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We review the work of the PACS-CS Collaboration, which aimed to realize lattice quantum

chromodynamics (QCD) calculations at the physical point, i.e., those with quark masses set

at physical values. This has been a long-term goal of lattice QCD simulation since its inception

in 1979. After reviewing the algorithmic progress, which played a key role in this development,

we summarize the simulations that explored the quark mass dependence of hadron masses down

to values close to the physical point. In addition to allowing a reliable determination of the light

hadron mass spectrum, this work provided clues on the validity range of chiral perturbation the-

ory, which is widely used in phenomenology. We then describe the application of the technique of

quark determinant reweighting, which enables lattice QCD calculations exactly on the physical

point. The physical quark masses and the strong coupling constants are fundamental constants

of the strong interaction. We describe a non-perturbative Schrödinger functional approach to

figure out the non-perturbative renormalization needed to calculate them. There are a number of

physical applications that can benefit from lattice QCD calculations carried out either near or at

the physical point. We take up three illustrative examples: calculation of the physical properties

of the ρ meson as a resonance, the electromagnetic form factor and charge radius of the pion,

and charmed meson spectroscopy. Bringing single hadron properties under control opens up a

number of new areas for serious lattice QCD research. One such area is electromagnetic effects

in hadronic properties. We discuss the combined QCD plus QED simulation strategy and present

results on electromagnetic mass difference. Another area is multi-hadron states, or nuclei. We

discuss the motivations and difficulties in this area, and describe our work for deuteron and

helium as our initial playground. We conclude with a brief discussion on the future perspective

of lattice QCD.
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1. Introduction

Lattice quantum chromodynamics (QCD) has close to four decades of history [1], and numerical sim-

ulation of lattice QCD has now been pursued for over 30 years [2–6]. Despite the promise that it would

provide a first-principles method for extracting physical predictions from the basic Lagrangian of

QCD, lattice QCD simulation in practice suffered from restrictions due to the need for various approx-

imations and extrapolations. Efforts over the past three decades have removed these restrictions one

by one, and numerical lattice QCD has now reached the point where calculations are possible directly

at the physical point with light up, down, and strange quark masses taking physical values. We believe

that this is a turning point in lattice QCD research. The purpose of the present article is to review our

effort to achieve this goal, to present physics results obtained along the way [7–18], and to discuss

future directions.

In order to place our work in a historical perspective, let us discuss the situation of lattice QCD

simulation leading up to the middle of the 2000s when the work to be reviewed here was started.

There have been five sources of systematic errors which have plagued the numerical simulation of

lattice QCD. These are (i) the quenched approximation, which ignores quark vacuum polarization

effects, (ii) the effects of finite lattice spacing, (iii) the effects of finite lattice volume, (iv) the difficulty

of maintaining chiral symmetry on the lattice, and (v) the need to make an extrapolation from heavy

quark masses to their physical values.

Algorithmically, the quenched approximation was overcome by the development of dynamical

fermion algorithms, notably the hybrid Monte Carlo method [19] in the middle of the 1980s. Together

with more recent extensions, including the polynomial [20,21] and rational [22] hybrid Monte

Carlo methods, simulations with dynamical up, down, and strange quarks had become routine by

around 2000.

Much work has been devoted over the years to improving the lattice action and operators in such

a way that lattice spacing dependent errors in physical observables are reduced in magnitude. This

procedure is known as improvement [23–25], and the results, implemented non-perturbatively, have

been widely employed.

Finite-volume effects occupy an interesting position in this discussion. In general we need large

enough volumes to suppress finite-volume corrections, and no methods other than increasing the

computer power are viable for overcoming this obstacle. However, there are situations where finite-

volume effects measured under a judicious choice of lattice volume can be exploited to explore

physics in infinite volume [26,27]. An important case is the property of resonance such as ρ, K ∗,
and �. The long-standing issue of CP violation in K meson decays to two pions is also connected to

this issue [28].

Concerning chiral symmetry, the well-known Nielsen–Ninomiya theorem [29,30] states that, under

reasonable assumptions, lattice fermion action cannot maintain chiral symmetry without species dou-

bling. It was realized in the 1990s that this conclusion could be avoided by modifying chiral symmetry

suitable for lattice regularization; both domain wall fermion [31,32] and overlap [33,34] fermion

formalisms achieve chiral symmetry in this way. Numerical simulations using these formalisms are

much more time consuming, but the obstacle as a matter of principle has been removed.

The final obstacle was an extrapolation from the region of heavy quark masses to much lighter val-

ues corresponding to the physical point. The problem stems from the need to invert the lattice Dirac

operator D(U ) for quarks on a background gluon field U . The condition number of D(U ) that con-

trols the convergence of iterative algorithms for carrying out inversion is proportional to the inverse

of the quark mass, 1/mq. This number is large for physical up and down quarks whose masses of a
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few MeV are very small compared to the strong interaction scale of 1 GeV. The situation is very dire

in dynamical calculations that are to include quark vacuum polarization effects since, in the hybrid

Monte Carlo algorithm, generating just a single trial configuration of gluon fields requires thousands

of inversions. The problem was examined in a panel discussion [35] at the 2001 International Lattice

Field Theory Symposium in Berlin. The rapid increase in the amount of computations needed to

approach the physical point [36] has since been called the “Berlin Wall”.

Progress in lattice QCD has been intimately tied with that of parallel computers. Our approach has

been to develop parallel supercomputers suitable for lattice QCD and carry out physics simulations

on the developed computer. The QCDPAX computer, completed in 1989 with a peak speed of 14

Gflops, carried out hadron mass as well as finite-temperature calculations in the quenched approxi-

mation [37,38]. This was followed by a very successful CP-PACS computer with a peak speed of 614

Gflops, which was ranked at the top of the Top 500 List of Supercomputers in November 1996 [39].

The physics calculations on CP-PACS produced a definitive result for the light hadron spectrum

in the quenched approximation [40,41], which established that the quenched approximation misses

the experimental spectrum by about 10%. This work quantitatively established the limitation of the

quenched approximation. More effort has since been directed toward full QCD simulations includ-

ing quark vacuum polarization effects. We have made a systematic effort in this direction, first for

two flavors of light quarks corresponding to up and down quarks [42–45] using the CP-PACS com-

puter, and then for three flavors of light quarks including the strange quark [46,47] using the SR8000

computer, which is a commercial successor to CP-PACS, and the Earth Simulator.

By the middle of the 2000s, these efforts had brought us to the stage where we were able to carry out

systematic lattice QCD simulations, including continuum extrapolation, for three dynamical quark

flavors corresponding to up, down, and strange [46,47]. The only difficulty was that the quark masses

were quite heavy due to the Berlin Wall so that the results at the physical quark masses had to be

estimated by a long chiral extrapolation of uncertain reliability.

In the work to be reviewed in this article, we have overcome this difficulty by combining an algo-

rithmic development that took place in the middle of the 2000s with the development of a massively

parallel cluster computer which we named PACS-CS. The key in the algorithmic development is an

empirical realization [48] that the magnitudes of the forces which drive the variation of gluon fields

in the hybrid Monte Carlo algorithm are hierarchically ordered: the contribution from the gluon

action is the largest, next comes the force from the ultraviolet part of the quark determinant, and the

smallest is its contribution from the infrared part. Once this is realized, it is natural to apply a multi-

time step evolution [49] to solve the hybrid Monte Carlo algorithm, using a larger time step for the

weaker force coming from the infrared part of the quark determinant. Since it is the infrared part that

costs the most computations in inverting the Dirac operator, this leads to a substantial acceleration

in computing time, typically a few times an order of magnitude. For a given computing resource,

this means that one can decrease the quark mass substantially. There are various ways to separate

the ultraviolet and infrared parts of the quark force. A scheme developed by Lüscher [50] employs

a domain-decomposition idea, and is hence called the domain-decomposed hybrid Monte Carlo

algorithm [48]. Another method is to employ a fictitious quark mass as an intermediate evaluator

of the quark determinant. This method is called “mass preconditioning” [51].

Let us briefly describe the PACS-CS computer [52]. It is a massively parallel cluster computer with

a peak speed of 14 Tflops developed at the Center for Computational Sciences of the University of

Tsukuba by a collaboration with computer scientists. The name stands for Parallel Computer System

for Computational Sciences, and it is the seventh computer of the PACS/PAX series developed at the
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university. The project was started in April 2005, and PACS-CS started producing physics results in

the fall of 2006.

From a computing point of view, PACS-CS was built using commodity technology. An Intel Xeon

processor was used for the CPU and an Ethernet with commercially available switches was adopted

for the network. The network throughput was relatively weak for running the standard hybrid Monte

Carlo code for lattice QCD. However, the domain decomposition significantly lessened the demand

for communication between nodes, and was hence quite well suited to the architecture of PACS-

CS. A great advantage of using commodity components was a much shorter time for designing and

building the computer compared to developing a custom-made CPU and network.

Let us now list the physics issues we explored in lattice QCD using the domain-decomposed HMC

algorithm on the PACS-CS cluster computer. Our study was carried out for the Wilson quark action

with a non-perturbatively improved clover term [53] and a renormalization-group improved gluon

action developed by Iwasaki [54]. The discretization error from the action is hence O(a2). Three

flavors of quarks, corresponding to a degenerate pair of up and down quarks, and a strange quark

with a separate mass, are incorporated in the calculation. We choose a lattice size of 323 × 64

and the inverse bare coupling constant of β = 1.90, which corresponds to a lattice spacing of

a ≈ 0.1 fm.

Our first set of simulations [7,8] explored the quark mass dependence of light hadron masses.

