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Absmct- Latticereduction (LR) techniques are developed 
for enhancing the performance of multiple-input multiple-output 
(MIMO) digital communication systems. When used in cunjunc- 
lion with traditional linear and nonlinear detectors, LR techniques 
substantially dose the gap to fundamental performance limits with 
little additional system complexity. Results for individual chan- 
nels and ensembles are developed, and illustrated in detail for the 
case of small (2 x 2). uncoded, coherent systems. For example, 
we show that, relative to the maximum likelihood bound, LR tech- 
niques get us within 368 for any Gaussian channel, and allow us to 
achieve the same diversity on the Rayleigh fadinp. channel, when 
sufiiciently large constellations are used. 

I. INTRODUCTION 

A wide range of wireless communication problems involve 
multiple-input multiple-output (MIMO) channels. These in- 
clude the multiuser detection problem and a variety of multiple- 
antenna transmission problems. 

For the system designer, the goal is to achieve an attractive 
performance-complexity mdeoff. At one end of the spectrum, 
maximum likelihood detection is optimal, but its complexity 
generally makes it impractical. A variety of other detectors. 
both linear and nonlinear, require substantially less complexity, 
but sacrifice performance significantly. In this paper, we pro- 
pose very low complexity receiver smctures based on lattice- 
reduction techniques that provide near-optimal performance. 

In the system of interest, the transmitted signal vector x is to 
be detected from the received signal vector y = H x + w ,  where 
the channel ma& H is N ,  x Ne,  N ,  2 Ne,  and the entries 
of w are independent, circularly-symmetric complex additive 
white Gaussian noise (AWGN) with density eN(0,Zu;). We 
consider the case in which the channel matrix H is effectively 
known at the receiver but not at the transmitter. We consider 
both fixed and random H cases. We further~restrict our atten- 
tion to uncoded systems in which the entries of x are drawn 
independently from some constellation. 

11. TRADITIONAL DETECTORS 

Lattice reduction is used in conjunction with traditional de- 
tector shuctures, the key features of which we now summarize. 

An important performance bound corresponds to maximum 
likelihood derection (MLD), which minimizes the probability of 
block error. In the case where the noise is AWGN, the minimum 
distance rule is used, 
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In the absence of special structure, MLD requires computing 
distances to every codeword to find the closest one. Therefore, 
it has exponential complexity in transmission rate. 

By contrast, linear detectors have much lower complexity. 
They take the form of 2 = f (Ay), where A is some matrix 
and f(.) is a slicer, which quantizes each entry of Ay to the 
nearest constellation symbol to obtain 2. For familiar constel- 
lations such as 4-QAM or IdQAM, this quantization can he 
implemented with very little complexity. 

The choice A = H-' , where H-' denotes the pseudo- 
inverse (HtH)-'Hiwhen N ,  > Nt ,  corresponds to what is 
sometimes referred to as inverse channel detection (ICD) [31, 
or, in the case of the multiuser detection problem, the decor- 
relator. As is well-known, the performance of ICD can suffer 
dramatically due to noise enhancement if H is near singular. 
Indeed, since H-'y = x + H-'w. the effectlve noise at the 
slicer input is H-'w. Other linear detectors include the min- 
imum mean square estimator (MMSE) detector, which offers 
slightly better performance by mitigating noise enhancement, 
but is still far from the performance of MLD. 

A class of nonlinear detectors that offer bener performance 
with only a modest increase in complexity is that based on 
successive cancellation. An example is the Bell Labs Layered 
Space-Time (BLAST) receiver [ I ] .  The main steps of the sim- 
plest version of BLAST detection are nulling and cancellation. 

Nulling : First, the channel matrix is factored as H = QR, 
where Q is unitary and R is upper triangular. Next, the received 
signal is preprocessed to obtain y' = Q'y = Rx + w',where 
w' = Q t w  and t denotes the conjugate transpose operation, so 

Lv:, . 

