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Lattice QCD calculation of the Collins-Soper kernel from quasi TMDPDFs
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This work presents a lattice quantum chromodynamics (QCD) calculation of the nonperturba-
tive Collins-Soper kernel, which describes the rapidity evolution of quark transverse-momentum-
dependent parton distribution functions. The kernel is extracted at transverse momentum scales in
the range 400 MeV < gr < 1.7 GeV in a calculation with dynamical fermions and quark masses
corresponding to a larger-than-physical pion mass, m, = 538(1) MeV. It is found that different ap-
proaches to extract the Collins-Soper kernel from the same underlying lattice QCD matrix elements
yield significantly different results and uncertainty estimates, revealing that power corrections, such
as those associated with higher-twist effects, and perturbative matching between quasi and light-cone

beam functions, cannot be neglected.

I. INTRODUCTION

Transverse-momentum-dependent parton distribution
functions (TMDPDFs) describe the intrinsic transverse
momentum ¢ of the partonic constituents of hadrons [I-
3]. These non-perturbative functions can be accessed di-
rectly in high-energy scattering processes such as Drell-
Yan production and semi-inclusive deep-inelastic scatter-
ing with small transverse hadron momentum g [4, 5],
and indirectly through other processes such as studies of
hadrons in jets [0, [7]. Significant efforts are underway
to improve constraints on TMDPDFs both from cur-
rent and planned experiments [8HI2] and through the-
ory calculations in the framework of lattice quantum
chromodynamics (QCD) [13H22] using approaches such
as large-momentum effective theory (LaMET) [23H25] or
the Lorentz-invariant method based on ratios of TMD-
PDFs [13].

TMDPDFs fIMP(z by, u,¢), defined for a parton of
flavor ¢ in a given hadron state, are functions of the lon-
gitudinal momentum fraction x of the parton, the Fourier
conjugate by of qr, the virtuality scale p, and the rapid-
ity scale ¢ which is related to the hadron momentum.
While the p-evolution of TMDPDFs is perturbative for
perturbative scales p and ¢, the (-evolution is governed
by the Collins-Soper evolution kernel (or anomalous di-
mension) vé(u,bT), which is nonperturbative for scales
br ~ q;l ~ Aéém even if both p and ¢ are perturbative.
Constraints on the kernel fyé (4, b7) in the nonperturba-
tive region are necessary in order to relate TMDPDFs
determined from experiment or lattice QCD at different
scales.

Recently, it was shown in Refs. [26H28] that the Collins-
Soper kernel can be calculated from ratios of quasi TMD-
PDFs at different hadron momenta, quantities which are
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both calculable in lattice QCD and which can be related
to TMDPDFs [27, 29H32]. This provides a pathway to
first-principles QCD calculations of the kernel in the non-
perturbative region, which will provide valuable comple-
mentary information to constraints from global analy-
ses of experimental data. This prospect has motivated
a series of proof-of-principle lattice QCD investigations
of the Collins-Soper kernel both directly [I8H22] through
the approach of Refs. [26H28] and via related prescrip-
tions [33].

In this work, a direct calculation of the Collins-Soper
kernel is presented, based on a lattice QCD study with
dynamical fermions and quark masses corresponding to
a larger-than-physical pion mass m, = 538(1) MeV, and
a single value of the lattice spacing and volume. The
kernel is extracted at transverse momentum scales in the
range 400 MeV < gr < 1.7 GeV and compared with phe-
nomenological parametrizations and existing lattice QCD
calculations. This analysis includes several advances over
previous lattice QCD studies of the Collins-Soper kernel
via the same approach. In particular, matching of quasi
TMDPDFs and TMDPDFs is performed to one-loop or-
der, the mixing of different TMDPDFs under renormal-
ization is fully accounted for, and the analysis includes
improved treatments of power corrections and system-
atic effects arising from the finite lattice volume and var-
ious statistical limitations of the calculation. It is found
that different approaches to extract the Collins-Soper
kernel from the same underlying lattice QCD matrix
elements yield significantly different results and uncer-
tainty estimates, revealing that power corrections, such
as those associated with higher-twist effects, and per-
turbative matching between quasi and light-cone beam
functions, cannot be neglected.

The method by which the Collins-Soper kernel can be
computed following Refs. [26] 27] is detailed in Section
The lattice QCD calculation is reported in Section [I1]]
while a summary and outlook is provided in Section [[V]
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II. QUASI TMDPDFS AND THE
COLLINS-SOPER KERNEL

The quark Collins-Soper kernel ’yg(,u, br) can be com-
puted in lattice QCD from a ratio of nonsinglet quasi
TMDPDFs fIMD at different hadron momenta (taken in
the z-direction) P? > Aqcp [26) 27, [32]:

1
In(Pr/F3)
CTMD(

¢ (p, br) =

,LLv'rPZ) TMD(vaT;,uvplz)
CITSMD(,vaplz) IEMD(xabT7H7P22)

1 AZ
+ O((xPZbT)2 ’ (x(]icz]))2> (1)

The perturbative matching coefficient CIMP relates

the quasi TMDPDFs, which are defined in terms of
Euclidean-space matrix elements as detailed below, to
the corresponding light-cone TMDPDFs through a fac-
torization theorem based on an expansion in powers of
the nucleon momentum [26] 27, [31], B2]. Additional non-
perturbative factors related to the soft sector [27], 30] can-
cel in the ratio; recently exploratory lattice QCD studies
of these factors have been performed [20] 22] following
the approach proposed in Refs. [31 [32]. The flavor non-
singlet unpolarized quark quasi TMDPDF is defined as

I’]TbMD fTMD g‘MD Where

. - db* 2 p

TMD — 1 —1b P MS

FINP (e By, PP = T [ e PO 200 (4,67, a)
n—ro0

. Ni (bz75T7a7777PZ)AS (bT?CL’n)‘ (2)
P

Here a denotes the lattice spacing, and E5 = \/ P2 +m3

where P = P*¢, is the hadron three-momentum and mj,
is the hadron mass. The factor Zl\ﬁ% (1, 0%, a), where T' is
a Dirac matrix label, renormahzes the quasi TMDPDF
and matches it to the MS scheme at scale p [18], 28], [34],
and the quasi soft factor Ag [26] 27, 29, B0] and quasi
beam function B} are both calculable in lattice QCD.
Summation over I' is implied, accounting for operator
mixing between quasi TMDPDFs with different Dirac
structures resulting from the breaking of rotational and
chiral symmetries in lattice QCD calculations [I8 [34-
360]. Mixing with gluon operators is neglected in Eq. ,
but cancels in the nonsinglet combination of quasi TMD-
PDFs. It Should be noted that the choice of the Dirac
structure v* in Eq. 1s not unique; the quasi TMDPDF
with Dirac etructure ~3 can also be boosted onto v and
thus be matched to the spin-independent TMDPDF in
the inﬁnite-momentum limit (in that case, the factor of
P?/E 5 in Eq. (2)) is replaced by 1). While the notation
is spec1ahzed to 7 for clarity throughout this exposition,
numerical results are presented for both choices of Dirac
structure in Sec. [Tl
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FIG. 1. Diagrammatic representation of the Wilson line in-
cluded in the operators Op(b*, 2#,n), see Eq. .