With a significant effort to optimize the algorithm, which included a number of techniques that we

shall describe below, we were able to lower the up and down quark masses down to the value cor-

responding to the pion mass of mπ ≈ 150 MeV. This was quite close to the physical pion mass of

135 MeV. The first physics result from this work is the light hadron mass spectrum for the ground

state mesons and baryons. While this was a calculation at a finite lattice spacing of a ≈ 0.1 fm,

the result was consistent with experiment within a few %. Another important result is the impli-

cation for the range of validity of chiral perturbation theory. The SU(3) chiral perturbation theory

formula treating all three quarks as light could not fit our data for pseudoscalar mesons, strongly

implying that the physical strange quark mass is too heavy to be treated by chiral perturbation

theory.

The smallest pion mass of 150 MeV, albeit close to the physical value, is still 15% away from it.

The question naturally arises whether it is possible to carry out a simulation exactly on the physical

point. Running a number of simulations successively adjusting the bare quark mass parameters until

the outcome matches the physical values is an unattractive option since it is too time consuming. The

answer turned out to be the reweighting technique [10]. This is an application of an old idea [55]

in which one adjusts the quark mass parameter through a calculation of the ratio of the quark deter-

minant for a mass parameter pair, one for the original value and the other for the shifted value. In

general the ratio fluctuates exponentially with an exponent proportional to volume, and hence one

may not expect the reweighting to work in practice. The reason why this is a viable option now is

that the original quark mass is so close to the physical value that the fluctuation of the reweighting

factor can be reasonably brought under control.

The value of the strong coupling constant and the physical quark masses are fundamental constants

of nature. The finite-volume Schrödinger functional approach [56], which was used for determining

the non-perturbative value of the clover coefficient for our O(a) improved action, can be applied

to calculate the non-perturbative evolution of the relevant factors: the step scaling function for the

coupling constant and the renormalization factor for quark mass. The results are described in Refs. [9]

and [11].
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There are a number of physical applications which can benefit from lattice QCD calculations car-

ried out either near or at the physical point. We have investigated three classic examples: (i) the

calculation of the physical properties of the ρ meson as a resonance [15] making use of the rela-

tion between the two-particle phase shift and two-particle energy on a finite volume [26], (ii) the

electromagnetic form factor and charge radius of a pion [13], whose interest stems from the singular

behavior expected toward vanishing quark mass, and (iii) charmed meson spectroscopy [14] explored

on a sea of physically light quarks.

A new arena which is opened by the ability to control quark masses around the physical values

is the exploration of isospin breaking and electromagnetic difference of hadron masses. The experi-

mental mass differences are so tiny that extrapolations from the region of heavy quark masses cannot

determine them in a precise manner. The physical interest in these tiny mass differences stems from

the fact that they have implications beyond particle physics, e.g., the proton neutron mass difference

is an important parameter in nucleosynthesis after the Big Bang. We have attempted a simulation

fully incorporating QED effects and splitting the up and down quark masses through the reweighting

technique. Our results are reported in Ref. [17,18].

Since the single hadron properties have been brought under control, one can contemplate the pos-

sibility of exploring the world of multi-hadrons, or nuclear physics, directly from lattice QCD. We

have explored this area using deuteron and helium, i.e., nuclei with mass numbers 2, 3, and 4 as our

initial playground [12,16].

In this article we discuss the topics listed above. We conclude with a brief discussion on the future

perspective of lattice QCD.

2. Formalism

We briefly review the formalism to fix our notations. We employ the renormalization-group improved

Iwasaki gluon action [54] and the non-perturbatively O(a)-improved Wilson-clover [53] quark

action. The former is composed of a plaquette and a 1 × 2 rectangle loop:

Sgluon = 1

g2

⎧

⎨

⎩

c0

∑

plaquette

trUpl + c1

∑

rectangle

trUr tg

⎫

⎬

⎭

(2.1)

with c1 = −0.331 and c0 = 1 − 8c1 = 3.648, and g2 the bare coupling constant. The latter is

expressed as

Squark =
∑

q=u,d,s

∑

n,m

q̄n Dq,n,m(U )qm (2.2)

=
∑

q=u,d,s

[

∑

n

q̄nqn − κqcSW

∑

n

∑

μ,ν

i

2
q̄nσμν Fμν(n)qn

− κq

∑

n

∑

μ

{

q̄n(1 − γμ)Un,μqn+μ̂ + q̄n(1 + γμ)U
†

n−μ̂,μ
qn−μ̂

}

]

, (2.3)

where Dq(U ) in the first line represents the lattice Wilson-clover operator for flavor q whose form

is spelled out in the second line with κq the hopping parameter. The field strength Fμν in the clover
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term is given by

Fμν(n) = 1

4

4
∑

i=1

1

2i
(Ui (n) − U

†
i (n)), (2.4)

U1(n) = Un,μUn+μ̂,νU
†

n+ν̂,μ
U

†
n,ν, (2.5)

U2(n) = Un,νU
†

n−μ̂+ν̂,μ
U

†

n−μ̂,ν
Un−μ̂,μ, (2.6)

U3(n) = U
†

n−μ̂,μ
U

†

n−μ̂−ν̂,ν
Un−μ̂−ν̂,μUn−ν̂,ν, (2.7)

U4(n) = U
†

n−ν̂,ν
Un−ν̂,μUn+μ̂−ν̂,νU

†
n,μ, (2.8)

and σμν = 1
2
[γμ, γν]. The improvement coefficient cSW for O(a) improvement was determined non-

perturbatively in Ref. [57].

For the meson operators we employ

M
f g
Ŵ (x) = q̄ f (x)Ŵqg(x), (2.9)

where f and g denote quark flavors and Ŵ are 16 Dirac matrices Ŵ = I, γ5, γμ, iγμγ5 and i[γμ, γν]/2

(μ, ν = 1, 2, 3, 4). The octet baryon operators are given by

O
f gh
α (x) = ǫabc((qa

f (x))T Cγ5qb
g (x))qc

hα(x), (2.10)

where a, b, c are color indices, C = γ4γ2 is the charge conjugation matrix and α = 1, 2 labels the z-

component of the spin 1/2. The - and �-like octet baryons are distinguished by the flavor structures:

-like : −O
[ f h]g + O

[gh] f

√
2

, (2.11)

�-like :
O

[ f h]g − O
[gh] f − 2O[ f g]h

√
6

, (2.12)

where O [ f g]h = O
f gh − O

g f h . We define the decuplet baryon operators for the four z-components

of the spin 3/2 as

D
f gh

3/2 (x) = ǫabc((qa
f (x))T CŴ+qb

g (x))qc
h1(x), (2.13)

D
f gh

1/2 (x) = ǫabc[((qa
f (x))T CŴ0qb

g (x))qc
h1(x)

− ((qa
f (x))T CŴ+qb

g (x))qc
h2(x)]/3, (2.14)

D
f gh
−1/2(x) = ǫabc[((qa

f (x))T CŴ0qb
g (x))qc

h2(x)

− ((qa
f (x))T CŴ−qb

g (x))qc
h1(x)]/3, (2.15)

D
f gh
−3/2(x) = ǫabc((qa

f (x))T CŴ−qb
g (x))qc

h2(x), (2.16)

where Ŵ± = (γ1 ∓ iγ2)/2, Ŵ0 = γ3 and the flavor structures should be symmetrized.
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Green’s functions of hadronic operators from which we extract hadron spectroscopic observables

are defined as

〈O(q, q̄, U )〉 = 1

Z

∫

∏

nμ

dUnμ

∏

q=u,d,s

∏

n

dqndq̄ne−Sgluon−SquarkO(q, q̄, U ) (2.17)

= 1

Z

∫

∏

nμ

dUnμ

∏

q=u,d,s

det Dq(U )e−Sgluon 〈O(q, q̄, U )〉q,q̄ , (2.18)

where 〈·〉q,q̄ means Wick contraction over the quark fields, and

Z =
∫

∏

nμ

dUnμ

∏

q=u,d,s

det Dq(U )e−Sgluon . (2.19)

3. The domain-decomposed HMC algorithm for full QCD

3.1. Acceleration by domain decomposition

In order to discuss the salient features of the domain-decomposed hybrid Monte Carlo algorithm, let

us consider a simplified problem given by the partition function

Z =
∫

∏

nμ

dUnμ det D(U )e−Sgluon(U ), (3.1)

=
∫

∏

nμ

dUnμ

∏

n

dφ
†
ndφne−Sgluon(U )−φ† D−1(U )φ, (3.2)

where φ is a bosonic field with Dirac and color indices.

The hybrid Monte Carlo (HMC) algorithm is based on the rewriting of (3.2) as a canonical partition

function for a four-dimensional system with a fictitious Hamiltonian given by

H = 1

2

∑

nμ

trP2
nμ + Sgluon(U ) + φ† D−1(U )φ, (3.3)

where Pnμ is an su(3) Lie algebra valued momentum conjugate to Unμ and obeys the Gaussian distri-

bution indicated by the kinetic term. In order to generate gluon configurations distributed according

to the weight exp(−H)/Z , one uses the Hamilton equation with respect to the fictitious HMC time

τ given by

dUnμ

dτ
= i PnμUnμ, (3.4)

d Pnμ

dτ
= Fnμ ≡ −∂Sgluon(U )

∂Unμ

+ φ† D−1(U )
∂ D(U )

∂Unμ

D−1(U )φ. (3.5)

For computer implementation one discretizes τ in steps of δτ . Employing a symplectic inte-

grator such as the leapfrog, one integrates the Hamilton equation from an initial configuration

{Pnμ(0), Unμ(0)} with randomly generated initial Gaussian momenta over a time interval τ and

generates a trial configuration {Pnμ(τ ), Unμ(τ )}. This is followed by a Metropolis accept/reject step

with the probability P = min{1, exp(−�H)}, where �H is the change of Hamiltonian from the

initial to final configuration, to correct for the bias introduced by the violation of Hamiltonian con-

servation due to a finite step size δτ . In short the HMC algorithm is a Markov chain Monte Carlo

method that consists of molecular dynamics evolution and the Metropolis test.