Cancellation : Using the preprocessed data (2). the entries 
of x are detected one by one in decreasing order. Specifically, 
after detecting xc,. . . , X N * ,  we can subtract their interference 
out of y;-' to detect x k - ' .  

Note that if we did not quantize each ?k to the nearest con- 
stellation symbol as we proceeded, this form of detection would 
specialize to ICD. Thus, this quantization semes an important 
noise-cancellation role. 

A major problem with BLAST detection is error propagation. 
The entry detected first usually has the smallest signal to noise 
ratio (SNR) and the most error. Unfonunately, detecting later 
entries correctly vitally depends on having correctly decoded 
previous entries. For this reason, in an uncoded system, where 
error correction is not used, the error rate for BLAST detection 
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is typically dominated by that of the first entry, and thus far 
from optimal. 

To develop a framework within which to introduce lattice re- 
duction, consider MLD, ICD, and BLAST detection in the 2 x 2 
(real) example shown in Fig. 1. The transmitted symbols x1 and 
x2 are each integers between - N  and N, where N is large, and 

the channel matrix is, for purpose of illustration, H = [; :]. 
(a) received mnstellation (b) ICD I decorrelalor 

(d) ~plimal MLD I new basis 

2 
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Fig. 1. Comparison of decision boundaries for various detection methods. 

The received constellation Hx is shown in (a). It can be 
viewed as a lattice with basis vectors being the two columns of 
H, which are drawn to show the distortion of the lattice. The 
decision boundaries for ICD, BLAST detection, and MLD are 
shown in (b), (c), and (d), respectively. For ICD, the decision 
regions are undesirably elongated and narrow parallelograms; 
small amounts of noise would lead to detection errors. This 
is due to the two basis vectors being highly correlated. For 
BLAST detection, the decision regions are rectangular, because 
one entry of x is detected at a time. While better than ICD, it 
is still inferior to the optimal decision boundary drawn in (d), 
whose optimality is apparent by inspection. 

In this particular example, if we were to consider the lanice 
basis vectors to be [l -'IT instead of [2 0IT 
and [3 'IT. where denotes the transpose operator, then 
the decision boundaries for ICD and BLAST detection would 
coincide with those of MLD, and therefore be optimal. 

While a basis change cannot always lead to optimum perfor- 
mance, it can in general improve performance. In pmicular, 
changing the lattice basis to be more orthogonal and shorter, 
the sense of which we will make precise later, we can gener- 
ally obtain better decision boundaries. And the more correlated 
the columns of H, the more significant the improvements. Note 
that changing lattice basis does not change the lattice. The prob- 
lem of finding the optimal lattice basis is called the lanice re- 
duction (LR) problem. 

1IT and [l 

111. LATTICE REDUCTION 
A lattice in 'n  complexdim ensions can be described by 

b.] is a ma- L = {s 1s = BA} where B = [bl bz . . . 

trix whose columns are basis vectors for the lattice and 
x = [XI ~2 ... x . ] ~  is a vector of complex integer 
weights, i.e., A; E Z + Z j  with Z denoting the set of integers. 

For any lattice L there are many possible bases. Indeed, if B 
is a basis, so is B' = BP for any matrix P such that both P and 
P-' have integer entries. Specifically, a points represented by 
x in the basis B is represented by a = P-'x in the basis B', 
i.e., s = Bx = (BP)(P-'x) = Biz. 

The basic idea behind using lattice reduction in conjunction 
with traditional low-complexity detectors is to operate in a cho- 
sen lattice basis that is optimized for those detectors, as shown 
in Fig. 2. 

Traditional W 

Detector !k I Detector 
A 

H 

example : ICD 
..... ~~~.~ .................... 

New Detector 
w i Dstector forx ~ 

operates in ncw basis via P , ~ ..... ~ . . ~ ~ ~  .................. 
x i  a H=HP 

i ...... ?L...J .......... ~ ............ ~~~~~~~ ............ 