The quasi beam function B is defined as the matrix el-
ement of a nonlocal quark bilinear operator with a staple-
shaped Wilson line in a boosted hadron state:

BE (%, br,a,m, P*) =(h(PH)| 0L, 0,m) [1(P?)) , (3)

where h(P?) denotes the state of hadron h with
four-momentum P* = (0,0,P*, Ez). The operator
OL(b*,0,7), depicted in Fig. [1] is defined as

O (b",

T
) = G V)W Vi = D)

X Wk(2" + 0z br) W (24 m)qs (=)

= A BT (), ()
where b* = (by,b?,0), and W (z*;7) denotes a Wilson
line beginning at x* with length 7 in the direction of &.
The subscript 7" denotes that the associated Wilson line
is in a direction transverse to 2# = (0,0, 1,0).

In practice, it is useful to define a dimensionless ‘bare’
nonsinglet quasi beam function:

- 1 5 oy
Blb\are(bz,bT,a,ﬂ,Pz) Eﬁ (Bg(bz’bT,aan,Pz)
P
—Bg(bz7gT7aa777PZ)> ’ (5)

as well as a modified MS-renormalized quasi beam func-
tion BMS [19)]:

B};/‘[TS(/vaZ gTva n, P* ) Z (:U'»bz bTva 77)

x R(bp,b%, a, n)Bb‘”e(bz,bﬂa,n,Pz). (6)

Compared with the standard MS-renormalized quasi
beam function, this definition includes the additional fac-
tor R, described further below. The renormalization fac-
MS
tor Z@wr
independent momentum subtraction scheme (RI'/MOM)
factor ZRI /MOM

is defined as the product of a regularization-

and a perturbative matching factor to

the MS scheme R;L , which has been calculated at
y
next-to-leading order in continuum perturbation theory



with dimensional regularization (D = 4 — 2¢) [28] 34]:

Ze 4F(/"bz’bT’aan) =RyS (u PR, b, b7, 1)
X Zgl4/MOM(pR7bz, br,a,n). (7)

In this expression, the dependence on the RI'/MOM scale

pr and on the direction of bT cancels between Z, i / MOM

and R%IS
y4r
discretization artifacts). The quasi beam function renor-

malization factor is related to the TMDPDF renormal-
ization factor Z;Vz{% in Eq. as

at all orders in perturbation theory (up to

Z‘*I‘(ﬂabzv ) Z (.uab bTva n)ZS (,LL,bT,a,T]),

(®)

where ZMS renormalizes the quasi soft factor Ag. The
n and bp-dependence on the right-hand side of Eq.
describes linear power divergences proportional to n/a
and by /a which cancel between the two terms.

To ensure that the matching factor R%*S% is in the
il
S'/MOM and RYS, should
~4r
be computed at a scale b << AQCD In Eq. @, this

scale is taken to be distinct from bT which is associ-
ated with the staple geometry of the operator defining

MS
zZ5 yp Can-

perturbative region, both Z,

the bare quasi beam function. As a result,

not completely cancel the ultraviolet (UV) divergence in
the bare quasi beam function, and remnant linear diver-
gences ~ |by — bf|/a appear in Eq. @ The factor R is
included to cancel such divergences. One possible choice
of R is [I§]

/MO U -
Zgizl/j\f M(pR =pr,b* =0,br,a,n)

R(bTa bTv a, 77) RI’/MOM - - = ,
0,44 (pR :pva = O»bTvaan)

9)

defined for a fixed choice of pgr, and of the directions of
by and 5¥ An alternative choice of R is defined and used
in Ref. [28].

In terms of the modified MS-renormalized quasi beam
functions, the Collins-Soper kernel may be computed as

1
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Since Ag and its renormalization factor ZgTS, as well

as the factor R included in the definition of B}f?, are

independent of b*, this expression is equivalent to that in
Eq. . The specific choice of R (including the choices of

pr and by and (_)'¥ orientations) does not affect the value
of ~1.
¢

III. NUMERICAL STUDY

The Collins-Soper kernel is computed via Eq. in
a lattice QCD calculation with four dynamical quark
flavors, using an ensemble of gauge field configurations
generated by the MILC collaboration with the one-loop
Symanzik improved gauge action and the highly im-
proved staggered quark action. A single ensemble is
studied, with a lattice volume of L3 x T = 483 x 64,
a lattice spacing corresponding to ¢ = 0.12 fm, and sea
quark masses tuned to approximately match the physical
quark masses in nature; see Ref. [37] for further details of
the ensemble generation. Calculations are performed in
a partially-quenched mixed-action setup, with the tree-
level O(a)-improved Wilson clover fermion action used
for the valence quarks, with x = 0.1241 tuned such that
the pion mass is m, = 538(1) MeV. The gauge fields used
in the calculation have been subjected to Wilson flow to
flow-time t = 1.0 [38], to enhance the signal-to-noise ratio
in the numerical resultsﬂ The following sections detail
the computation of each element of vg.

A. Bare quasi beam functions

Quasi beam functions in a pion external state are com-
puted from ratios of three-point and two-point correla-
tion functions:

RF(taTa b'u a 777PZ)

Cgpt(t 7,b" a,n, P* ez)—C’3pt(t T,b* a,n, P?€,)

B Copt (t, P7€)

t>>730 Bbare(bz7gT,a7n7PZ) + ..., (11)
where
C’3pt(t T,b", a 777P pPre,)

=3 P05 5 (7, )0, (Z,7), mrl L (0)]0)

)

T Z5 - -
— ﬁe_EﬁtBlr(bZ’ bTvaaThPZ) +.. (12)
ar<
P

1 Note that the flowed gauge fields were also used for constructing

D.



n. P? [GeV] n/a Nsre Netg
3 0.65 {12,14} 4 96
3 0.65 23 16 100
5 1.1 {12,14} 4 449
7 1.5 {12,14} 16 596

TABLE I. Quasi beam functions are computed for ne.. source
locations on each of ncg configurations for each pion boost
P#. Matrix elements of operators with staple widths br in
the positive & direction with 0 < |by| < n and asymmetries
—n < b* < n are computed.

and

Clpe (8, P) = 37 P ¥ (0l o (&, 1)y (0)]0)

x

Z3
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In the construction of the correlation functions,
momentum-smeared interpolating operators 7 5 (T, t) =
ﬂs(ﬁ/Q)(f, t)75d5(13/2)(§:', t) are built from quasi local
smeared quark fields ) (Z,t) constructed with 50
steps of iterative Gaussian momentum-smearing [39] with
smearing radius € = 0.2. Z5 denotes the combination of
overlap factors for the source and sink interpolating op-
erators.

