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1 Introduction

One of the central goals in numerical lattice QCD is the computation of the properties of

the light mesons and baryons with controlled errors. While the most important systematic

errors in these calculations (finite volume and lattice spacing effects) are theoretically well

understood, the relevant time scales in QCD simulations remain unpredictable. In practice,

the correctness of the simulations within the quoted statistical errors can therefore only be

established through empirical tests and thus only to a limited level of confidence.

In order to preserve the translation symmetry, the lattice theory is usually set up with

periodic boundary conditions in all space-time directions. A side-effect of this choice of

boundary conditions is the emergence of disconnected topological sectors in the continuum

limit. On the lattice the sectors are not strictly separated from each other, but the relative

weight in the functional integral of the gauge fields “between the sectors” decreases with

a high power of the lattice spacing [1]. As a consequence, transitions from one sector

to another tend to be suppressed in the simulations and may eventually become so rare

that a proper sampling of the sectors would require far longer runs than are practically

feasible [2–5].

In this paper we address both issues, the very long autocorrelation times caused by the

emergence of the topological sectors and the lack of theoretical control over the simulations.

The first of them we propose to avoid by imposing open boundary conditions on the gauge

field in the time direction (see section 2). With this choice, the field space in the continuum

theory becomes connected and the topological charge can smoothly flow in and out of space-

time through its boundaries. All statistically relevant parts of field space are therefore

expected be accessible to the simulation algorithms without having to cross higher and

higher topology barriers as the lattice spacing is reduced.

When properly renormalized, some algorithms may even converge to a well-defined

stochastic process in the continuum limit (section 3). In asymptotically free theories, such

algorithms have a predictable scaling behaviour as a function of the lattice spacing and

are thus theoretically controlled to some extent. The HMC algorithm [6] recently turned

out to be non-renormalizable in perturbation theory and is therefore not of this kind [7],

but the algorithm may conceivably fall in the universality class of the Langevin equation

(whose renormalizablity was established long ago [8, 9]). The empirical tests reported in

sections 4 and 5 partly serve to verify that the topology barriers are indeed absent if open

boundary conditions are imposed and partly to find out whether the HMC algorithm scales

like an algorithm that integrates the Langevin equation.

2 QCD with open boundary conditions

Open boundary conditions are easily imposed in QCD and do not give rise to important

theoretical complications. While the discussion in this section is more generally valid, the

gauge group is taken to be SU(3) from the beginning and we assume there is a multiplet

of quarks in the fundamental representation of SU(3). Our notational conventions are

summarized in appendix A.
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2.1 Boundary conditions in the continuum theory

In the continuum limit, the gauge and quark fields live on a four-dimensional space-time

M with Euclidean metric, time extent T and spatial size L×L×L. Time thus runs from

0 to T , while space is taken to be a three-dimensional torus, i.e. all fields are required

to satisfy periodic boundary conditions in the space directions. At time 0 and T , the

boundary conditions imposed on the gauge potential Aµ(x) are

F0k(x)|x0=0 = F0k(x)|x0=T = 0 for all k = 1, 2, 3, (2.1)

where Fµν(x) denotes the gauge-field tensor. Note that these conditions preserve the gauge

symmetry and therefore do not constrain the gauge degrees of freedom of the field. In

perturbation theory, the boundary conditions on the latter instead derive from the gauge-

fixing procedure. If the usual Lorentz-covariant gauge is chosen, for example, the time

and space components of the gauge potential are found to satisfy Dirichlet and Neumann

boundary conditions, respectively.1

In the case of the quark and antiquark fields ψ(x) and ψ(x), we require that

P+ψ(x)|x0=0 = P−ψ(x)|x0=T = 0, P± = 1
2(1 ± γ0), (2.2)

ψ(x)P−

∣

∣

x0=0
= ψ(x)P+

∣

∣

x0=T
= 0. (2.3)

These boundary conditions are familiar from the discussion of the QCD Schrödinger func-

tional [10, 11]. Many of the theoretical results obtained in that context can actually be

reused here. In particular, as explained in ref. [12], one is practically forced to choose

the boundary conditions (2.2), (2.3) if parity and the time reflection symmetry are to be

preserved. The action of the theory (without gauge fixing terms) is then given as usual by

S = − 1

2g2
0

∫

M
d4x tr{Fµν(x)Fµν(x)} +

∫

M
d4xψ(x) (γµDµ +M0)ψ(x), (2.4)

where g0 and M0 are the bare coupling and quark mass matrix.

2.2 Topology of the classical field space

Since M is contractible to a three-dimensional torus, all SU(3) principal bundles over M
are trivializable. Smooth classical gauge potentials may therefore be assumed to be globally

defined differentiable fields. In view of the non-linearity of the boundary conditions (2.1),

the classical field space is however not a linear space.

We now show that the field space is connected. Evidently, any given gauge potential

Aµ(x) satisfying A0(x) = ∂0Ak(x) = 0 at x0 = 0 and x0 = T can be smoothly contracted

to zero, without violating the boundary conditions, by multiplication with a scale factor.

These fields are therefore continuously connected to the classical vacuum configuration.

1As is the case with periodic boundary conditions, perturbation theory in finite volume is complicated

by the presence of non-trivial gauge-field configurations with vanishing action (the constant Abelian fields).