LR-ICD 

Fig. 2. Using lanice reduction in conjunction with traditional deecton.  

In the traditional system, the detector compensates for the 
original channel H to produce ?. In the new system, we per- 
form a basis change via a matrix P, specifically 

y = Hx + w = (HP)(P-'x) + w = H'z + w. (3) 

With this basis change, the traditional detector is first used to 
compensate for the new channel H' = HP to produce 2, then 
x is produced via j ,  = Pi .  For example, if ICD is employed, 
then (H')-'y is quantized to produce P, from which we obtain 
i via j ,  = Pi .  

To choose an appropriate basis changing matrix P, we note 
that ICD and BLAST detection are more effective when the 
channel matrix is further from being singular. Geometrically, 
this corresponds to wanting the columns of the new H', which 
are the new basis vectors of the received constellation lattice, to 
be less correlated and shorter. Thus, the problem of improving 
the condition of the effective channel H' is one of reducing the 
lattice basis corresponding to the original channel H. 

Lattice reduction in high dimensions is a known NP-hard 
problem. One approach is the polynomial time, sub-optimal 
LLL algorithm 121. In this paper, we focus on the 2 x 2 case 
( N ,  = Nt = 2) that arises frequently in practice, where we de- 
velop important insights and an optimal iterative algoGthm. 

In the 2 x 2 case, H = [bl bz]. Let us use bl to de- 
note the component of bl that is orthogonal to bz. and define 
bnsimil arly. For BLAST detection, the effective SNR at the 
point of detecting x1 and 5 2  are TII  = I/blII and rz2  = Ilbzll. 
respectively. Therefore. the best basis is the one with the 
largest min(l!blll, I!b211). For ICD, the corresponding mea- 
sureismin(llblll,Ilb2il). Itcanbeshownthatthebasis (u,v), 
where U is the shortest (non-zero) vector in the lattice and v is 

I 
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the shortest vector that is not a multiple of U, is the optimal ba- 
sis for both detection methods. The proofs are straightforward, 
but are omitted due to space limitations. 

A. Reduction Algorithm 
Given an original set of basis vectors (bl ,  bz) for a lattice 

with llblII 5 llb211, we develop an iterative algorithm to pro- 
gressively reduce their correlation and converge to the desired 
basis vectors (U,  v). 

One intuitive way to reduce the correlation between two lat- 
tice basis vectors is to subtract integer copies of one vector out 
of the other. Let bh = (bz - nb1) be the replacement for bz. 
The parameter n should be chosen so as to minimize the corre- 
lation between bl and b;, i.e., 

where the function 1.1 rounds its argument to the nearest in- 
teger. For complex arguments, real and imaginary parts are 
rounded separately. And to avoid ambiguity, half integers are 
rounded to even integers. Note that this choice of n given by 
(4) also minimizes the norm of b;. 

The resulting correlation after replacing bz  with bb is 

Since the rounding errors for real and imaginary parts are each 
no more than 112, we have 

1 1 
IRe{(bi,b;))l 5 TIlbillzand lIm{(bi,bk))l 5 ~11bi1l2. 

than bl, we swap them and then check whether further subtrac- 
After replacing b z  with the optimal b:, if this new b2 is shorter 

tion is possible. 
Summarizing, the algorithm is as follows: 
1) Check thecorrelation. If IRe{(bl,bz)}l 5 ;11b111' and 

IIm{(bl,bz))l 5 $11b111'. stop. Otherwise, replace bz 
with bz - 

2) Check their lengths. If llbzll > llblII, stop. Otherwise, 
swap them and go to step 1. 

When this iterative procedure stops. the resulting basis will 
have the properties llbill 5 Ilbzll. I Re{(bl,bz))l 5 $11bi112 
and /Im{(bl,bz))l 5 fllb1112. It follows that basis vectors 
with these properties are the ones we desire, as we show next. 