Two and three-point functions are constructed for
three choices of pion boost P = P?¢,, with P* = n*2r/L
for n, € {3,5,7}. An effective energy function that
asymptotes to E5 can be defined as

E%ﬁ(t) = larccosh <C2pt(t +a, P) + Cope(t — a, P))
a

20,4 (t, P)
2 Es+..., (14)

where the ellipses denote exponentially-suppressed cor-
rections from excited states. This function is shown for
the ensemble investigated here in Fig. including the
results of fits to the two-point correlation functions. The
fits are performed as described in Appendix A of Ref. [19],
with the number of states in each fit chosen by maxi-
mizing an information criterion, and different choices of
fit range sampled and combined in a weighted average.
The relative deviations in the extracted energies from the

continuum dispersion relation E5 = \/m2 + |P|? are at

most 5% for all momenta studied, increasing with in-
creasing \ﬁ |, but consistent with the expected size of lat-
tice artifacts.

The ratio Rr defined in Eq. is constructed for all
Dirac structures I and a range of operators with different
staple widths and asymmetries, detailed in Table [l As
indicated, the number of measurements is varied for the
different boost momenta, to partially compensate for the
differences in statistical noise. All ratios are computed
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FIG. 2. Effective energy function defined in Eq. for pion
states boosted in the 2-direction with P* = n*27/L. Shaded
bands display the result of single-exponential fits to the two-
point correlation functions with the largest two momenta, and
two-exponential fits to those with the smallest two momenta,
obtained as described in the text.

for sink times t € {7,9,11,13} and with all operator in-
sertion times 7 such that 0 < 7 < t. The fitting proce-
dure used to determine BR*® at each set of parameters is
precisely the same procedure as detailed in Appendix A
of Ref. [19]. Several examples of the fits in ¢ and 7 used
to extract the quasi beam functions are shown in Ap-
pendix [A] An example of the resulting bare quasi beam
functions, for particular choices of by and 7, is shown in
Fig.[3l Additional examples are provided in Appendix

B. Non-perturbative renormalization

Computing the modified MS-renormalized quasi beam

function BIMS by Eq. @ requires, in addition to the
bare quasi beam functions, the RI'’/MOM renormaliza-

RI'’/MOM
4

tion factor Z, . This factor enters the calculation

of the renormalized quasi beam function both through
the renormalization itself (Eq. (7)) and in the compu-
tation of the factor R (Eq. (©)). The calculation of the
nonperturbative renormalization undertaken here follows

closely the presentation of Ref. [18].

. RI’/MOM
The matrix Z, /
rr/

tion condition

is defined by the renormaliza-

Z7 ) Zor /MM (pR)ASY (p)

q T/ (,YB

Or;
= AT5" (),

(15)
where dependence on the lattice spacing is left implicit
and ACri(tree) denotes the bare (tree-level) amputated
Green’s function of the operator Or defined in Eq. in
an off-shell quark state in the Landau gauge:

AT (p) =S~ (p)GOT (p)S~(p) - (16)

Here S(p) is the quark propagator projected to momen-

ph=pl
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examples are included in Appendix [B]

tum p:
Sap(p, @ Z e P {ga(2)35(y)), (17)
p) = Vzeip.wsaﬁ(pv 1')7 (18)
and GO denotes the non-amputated quark-quark

Green’s function with one insertion of Or, which implic-
itly depends on the geometry of the staple-shaped Wilson
line defining the operator:

Gos(p) = — Z e (g0 (2)Or (2 + b, )75 (1)),
.Y,z
1 t ~ r
= v > S (pb + 2)ys W (n; b+ sz)gs(paz»aﬁ,
(19)
where V' = L3 x T is the lattice volume. The quark
wavefunction renormalization Z; is defined as
Z4(pr)S(P)] o ye = 5" (p)
1 - ree
= Zy(pr) = ;T [S71(0)S" ()] (20)
p?=p%
_ Tr i3, msin(apa)S~ (p)]
1237, sin®(apy) pzzp%%.

From Eq. (15), the matrix of RI'/MOM renormaliza-
tion factors may be computed as
/ -1 VOFF’
(rmom ) = )

_— 21
6ePrZ, (pR) ’ (21)

p# :p‘;2

where b* denotes the separation of the endpoints of the
nonlocal operator Or, the projected vertex function is
defined as

Vorr (p) = Tr

(AT (p)I] (22)

0.4+ bp=0.12fm, =168 fm 1
0.2+ ]
-
2
E 0.0 ]
=
-0.2r ]
-0.4r E

An example of a bare quasi beam function, computed as described in the text, for br/a = 1 and n/a = 14. Further

and the replacement

Tr [AOr;tree (pR)F/] — 661';01?,.1751“1‘/ (23)
has been made. It should be noted that since the
operator Of is nonlocal and frame dependent, differ-
ent directions in p’, constitute different renormalization
schemes, related by finite renormalization factors. As

such, Z, B / MOM depends on ply, itself rather than only on

its magmtude, which acts as the renormalization scale.

The complete 16 x 16 matrix of RI'/MOM renormal-

RI'/MOM .

ization factors Z, is computed for the same set

of operator geomegles defined in Table |I[7 on Nerg = 50
gauge field configurations. For all operator geometries
with n/a € {12,14}, the renormalization factors are com-
puted for a range of four-momenta tabulated in Tab. [T}
to enable an investigation of residual dependence on the
renormalization scale (which would be canceled by an all-
orders matching to the MS scheme) and discretization ar-
tifacts. For operator geometries with n/a = 23, only the
four-momentum with n* = (12,12,12,12) is used. An
example of the resulting RI'/MOM renormalization ma-
trices is shown in Fig. [ which displays a subset of the
off-diagonal renormalization factors normalized relative
to the diagonal components:

RI/ MOM
Abs[Zgr /MOM]

L LS Abs [ZRI /MOM]

RI'/MOM _
Orp

(24)

computed for quark bilinear operators with straight Wil-
son lines and a particular choice of momentum.