The remarks made here and below on perturbation theory refer to the situation at L = ∞ and finite T ,

where the minimum of the action is unique up to gauge transformations.
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On the other hand, if one starts from an arbitrary field Aµ(x) in the classical field space,

a smooth curve of gauge transformations Λs(x), 0 ≤ s ≤ 1, may be defined through the

differential equation

(∂0 + sA0(x)) Λs(x)
−1 = 0, Λs(x)|x0=0 = 1. (2.5)

When applied to the potential Aµ(x), the transformation generates a curve in field space

(parametrized by s) along which the field is continuously deformed to another field at s = 1

with vanishing time component. The transformed field can then be contracted to zero, as

explained above, which proves that the field space is connected.

The absence of disconnected topological sectors goes along with the fact that the

topological charge

Q =

∫

M
d4x q(x), q(x) = − 1

32π2
ǫµνρσtr{Fµν(x)Fρσ(x)}, (2.6)

is not quantized. When an instanton on M is contracted to the vacuum configuration, for

example, the charge flows away through the boundaries and Q smoothly varies from 1 to

0. It may be worth noting here that the massless Dirac operator has no zero modes in

the space of complex quark fields satisfying the boundary conditions (2.2). Moreover, the

eigenvalues λ of the Hermitian Dirac operator γ5 (γµDµ +m) are all in the range |λ| > m

(see ref. [12], section 2.2, for a proof of these statements). As long as the quark masses are

non-negative, the quark determinant has therefore a definite sign and never passes through

zero even if some masses vanish.

2.3 Renormalization and stability of the boundary conditions

The renormalization of quantum field theories on space-time manifolds with boundaries in

general requires the usual (bulk) counterterms to be added to the action as well as further

counterterms that are localized at the boundaries [13]. In the present case, the symmetries

of the theory, power counting and the fact that ψψ vanishes at the boundaries however

exclude such boundary counterterms. The renormalization of the theory thus proceeds as

in infinite volume by renormalizing the coupling, the quark masses and the fields in the

correlation functions considered.

Boundary conditions are subject to renormalization too and sometimes require a fine-

tuning of boundary counterterms. Neumann boundary conditions in scalar field theories,

for example, are known to be unstable under quantum fluctuations [13]. The situation in

QCD is safe from this point of view, because there are no relevant or marginal boundary

counterterms with the required symmetries. In particular, the boundary conditions (2.1)–

(2.3) are stable under quantum fluctuations (see ref. [12], section 3, for a broader discussion

of the subject).

2.4 Lattice formulation

The lattice theory is set up on a hypercubic lattice with spacing a, time-like extent T + a

and spatial size L× L× L, where T and L are integer multiples of a. Periodic boundary

– 4 –
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conditions are imposed on all fields in the space directions, while time runs from 0 to T

inclusive, the terminal time-slices being the boundaries of the lattice.

As usual the gauge and quark fields reside on the links and points of the lattice. In

particular, the link variables U(x, µ) ∈ SU(3) live on all links (x, µ) with both endpoints

in the specified range of time. The Wilson gauge action is then given by the sum

SG =
1

g2
0

∑

p

w(p) tr{1 − U(p)} (2.7)

over all oriented plaquettes p on the lattice, U(p) being the ordered product of the link

variables around p. Only those plaquettes are included in the sum whose corners are in

the time interval [0, T ]. The weight w(p) is equal to 1 except for the spatial plaquettes at

time 0 and T , which have weight 1
2 .

In the case of the fermion fields, a possible choice of the action is

SF = a4
T−a
∑

x0=a

∑

~x

ψ(x) (Dw +M0)ψ(x), (2.8)

where

Dw = 1
2γµ (∇∗

µ + ∇µ) − 1
2a∇

∗
µ∇µ (2.9)

denotes the Wilson-Dirac operator and the fields are assumed to satisfy the boundary

conditions (2.2), (2.3). Since the action (2.8) depends on the quark fields at times 0 <

x0 < T only, one may then just as well set all components of the fields at time 0 and T to

zero. The dynamical components of the quark fields are thus those residing in the interior

of the lattice.

The functional integral and the basic correlation functions are now defined in the

standard manner. Evidently, only the dynamical components of the fermion fields are

integrated over in the functional integral. Note that the quark determinant is a product

of real factors, one for each quark flavour, since the Wilson-Dirac operator is γ5-hermitian

with the chosen boundary conditions. The established QCD simulation algorithms can

therefore be applied straightforwardly.

It may not be completely obvious at this point that the fields satisfy the boundary

conditions (2.1)–(2.3) in the continuum limit. As already mentioned in subsection 2.3,

these boundary conditions are stable under quantum fluctuations, i.e. it suffices to check

that they emerge at tree-level of perturbation theory when the lattice spacing is sent to

zero. The explicit expression for the quark propagator obtained in ref. [14] and a similar

computation of the gluon propagator in the standard covariant gauge actually show this

to be so.

2.5 Quantum-mechanical representation

The formulation of the lattice theory described above admits a quantum mechanical de-

scription in terms of a Hilbert space H of physical states and a bounded, positive-definite

transfer matrix T [15]. In particular, the partition function of the theory is given by the

expectation value

Z =
(

Ω,TT/aΩ
)

(2.10)
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of a power of the transfer matrix in a state Ω ∈ H that encodes the chosen boundary

conditions at time 0 and T .

