OC(m)) = n!am+ (n− 1)!b− (n− 1)!
(
n

2

)
a.

The first two coefficients of the Ehrhart polynomial are

a = vol(P ),
b = 1

2

∑
facetsFi

vol(Fi).

Thus, applying Green’s theorem, the divisor D associated to P satisfies Np if∑
facetsFi

vol(Fi) ≥ n(n− 2)vol(P ) +
p+ 3

(n− 1)!
.

�

2. Applications

In [12], Wills shows that an n-dimensional lattice polytope P that contains an
interior point satisfies n · vol(P ) ≥

∑
facets vol(Fi). So at first glance the bound

above seems useless. However, when n = 2 the term n(n− 2)vol(P ) vanishes, and
by [4] the divisor associated to a lattice polygon P satisfies N0. So we obtain:

Corollary 2.1. The divisor D associated to a lattice polygon P satisfies Np if

# integral points in ∂P ≥ p+ 3.

Example 2.2. If P is the unit lattice two-simplex, then dP defines the d-uple
Veronese embedding of P2. By Corollary 2.1, dP satisfiesNp if p ≤ 3d−3, recovering
a result of [1]. In fact, Ottaviani and Paoletti [11] show that this bound is tight.
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Example 2.3. The ideal sheaf of a projective toric surface X is two-regular iff
Np holds for all p ≤ codim(X). By Corollary 2.1, this is true if P has no interior
points. In this case R is level with a-invariant −2, which gives half of Theorem 1.27
of [2]. If P has no interior points, then the corresponding divisor has arithmetic
genus zero ([5], p. 91). Thus X is a surface of minimal degree. So if X is smooth,
then it must be a rational normal scroll or the Veronese surface in P5.

If P is three-dimensional, then P satisfies Np if 2
∑
vol(Fi) − 6vol(P ) − 3 ≥ p

and N0 holds. In order to obtain a useful bound, we require that P have no interior
points, so that the Ehrhart polynomial evaluated at −1 is zero. For such a polytope,
this implies that

∑
vol(Fi) = # integral points in P − 2, which yields:

Corollary 2.4. A lattice three-polytope P with no interior points satisfies Np if D
is projectively normal and # integral points in P ≥ 3vol(P ) + p+7

2 .

Example 2.5. Polytopes corresponding to smooth torics with Pic(X) = 2 are
studied in [3]; for threefolds there are only two families. Ewald and Schmeinck
show that the polytopes below satisfy N1:

P1(a) = conv{0, e1, e2, e3, e1 + (a+ 1)e3, e1 + (a+ 1)e2},
P2(a, b) = conv{0, e1, e2, e3, e1 + (a+ 1)e3, e2 + (b+ 1)e3}.

A calculation shows that

vol(P1(a)) = a2+3a+3
6 , # integral points in P = a2+5a+12

2 ,
vol(P2(a, b)) = a+b+3

6 , # integral points in P = a+ b+ 6.

Thus, P1(a) satisfies Np if p ≤ 2a+ 2, and P2(a, b) satisfies Np if p ≤ a+ b+ 2.
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