The MS renormalization factors are computed via
Eq. (7) from the RI'’/MOM renormalization matrices and

the perturbative matching factor Rﬁr, calculated at
Y

next-to-leading order in continuum perturbation theory
with dimensional regularization (D = 4 — 2¢) [28] [34]. In
this work, the scale pgr is set to 4.9 GeV. Examples of
the resulting MS renormalization factors are presented
in Figs. [f]and [f] This renormalization is independent of



n VPP [GeV]  p7[GeV]  pM/(p?)?
(6,6,6.6) 2.5 1.3 0.26
(6,6,6,9) 2.7 1.3 0.26
(6,6,6,12) 3.0 1.3 0.30
(8,8,8,8) 3.3 1.7 0.26
(8,8,8,12) 3.6 1.7 0.26
(8,8,8,16) 4.0 1.7 0.30

(12,12,12,12) 1.9 2.6 0.26
(12,12,12,18) 5.4 2.6 0.25

TABLE II. Four-momenta used in the calculation of nonper-
turbative renormalization factors as described in the text,
where p" is the four-momentum in physical units correspond-
ing to n* in lattice units. The H(4) invariant p is defined

as pl = S0 pi.

0.08

0.06F |

RI/MOM

o;rp
=

M

0.02

FIG. 4. Submatrix of the RI'’/MOM mixing matrix
ML/ MOM, defined in Eq. , computed for quark bilinear

Or
opera7t)ors with straight Wilson lines (b = 0) with various ex-
tents b*, for momentum n” = (12,12,12,12) in lattice units.
Points representing Dirac structures in the upper triangle of
the mixing matrix are slightly offset on the horizontal axis for

clarity.

pr up to discretization artifacts, two-loop perturbative
matching corrections which are neglected here, and non-
perturbative effects that vanish at asymptotically large
p%. While in principle one might fit to results generated
at different pr values to constrain discretization effects,
this is not feasible with the data generated here, and the
covariance matrices for the nonlocal operators cannot be
reliably estimated. The renormalization constants com-
puted with n* = (12,12,12,12) are thus taken as best-
estimates and used in the further analysis of the Collins-
Soper kernel. For those operator structures where the
RI'’/MOM renormalization factors have been computed
at other choices of pg, this yields indistinguishable re-
sults for the Collins-Soper kernel compared with results
obtained using the weighted averaging procedure over
momenta which is employed in Ref. [I§]. The compo-

11.2 N
=
gk 11.0+ b
N o a @ i
o o
QL 10.8F o o i
Q: —
o MS RI/MOM
10.6 - b
n=2GeV, n=1.68 fm, by = 0.72 fm, b* = 0.36 fm
5 10 15 20 25 30

Pk [GeV?]

RI’/MOM

FIG. 5. Example of numerical results for Z, (orange
Y

MS
O 4.4
ferent values opr;z given in Table [T} for operator geometry
n/a =14, b*/a = 3, br/a = 3, at renormalization scale p = 2
GeV. The blue shaded band shows the value used in further

analysis, obtained as described in the text.

circles) and Z, (blue squares), computed using the dif-

RI'/MOM
nents of Mom

I € {73,4*}, which is consistent with the conclusion of
Ref. [36] but is in contrast with the results of Refs. [34] 35]
which predict no mixing effects for I' = 4 at O(a®). The
quasi beam functions with both Dirac structures are thus
treated on equal footing in this work.

are of similar magnitude for both

C. Renormalized quasi beam functions

Modified MS-renormalized quasi beam functions are
computed via Eq. @ from the bare quasi beam functions
and MS renormalization factors calculated as described
in Secs.[[ITA]and [[ITB} the uncertainties of the two com-
ponents are combined in quadrature. While for clarity all
equations in this section are expressed for renormalized
quasi beam functions defined with the Dirac structure

v*, both BMS and BAI\/%S are computed and analyzed in-
dependently.

The real and imaginary parts of the renormalized quasi
beam functions should be symmetric and antisymmetric
functions of b* respectively in the n — oo limit. The
numerical results obtained in this work, however, show
significant departures from these expectations at finite
7 as was also observed in the quenched calculation of
Ref. [I8]. The b*-dependence of the asymmetry in the
absolute value of the renormalized quasi beam functions
is illustrated in Fig. [fa] This asymmetry can be un-
derstood as an incomplete cancellation of the Wilson-
line self-energy correction proportional to e~V (1) " pe-
tween the MS renormalization factor and the bare quasi
beam function, where V (br) is the static quark-antiquark
potential at distance by. Such an effect yields a b*-
dependent asymmetry proportional to e~2?", depend-
ing on an asymmetry parameter A = —V (br) + V (b%).
This is in fact a good model of the asymmetry ob-
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puted for operator geometry n/a = 14 and various values of
br and b, at renormalization scale p = 2 GeV.

served in the numerical calculations of this work; fits of
|Bf1)\//élls(/~j'7 _bzv bTa a, 1, PZ)‘/|B,1)\//AIIS(/J7 bza bT7 a, 1, PZ)' (and

the analogous expression constructed from BMS) to this
functional form, fit separately for fixed values of br, 7,
and P?, achieve acceptable goodness-of-fit with an aver-
age x?/d.o.f. = 0.56. These fits, and the resulting values
of the asymmetry parameter A, are illustrated in Fig. [7]
and in Appendix Bl Asymmetry-corrected modified MS-
renormalized quasi beam functions are thus defined as

MS;corr z 7 z A(br,a,n,P?)|b*
B'Y4 (/’1/7b 7bTaa7777P ): € (br,am e

X (Re[B})ﬁTS(u, |bz|,gT,a,777PZ)}

+ sign(b®) Im[BAI\f?(M, b7, ET; a, 1, PZ)D ‘
(25)

Here, the uncertainties in the factor e2*"l and the quasi
beam functions are added in quadrature and, after asym-
metry correction, the more precise results for beam func-
tions with * > 0 (which involve shorter Wilson lines)
are mirrored to b* < 0. An example of the modified
MS-renormalized quasi beam functions before and after

—~ 5L bE = 0.24 fm, 7 = 1.68 fm
Q 5 T n & iw
= oo
2] br = 0.12 fm mr
2 . .
Q _m - T
~ @
—~ or
RS 2 o e T A T T

| L e
|C£q = T A 1 1
= mp—A 4 -+ L A
N oo o

O p7=3 =5 A n*=T7
0.0 0.5 1.0 1.5
b* [fm]

(a) Example of the b*-dependence of the asymmetry in the
renormalized quasi beam functions for a fixed choice of operator
geometry with n/a = 14, br/a = 1.