A relatively direct way of introducing the transfer matrix formalism starts from a

representation of the physical states through wave functions depending on a gauge field

V (~x, k) and the components

χ−(~x) = P−χ(~x), χ+(~x) = χ(~x)P+ (2.11)

of a quark field on the spatial lattice (see ref. [11], for example). The boundary state Ω is

represented by the wave function

Ω(V, χ−, χ+) =
{

det
(

1 + aM0 − 1
2a

2∇∗
k∇k

)

}−1
(2.12)

in this language, the covariant derivatives being evaluated in presence of the gauge field

V . Note that this expression is manifestly invariant under the gauge symmetry, the lat-

tice symmetries and the (vector-like) flavour transformations. In other words, Ω has the

quantum numbers of the vacuum state.

Correlation functions of gauge-invariant fields have a quantum mechanical interpreta-

tion as well. The two-point function of a local scalar field φ(x), for example, is given by

〈φ(x)φ(y)〉 =
x0>y0

1

Z
(

Ω,T(T−x0)/aφ̂(~x)T(x0−y0)/aφ̂(~y)Ty0/aΩ
)

, (2.13)

where φ̂(~x) denotes the operator field associated to φ(x) [15]. Since the transfer matrix and

the space of physical states are independent of the boundary conditions at time 0 and T ,

the hadron masses and many other physical quantities can, in principle, be extracted from

such correlation functions in much the same way as on lattices with periodic boundary

conditions in time.

2.6 On-shell O(a) improvement

The O(a) improvement of the lattice theory follows the lines of refs. [16, 17]. There is

actually very little difference with respect to the case of the Schrödinger functional discussed

in the second of these papers. In particular, all bulk O(a) counterterms and their coefficients

are exactly the same as those required for the on-shell improvement of the theory on the

infinite lattice.

We wish to emphasize at this point that a further improvement is not needed if one

is exclusively interested in the correlation functions of fields localized far away from the

boundaries of the lattice, where the effects of the latter are exponentially suppressed. The

improvement of correlation functions involving fields close to or at the boundaries however

requires the addition of the O(a) boundary counterterms

δSG,b =
1

2g2
0

(cG − 1)
∑

ps

tr{1 − U(ps)}, (2.14)

δSF,b = (cF − 1)a3
∑

~x

{

ψ(x)ψ(x)
∣

∣

x0=a
+ ψ(x)ψ(x)

∣

∣

x0=T−a

}

. (2.15)
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In these equations, ps runs over all space-like oriented plaquettes at the boundaries of the

lattice and the coefficients

cX = 1 + c
(1)
X g2

0 + c
(2)
X g4

0 + . . . (2.16)

must be adjusted so as to cancel the boundary effects of order a (since the boundary

conditions are not the same, there is no reason to expect these coefficients to coincide with

those needed to improve the Schrödinger functional).

2.7 Other lattice formulations of the theory

Lattice QCD with open boundary conditions can be set up in many different ways. Uni-

versality actually suggests that the details of the lattice theory become irrelevant in the

continuum limit if the gauge, space-time and flavour symmetries are respected. Lattice

formulations that preserve chiral symmetry away from the boundaries exist as well, but

some care is required in this case in order to guarantee the locality of the lattice Dirac

operator near the boundaries [12, 18, 19].

3 Dynamical properties of QCD simulations

The interpretation of simulation data requires good control over the simulation dynam-

ics. In this section, the relevant notions are briefly discussed and some specific issues are

addressed, which arise when studying the scaling behaviour of QCD simulations.

3.1 Autocorrelations

QCD simulation algorithms produce random sequences of gauge-field configurations recur-

sively, where the next configuration is obtained from the current one according to some

transition probability. The simulation algorithms considered in this paper are the HMC

algorithm [6] and the closely related SMD (stochastic molecular dynamics, or general-

ized HMC) algorithm [20–22]. In both cases the simulation time is proportional to the

molecular-dynamics time in lattice units and will, for simplicity, be identified with the

latter in the following.

Let Oi be a set of real-valued unbiased observables labeled by an index i. Their values

Oi(t) measured at simulation time t are statistically correlated to some extent, i.e. the

connected parts of the n-point autocorrelation functions

A(t1, . . . , tn)i1...in = 〈〈Oi1(t1) . . .Oin(tn)〉〉 (3.1)

in general do not vanish. In this equation, the bracket 〈〈. . .〉〉 stands for the average over

infinitely many statistically independent parallel simulations, which is the same as the

average over time translations if the simulation is ergodic.

The connected parts of the autocorrelation functions tend to fall off exponentially at

large separations in simulation time. In particular, the two-point autocorrelation functions

Γij(t) = 〈〈Oi(t)Oj(0)〉〉 − 〈〈Oi(t)〉〉〈〈Oj(0)〉〉 (3.2)

– 7 –
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can be shown to have a spectral decomposition of the form2

Γij(t) =

∞
∑

n=0

Re
{

cincjnλ
|t|
n

}

, |λn| = e−1/τn , (3.3)

where τ0 ≥ τ1 ≥ . . . are the so-called exponential autocorrelation times of the algorithm.

While these are independent of the observables considered, the coefficients cin measure how

strongly the observables Oi couple to the eigenmode number n of the transition probability.

Note that neither the spectral values λn nor the coefficients cin are guaranteed to be real,

except in the case of the HMC algorithm and the Langevin limit of the SMD algorithm.