Since the computational cost is proportional to the number of steps τ/δτ per trajectory, one likes

to make the step size as large as possible. On the other hand, the product of the step size and force
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δτ · Fnμ has to be kept bounded since beyond a certain value the trajectory generated by a discrete

integrator changes nature from elliptic to hyperbolic, subsequently losing the required properties of

high acceptance and reversibility for finite precision arithmetic. In practice the hyperbolic behavior

tends to be signaled by a sudden and large jump in the Hamiltonian.

The gluon contribution to the force is bounded since ∂Sgluon(U )/∂Unμ is local and consists of

terms made from unitary SU (3) matrices. On the other hand, the quark contribution is non-local. It

involves the inverse of the lattice Wilson-clover operator whose minimum eigenvalue decreases with

the quark mass mq. Thus one expects the quark contribution to the force to grow as the quark mass

decreases, and hence the step size has to be made proportionately smaller.

Calculating the inverse of the Wilson-clover operator by an iterative solver such as the conjugate

gradient method requires computations growing as the condition number of the matrix, which is

proportional to 1/mq. Including the constraint δτ ∝ V −1/4 for keeping acceptance of the Metropolis

step at a reasonable value, and empirical information on the auto-correlation time between successive

configurations also growing as 1/mq, the experience on the cost of hybrid Monte Carlo algorithm

for full QCD with two flavors of Wilson-clover quark action was summarized as [36]

cost[Tflops · years] = C

[

#conf

1000

]

·
[

0.6

mπ/mρ

]6

·
[

L

3 fm

]5

·
[

0.1 fm

a

]7

(3.6)

with C ≈ 2.8. The rapid rise proportional to m−6
π ∝ m−3

ud represented a serious obstacle in reaching

the physical point where mπ/mρ = 0.18 (mπ = 135 MeV, mρ = 785 MeV). Since the estimate (3.6)

was reported in a panel discussion [35] at the 2001 International Lattice Field Theory Symposium

held in Berlin, the rapid rise has since been called the Berlin Wall.

The crucial point which led to the resolution of the Berlin Wall is the observation by Lüscher [48]

that the magnitude of the force is hierarchically ordered. Let us decompose the whole lattice � into

a set of sub-lattices �i , i = 1, 2, . . . , n, and rewrite the Wilson-clover operator in terms of those

defined on each of the sub-lattice DUV
i and the remainder DIR (this is called Schwarz domain decom-

position). One can then decompose the quark contribution to the force into the ultraviolet part FUV
nμ

arising from the sub-lattice operator DUV
i and the infrared part F IR

nμ coming from the remainder DIR.

Adding the gluon contribution F
g
nμ to the list, and comparing the magnitude in actual simulations, it

was empirically found that the three terms satisfy

‖Fg‖ ≫ ‖FUV‖ ≫ ‖F IR‖, (3.7)

where the norm is defined by ‖M‖2 = −2
∑

nμ tr(M2
nμ)/4V . Since the magnitudes are so sep-

arated, one can employ different step sizes for the three terms which are inversely reordered in

magnitude, i.e.,

δτg ≪ δτUV ≪ δτIR such that δτg‖Fg‖ ≈ δτUV‖FUV‖ ≈ δτIR‖FIR‖. (3.8)

Symplectic integrators using more than one step size for various pieces of the force have been known

for a long time [49].

In the standard HMC algorithm with a single and common step size, that step size has to be the

smallest one corresponding to the gluon force δτ = δτg. Hence the quark force, which involves

the time consuming inversion of the Wilson-clover operator, has to be calculated at every time step.

However, with multi-time step integration, the number of inversions of DUV
i containing the ultraviolet

modes is reduced to every δτUV/δτg ≫ 1 steps, and that of DIR for the infrared modes is further

reduced to every δτIR/δτg ≫ δτUV/δτg ≫ 1 steps. Since it is the inversion of DIR containing the
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infrared modes that requires the most computations, one essentially accelerates the HMC algorithm

by a factor δτIR/δτg ≫ 1.

In practice one controls the step sizes by three integers N0,1,2 and writes δτg = τ/N0 N1 N2,

δτUV = τ/N1 N2, δτIR = τ/N2 with τ the trajectory length. We call this algorithm DDHMC, and

implement it for the degenerate up-down quark sector of our full QCD code.

3.2. Further acceleration techniques

In our actual simulations on a 323 × 64 lattice at the lattice spacing a−1 ≈ 2 GeV, we found that the

DDHMC algorithm using a sub-lattice size of 84 worked well down to the pion mass mπ ≈ 300 MeV.

For lighter pion masses, however, the trajectories generated by the algorithm tended to exhibit large

fluctuations of ‖FIR‖ with large spikes of �H signaling unstable molecular dynamics evolution.

We employed the method of mass preconditioning [51] to tame this problem. Let DIR(U ; κ) be the

infrared part of the Wilson-clover operator with hopping parameter κ . Let κ ′ = ρκ be a slightly

smaller hopping parameter with ρ slightly less than unity. Then one can separate the infrared modes

further by decomposing

DIR(U ; κ) = DIR(U ; κ ′) · D̃IR(U ; κ ′, κ) (3.9)

with

D̃IR(U ; κ ′, κ) = DIR(U ; κ)

DIR(U ; κ ′)
. (3.10)

The IR force F IR
nμ is then split into F IR′

nμ and F̃ IR
nμ. We call this algorithm MPDDHMC. Employing

this algorithm with ρ = 0.9995, we could further reduce the pion mass to mπ ≈ 150 MeV [7] where

the various terms of the force took the values given by

‖Fg‖ : ‖FUV‖ : ‖F ′
IR‖ : ‖F̃IR‖ ≈ 16 : 4 : 1 : 1/7. (3.11)

One can further extend the algorithm in which two mass preconditioners are used to split the

infrared force to three terms F IR′′
nμ , F IR′

nμ , and F̃ IR
nμ by setting κ ′ = ρ1κ and κ ′′ = ρ2κ

′. This version is

then called MP2DDHMC.

Even with the added mass preconditioning, we found calculations at around the physical pion

mass of mπ ≈ 150 MeV to be extremely demanding. We implemented the following improvements

to stabilize and speed up the molecular dynamics evolution: (i) a chronological inverter [58] which

uses the last 16 solutions to construct the initial solution vector of D−1 on the full lattice, (ii) a

nested BiCGStab solver, which consists of an inner solver accelerated with single precision arith-

metic, and an outer solver with a stringent tolerance of 10−14 operated with double precision. The

approximate solution obtained by the inner solver works as a preconditioner for the outer solver, (iii)

a deflation technique when the inner BiCGStab solver becomes stagnant during the inversion of D.

The inner solver is then automatically replaced by the GCRO-DR (Generalized Conjugate Residual

with implicit inner Orthogonalization and Deflated Restarting) algorithm [59] which automatically

constructs and deflates the low modes of D, the source of the stagnant behavior, during the solver

iteration.

For the strange quark, we employ the polynomial hybrid Monte Carlo algorithm [20,21] in which

the inverse of the Wilson-clover operator is approximated by a polynomial, with the bias corrected

by a global Metropolis test. This algorithm works for odd number of flavors, and we improve it [60]

with the technique of UV filtering [61]. The domain decomposition is not used. Since we find

‖Fs‖ ≈ ‖FIR‖, the step size is chosen as δτs = δτIR.
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Fig. 1. Simulation cost at mπ ≈ 300 MeV by DDHMC (blue open circle) and mπ ≈ 150 MeV by MPDDHMC

(blue closed circle) reproduced from Ref. [7] for 10 000 trajectories on a 323 × 64 lattice with a−1 ≈ 2 GeV.

The solid line indicates the cost estimate of N f = 2 + 1 QCD simulations with the standard HMC algorithm

at a = 0.1 fm with L = 3 fm for 100 independent configurations [36]. The vertical line denotes the physical

point. The sharp rise of the solid line toward the physical point has been dubbed the “Berlin Wall”.

Full QCD simulation with a degenerate pair of up and down quarks and a strange quark with

a separate mass is often called N f = 2 + 1 QCD. In Fig. 1 we compare the computational cost of

N f = 2 + 1 QCD for the standard HMC algorithm estimated from (3.6) with the actual cost obtained

in our domain-decomposed HMC simulation at mπ ≈ 300 MeV and 150 MeV. The figure demon-

strates in a dramatic fashion that simulations of full lattice QCD at the physical point for light up,

down, and strange quarks are now reality.

The details of our mass-preconditioned domain-decomposed hybrid Monte Carlo algorithm are

spelled out in the Appendix of Ref. [7].

4. Chiral behavior of hadron masses toward the physical point

We generated a set of configurations using the domain-decomposed HMC algorithm on the PACS-

CS massively parallel cluster computer. The up and down quarks are assumed degenerate with a

common hopping parameter κud and the strange quark hopping parameter κs is separate. The lattice

size is chosen to be 323 × 64 and the inverse bare gluon coupling constant β = 6/g2 = 1.90. This

value corresponds to the lattice spacing a = 0.0907(13) fm. In Table 1 we list the run parameters.

We note that the run at (κud, κs) = (0.137 00, 0.136 40) coincides with the lightest pion mass

with our previous attempt [46,47] based on the standard hybrid Monte Carlo algorithm. Thus we

have come down in the pion mass from mπ ≈ 700 MeV to 150 MeV, which corresponds to a factor

(700/150)2 ≈ 22 reduction in the up-down quark mass.

In Fig. 2 we show m2
π/mAWI

ud
(for a definition of AWI quark mass, see Section 6), and the ratio of

pseudoscalar decay constants fK / fπ . The almost linear behavior observed for heavier quark masses

(filled points) [46,47] is quite deceptive. The ratio m2
π/mAWI

ud
bends upwards when the up-down quark

mass approaches the physical value shown by the vertical line. The ratio fK/ fπ , while not exhibiting

such dramatic behavior, nonetheless shows a clear upward deviation toward the experimental point.