0.10 T T T T T
1);‘: =0.24 fm, = 1.68 fm

0.05F ) 1

-0.05r 1

bT [fm]
(b) Example of the bp-dependence of the asymmetry parameter
A = =V (br) + V(bF) for operators with n/a = 14, fit to
renormalized quasi beam functions BMS as described in the

text. The approximate linear dependence of A on br can be
explained by a linear term in V (br); the approximate
independence on n® is expected, as V (br) should be
independent of the external state.

FIG. 7. Illustration of the asymmetry in the renormalized
quasi beam functions computed in this work; additional ex-
amples are provided in Appendix [B]

asymmetry correction is given in Fig.

It is expected that the renormalized beam functions
should be independent of the matching scale b%. This
expectation is satisfied within uncertainties for the nu-
merical investigations of this work as illustrated in Fig. [9}
for use in the calculation of the Collins-Soper kernel, a
weighted average [40] over possible choices of b% in the
window a < bf < AééD is thus implemented, per-
formed precisely as detailed in Appendix C of Ref. [19].
Similarly, the asymmetry-corrected renormalized quasi
beam functions do not depend on n within uncertain-
ties, and the formal extrapolation to n — oo is imple-
mented with an analogous weighted average. The result-
ing averaged values of the asymmetry-corrected modi-
fied MS-renormalized quasi beam function are denoted

by Eiﬁs (1, b, b, P#), and have no dependence on 7 or
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FIG. 8.  Comparison of an example of the modified MS-

renormalized quasi beam functions before (gray) and after
(color) asymmetry correction via Eq. , for beams func-
tions computed with operator geometry n/a = 14, br/a = 1.

b?; the dependence on a is also dropped in this nota-
tion, as a single lattice spacing is used in this numerical

study. Figures showing E:ﬁs and E:/Iss are provided in
Appendix [B] The contributions to these quantities from
mixing between operators with different Dirac structures
is generally found to be less than 10%; see Fig. for
an illustration. Additional examples are provided in Ap-

pendix

D. Collins-Soper kernel

To determine the Collins-Soper kernel via Eq. ((10)
from the averaged asymmetry-corrected modified MS-

renormalized quasi beam functions Ei\ﬁls and E:@S, de-
fined in the previous section, requires a Fourier transform
of the quasi beam functions in b*. Asis clear from Fig.
however, the b*-range of the data is not sufficient for the
tails of the quasi beam functions at large |b*| to decay to
plateaus consistent with zero, particularly at the largest

br and smallest P? values used in this numerical study.

0.8 T T T
o b/a=—-6 b*/a=0 A b Ja=6
0.6- br = 0.24 fm, b¥ =0.36 fm i
o] P?*=0.6 GeV
S
|§ = 04r i
L
Q
~ = o o
0.2F = = = |
0.0 . L L
1.5 2.0 2.5 3.0
7 [fm]
(a)
0.8 T T T T T T T
O bv/a=-6 b*/a=0 A b/a=6
by = 0.24 fm
0.6 . ) . R
— n = 1.68 fm, P* = 0.6 GeV
RS 0.4+ -
A
O o
~ =
0.2F 7 =

()0 1 1 1 1 1 1 1
024 026 028 030 032 034 0.36
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FIG. 9. Example of the asymmetry-corrected modified MS-
renormalized quasi beam function B™>°° defined in Eq. ().
The horizontal shaded bands show the results of weighted av-
erages of this quantity over choices of b% and 7 (as a function
of b*, by, and P?), as described in the text.

As such, it is to be expected that a discrete Fourier trans-
form (DFT) will have significant systematic uncertainties
from the truncation of the data in P?b*; details of a DF'T
analysis of the quasi beam functions are presented in Ap-
pendix [C] Instead, Fourier transforms are taken after fit-
ting the quasi beam functions to functional forms that
allow extrapolation in b*. This approach trades the sys-
tematic uncertainties of a DFT for model-dependence in
the fit form used to extrapolate the quasi beam functions.
While this model-dependence is difficult to quantify rig-
orously, this approach allows the physical expectation
that the quasi beam functions should decay smoothly at
large |b*| to be incorporated (a DFT effectively models
the beam functions as zero outside the b*-range in which
lattice QCD results are computed).

In particular, the quasi beam functions are modeled
as a sum of polynomials in * times Gaussian functions,
which provide an appropriate basis, since it is expected
that the quasi beam functions should be analytic func-
tions of b* (the b* — 0 limit at fixed by does not introduce
additional divergences), and yield high-quality fits with
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FIG. 10. Percentage contribution to the renormalized quasi
beam functions from mixing of operators with different Dirac
structures. Note that the ratios shown are outside of the plot
range near the nodes of the beam functions; in this example
the maximum mixing that is resolved from zero at greater
than 20 is 0.32(5), and occurs in the real component of the
beam function for n, =5, b./a = 5.

few free parameters. Specifically, for each choice of br
and P, the real and imaginary parts of the quasi beam

. =MS . —=MS :
function B4 (and independently B._ ") are fit with even

and odd functions of b* respectively, defined as

3
8

a

%

Fre(o, {ra}; %) = exp[=(b)?/(20%)] ) ra(b%)*" (26)

3

3

ma

%

(o, {ra} %) = exp[=(b%)?/(20%)] ) in(b%)*" .

3
I
o

(27)

The value of nax 1S chosen to minimize the Akaike infor-
mation criterion (AIC) [41] and corresponds to nmax €
{2,3,4} for all cases. The fits with these optimal values
of nmax are of high quality in all cases, with an average
x?/d.o.f. = 0.41. The resulting models of the quasi beam
functions are denoted Bf)ﬁs (and, correspondingly B};/és),
and are illustrated in Fig. [L1| (with further examples pro-
vided in Appendix .
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FIG. 11.  Example of fits by Egs. (26) and (27) (shaded

bands) to the real and imaginary parts of the quasi beam
functions, for br/a = 1.