In practice, the integrated autocorrelation times

τint(Oi) = 1
2∆t+ ∆t

∞
∑

k=1

ρi(k∆t), ρi(t) =
Γii(t)

Γii(0)
, (3.4)

of the observables of interest play an important rôle, where ∆t is the separation in simu-

lation time of the observable measurements. The sum in eq. (3.4) amounts to a numerical

integration of the normalized autocorrelation function ρi(t) using the trapezoidal rule. In

particular, in the Langevin limit of the SMD algorithm or if the HMC algorithm is used,

the formula

τint(Oi) =

∑∞
n=0(cin)2τn

∑∞
n=0(cin)2

(3.5)

and thus the bound τint(Oi) ≤ τ0 hold up to integration errors.

3.2 Topology-changing transitions

On lattices with periodic boundary conditions, the probability per unit simulation time

for a HMC or an SMD trajectory to pass from one topological sector to another is a

rapidly decreasing function of the lattice spacing [2–5]. Such topology-tunneling transitions

are non-perturbative lattice artifacts that may informally be described as “an instanton

falling through the lattice”. The integrated autocorrelation time of the topological charge

consequently tends to become very large, sometimes to the extent that the correctness of

the simulation is compromised.

With open boundary conditions, the situation is different, because the topological

charge can change smoothly along a molecular-dynamics trajectory by flowing in and out

of the lattice via its boundaries. A catastrophic slowdown of the algorithms as in the case

of periodic boundary conditions is therefore not expected.

3.3 Renormalizable algorithms

The n-point autocorrelation functions of gauge-invariant local fields formally look like the

correlation functions in a field theory in five dimensions, where the simulation time is the

2The HMC and the SMD algorithm both evolve the gauge field U(x, µ) together with its canonical

momentum π(x,µ) (cf. subsection 4.1). Equation (3.3) is partly a consequence of detailed balance in phase

space and only holds for observables that do not depend on the momentum.

– 8 –
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fifth space-time coordinate. When the lattice spacing is taken to zero, the autocorrela-

tion functions may then conceivably have a continuum limit, provided the fields and the

parameters (of both the theory and the simulation algorithm) are properly renormalized.

Algorithms that integrate the Langevin equation are known to be renormalizable in

this sense to all orders of perturbation theory [8, 9]. An example of an algorithm of this

kind is provided by the SMDγ algorithm (cf. subsection 4.2). The simulation time has

physical dimension [length]2 in this case and must be renormalized according to

t = ZttR/a
2 (3.6)

where t is the simulation time in lattice units, Zt(g0) a renormalization constant and tR
the renormalized simulation time in some physical units. Further renormalization is not

required apart from the usual field and parameter renormalization.

Beyond perturbation theory, the renormalizability of an algorithm (and thus the as-

sociated scaling laws) can break down as a result of non-perturbative lattice artifacts. On

lattices with periodic boundary conditions, topology-changing transitions have this effect

in the case of the SMDγ algorithm. However, if open boundary conditions are chosen,

there is currently no reason to expect that the renormalizability of the algorithm does not

extend to the non-perturbative level.

3.4 Scaling behaviour of the HMC algorithm

Free-field studies of the HMC algorithm suggest that the exponential autocorrelation times

scale linearly (like a−1) if the length of the molecular-dynamics trajectories is scaled ac-

cordingly [23]. The algorithm however turns out to be non-renormalizable in perturbation

theory [7] and its scaling behaviour in the presence of interactions may therefore be com-

pletely different.

The empirical studies reported later actually show that the HMC algorithm (on lattices

with open boundary conditions) appears to fall into the universality class of the Langevin

equation. In particular, the autocorrelation times scale approximately like a−2 rather than

linearly. From this point of view, the non-renormalizability of the HMC algorithm in

perturbation theory merely reflects the fact that the leading-order theory is in the wrong

dynamical universality class and therefore not a suitable starting point for the perturbation

expansion.

3.5 Making QCD simulations safer

In practice, numerical simulations should be much longer (by, say, a factor 100 at least)

than the longest exponential autocorrelation time τ0, as otherwise a proper sampling of the

functional integral is not guaranteed and the simulation may consequently be biased in an

unpredictable way. Usually the integrated autocorrelation times of the quantities of interest

are monitored, but it should be noted that the correctness of the simulation results (within

the estimated statistical errors) cannot be taken for granted if only these autocorrelation

times are much smaller than the total simulation time.
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Figure 1. Autocorrelation time of the density E at physical time L/2 in the SU(3) gauge theory,

plotted as a function of the flow time t (cf. subsect. 4.3). The simulation data (points) were obtained

on a lattice of size 324 with spacing a = 0.05 fm and open boundary conditions, using the SMD0.3

algorithm. The line is a fit to the data of the form τint = c0 − c1e
−c2t with c0 ≃ 94, while the

leading exponential autocorrelation time in the even-parity sector is found to be about 100 in these

simulations.

Integrated autocorrelation times of both physical and other observables can in fact

be very much smaller than τ0. In particular, the autocorrelation times of noisy quanti-

ties (large Wilson loops, for example) tend to be practically unrelated to the exponential

autocorrelation times. To illustrate this point, consider an observable

O0 = O1 + cη, (3.7)

where c is a constant and η a statistically independent Gaussian noise with mean zero and

unit variance. O0 has the same expectation value as O1 and its autocorrelation function is

given by

Γ00(t) = c2δt0 + Γ11(t). (3.8)

At large c, i.e. when the added noise term is large, the integrated autocorrelation time

τint(O0) decreases like 1/c2 and can therefore be made arbitrarily small. Nothing is gained

in this way, but the example shows that integrated autocorrelation times may not be

representative of the true autocorrelations in the simulation.