Of course this is precisely the behavior expected from chiral perturbation theory toward vanishing

quark mass. It is clear, however, that without data close to the physical point, it would be, and in fact

it has been, very difficult to reliably pin down the value at the physical point from data in the heavy

quark mass region alone.

Given that calculations at the physical point are now possible, one should turn the tables and ask

if chiral perturbation theory correctly describes our data. We carry out such an analysis for the octet
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Table 1. Simulation parameters of our PACS-CS runs on a 323 × 64 lattice. Pion and kaon masses are

measured values multiplied by a−1 = 2.176 GeV as estimated in Ref. [7]. The third row lists the integers

(N0, N1, N2, N3, N4), specifying the multi-time steps. MD time is the number of trajectories multiplied

by the trajectory length τ . CPU time for unit τ using 256 nodes of PACS-CS is also listed.

κud 0.137 00 0.137 27 0.137 54 0.137 54 0.137 70 0.137 81 0.137 785
κs 0.136 40 0.136 40 0.136 40 0.136 60 0.136 40 0.136 40 0.136 60

mπ (MeV) 702 570 411 385 296 154 151
mK (MeV) 789 713 635 582 594 553 505
τ 0.5 0.5 0.5 0.5 0.25 0.25 0.25

(4,4,10) (4,4,14) (4,4,20) (4,4,28) (4,4,16) (4,4,4,6) (4,4,2,4,4)
ρ − − − − − 0.9995 0.9995, 0.9900
Npoly 180 180 180 220 180 200 220
MD time 2000 2000 2250 2000 2000 990 2000
CPU hour 0.29 0.44 1.3 1.1 2.7 7.1 6.0

Fig. 2. Comparison of the PACS-CS (red) [7] and the CP-PACS/JLQCD (black) [46,47] results for m2
π/mAWI

ud

(left) and fK / fπ (right) as a function of mAWI
ud reproduced from Ref. [7]. Vertical line denotes the physical point

and star symbol represents the experimental value.

of pseudoscalar mesons [7], and for the octet and decuplet of baryons [8]. Since we use the Wilson-

clover quark action with explicit chiral symmetry breaking, we have to employ chiral perturbation

theory incorporating such breaking effects [62]. It turns out that these effects can be absorbed into the

leading order low energy constants so that the continuum expressions can be applied. If one assumes

that up, down, and strange quarks are light, then one should employ SU(3) chiral perturbation theory.

Taking the pion as an example, the well-known formula reads [63]

m2
π

2mud

= B0

{

1 + μπ − μη

3
+ 2B0

f 2
0

(16mud(2L8 − L5) + 16(2mud + ms)(2L6 − L4))

}

, (4.1)

fπ = f0

{

1 − 2μπ − μK + 2B0

f 2
0

(8mudL5 + 8(2mud + ms)L4)

}

, (4.2)

where

μPS = 1

16π2

m̃2
PS

f 2
0

ln

(

m̃2
PS

μ2

)

, (4.3)

m̃2
π = 2mud B0, m̃2

K = (mud + ms)B0, m̃2
η = 2

3
(mud + 2ms)B0 (4.4)
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Fig. 3. SU(2) chiral perturbation theory fit for m2
π/mAWI

ud and fK reproduced from Ref. [7]. FSE in legends

means including finite-size corrections. @ph means fit prediction at the physical point.

Fig. 4. Light hadron spectrum extrapolated to the physical point using mπ , mK and m� as inputs reproduced

from Ref. [7]. The horizontal bars denote experimental values.

with μ the renormalization scale. There are six unknown low energy constants B0, f0, L4,5,6,8 in the

expressions above.

We simultaneously fit data to the formula such as the above for m2
π/(2mud), m2

K /(mud + ms), fπ ,

and fK . We find that the fit exhibits a large χ2/dof, and the dependence on the strange quark mass

is not reproduced well. Furthermore, the next-to-leading order contribution coming from the kaon

loop is uncomfortably large in the decay constants.

A baryon spectrum analysis is tried using heavy baryon SU(3) chiral perturbation theory [64].

Incorporating the chiral symmetry breaking effects of the Wilson-clover quark action is left for future

work. The leading order formula yields a reasonable fit of the data. Including next-to-leading order

corrections, however, the flavor SU(3) coupling constants are found to take very small values quite

different from existing phenomenological estimates. It is our conclusion that the strange quark mass

is too large to be treated by chiral perturbation theory.

This situation leads us to make a reanalysis treating only up and down quarks as light. For this

purpose we use the SU(2) chiral perturbation theory formula, and make a linear extrapolation or

interpolation for the strange quark mass since our simulation points are close to its physical value.

We find good fits for pion masses below mπ ≈ 400 MeV as shown in Fig. 3.

In Fig. 4 the light hadron spectrum extrapolated to the physical point using SU(2) chiral perturba-

tion theory is compared with experimental values. Finite-size corrections are taken into account for

completeness, but they do not make large contributions. For the vector mesons and the baryons we

use a simple linear formula mhad = αh + βhmAWI
ud

+ γhmAWI
s . Data in the range mπ ≤ 400 MeV are

used for these analyses.
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Table 2. Meson and baryon masses at the physical point in

physical GeV units from Ref. [7]. mπ , mK , m� are the inputs.

Channel Experiment Physical point

π 0.1350 −
K 0.4976 −
ρ 0.7755 0.776(34)
K ∗ 0.8960 0.896(9)
φ 1.0195 1.0084(40)
N 0.9396 0.953(41)
� 1.1157 1.092(20)
 1.1926 1.156(17)
� 1.3148 1.304(10)
� 1.232 1.275(39)
∗ 1.3837 1.430(23)
�∗ 1.5318 1.562(9)
� 1.6725 −

We need three physical inputs to determine the up-down and strange quark masses and the lattice

cutoff. We choose mπ , mK , and m�. The choice of m� has both theoretical and practical advantages:

the � baryon is stable in the strong interaction and its mass, being composed of three strange quarks,

is determined with good precision with small finite-size effects.

Numerical values are listed in Table 2. The largest discrepancy between our results and the exper-

imental values is at most 3%, although errors are still not small for the ρ meson, the nucleon, and

the � baryon. The results are clearly encouraging, but we have to note that we still need to remove

errors of O((a�QCD)2).

5. The reweighting technique and lattice QCD calculations at the physical point

Since reaching the physical point for light up, down, and strange quark masses has been achieved, we

may ask if it is possible to carry out calculations in lattice QCD precisely at the physical point. This

would be beautiful since, aside from effects of finite lattice spacing, one would be directly exploring

the physics of strong interactions as they take place in nature.

A priori we do not know the precise values of bare quark masses corresponding to the physical

point. Repeating simulations until one hits the physical point is clearly unattractive. The question,

therefore, is whether one can readjust the parameters to the physical point, given a set of configura-

tions generated with parameters close to the physical point. The reweighting technique [55] turned

out to meet this need.

Let us consider evaluating 〈O[U ](κ ′
ud

, κ ′
s)〉(κ ′

ud
,κ ′

s)
, which is the expectation value of a physical

observable O at the target hopping parameters (κ ′
ud

, κ ′
s), using the configuration samples generated

at the original hopping parameters (κud, κs). We assume that ρud ≡ κud/κ
′
ud

≃ 1 and ρs ≡ κs/κ
′
s ≃ 1.

The key is the following identity:

〈O[U ](κ ′
ud, κ

′
s)〉(κ ′

ud
,κ ′

s)
=

∫

DUO[U ](κ ′
ud

, κ ′
s)| det[Dκ ′

ud
[U ]]|2 det[Dκ ′

s
[U ]]e−Sgluon[U ]

∫

DU | det[Dκ ′
ud

[U ]]|2 det[Dκ ′
s
[U ]]e−Sgluon[U ]

= 〈O[U ](κ ′
ud

, κ ′
s)Rud[U ]Rs[U ]〉(κud,κs)

〈Rud[U ]Rs[U ]〉(κud,κs)

, (5.1)
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Fig. 5. Left: determination of the physical point on the (1/κud, 1/κs) plane. Solid and open black circles denote

the original and target points, and crosses are the breakup points. Right: reweighting factors from the original

point to the target point plotted as a function of the plaquette value. Reproduced from Ref. [10].

where

Rud[U ] = | det W [U ](ρud)|2, Rs[U ] = det W [U ](ρs) (5.2)

W [U ](ρq) ≡
Dκ ′

q
[U ]

Dκq [U ]
= [ρq + (1 − ρq)D−1

κ ′
q

[U ]]−1 (5.3)

with ρq = κq/κ ′
q so that only D−1

κ ′
q

is needed to calculate W −1.

The reweighting factors can be evaluated by a stochastic method. For the up and down quark sector,

for example, introducing a complex bosonic field η with color and spinor indices, the determinant of

W is expressed as

Rud[U ] = | det[W [U ](ρud)]|2

=
∫

Dη†
Dηe−|W −1[U ](ρud)η|2

∫

Dη†Dηe−|η|2

= 〈e−|W −1[U ](ρud)η|2+|η|2〉η, (5.4)

where 〈· · · 〉η means the expectation value with respect to η.

To reduce the fluctuations in the stochastic evaluation of Rud[U ] and Rs[U ] we employ the deter-

minant breakup technique [66]. The interval between κq and κ ′
q is divided into NB subintervals:

κq ,κq + �q , . . . , κq + (NB − 1)�q , κ ′
q with �q = (κ ′

q − κq)/NB , and the determinant ratios are

evaluated with the different set of η and multiplied together.