Finally, in terms of the models Bff?, the relation defin-
ing the Collins-Soper kernel in Eq. is realized as

1
n
In(Pf/P;)
. fdbzefibzwpf P1ZB,1>/4TS(/~% b*, by, Piz)
Jdbze= PP BMS (1, b7, by, P§)
(28)

CIMP (u, xP§)
CIMD (u, 2 Pf)

'A)/g(:uvbTvplsz;ax) =

which coincides with yg (1, b7) up to power corrections
such as higher-twist corrections in the factorization for-
mula for the quasi TMDPDF, and discretization ar-
tifacts, which introduce the dependence on Pf, Pj,
and . One approach to determine ~¢(u,br) from
’yg(,u,bT;Pf,Pf,x) is to model, fit, and subtract, these
various artifacts. However, the most straightforward
models of these effects do not provide good fits to the
numerical data of this study, as detailed in Appendix [D}
Instead, since the contamination in ’yg will be different at
each choice of P?, P5, and x, and the effects can be ex-



by [fm] 0.12 0.24 0.36 0.48

FEMS T -0.419(53)(50) -0.49(5)(12) -0.76(9)(8) -0.82(15)

TABLE III. Collins-Soper kernel with = 2 GeV as a func-
tion of br. The first uncertainty is the average of that deter-
mined from calculations using é,l;/ﬁs and B,%S as described in
the text, while the second is a systematic uncertainty com-
puted as half the difference of the central values of the results
obtained using quasi beam functions defined with the two
Dirac structures.

pected to be largelﬂ at large and small values of x and at
small values of P?, the variation of 47 over these choices is
used to define an estimate of the systematic uncertainty.

Precisely, a best value for the Collins-Soper kernel is
determined from 4¢ via a multi-step procedure. First,
the largest window of x is determined for which the data
for all choices of the pair {Pf, P§} are consistent with
a common constant value. In practice this region is de-
fined as the largest window in which a constant fit to the
data at a set of discrete x points has a x?/d.o.f. < 1.
The central value and uncertainty are defined as the me-
dian and the 68% confidence interval of the union of the
bootstrap data in that « window, including all { P, P§}
pairs. The result of this procedure is robust to changes in
the discretization of z, for sufficiently fine discretization
scales (100 points spanning 0 < & < 1 uniformly are used
in the analysis presented). This procedure is performed
separately for ﬁg determined from beam functions calcu-

lated with Dirac structures v* and +3; examples of the
resulting values are shown with 4¢ in Fig. with the
remainder presented in Appendix [B] The central values
of the independent calculations with Dirac structures y*
and 7> are averaged, and the average uncertainty is added
in quadrature with half the difference between the central
values obtained using each Dirac structure, to yield the
final results of this work which are shown as a function
of by in Fig. and are tabulated in Table. [[T]]

In addition to the approach followed here, there are a
number of alternative methods of extracting the Collins-
Soper kernel that have been proposed or employed in
other studies, for example:

° “LO” .
TMD
Cns

The perturbative matching coefficient
computed to leading-order (LO), instead of
NLO, can be used in an analysis otherwise mirror-
ing that presented here;

e “Hermite/Bernstein”: As proposed in Ref. [19],
the P?b*-dependence of the quasi beam functions

2 The matching coefficient includes large logarithms of zP? at
small z, while the quasi beam functions at * — 0 and z — 1
are sensitive to the long-range correlations in b* and are thus
affected by the truncation of the data in P#b%. In addition, the
power corrections are expected to be enhanced at small z.
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(b) '?fg computed from quasi beam functions B

FIG. 12. ﬁ/g, computed as defined in Eq. for all momen-
tum pairs {Pf, P5}, denoted by Pf/Ps5 in the legend. The
horizontal shaded band shows the fit window in x, as well
as the total uncertainty of the best result, determined as de-
scribed in the text.

can be fit to models based on Hermite and Bern-
stein polynomial bases constructed to yield x-
independent Collins-Soper kernels via Eq. ,
taking the LO value of the perturbative matching
coefficient CIMP;

e “b* = 0”: An approximation of the Collins-Soper
kernel can be computed with LO matching using
only the quasi beam functions evaluated at b*> = 0
(this approach does not require a Fourier transform

in b%):
—=MS
Ve (s b)) =" = L | Ba e 00r P
W(PE/PE) L BYS (4,0, b0, P)
(29)

e “b* =0, bare”: As proposed in Ref. [20], the same
approach described for “b* = 0” can be followed,
using bare quasi beam functions B;’ﬁ‘re rather than
renormalized quasi beam functions (i.e., neglect-
ing operator mixing between different Dirac struc-
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FIG. 13.7Collins—Soper kerneljs a function of br, determined
from Ef\y/ﬁs (purple circles) B%S (red triangles), and the final
combined results of this work (green squares), computed as
described in the text. For the latter points, the inner (outer)
error bars show the first (quadrature-combined) uncertainties

given in Table. No result computed from By? is shown at

the largest by value because in this case ’yg cannot be fit to a
constant with the method described in the text, as shown in

Fig. 25]

tures);

e “b*> = 0/by = 0, bare”: As proposed in Ref. [22],
a variation of the ‘b* = 0” approach can be used,
approximating the Collins Soper kernel as

b*=0/br=0 _ 1
- In(PE/F3)
BYe(0,br, a,n, Pf)BY™(0,0, a,7, P5)
* | BE(0, br, a, n, P§)BY(0,0,a, 17, PY)
(30)

[v¢(ps br)]

x 1

Each of these methods can be followed using the quasi
beam functions computed in this work; a comparison of
the results is provided in Fig. For the “LO” ap-
proach, the same procedure is followed to combine the
results obtained using quasi beam functions with Dirac
structures 42 and 4* as for the “NLO” method which
yields the main results of this work. For the other ap-
proaches the results obtained with the two Dirac struc-
tures are not always consistent at one standard deviation,
and are shown separately; for br/a = 4 no results for
the “Hermite/Bernstein” approach are shown with Dirac
structure 43 as the model fits were of poor quality with
x?/d.o.f. > 2. In the case of the “b* = 0/by = 0, bare”
approach, bare quasi beam functions with n/a = 14,
which is the largest extent studied in this work for all
P?, are used in the analysis.

Clearly, although the same quasi beam functions are
used, the Collins-Soper kernel determined via each of
these approaches is very different, and many of the results
are inconsistent with the best results of this study at sev-
eral standard deviations, with uncertainties as much as

11

an order of magnitude smaller. This is to be expected if
the effects of higher-order matching, renormalization and
mixing, and power corrections, are significant, as each of
the approaches listed above treats one or more of these
systematic effects differently than in the primary analysis
presented here.