Exponential autocorrelation times are difficult to determine reliably if very long simu-

lations are impractical. In this case, a pragmatic way to proceed is to look for observables

with large integrated autocorrelation times and to take the maximum of the latter as an

estimate of τ0. The observables that provide the best probes for autocorrelations should

be sensitive to the smooth modes of the gauge field, since these tend to be updated least

efficiently. Moreover, for the reasons given above, good probes are likely to have small

statistical fluctuations. Quantities obtained by integrating the Wilson flow [1], such as

the average action density E at positive flow time, satisfy both criteria and are therefore

recommended probes (see figure 1).

– 10 –



J
H
E
P
0
7
(
2
0
1
1
)
0
3
6

4 Numerical studies

In order to verify and complement the theoretical discussion in the previous sections, we

performed extensive simulations of the SU(3) gauge theory with open boundary conditions.

The algorithms, observables and simulation parameters used in these studies are described

in this section.

4.1 Simulation algorithms

Both the HMC and the SMD algorithm operate in phase space, i.e. on the gauge field

U(x, µ) and its canonical su(3)-valued momentum field π(x, µ). The O(a) boundary coun-

terterm (2.14) is not included in the Hamilton function

H(π,U) = 1
2(π, π) + SG(U) (4.1)

of the system, partly for simplicity and partly because the term is unimportant in the

present context.

The HMC algorithm proceeds in cycles, where in each cycle one first chooses the

momentum field randomly, with normal distribution, and then evolves the fields according

to the molecular-dynamics equations that derive from the Hamilton function (4.1). In

our simulations, the equations were integrated from molecular-dynamics time 0 to τ using

n0 iterations of the 4th-order Omelyan-Mryglod-Folk (OMF) integrator defined through

eqs. (63) and (71) in ref. [24]. At the end of the evolution, the fields are submitted to an

acceptance-rejection step that corrects for the integration errors. This algorithm has two

parameters, τ and n0, and requires the derivative of the gauge action to be calculated 5n0

times per cycle.

In the case of the SMD algorithm, one proceeds in essentially the same way, but the

momentum field is only partially refreshed according to

π(x, µ) → c1π(x, µ) + c2υ(x, µ), (4.2)

c1 = e−γδτ , c2 = (1 − c21)
1/2, (4.3)

where υ(x, µ) is a randomly chosen momentum field with normal distribution, while γ and

δτ are parameters of the algorithm. The molecular-dynamics equations are then integrated

from 0 to δτ by applying a single iteration of the 4th-order OMF integrator and the fields

are finally submitted to an acceptance-rejection step. When rejected, the fields are reset

to their values before the integration, except for a change of sign

π(x, µ) → −π(x, µ) (4.4)

of the momentum field (see ref. [25] for a straightforward proof of the correctness of the

algorithm). Note that the simulation time t elapsed after n SMD cycles is, by definition,

equal to nδτ , irrespectively of the rejection rate.

Since the OMF integrator is applied only once, the molecular-dynamics evolution time

δτ is usually set to a value much smaller than 1 in order to guarantee a high acceptance
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rate Pacc. Otherwise the SMD algorithm is frequently backtracking, on average after every

period of time equal to

tacc = δτ
Pacc

1 − Pacc
, (4.5)

and thus tends to become inefficient. With respect to the leapfrog and the 2nd-order OMF

integrator, the 4th-order OMF integrator has the advantage that very high acceptance

rates can be achieved with a moderate computational effort.

4.2 Stochastic equation, parameter scaling and the SMDγ algorithm

In the limit δτ → 0, the SMD algorithm amounts to solving the stochastic molecular-

dynamics equations

∂sUs(x, µ) = πs(x, µ)Us(x, µ), (4.6)

∂sπs(x, µ) = −T a(∂a
x,µSG)(Us) − 2µ0πs(x, µ) + ηs(x, µ), (4.7)

where ηs a Gaussian random noise with mean zero and variance

〈ηa
s (x, µ)ηb

r(y, ν)〉 = 4µ0δ
abδµνδ(s − r)a−4δxy. (4.8)

In these equations, the evolution time s and the mass µ0 are related to the simulation time

t and the parameter γ through

s = ta, µ0 = γ/2a, (4.9)

respectively. Evidently, eqs. (4.6), (4.7) reduce to the standard molecular-dynamics equa-

tions if µ0 is set to zero (see appendix A for the definition of the derivative of the gauge

action).

When the continuum limit is approached, the scaling behaviour of the simulation

algorithms depends on how their parameters are scaled. The fact that the evolution time

in eqs. (4.6), (4.7) has dimension [length] suggests to scale the HMC trajectory length τ

proportionally to 1/a [23]. For the same reason, one can argue that µ0 should be scaled like

a physical mass up to a logarithmically varying renormalization factor perhaps. This choice

of the parameter scaling (which, however, leads to non-removable ultra-violet singularities

in perturbation theory [7]) will be referred to as free-field scaling.

Alternatively, if γ is held fixed, and if δτ is such that the continuous-evolution time

tacc is on the order of the exponential autocorrelation times (or larger), the SMD algorithm

effectively performs a numerical integration of the Langevin equation [7]. For clarity, we

use the acronym SMDγ for the SMD algorithm with this parameter scaling.