We implement the reweighting procedure in the following way. Since the lightest pion mass

mπ ≈ 150 MeV and the lightest kaon mass mK ≈ 550 MeV reached in the first round of sim-

ulations [7] are still heavier than the physical values by about 10%, we make an additional

run at (κud, κs) = (0.137 785, 0.136 60). With preliminary trial runs, we then estimate (κ ′
ud

, κ ′
s) =

(0.137 796 25, 0.136 633 75) as the target for the physical point. The reweighting is carried out with

NB = 3 steps for both κud and κs, adding one more step going beyond the target value in the κs

direction.

In the left-hand of panel of Fig. 5 we show how we reach the target point (open circle) from the

original point (filled circle) through a grid of breakup points. In the right-hand panel of the same

figure are shown the reweighting factors from the original to the target points calculated for a set

of 80 configurations as a function of plaquette value. The points are distributed within an order of

magnitude around the value unity, demonstrating that the fluctuation of the reweighting factors is
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Fig. 6. Hadron masses normalized by m� in comparison with experimental values reproduced from Ref. [10].

The target result for the ρ meson is below the figure.

under control. In addition, we observe a clear positive correlation between the reweighting factors

and the plaquette value as expected.

In Fig. 6 we plot the hadron masses calculated at the target point normalized by that of � in com-

parison with experiment. Matching to the physical point is very good. The deviation for the ρ meson

may be ascribed to its resonance nature, and those for baryons probably reflect finite-size effects; the

box size of 3 fm for our 323 × 64 lattice is probably too small for baryons.

6. Strong coupling constant and quark masses—fundamental constants of QCD

The values of the strong coupling constant αs = g2/4π and the quark masses mq, q = ud, s are

fundamental constants of nature. Since they both vary under scale change, we need to understand

their renormalization, and specify the scale μ and the scheme to quote their values. We employ the

finite-volume Schrödinger functional method for this purpose [67,68].

6.1. Strong coupling constant

The Schrödinger functional is the partition function defined on a lattice of a finite extent L3 × T with

certain boundary conditions imposed on the gluon and quark fields. The coupling constant ḡ2(L) in

the Schrödinger functional scheme is defined through a variation of the effective action under a

certain change of the gluon boundary condition.

The fundamental quantity in this method is the step scaling function σ(u). It represents the

change of the coupling constant under a scale change by some factor s, typically taken to be s = 2;

ḡ2(sL) = σ(u) with u = ḡ2(L). One numerically calculates the lattice value of the step scaling func-

tion (u, a/L) for a set of lattice sizes and the bare coupling constant, and takes the limit a/L → 0 to

find the continuum limit σ(u) = lima/L→0 (u, a/L). This is done for a set of values of u covering

a sufficient range from weak to strong coupling. Once one has σ(u), one can calculate the β function

β(
√

u) = −L∂ ḡ2(L)/∂L/2
√

u recursively through β(
√

σ(u)) = β(
√

u)
√

u/σ(u)∂σ (u)/∂u.

In Fig. 7 we plot our results for the step scaling function (left-hand panel) and the beta function

(right-hand panel) for N f = 3 QCD in the Schrödinger functional scheme [9].

The strong coupling constant αs(μ) is usually quoted in the MS scheme at a high energy scale

μ = MZ . Finding this value requires evaluating the renormalization-group invariant scale � for

N f = 3 QCD at low energy, and then running up to MZ , crossing the charm and bottom thresh-

olds on the way. Since we have the step scaling function, the first step can be carried out if we have

the value of the coupling constant ḡ2(Lmax) at some scale Lmax. This in turn requires the value of
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Fig. 7. Left: step scaling function σ(u)/u with u = ḡ2(L) for N f = 3 QCD. The dotted line represents the

three-loop perturbative result. The solid line is a polynomial fit of the step scaling function. Right: β-function

of QCD for N f = 3 and 2. The solid lines are three-loop perturbative results for comparison. Data for N f = 2

are reproduced from Ref. [69]. Reproduced from Ref. [9].

Lmax in physical units, which we supply from the determination of the lattice spacing through hadron

mass spectrum calculations.

In order to control the continuum limit, we may employ the scale determination from the previous

N f = 2 + 1 QCD simulation at three lattice spacings [46,47] carried out by the joint CP-PACS-

JLQCD Collaboration using the same gluon and quark actions. The result is given by [9]

αs(MZ ) = 0.12047(81)(48)(+0
−173), (6.1)

�
(5)

MS
= 239(10)(6)(+0

−22) MeV, (6.2)

where the first error is statistical and the second represents the systematic error of perturbative

matching across the charm and bottom thresholds. The last parenthesis shows an estimate of the

systematic error from a constant and a linear continuum extrapolation. For comparison, the world

average excluding lattice results is αs(MZ ) = 0.1186(11). [70]

We have to note that the above results do not include systematic errors due to chiral extrapolation. If

one uses the scale from the current N f = 2 + 1 runs using the domain-decomposed HMC algorithm

down to mπ ≈ 150 MeV [7], one finds αs(MZ ) = 0.1225(14)(5) and �
(5)

MS
= 266(20)(7) MeV,

where the meanings of the errors are the same as the first two in (6.1).

6.2. Light quark masses

We define the bare quark mass through the axial vector Ward–Takahashi identity (AWI) by taking

the ratio of matrix elements of the pseudoscalar density P = q̄γ5q and the fourth component of the

axial vector current A4:

m̄AWI
f + m̄AWI

g = 〈0|∇4 A
imp
4 |PS〉

〈0|P|P S〉 , (6.3)

where |PS〉 denotes the pseudoscalar meson state at rest and f and g ( f, g = u, d, s) label the flavors

of the valence quarks. We employ the non-perturbatively O(a)-improved axial vector current A
imp
4 =

A4 + cA∇̄4 P with ∇̄4 the symmetric lattice derivative, and cA = −0.03876106 as determined in

Ref. [71]. The O(mqa) corrections are removed by defining

mAWI
f =

(

1 + bA

mVWI
f

u0

)

(

1 + bP

mVWI
f

u0

) m̄AWI
f , (6.4)
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Fig. 8. Left: step scaling function σP(u) with u = ḡ2(L) for the pseudoscalar density for N f = 3 QCD. The

dotted line represents the two-loop perturbative result. The solid line is a polynomial fit of the step scaling func-

tion. Right: β dependence of Z A(g0). Red filled circles are our non-perturbative renormalization factor. The

solid line is a perturbative result at one loop. Stars are from tadpole-improved perturbation theory. Reproduced

from Ref. [11].

where the improvement coefficients bA,P are perturbatively evaluated up to the one-loop level [72]

with tadpole improvement.

The renormalization of quark mass as defined above is given by those of Aμ and P . We therefore

have to determine the step scaling function of the pseudoscalar density σP(u), and the renor-

malization constant Z A for the axial vector current which is scale independent due to partial

conservation.

In Fig. 8 we show our results for the step scaling function for the pseudoscalar density and the

renormalization constant for the axial vector current. We combine them with the bare quark masses

determined in hadron mass spectrum calculations to calculate the quark masses mq(μ) at a scale μ in

physical units. With the present PACS-CS data [7], we find mMS
ud (μ = 2 GeV) = 2.78(27) MeV for

the average up and down quark, and mMS
s (μ = 2 GeV) = 86.7(2.3) MeV for the strange quark [11].

We have to wait until simulations at weaker couplings are made to see if these values stay toward the

continuum limit.

7. Resonance properties through finite-volume two-particle analyses

Masses of resonances such as ρ, K ∗ and � cannot be correctly extracted from the exponential decay

of two-point functions. Instead, one can use the relation between the energies of two-particle states

on a finite box and the elastic phase shift to calculate the latter, from which one can extract the pole

position and the resonance width. While the theoretical foundations of this topic were laid out quite

early [26,27] and have been explored in simulations for many years [73,74], it is only recently, with

the development of full QCD simulations near the physical point, that a realistic calculation of the

resonance properties has become feasible.

The basis is the formula which connects the energy E of a two-particle state on a finite box with

the elastic phase shift δ(k) in the same channel. When the two particles are degenerate in mass, k is

defined by E = 2
√

m2 + k2 with m the mass of each particle. For zero center of mass momentum

and a spatial lattice of a size L3, the connection is given by

1

tan δ(k)
= 1

π3/2q
Z00(1, q), Z00(s, q) =

∑

n∈Z3

(n2 − q2)−s (7.1)

with q = kL/(2π). The extension to a non-zero center of mass is also known [75].
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Table 3. The ground and first exited states with isospin (I, Iz) = (1, 0) for the irreducible representations

considered in Ref. [15], ignoring hadron interactions. P is the total momentum, g is the rotational group on the

lattice in each momentum frame and Ŵ is the irreducible representation of the group. The vectors in parentheses

after (ππ) and ρ refer to the momenta of the two pions and the ρ meson in units of 2π/L . We use the notation

(ππ)(p1)(p2) = π+(p1)π
−(p2) − π−(p1)π

+(p2) for two-pion states. Index j for the T−
1 representation takes

j = 1, 2, 3 and k for E− takes k = 1, 2.

Frame PL/(2π) g Ŵ

CMF (0, 0, 0) Oh T−
1 ρ j (0) (ππ)(e j )(−e j )

MF1 (0, 0, 1) D4h E− ρk(0, 0, 1) (ππ)(e3 + ek)(−ek) − (ππ)(e3 − ek)(ek)
MF1 (0, 0, 1) D4h A−

2 ρ3(0, 0, 1) (ππ)(0, 0, 1)(0, 0, 0)

MF2 (1, 1, 0) D2h B−
1 (ρ1 + ρ2)(1, 1, 0) (ππ)(1, 1, 0)(0, 0, 0)

We apply this formalism to the two-pion channel to extract the I = 1 P-wave phase shift, with

which we calculate the resonance properties of the ρ meson [15]. Calculations are carried out for the

two configuration sets corresponding to mπ = 410 MeV and 300 MeV on a 323 × 64 lattice listed in

Table 1.