IV. OUTLOOK

This work presents a determination of the Collins-
Soper kernel from a dynamical lattice QCD calculation
following the approach of Refs. [26], 27]. Several system-
atic uncertainties remain to be addressed; in particular,
the quark masses used correspond to an unphysically-
large pion mass of m, = 538(1) MeV, and the results are
obtained using a single ensemble of gauge field configura-
tions such that effects from the discretization and finite
lattice volume cannot be fully quantified. A fully model-
independent calculation will require these systematics to
be addressed, lattice QCD calculations to be performed
over a larger range of P?b* to eliminate the need to ex-
trapolate the quasi beam functions to large |b*| and en-
able the DFT approach to be used, and larger values of
P~# to be included to reduce the contributions from power
corrections and higher-twist effects which dominate the
uncertainties of this calculation. With these caveats in
mind, the results of this work may be compared with phe-
nomenological extractions of the Collins-Soper kernel, as
shown in Fig. The lattice QCD and phenomeno-
logical determinations are broadly consistent at large br,
with clear deviations at the smallest by values studied;
discretization effects are expected to be largest at small
br and might be relevant for understanding this effect. It
is clear that, while challenging to achieve computation-
ally, future fully-controlled calculations by this approach
have the potential to differentiate different models of the
Collins-Soper kernel and will provide important input for
the analysis of low-energy SIDIS data and the determi-
nations of the TMDPDFs.

In considering the prospects for such future controlled
determinations of the Collins-Soper kernel from lattice
QCD, it is informative to contrast the results of this
study with those of other lattice QCD investigations; a
comparison of existing calculations [T9H22] is provided in
Fig. All dynamical calculations use quark masses
resulting in similar values of the pion mass to that of the
calculation presented here (ranging from the lightest en-
semble with m, = 350 MeV in Ref. [22] to m, = 547
MeV in Ref. [20]), while the quenched calculation of
Ref. [19], in which the kernel should not depend on the
valence quark masses since it is independent of the exter-
nal state, is performed at m, = 1.207 GeV. Each calcu-
lation uses a slightly different approach to constrain the
Collins-Soper kernel from quasi beam functions. In par-
ticular, the “Hermite/Bernstein” approach is followed in
Ref. [19] (“SWZ”), the calculation of Ref. [20] (“LPC”)
uses the “b* = 0, bare” approach, that of Ref. [21]
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FIG. 14. br-dependence of the Collins-Soper kernel computed from the same quasi beam functions via the different approaches
defined in Sec. |III Dl All points other than the primary results of this work (“NLO”) are offset on the horizontal axis for clarity.

For the “NLO” and

“LO” approaches, results computed based on quasi beam functions with Dirac structures 4* and 4° are

combined as described in the text; the outer error bars include half the difference between the results with 4* and ~® combined
in quadrature with the average uncertainty, shown by the inner error bars. For the other approaches the empty (filled) points

show results obtained with Dirac structure v* (v%).

“Hermite/Bernstein” points with Dirac structure <3 are not shown at

br/a = 4 because the corresponding fits of the P*b*-dependence of the relevant quasi beam functions were of poor quality, as

described in the text.
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(b) Comparison with quenched results of Ref. [I9] (SWZ), as
well as results from the LPC [20], Regensburg/NMSU [21],
and ETMC/PKU [22] collaborations. Different sets of points
with the same color show different sets of results from the
same collaboration.

FIG. 15. br-dependence of the Collins-Soper kernel as determined in this work (green squares in both panels) compared with
(a) phenomenological results, and (b) the results of other lattice QCD calculations of this quantity.

(“Regensburg/NMSU”) uses an approach similar to the
“b* = 0, bare” approach but with NLO matching, and
Ref. [22] (“ETMC/PKU) applies the “b* = 0/by = 0,
bare” approach. While the various calculations exhibit
similar dependence on by, there are some significant dis-
crepancies between the numerical results, and a wide
range of uncertainty estimates. Given the analysis of
Sec. [[IID] this is to be expected; even when the same
quasi beam function data is used, following the various

“b* = 0” approaches and the approach presented here re-
sult in significant systematic differences, and significantly
different uncertainty estimates. Since Refs. [20H22] all
use somewhat larger maximum PZ? values than that of
the present study, the effects of power corrections and
higher-twist contamination can be expected to be smaller
than those found in Sec.[[ITD] but these effects, together
with the difference between NLO and LO matching il-
lustrated in Appendix could nevertheless be respon-



sible for the discrepancies visible in Fig. Clearly, a
fully-controlled determination of the Collins-Soper kernel
from lattice QCD will require NLO or even higher-order
matching or resummation and a treatment of power cor-
rections that is more robust than that achieved in any
of the studies performed to date. The analysis presented
here constitutes an important step towards that goal, re-
vealing clearly that these important sources of systematic
uncertainty cannot be neglected.
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Appendix A: Fits to ratios of three and two point
functions

As detailed in Sec. ratios Rr(t,r,b", a,n, P?)
(Eq. ) of three-point and two-point correlation func-
tions asymptote to the bare quasi beam functions in the
limit {7, — 7} — oo, with contamination from matrix
elements in excited states present at finite t and 7. The ¢
and 7-dependence of the ratios is fit precisely as defined
in Appendix A of Ref. [19] to extract the bare quasi beam
functions: fits are performed for all different possible cuts
on source/operator/sink separations, with the AIC [41]
used to select the number of states included in the spec-
tral representation for each fit. The results are combined
via a weighted averaging procedure. Some examples of
the results of this fitting procedure are given in Fig. [16]

Appendix B: Additional beam function results

This section collates additional examples of results at
intermediate states of the numerical calculation and anal-

ysis presented in Sec. [[ITD}

e Bare quasi beam functions BPa‘e(bZ,gT,a,n,Pz):
supplementing Fig. [3] of the main text, additional
examples of the bare quasi beam functions are pro-
vided in Fig. for B';i”e and Fig. for B‘;gre.

beam functions

examples of the mod-

e Renormalized quasi
B%'\‘/Is(ﬂv bz7 bTv a, 1, PZ):
ified MS-renormalized quasi beam functions BMS

and B@, defined in Sec. [[TII C| are given in Figs.
and |§;6| respectively.

e Renormalized quasi beam function asymmetry fits:
supplementing Fig. [7| of the main text, fits to the
b*-dependence of the asymmetry in the renormal-
ized quasi beam functions, performed as detailed in

Sec. [IIC] are illustrated in Fig.

e Asymmetry-corrected modified MS-renormalized

quasi beam functions BY > (u, b, by, a,n, P?):

an example of the dependence of B%Sm" on b&

and 7 is provided in Fig. 22| supplementing the
analogous figure for B,I:ES;COU

Fig. [0]in the main text.