4.3 Observables

As already noted in subsection 3.5, observables based on the Wilson flow probe the slow

modes of the gauge field and are therefore well suited for studying autocorrelations in QCD

simulations. A review of the Wilson flow is beyond the scope of this paper and we merely

write down the differential equation

∂tVt(x, µ) = −ag2
0T

a(∂a
x,µSG)(Vt)Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (4.10)
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L/a β a [fm] t0/a
2

16 5.96 0.1000(6) 2.698(3)

20 6.09 0.0802(5) 4.203(5)

24 6.21 0.0667(5) 6.086(7)

32 6.42 0.0500(4) 11.045(15)

40 6.59 0.0402(3) 17.49(4)

Table 1. Lattice parameters and reference flow time t0/a
2 calculated at physical time L/2 on the

(L/a)4 lattices.

that generates the flow Vt(x, µ), t ≥ 0, in the space of gauge fields (see refs. [1, 5, 26] for a

comprehensive discussion of the flow and some of its surprising properties).

In the course of the simulations, the observables are evaluated at fixed separations

in simulation time. Starting from the current gauge-field configuration U(x, µ), we first

integrate the flow equation (4.10) numerically up to some flow time t. The field tensor

Gµν(x) of the gauge field Vt(x, µ) generated in this way is defined through the clover

formula, i.e. through the four plaquette Wilson loops in the (µ, ν)-plane that start and end

at x (at the boundaries x0 = 0 and x0 = T we set G0k(x) = 0). The primary observables

considered are then the time-slice averages

E(x0) = − a3

2L3

∑

~x

tr{Gµν(x)Gµν(x)} (4.11)

of the action density and the time-slice sums

Q(x0) = − a3

32π2

∑

~x

ǫµνρσtr{Gµν(x)Gρσ(x)} (4.12)

of the topological charge density. Evidently, the autocorrelations of the total charge

Q = a

T
∑

x0=0

Q(x0) (4.13)

are studied as well. In all these equations, the dependence on the flow time has been

suppressed for simplicity.

At positive flow time t, the expectation values of arbitrary (finite) products of the

observables E(x0), Q(x0) and Q do not require renormalization and are expected to have a

well-defined limit when the lattice spacing is taken to zero [1, 26]. While these expectation

values do not have any obvious interpretation in terms of glueballs or colour flux tubes,

for example, they are properties of the continuum theory which reflect the dynamics of

the smooth modes of the gauge field (the smoothing radius being roughly equal to
√

8t).

In particular, as explained in ref. [1], on lattices with periodic boundary conditions, the

topological charge Q (as defined here) converges to an integer-valued observable in the

continuum limit, which labels the topological sectors of field space.
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Lattice τ n0 Pacc ∆t Ncnfg

164 2.0 6 0.953 6 30697

204 2.5 9 0.975 10 25713

244 3.0 12 0.979 15 25625

324 4.0 20 0.985 24 24041

Table 2. Parameters of the HMC algorithm.

Lattice δτ tacc ∆t Ncnfg

164 0.1410 516(2) 5.92 35093

204 0.1128 748(2) 9.14 20209

244 0.0940 1009(3) 14.5 20521

48 × 243 0.0818 1205(2) 13.7 70000

80 × 243 0.0809 964(2) 13.6 40991

324 0.0705 1633(3) 23.7 20473

404 0.0564 2368(5) 38.6 15976

Table 3. Parameters of the SMD0.3 algorithm.

4.4 Lattice and simulation parameters

In table 1 we list the spatial sizes and the inverse gauge couplings β = 6/g2
0 of the lattices

that we have simulated. The number of lattice points in the time direction (which is

equal to T/a + 1) coincides with L/a in most cases, but lattices with larger time extent

have been considered too. For the conversion to physical units, we use the Sommer radius

r0 = 0.5 fm [27] and the results obtained for r0/a by Necco and Sommer [28]. The values of

the lattice spacing determined in this way (3rd column of table 1) are such that all lattices

have the same physical size L, as is desirable for a scaling study.

As a reference for the Wilson flow time t, we prefer to use the scale t0 determined

through the implicit equation [1]

{

t2
〈

E(L/2)
〉}

t=t0
= 0.3. (4.14)

At flow time t0, the Wilson flow has a smoothing range approximately equal to r0, i.e. this

point in flow time is about where the non-perturbative regime sets in. Since L is quite

small in physical units, the values of t0/a
2 quoted in table 1 are probably affected by finite-

volume effects and they are, in fact, a few percent lower than those previously obtained in

ref. [1] at L ≃ 2.4 fm. In the present context, the effect can however be safely ignored since

L is the same on the lattices simulated.

The trajectory length τ in the HMC simulations was scaled according to the free-field

parameter scaling, and the number n0 of integration steps (each consisting of one iteration

of the 4th-order OMF integrator) was then tuned to achieve fairly high acceptance rates

Pacc (see table 2). In a second set of simulations, we used the SMDγ algorithm. Some

experimenting suggests that the autocorrelation times of the observables considered have

a flat minimum near γ = 0.3 and we therefore decided to stick to this value of γ. The
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404
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204

164

0 0.1 0.2

t(a /L)2

0 0.1 0.2

Figure 2. Normalized autocorrelation functions of the observables E(L/2), Q(L/2)2 and Q2 at

flow time t0, plotted as a function of the simulation time lag t given in units of (L/a)2. The SMD0.3

algorithm was used all cases shown here. For better legibility, the data points obtained on the

coarsest lattices (164 and 204) are coloured in grey, while the black points are those from the other

lattices (244, 324 and 404).

other parameter of the algorithm, δτ , was adjusted to ensure acceptance over an average

simulation time tacc significantly larger than the exponential autocorrelation times (see

table 3).