In order to calculate the phase shift at various energies from configurations with a single size,

we consider three choices for the total momentum: the center of mass frame with total momen-

tum P = (0, 0, 0) (CMF), the non-zero momentum frame with P = (2π/L)(0, 0, 1) (MF1), and

P = (2π/L)(1, 1, 0) (MF2). The ground and first excited states for these momenta with isospin

(I, Iz) = (1, 0), ignoring the hadron interactions, are shown in Table 3 where g is the rotational group

in each momentum frame on the lattice and Ŵ is the irreducible representation of the rotational group.

For the T−
1 and E− representations the invariant mass

√
s =

√

E2 − P2 for the two-pion state is

sufficiently heavier than the ρ mass so that we only calculate the ground state energy from the ρ

meson propagator in the standard way. For the A−
2 and B−

1 representations for which the invariant

mass is close to or lighter than the ρ mass, we calculate a 2 × 2 matrix of correlation functions in

the ρ and ππ channels given by

G(t) =
(

〈0|(ππ)†(t)(ππ)(ts) |0〉 〈0|(ππ)†(t)ρ(ts)|0〉
〈0|ρ†(t)(ππ)(ts)|0〉 〈0|ρ†(t) ρ(ts)|0〉

)

. (7.2)

We extract the ground and first excited state energies by a single exponential fit of the two eigenvalues

λ1(t) and λ2(t) of the matrix M(t) = G(t)G−1(tR) with some reference time tR , assuming that the

lower two states dominate the time correlation function.

In Fig. 9 we plot the results for the phase shift in terms of k3/(
√

s tan δ(k)). For an effective ρππ

coupling of form Leff = gρππ

∑

μabc ǫabc(k1 − k2)μ ρa
μ(p)πb(k1)π

c(k2), we expect a linear relation

given by

k3

tan δ(k)
/
√

s = 6π

g2
ρππ

(m2
ρ − s). (7.3)

A χ2 fit then yields an estimate of the resonance mass mρ and the ρππ coupling gρππ . We list the

results in Table 4.

In terms of gρππ , the physical ρ meson width is given by

Ŵρ =
g2
ρππ

6π

k3

mρ

(7.4)

where k =
√

m2
ρ/4 − m2

π and physical values should be used for mρ and mπ . Substituting the exper-

imental width Ŵρ = 146.2(7) MeV yields gρππ = 5.874(14). Our results at the two pion masses
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Fig. 9. k3/(
√

s · tan δ(k)) as a function of the square of the invariant mass s at mπ = 410 MeV (left) and

mπ = 300 MeV (right) reproduced from Ref. [15]. The same symbols for four representations are used in both

panels. The dotted lines are finite-size formulas for the A−
2 and B−

1 representations. The solid line for each

quark mass is the fit to (7.3).

Table 4. The ρ resonance mass and ρππ coupling

gρππ estimated at the pion mass in the first row.

mπ mρ gρππ

410 MeV 892.8(5.5)(13) MeV 5.52(40)
300 MeV 863(23)(12) MeV 5.98(56)

mπ = 410 MeV and 300 MeV, although not close enough to the physical point, are reasonably

consistent with it.

8. Pion electromagnetic form factor

The electromagnetic form factor of a pion is defined by

〈π+( �p′)|Jμ|π+( �p)〉 = (pμ + p′
μ)Gπ (Q2), (8.1)

where Q2 = −q2 = −(p′ − p)2 is the four-momentum transfer, and Jμ is the electromagnetic

current given by

Jμ = 2

3
ūγμu − 1

3
d̄γμd − 1

3
s̄γμs. (8.2)

An interesting feature is that the slope of the form factor at the origin, i.e., the electromagnetic charge

radius, defined by

〈r2〉 = 6
dGπ (q2)

dq2
|q2=0, (8.3)

is expected to diverge logarithmically as mπ becomes small.

To extract the form factor, we use the ratio defined by

R(τ ) = C3pt( �p′, t f ; �p, 0; τ)

C3pt( �p′, t f ; �p′, 0; τ)
. (8.4)

where

C3pt( �p′, t f ; �p, 0; τ) = 〈π+( �p′, t f )Jμ(τ )π+( �p, 0)〉, (8.5)

is the pion-to-current three-point function. If one chooses the momenta of the two pions satisfying

�p′ �= �p but | �p′| = | �p|, the ratio converges for large τ and t f as

R(τ ) → Gbare
π (Q2)

Gbare
π (0)

= Gπ (Q2). (8.6)
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Fig. 10. Left: pion form factor and NNLO SU(2) chiral fits using the decay constant fπ measured at each mπ

and combining data at mπ = 296 MeV and 411 MeV. Right: charge radius, with filled circles from monopole

fits, and open circles from NNLO SU(2) chiral fits. Upward triangles and downward triangles are NLO and

NNLO contributions, respectively. Reproduced from Ref. [13].

In contrast with more conventional choices of momenta such as �p′ �= 0 and �p = 0, our ratio does

not involve the two-point function of the pion, and this leads to much better signals as the pion mass

is decreased [13].

On a 323 × 64 lattice with a 2 GeV inverse lattice spacing, the minimum non-zero quark momen-

tum for the periodic boundary condition 2π/La is about 0.4 GeV. In order to study the form factor

for smaller momentum transfer, we use the partially twisted boundary condition technique [76]. If

one imposes the following boundary condition on valence quark fields:

q(x + Le j ) = e2π iθ j q(x), j = 1, 2, 3, (8.7)

the spatial momentum of that quark is quantized according to

p j = 2πn j

L
+ 2πθ j

L
, j = 1, 2, 3, (8.8)

where L denotes the spatial lattice size, e j the unit vector in the spatial j th direction, and θ j a real

parameter. In this way one can explore arbitrarily small momenta on the lattice by adjusting the

value of twist θ j . We apply the Z(2) ⊗ Z(2) random noisy source to improve on statistical errors, as

introduced in Ref. [77].

In the left-hand panel of Fig. 10, we plot our result [13] for the form factor at mπ ≈ 300 MeV and

410 MeV as a function of the momentum transfer Q2. The dashed and solid lines are data fits of the

next to next leading order (NNLO) formula of the form factor to SU (2) chiral perturbation theory,

combining data for mπ = 300 MeV and 410 MeV.

In the right-hand panel we shown the charge radius calculated from the NNLO chiral perturbation

theory fit (open circles) as compared to experiment at the physical point (red filled circle). Blue filled

circles are the results of the monopole fit of form

Gπ (Q2) = 1

1 + Q2/M2
mono

. (8.9)

We see that chiral perturbation theory is reasonably convergent over the range mπ ≈ 300 − 410 MeV

and Q2 ≤ 0.1 GeV2 explored in this calculation. The charge radius extrapolated to the physical point

is in agreement with experiment, albeit with a 10% error.

The PACS-CS gauge configurations have a set corresponding to mπ ≈ 150 MeV. We tried to cal-

culate the form factor on this set, and found that the pion two- and three-point functions exhibited
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very large fluctuations, to the extent that taking a meaningful statistical average was difficult. This

trend became more pronounced as the twist carried by quarks was made larger. Since Lmπ ≈ 2.3 at

this pion mass for L = 32, we suspect that this phenomenon is caused by the small size of the lattice

relative to the pion mass, and the consequent increase in large fluctuations. It is our conclusion that

calculating the pion form factor directly at the physical point requires larger lattices such as 644.

9. Heavy quark physics on a physical light quark sea

We have seen in Section 5 that the reweighting technique allows us to adjust the light up, down,

and strange quark masses to the physical values. We can therefore explore heavy quark physics

on a physical light quark sea background. This has the advantage that systematic errors associated

with chiral extrapolation in the light quark masses, which otherwise plague physical predictions, are

absent. Errors due to charm and bottom quenching are expected to be small. We apply this method

to the charm quark for the set of configurations at (κud, κs) = (0.137 785, 0.136 60) reweighted to

(0.137 796 25, 0.136 633 75).

Since the lattice spacing on our set of configurations is a−1 ≈ 2 GeV, the charm quark can be

treated directly, i.e., without resorting to heavy quark effective theory. We employ the relativistic

heavy quark formalism [78] to deal with the discretization errors of O(mcharma).

The relativistic heavy quark formalism is designed to reduce the cutoff errors of O((m Qa)n) with

arbitrary order n to O( f (m Qa)(a�QCD)2), where f (m Qa) is an analytic function around the mass-

less point m Qa = 0, once all of the parameters in the relativistic heavy quark action have been

determined non-perturbatively. The action is given by

SQ =
∑

x,y

Q̄x Dx,y Q y, (9.1)

Dx,y = δxy − κQ

∑

i

[(rs − νγi )Ux,iδx+î,y
+ (rs + νγi )U

†
x,iδx,y+î

]

− κQ[(rt − νγi )Ux,4δx+4̂,y
+ (rt + νγi )U

†
x,4δx,y+4̂

]

− κQ

⎡

⎣cB

∑

i, j

Fi j (x)σi j + cE

∑

i

Fi4(x)σi4

⎤

⎦ , (9.2)

where κQ is the hopping parameter for the heavy quark. In the present calculation we adjust

the parameters rt , rs, cB, cE and ν as follows. We are allowed to choose rt = 1, and we employ

the one-loop perturbative value for rs [79]. For the clover coefficients cB and cE we include the

non-perturbative contribution in the massless limit cNP
SW for three-flavor dynamical QCD [57], and cal-

culate the heavy quark mass dependent contribution perturbatively to one-loop order [79] according

to

cB,E = (cB,E (m Qa) − cB,E (0))PT + cNP
SW. (9.3)

The parameter ν is determined non-perturbatively to reproduce the relativistic dispersion relation for

the spin-averaged 1S states of charmonium. Writing

E( �p)2 = E(�0)2 + c2
eff| �p|2, (9.4)

for | �p| = 0, 1,
√

2, and demanding the effective speed of light ceff to be unity, we find ν = 1.1450511,

with which we have ceff = 1.002(4). The remaining cutoff errors are α2
s f (m Qa)(a�QCD), instead

21/31

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
te

p
/a

rtic
le

/2
0
1
2
/1

/0
1
A

1
0
2
/1

5
5
5
6
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



PTEP 2012, 01A102 S. Aoki et al.