which is presented in

modified
functions

e Averaged asymmetry-corrected
MS-renormalized quasi beam
—MS
Blli/[ (1, b%,bp, P#):  in addition to the exam-

ple Vided in Fig. [T1] of the main text, Figs.

and [24] give examples of EI\/ELS and EMsS, including
fits to the P?b*-dependence of these functions
and extrapolations to larger P?b*, performed as
described in Sec.
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FIG. 16. Examples of fits to ratios of three and two-point functions Rr(t, 7, ", a,n, P*) defined in Eq. , performed as
described in the text. The shaded bands matching the color of each set of points show 68% bootstrap confidence intervals
of the fits from the fit range that has the highest weight in the weighted average that determines the final result, which is
indicated by the gray horizontal bands. These bands show the total uncertainty on the bare quasi beam functions, including
both the statistical uncertainty and the systematic uncertainty which arises from variation of the results between different fit

range choices.



e Estimator 'Ayg(u, br; PE, P§, z) for the Collins-Soper
kernel (Eq. ): supplementing Fig. of the
main text, the remaining numerical results for 47
as a function of z at different values of by are dis-

played in Fig.

Appendix C: Discrete Fourier transform analysis

As discussed in Sec. [[ITD] a model-independent lattice
QCD extraction of the Collins-Soper kernel by the ap-
proach followed here would require that Eq. is eval-

uated with a DF'T of FIIYIS replacing the Fourier transform

of analytic fits E%AS to the P?b*-dependence of the quasi
beam functions, and that the results are stable under
truncation of the data in P*b*. The P?b*-range of the
data presented here is, however, not sufficient for the tails
of the quasi beam functions at large |P*b*| to decay to
plateaus consistent with zero, particularly at the largest
br and smallest P? values used in this study. It is thus
to be expected that a DFT-based analysis has qualitative
and quantitative differences from the analytic model ap-
proach. These differences can be seen by comparison of
Fig. which displays the results of a DFT-based anal-
ysis, with Figs. [[2] and 25| which show the results of the
analysis of Sec. [[IID] As anticipated, the DFT approach
yields numerical values which are significantly different
from those achieved by modeling rather than truncating
the tails of the quasi beam functions in P*b*, particularly
for evaluations including quasi beam functions computed
with the smallest boost corresponding to n* = 3. As a
result, the values obtained with different choices of P*
are not consistent within uncertainties at intermediate
values of x. The differences are, naturally, less signifi-
cant for results computed with the largest choices of P?,
supporting the expectation that future studies constrain-
ing larger values of P*b* will achieve model-independent
results via the DFT approach.

Appendix D: Power corrections and higher-twist
effects

The estimator 4¢(u, br; Pr, P, x) (Eq. ([28)) coincides
with the Collins-Soper kernel up to power corrections,
such as higher-twist corrections in the factorization for-
mula for the quasi TMDPDF, and discretization arti-
facts; in the absence of contamination from these effects,
’yg should be independent of z, Pf and Pj. Clearly, the
results shown in Figs. [T2] and 25 indicate that this con-
tamination is not negligible relative to the uncertainties
of this calculation. As discussed in Sec.[[IID] it is natural
to attempt to model, fit, and subtract this contamination
in order to determine a best value for the Collins-Soper
kernel.

One possible approach is to consider a simple model of
corrections to the factorization formula [27] [32] for the
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quasi TMDPDF, for example through the inclusion of
free parameters A\; and Ay parameterizing power correc-
tions as:

- L MAZe,

IMD (0 by, P?) = lCESMD(u,xP )+ ﬁ

(22P*)?
Co

X fIMP (2 b, 1, Co) [1 +

5 ] 95(br, )

1
X exp {v?(u, br) In

Ao ]
(xPZbT)Q
(D1)

(here g&(br, p) is defined as in Ref. [26] as the mismatch
between the lightlike and quasi soft factors). This form
is chosen since in the MS scheme the higher-twist cor-
rections must appear in even powers, with a suppres-
sion through k7 /kZ, which in Fourier space becomes
1/(zP?br)?. At tree-level, the factor Ay is a constant.
The 1/(zP?)? power correction comes from the renor-
malon ambiguity in the perturbative series for the match-
ing coeflicient.

The relationship between the quasi TMDPDF and the
quasi beam functions (Eq. ) then suggests a model
of the Fourier transform of the quasi beam functions,
defined as

BYS(u, by, P*) = /dbz Ve P* p BNS (1 b? by, P?),

S
(D2)
of the form

Eﬁt(:uvxv bTa PZ)

(xP2)?

<(2£CPZ)2) 3¢ (p.b7)

- [CESMDm,xPz) +
Co

X F(l‘, br, I, CO) |:1 + (D?))

A2
(zP ZbT)Q} ’
where ¢, F', A1 and A are free parameters and (p can
be chosen freely. For each z, the model can be fit to
EMLS (and separately to BMS) for all choices of P* and
br simultaneously, and the z}ollins—Soper kernel extracted
as the fit parameter ..

The results of this procedure yield results for the
Collins-Soper kernel which are not more consistent with
a constant in x than the results without the correction
applied. A global fit at discretized x values is of poor
quality, with x2/d.o.f. > 2. There are a range of reasons
that the model form above may not a good description
of the numerical data; for example, the assumption that
the 1/(xP?br)? corrections are proportional to the lead-
ing power contribution in Eq. , may not be a good
approximation. This approach is thus not taken in the
main analysis presented here, but may be worthwhile to
consider for future studies with larger values of P* where
the power corrections will be suppressed relative to those
in the current work.
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FIG. 17. Examples of the bare quasi beam functions B};ire determined as described in Sec. (note that B};Z‘re for by = 0.12 fm

and 7 = 1.68 fm is shown in Fig. |3|in the main text).

Appendix E: NLO matching effects

A key difference between the approach followed to ob-
tain the primary results of this work and a number of
the alternative approaches explored in Sec. [[IID] is the
inclusion of the perturbative matching coefficient CIMP
computed to NLO, instead of to LO, in the calculation of
the estimator 4¢(u, br; P, P5, ) via Eq. [28). To illus-

trate the importance of this effect, Fig. displays the
relevant contribution from the NLO matching coefficient
to “7217 computed in Refs. [26] 27], for each of the momen-
tum combinations used in the numerical study of this
work. Clearly this contribution, which is of the order of
the Collins-Soper kernel itself for x < 0.5, is significant,
and its inclusion affects not only the value but also the
z-dependence of the estimator ’yg.
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