The observables were measured at the separations ∆t in simulation time quoted in

tables 2 and 3. On each lattice, a fairly large number Ncnfg of configurations were analyzed,

the total length of the simulations thus being equal to Ncnfg∆t.

5 Simulation results

5.1 Scaling properties of the autocorrelation functions

While the chosen observables do not require renormalization, the flow time at which they

are evaluated should be scaled like a physical quantity of dimension [length]2 in the con-

tinuum limit. In the following, the flow time is set to the reference time t0, the results at

other values of the flow time being similar as long as the short-time regime (where lattice

effects are large) is avoided.

The SMD0.3 algorithm is renormalizable to all orders of perturbation theory since it

effectively integrates the Langevin equation (cf. subsects. 3.3 and 4.2). Moreover, with

open boundary conditions, the topology barriers that otherwise slow down the algorithm

are absent. It is therefore not unreasonable to expect that the normalized autocorrelation

functions of the selected observables converge to universal functions in the continuum limit,

provided the simulation time is scaled according to eq. (3.6).

The autocorrelation functions plotted in figure 2 in fact behave as expected if one

assumes that the renormalization constant Zt varies only slightly on the lattices considered.

Note that all points obtained on a given lattice are statistically correlated. In particular, the

seemingly systematic deviation of the measured autocorrelation functions on the 404 lattice

– 15 –
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Figure 3. Integrated autocorrelation times of the observables E(L/2), Q(L/2)2 and Q2 at flow

time t0, as obtained on the (L/a)4 lattices using the HMC algorithm (open circles, scale factor

Z = 1.32) and the SMD0.3 algorithm (full circles, Z = 1). Many HMC points lie on top of the

SMD0.3 points and thus mask the latter. The curves are straight-line fits of the SMD0.3 data.

from those on the 324 and 244 lattices may very well be a statistical fluctuation. Large

deviations are however seen in the case of the time-slice and the total topological charge on

the coarser lattices, where topology-tunneling transitions are not totally suppressed and

thus reduce the autocorrelations. Langevin scaling then sets in as expected once these

lattice artifacts become unimportant.

On physically large lattices, the four-point autocorrelation function of the topological

charge Q is dominated by its disconnected parts. The normalized two-point autocorrelation

function of Q2 is then related to the one of Q through

ρQ2(t) ≃ {ρQ(t)}2 . (5.1)

Although the simulated lattices are not very large in physical units, we found that eq. (5.1)

is accurately satisfied. In particular, the autocorrelation functions of Q and Q2 scale in

practically the same way.

5.2 Autocorrelation times

Similarly to the energy spectrum in finite volume, the exponential autocorrelation times

depend on the symmetry sector considered. In particular, eq. (5.1) suggests that the

longest autocorrelation time in the odd-parity sector is larger, by a factor 2 perhaps, than

the one in the even-parity sector. On the basis of the data shown in figure 2, we estimate

that the latter is about 1.2 × (r0/a)
2 (thus ranging from 30 to 187) in the case of the

SMD0.3 algorithm and the (L/a)4 lattices we have simulated.3 As usual, such estimates

should be taken with a grain of salt, because the slowest modes in the system may not

couple sufficiently strongly to the measured observables for their effects to be seen in

the available data.
3In accordance with the conventions adopted in section 3, all autocorrelation times are quoted in units

of simulation time (i.e. molecular-dynamics time in lattice units).
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Figure 4. Integrated autocorrelation times of E(x0) and Q(x0)
2 at flow time t0, plotted as a

function of the physical time x0 in lattice units. The data were obtained on the 244, 48 × 243 and

80× 243 lattices using the SMD0.3 algorithm. For better legibility, the data points obtained on the

two smaller lattices are coloured in grey.

The integrated autocorrelation times plotted in figure 3 and their errors were calculated

following the lines of appendix B. As is evident from the figure, the autocorrelation times

all scale linearly in 1/a2 and thus as expected for algorithms that integrate the Langevin

equation. From the point of view of the continuum limit, the intercepts at L/a = 0 of the

straight lines in figure 3 are O(a2) lattice corrections to the Langevin scaling, while the

ratios of their slopes are universal properties of the simulation dynamics.

Figure 3 also shows that the HMC algorithm (with free-field parameter scaling) scales

like the SMD0.3 algorithm. The matching of the autocorrelation times requires a renormal-

ization of the simulation time by the factor Z ≃ 1.32, but in terms of computer time, HMC

simulations tend to be faster than SMD0.3 simulations, because a very accurate integration

of the molecular-dynamics equations is not needed.

5.3 Dependence on the time-like extent of the lattice

In practice, the time extent of the simulated lattices will often have to be larger than the

one of the (L/a)4 lattices in our scaling studies. Autocorrelations in general depend on

the physical situation and thus also on the lattice geometry. For illustration, the autocor-

relation times of E and Q2 calculated on three lattices with the same spacing and spatial

size, but different time extent T , are plotted in figure 4. Close to boundaries of the lattice,

the autocorrelation times shown in these plots are thus practically independent of T , while

well inside the lattices they rapidly converge to a constant value when T is increased. The

behaviour of the autocorrelation times of these observables discussed in subsection 5.2 is

therefore expected to be representative of the situation on larger lattices as well.