Fig. 11. Left: charmonium mass spectrum in N f = 2 + 1 lattice QCD normalized by the experimental values

reproduced from Ref. [14]. Right: hyperfine splitting of charmonium calculated with different numbers of

dynamical light flavors, Ref. [14] for N f = 2 + 1 and Ref. [14] for N f = 2, 0.

of f (m Qa)(a�QCD)2, due to the use of one-loop perturbative values in part for the parameters of

our heavy quark action.

We tune the heavy quark hopping parameter by the mass for the spin-averaged 1S states of

charmonium, experimentally given by [65]

M(1S) = (Mηc + 3MJ/ψ )/4 = 3.0678(6) GeV. (9.5)

This leads to κcharm = 0.109 599 47 for which our lattice measurements yield the value M(1S)lat =
3.067(1)(14) GeV, where the first error is statistical, and the second is a systematic error from the

scale determination.

The charm quark mass is calculated from the bare value mAWI
charm

obtained from the PCAC relation

and the renormalization factor Zm(μ). Similar to the clover coefficients, the renormalization factor

is estimated by combining the non-perturbative value at the massless point from the Schrödinger

functional method and the charm quark mass dependent piece in one-loop perturbation theory. The

result is given by

mMS
charm(μ = mMS

charm, N f = 4 running) = 1.249(1)(6)(35) GeV, (9.6)

where the first error is statistical, the second is systematic from the scale determination, and the third

from uncertainties in the renormalization factors.

We show in the left-hand panel in Fig. 11 the charmonium spectrum normalized by experiment. The

agreement is satisfactory within one standard deviation. The right-hand panel demonstrates that light

dynamical sea quark effects are crucial for understanding charmonium hyperfine splitting. The filled

circle shows the result from PACS-CS [14]. Results with dynamical up and down quarks (N f = 2)

and with the quenched approximation (N f = 0) are from the CP-PACS Collaboration [80] using the

same heavy quark formalism. A small discrepancy that is still visible between the filled circle and

experiment should go away as we approach the continuum limit.

The decay constants fD and fDs of charmed D and Ds mesons are important for determining the

Vcd and Vcs elements of the Cabibbo–Kobayashi–Maskawa matrix since they are directly related to

the leptonic decay width

Ŵ(D → lν) = G2
F

8π
m2

l m D f 2
D

(

1 − m2
l

m2
D

)2

|Vcd |2. (9.7)
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Table 5. Results for the decay constants of the D and Ds

mesons from Ref. [14]. The first error is statistical, the sec-

ond is a systematic error from the scale determination, and

the third is from the renormalization factor. Experimental

data are also listed [65].

Lattice Experiment

fD(MeV) 226(6)(1)(5) 206.7(8.9)
fDs

(MeV) 257(2)(1)(5) 257.5(6.1)
fDs

/ fD 1.14(3)(0)(0) 1.25(6)

Our results are compared with experiment in Table 5. While the agreement for fDs is satisfactory,

the result for fD differs by about two standard deviations. It is necessary to take the continuum limit

for a definite comparison.

With the CLEO value of Ŵ(D → lν) [81,82], we obtain |Vcd |(lattice) = 0.205(6)(1)(5)(9), where

the first error is statistical, the second is systematic due to the scale determination, the third is

uncertainty in the renormalization factor, and the fourth represents the experimental error of the lep-

tonic decay width. Similarly, using the CLEO value of Ŵ(Ds → lν) [81,82], we find |Vcs |(lattice) =
1.00(1)(1)(3)(3).

10. QCD + QED simulation and electromagnetic mass splitting of hadron masses

Up to now we have assumed isospin symmetry in the quark mass, mu = md. However, in nature,

isospin symmetry is broken by the quark mass difference, mu �= md, and by the difference of the quark

electric charges, eu �= ed. Isospin symmetry breaking causes mass splittings in isospin multiplets

of light hadrons, e.g., mK 0 − mK ± , mn − m p. The magnitude of the splittings is not large, but is

important since, e.g., it is this difference which guarantees the stability of the proton. Thus, our next

target should be a QCD + QED lattice calculation at the physical point incorporating quark mass

differences.

A pioneering QCD + QED lattice simulation was carried out a long time ago [83,84] using the

quenched approximation both for QCD and QED. The possibility of including dynamical QED

effects was first investigated in Ref. [85]. Recently, results for the low-energy constants in chiral per-

turbation theory including dynamical quark effects both in QCD and QED were reported [86]. We

present our results for a full QCD + full QED simulation at the physical point using the reweighting

technique [17,18].

Let D(e, κ) be the Wilson-clover operator for electric charge e and hopping parameter κ on a

background gluon field Unμ and U (1) electromagnetic field Uem nμ. The reweighting factor we have

to calculate is given by

det

[

D(eu, κ
∗
u )

D(0, κud)

D(ed, κ
∗
d
)

D(0, κud)

D(es, κ
∗
s )

D(0, κs)

]

, (10.1)

where eu,d,s and κ∗
u,d,s

are the physical charge and hopping parameter of up, down, and strange quarks.

Controlling the fluctuations of the reweighting factor turned out to be more difficult than the pure

QCD case treated in Section 5. First, the reweighting factor for each flavor has a significant fluctu-

ating O(e) part. This problem was tamed by estimating the reweighting factor for the three flavors

together, the reason being the fact that the total charge vanishes as eu + ed + es = 0 [86]. Secondly,

for the Wilson-clover quark action, the additive quark mass renormalization due to short-distance
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Table 6. Comparison of masses calculated in QCD + QED and experiment from Ref. [17,18]. Lattice spacing

a−1 = 2.235(11) GeV is fixed by the �− baryon mass.

mπ+ (MeV) mK + (MeV) mK 0 (MeV) m�− (MeV)

QCD + QED 137.7(8.0) 492.3(4.7) 497.4(3.7) input
Experiment 139.570 18(35) 493.677(16) 497.614(24) 1672.45(29)

Fig. 12. Ratio of K 0 to K + propagators to detect the mass difference mK 0 − mK + reproduced from Ref. [17,18].

Our results (black symbols) are consistent with the expected slope from the experimental value of mK 0 − mK +

(red line).

QED effects turned out to be quite large. This difficulty was treated by generating the U (1) electro-

magnetic field on a lattice twice as fine as the original QCD lattice and blocking over 24 sublattices

to smooth out short distance fluctuations. We also applied a large number of breakups.

In practice, we start from the set of configurations at (κud, κs) = (0.137 785, 0.136 60) on

a 323 × 64 lattice and reweight to (κ∗
u , κ∗

d
, κ∗

s ) = (0.137 870 14, 0.137 797 00, 0.136 695 10) and

(eu, ed, es) = (2/3, −1/3, −1/3)ephys with ephys = √
4π/137. We use 400 breakups for QED and 26

for QCD with 12 noise sources for each breakup on 80 configurations. The target hopping parameters

are tuned to reproduce the masses of the π+, K +, and K 0 mesons and the �− baryon.

In Table 6 we use the �− baryon mass to fix the lattice spacing a−1 and compare the calculated

π+, K +, K 0 masses with experimental values; this demonstrates that we have successfully tuned the

hopping parameter taking into account full QCD and QED effects.

Figure 12 shows the ratio of K 0 to K + propagators whose time dependence is expected to follow

〈K 0(t)K 0(0)〉
〈K +(t)K +(0)〉 ≃ Z(1 − (mK 0 − mK +)t), (10.2)

where we assume (mK 0 − mK +)t ≪ 1. The negative slope indicates mK 0 > mK + . The fit result

with [tmin, tmax] = [13, 30] gives 4.54(1.09) MeV, which is consistent with the experimental value

3.937(28) MeV [65] within error.

In Table 7 we list the quark masses in the MS scheme at scale μ = 2 GeV. Non-perturbative renor-

malization factors employed for the pure QCD case are also used here [11]. The QED corrections to

the renormalization factor, whose contribution would be a level of 1% or less, are ignored. The first

errors are statistical and the second ones are associated with computation of the non-perturbative

normalization factors. Finite-size corrections due to QED, if estimated with chiral perturbation the-

ory [87], would be −13.50%, +2.48%, and −0.07% for the up, down, and strange quark masses,

respectively.
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Table 7. Quark masses calculated in QCD + QED [17,18]. Lattice spacing is fixed by the �− baryon mass.

mu (MeV) md (MeV) ms (MeV) mud (MeV) mu/md ms/mud

2.57(26)(7) 3.68(29)(10) 83.60(58)(2.23) 3.21(24)(8) 0.699(51) 26.7(2.0)

11. Going beyond hadrons to nuclei

The strong interaction dynamically generates a hierarchical structure: three quarks are bound to form

a nucleon with an energy of 1 GeV, and nucleons are bound to form atomic nuclei with a binding

energy of about 10 MeV per nucleon. Since all nuclei are ultimately made of quarks and gluons,

lattice QCD should help us quantitatively understand the structure and property of known nuclei

based on its first principles. This direct approach will be more important and indispensable if we are

to extract reliable predictions for experimentally unknown nuclei in the neutron-rich region of the

nuclear chart.

Two approaches are being pursued in this direction; one can extract nuclear potentials from lattice

QCD calculations and use them as input in nuclear physics calculations [88], or one can calculate

nuclear observables directly in lattice QCD [12,16]. We describe here two attempts of the latter

category.

11.1. Deuteron

The simplest nucleus is the two-nucleon system which includes deuteron. The dynamics for this

system, however, is already subtle; the binding in the spin triplet deuteron channel is quite shallow

and the spin singlet state is not bound. Lattice studies of the two-nucleon system were started quite

some time ago [89,90], and have been addressed extensively, including recent simulations in full

QCD with dynamical quarks. Nonetheless, no clear evidence of bound state formation has been

reported so far. Indeed, all studies analyzed data based on the assumption that bound states do not

form for heavy pions beyond mπ � 0.3 GeV, and tried to extract the scattering lengths using Lüscher’s

formula [26,27] relating two-particle energies to elastic scattering data.

Clarifying this first issue requires a systematic finite-size study of the energy levels of the two-

nucleon system. Our strategy is: (i) resort back to quenched QCD to access a large range of spatial

lattice sizes from L = 3 fm to 12 fm with high statistics, (ii) initially work with a heavy quark

mass, and (iii) in addition to the standard single-state analysis looking for the lowest energy for

the two-particle ground state, carry out a two-state analysis for the ground and first excited states

diagonalizing the 2 × 2 matrix of the nuclear Green’s function. The last point is important to con-

firm the bound state nature since, as is well known from quantum mechanics, a shallow bound state

is accompanied by a scattering state just above the two-particle threshold in a finite volume. In this

analysis we employ the Helmholtz kernel for the sink operator given by

Wq2(�r) = Cq2

∑

�n∈Z3

ei(2π/L)�n·�r

�n2 − q2
, (11.1)

where q2 is a parameter, �r is the relative coordinate between two nucleons, and the overall factor Cq2

is determined from the normalization condition |Wq2(�rmax)| = 1.

The calculations are made in quenched QCD with the renormalization-group improved Iwasaki

gluon action at β = 2.416, which corresponds to the lattice spacing a−1 = 1.541 GeV as determined

from the Sommer scale r0 = 0.49 fm. The Wilson-clover quark action with the tadpole-improved

clover term is used. The nucleon and pion masses are m N = 1.617 GeV and mπ = 0.800 GeV. The
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Fig. 13. Left: ground state energy in the 3S1 (deuteron) channel relative to the two-nucleon threshold in GeV

units from reproduced Ref. [16]. Several types of operators and ensembles are employed. The blue triangle

comes from two-state diagonalization analysis. Results extrapolated to the infinite spatial volume limit (filled

circle) and experimental values (star) are also presented. Right: the same for the 1S0 channel.

Fig. 14. Spatial volume dependence of the energy of the first excited state relative to the two-nucleon threshold

in the 3S1 (circles) and 1S0 (squares) channels in GeV units, reproduced from Ref. [16].

spatial lattice sizes covered are 243(3.1 fm)3, 483(6.1 fm)3, and 963(12.3 fm)3 for the standard two-

nucleon ground state analysis (first ensemble), and 323(4.1 fm)3 and 483 for the two-state analysis

(second ensemble).

In Fig. 13 we plot the ground state energy relative to the two-nucleon threshold obtained in our anal-

ysis as a function of spatial lattice volume. The results from two-state diagonalization analysis (blue

triangles) and standard single-state analysis (other symbols) are mutually consistent, and together

point strongly towards a non-vanishing negative value in the infinite spatial volume limit (filled circle)

both for the triplet 3S1 and the singlet 1S0 channel at the heavy pion mass mπ = 0.800 GeV.

The bound state nature of the ground states is corroborated by the results in Fig. 14 for the first

excited states. For both channels, the energy levels are above the two-nucleon threshold, and behave

as E − 2m N ∝ 1/L3, which is consistent with scattering states just above the threshold.

We emphasize that the quenched approximation used in this work should be replaced with full

QCD with dynamical up, down, and strange quarks, and their masses have to be brought down to the

physical values. Clarification of how the bound state in the singlet channel becomes a scattering state

while the triplet state remains bounded as one approaches the physical point is an interesting issue.

11.2. Helium nuclei

Helium is the first non-trivial nucleus, and we carry out our study [12] in the same spirit as for

deuteron, using the quenched approximation and a heavy quark mass to obtain spatial lattice sizes

and statistics.
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Fig. 15. Spatial volume dependence of −�EL = M − NN m N in GeV units for 4He (upper) and 3He (lower)

nuclei obtained with two types of sources S1, S2 reproduced from Ref. [12]. Results extrapolated to the infinite

spatial volume limit (filled circles) and experimental values (stars) are also presented.

The helium calculation exposes the computational difficulty of the multi-nucleon system: that the

number of Wick contractions for quarks for constructing nuclear Green’s functions grows factorially

fast with the mass number of the nuclei. A naive counting gives (2Np + Nn)!(2Nn + Np)! for a

nucleus composed of Np protons and Nn neutrons, which quickly becomes prohibitively large beyond

the three-nucleon system, e.g., 2880 for 3He and 518 400 for 4He.

This is a challenging issue for nuclear calculations based on lattice QCD for which a general

solution is not yet available. For the helium nuclei at hand, we reduce this number by working out

equivalent contractions (i) under the permutation symmetry in terms of the protons or the neutrons,

(ii) under isospin symmetry for 4He consisting of the same number of protons and neutrons, and (iii) a

computer scrutiny of the remaining equivalent contractions. We find that only 1107(93) contractions

are required for the 4He (3He) nucleus correlation function.

Another technique to save computational cost is a modular construction of the nucleus correlation

functions. We first make a block of three quark propagators where a nucleon operator with zero

spatial momentum is constructed in the sink time slice. We also prepare several combinations of the

two blocks which are useful for the construction of the nucleus correlators.

The actual computations are made at the same lattice spacing and quark mass as in the two-nucleon

study in Section 11.1, and employ L3 = 243, 483, and 963 spatial sizes. In Fig. 15 we show the energy

difference −�EL = M − NN m N in GeV units between the helium ground state M relative to the

same number of free nucleons as a function of spatial volume for two choices of smearing at the

quark source. The dependence on volume is consistent with an almost constant behavior, indicating

a negative value and hence a bound state for the infinite-volume limit. This applies to both 4He and
3He channels.

Clearly, extending the line of work presented here to lighter quark masses in full QCD should be

very interesting to pursue. Another important issue is the development of a strategy to cope with the

factorial growth of Wick contractions to open a way to calculate nuclei with larger atomic numbers.
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12. Conclusions

In this article, we have presented a review of work carried out by the PACS-CS Collaboration using a

massively parallel cluster computer, PACS-CS, developed at the Center for Computational Sciences

at the University of Tsukuba. The computer was commissioned in June 2006 and was operated for

over five years until it was shut down in September 2011. The PACS-CS Collaboration for lattice

QCD was formed in August 2005 to follow up on the CP-PACS Collaboration, and continued till

March 2011.

The major physics goal of the Collaboration was to realize the physical point simulation of lat-

tice QCD with light dynamical up, down, and strange quarks, taking advantage of the algorithmic

progress offered by the domain-decomposition idea [48]. We have shown in this article how this goal

was achieved.

In lattice QCD, chiral perturbation theory was often employed to reach the physical point from data

obtained at quark masses away from the physical point. Our results confirm clearly the characteristic

features of the chiral logarithm in the ratios m2
π/mud and fK / fπ . We find, however, that SU(3) chiral

perturbation theory does not describe the data well due to bad convergence of the strange quark

contributions. The SU(2) chiral perturbation theory for up and down quark masses does seem to

converge for the pion masses below mπ ≈ 300–400 MeV, but since we can actually calculate on the

physical point, the need to rely on chiral perturbation theory is very much weakened.

It is in general not possible to choose the bare action parameters so that the simulation is done

exactly at the physical point. However, we have shown how the reweighting technique applied to the

quark determinant allows us to adjust the bare parameters to the physical point.

These developments have resolved the long-standing issue of chiral extrapolation in lattice QCD.

Physical predictions still require a large enough volume to control the finite-size effects and contin-

uum extrapolation to remove lattice spacing errors, but we have already had a great deal of experience

in dealing with them. Indeed, for the ground state hadron spectrum and light quark masses, the BMW

Collaboration has carried out a continuum extrapolation based on simulations with small pion mass

and large volumes [91,92].

Progress in lattice QCD depends on the triad of physics understanding, algorithms for computation,

and computing power. The recent progress discussed in this article is a good example in which the

triad worked together extremely well. Since computing power is rapidly growing into the peta-scale

and beyond, lattice QCD can take advantage of the progress to move out into new directions.

One direction will be to explore the physics of strong interactions directly at the physical point

with large volumes and high precision. Some of the problems discussed in this article, such as the ρ

meson as a resonance and hadron form factors, belong to this category. The calculation of electroweak

matrix elements of hadrons to precisely pin down the CKM matrix elements and CP violation also

occupy a very important role in the physics of the Standard Model and beyond.

This follows the traditional approach of lattice QCD, however. A somewhat different direction

might be to step beyond verifying lattice QCD, and start asking what happens if the parameters of

QCD are different from what they are in the present universe. For example, the helium abundance

in primordial nucleosynthesis sensitively depends on the neutron proton mass difference. Hence,

understanding how this mass difference varies as a function of up and down quark masses will deepen

our understanding of the present universe. Another example is deuteron. Model calculations tend to

imply that deuteron becomes unbound if up and down quark masses are slightly larger. The whole

area of nuclear physics is abundant in such issues, and hence interesting beyond pushing calculations

directly based on lattice QCD.
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We have not discussed lattice QCD at finite temperature and density. There has been much progress

in this area, especially at zero or small density, and physical point calculations will certainly enhance

our understanding in this area. One open issue, of course, is the behavior at large density. Clearly, a

breakthrough in one component of the triad of physics understanding, algorithms for computation,

and computing power is awaited for progress to occur.
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