The total topological charge Q is a special case, because it can only change (at small

lattice spacings) by flowing in and out of the lattice. In the course of a simulation, the

measured values of Q fluctuate around the origin with a standard deviation that increases

proportionally to
√
TL3 on large lattices. The charge however flows through the boundaries
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with a rate proportional to
√
L3 only. The simulation time required for a significant change

inQmust therefore be expected to grow with T (proportionally to T ifQ performs a random

walk). On the 244, 48× 243 and 80× 243 lattices, we actually find that the autocorrelation

times of Q2 (42.1(2.5), 113(6) and 148(10), respectively) grow roughly linearly with T .

We wish to conclude this discussion by emphasizing that the autocorrelation times on

lattices of a given physical size are expected to scale linearly in 1/a2. Independently of the

chosen geometry, the computational effort for HMC simulations with the standard leapfrog

integrator, for example, thus scales approximately like 1/a7.

6 Conclusions

The theoretical and empirical results presented in this paper show that the topology barriers

in the SU(3) gauge theory can be avoided by choosing open boundary conditions in the

time direction. Moreover, on lattices with these boundary conditions, the HMC and the

SMDγ simulation algorithm both appear to fall in the dynamical universality class of the

Langevin equation, i.e. simulations based on these algorithms slow down proportionally

the square of the lattice spacing when the continuum limit is approached.

In our numerical studies, the autocorrelation times of the topological charge (as well

as those of observables unrelated to the latter) went up to values greater than 100 in units

of molecular-dynamics time. While such autocorrelations may be affordable in a given

case, the experience suggests that there is ample room for algorithmic improvements. A

separate treatment of the high-frequency and the smooth modes of the gauge field, for

example, might be worth considering at this point.

Open boundary conditions can easily be imposed in QCD with a non-zero number of

sea quarks. We do not foresee any technical issues when these boundary conditions are

chosen, but an interesting theoretical question is whether the Langevin equation remains

renormalizable in the presence of the pseudo-fermion fields that need to be introduced to

be able to simulate the theory [29, 30].

All simulations reported in this paper were performed on a dedicated PC cluster at

CERN. We are grateful to the CERN management for funding this machine and to the

CERN IT Department for technical support.

A Notational conventions

The Lie algebra su(3) of SU(3) may be identified with the linear space of all traceless anti-

hermitian 3 × 3 matrices. We choose the generators T a, a = 1, . . . , 8, of the Lie algebra to

be such that

tr{T aT b} = −1
2δ

ab. (A.1)

The general element X of su(3) is then given by X = XaT a with real components Xa

(repeated indices are automatically summed over). The Euclidean Dirac matrices γµ,

µ = 0, . . . , 3, are assumed to be hermitian.
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Gauge potentials Aµ(x) take values in su(3) and are normalized such that the field

tensor and the covariant derivatives that appear in the Dirac operator are given by

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], (A.2)

Dµ = ∂µ +Aµ. (A.3)

On the lattice, the gauge-covariant forward and backward difference operators in presence

of a lattice gauge field U(x, µ) act on the quark field ψ(x) according to

∇µψ(x) =
1

a
{U(x, µ)ψ(x + aµ̂) − ψ(x)} , (A.4)

∇∗
µψ(x) =

1

a

{

ψ(x) − U(x− aµ̂, µ)−1ψ(x− aµ̂)
}

, (A.5)

where a denotes the lattice spacing and µ̂ the unit vector in direction µ.

The scalar product of any two vector fields ω(x, µ) and υ(x, µ) with values in su(3) is

normalized such that

(ω, υ) = −2a4
∑

x,µ

tr{ω(x, µ)υ(x, µ)}. (A.6)

If F(U) is a differentiable function of the gauge field, its derivative with respect to the link

variable U(x, µ) in the direction of the generator T a is defined by

∂a
x,µF(U) = a−3 d

dt
F(Ut)

∣

∣

∣

∣

t=0

, Ut(y, ν) =

{

etT a

U(x, µ) if (y, ν) = (x, µ),

U(y, ν) otherwise.
(A.7)

In particular, in the case of a scalar function F(U), the combination T a∂a
x,µF(U) is a

vector field with values in su(3) that transforms under the adjoint representation of the

gauge group.

B Calculation of integrated autocorrelation times

The integrated autocorrelation times of the selected observables Oi were obtained as usual

from the empirical estimates

Γii(t) =
∆t

ttot − t

ttot−t
∑

s=∆t

(

Oi(s) −Oi

) (

Oi(s+ t) −Oi

)

(B.1)

of the autocorrelation functions Γii(t), where ttot = Ncnfg∆t denotes the total simulation

time of the run and Oi the average of the measured values of Oi. In all cases, the au-

tocorrelation functions are found to decay exponentially at large time separations with

remarkably consistent values of the exponential autocorrelation times. The estimate

τint(Oi) ≃ 1
2∆t+ ∆t

kmax
∑

k=1

ρ̄i(k∆t), ρ̄i(t) =
Γii(t)

Γii(0)
, (B.2)

therefore rapidly approaches a constant value when the “summation window” W = kmax∆t

is sufficiently large.
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On the (L/a)4 lattices considered, the summation window for even-parity observables

was set to

W = (r0/a)
2 ×

{

6.0 (HMC runs),

4.5 (SMD0.3 runs).
(B.3)

Given the measured exponential autocorrelation times (subsection 5.2), the systematic

error that derives from the truncation of the sum (B.2) is estimated to be at most 3%

with this choice. The statistical errors of the autocorrelation functions and the integrated

autocorrelation times were determined using the Madras-Sokal approximation [31] (see

ref. [32], appendix E, for a detailed description of the procedure).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.

References
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