Proposition 1: Given a two dimensional lattice with basis 
vectors U and v. If 1 1 ~ 1 1  5 IIvII, IRe{(u,v))I 5 $ 1 1 ~ 1 1 ' .  and 

I )  U is the shortest (non-zero) vector in the lattice. 
2) v is the shortest vector that is not a multiple of U. 

1) Since (U,.) is a lattice basis, any vector s in 
the lattice can be written as s = au + bv, with a, b E Z + Zj, 

1 1 ~ 1 1 2  =II au+bvllZ ( 6 )  
= la1211u11z + lb1z11v112 + 2Re(atb(u,v)) 
t (af+af+b:+b: -la,b,+aibil-laib,-a,bil)llullz 
2 1 1 ~ 1 1 2  when +.ai, b,, b, are not all 0, 

bl and go to step 2. 

IIm{(u,v))l 5 $l l~l lz7 then 

Proof: 

where a, = Re(a}, a, = Im(a), b, = Re(b}, bi = Im{b}. 
The last step uses the identities, for any real numbers a, b, c, d, 

az + bZ + c2 + dZ 2 lac1 + lbdl + lbcl + lodl 
lael + lbdl t lac+ bdl and lbcl + ladl 2 Ibc - ad1 

The necessary and sufficient conditions for the equalities to 
hold are lal=lbl=lcl=ldl. abcd t O  and abcd 50, respectively. 

2) Any vector s in the lattice that is not a multiple of U can 
be writtenass = au+  bv,a,b E Z+ Zj, and b # 0. 

llsllz =/I au + bvl/' (7) 
= PI2 (Ilvll' - IlullZ) 

+ laiZllu112 + lblZllullZ + 2Re{atb(u,v)} 
< 

t lbI2 (llvllz - llU1l2) + llUllZ + (llv112 - llv112) 
= (lbIZ - 1) ' (IlVllZ - 1 1 ~ 1 1 ' )  + llVllZ 

t IlvllZ because b # 0 

8 
It is clear that the procedure will end. In particular. after each 

iteration, the lengths of both basis vectors decrease (at least one 
decreases strictly); othenvise, the procedure ends. Since lattices 
are discrete, there can only he finitely many vectors shorter than 
the original ones. Thus, the procedure must end. 

In the remainder of the paper we examine the effects of using 
lattice reduction with traditional detectors. Let us use LR-ICD 
and LR-BLAST to refer to the detection schemes that combine 
lattice reduction with ICD and BLAST detection respectively. 

IV. GAUSSIAN CHANNELS 
In this section we develop individual channel results, i.e., for 

a fixed channel matrix H. 

A. Complexiry 

The incremental complexity inherent in the use of lattice re- 
duction is determined by the number of iterations required to 
reduce the basis. The worst-case complexity is unbounded. In 
particular, we are able to consmct infinite sequences of channel 
matrices (based on Fibonacci sequences) that take an increasing 
numbers of iterations to finish. However, the fraction of all pos- 
sible 2 x 2 channels that require more than one or two iterations 
is actually very small, so in practice the complexity increase is 
negligible. 

B. Performance 
These new detection methods realize decision regions (and 

thus performance) much closer to that of MLD, as we now de- 
velop. 

Fig. 3 shows a comparison of the decision regions for MLD 
and LR-ICD. It is drawn for a 2 x 2 real example for illustration 
purpose. The MLD decision region is a hexagon, and that of 
LR-ICD is a parallelogram. These regions also coincide with 
what are referred to as the Voronoi cell and unit cell of the lat- 
tice, respectively. 

The minimum distances d,i. from the received constellation 
point to the decision boundaries are drawn. Recall that dmi, 
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HI 
Hz ~~. .............. ~ . .  ~~~~ ~ *~~ ................ ~ ~~ 

ICD BLAST LR-ICD LR-BLAST 
0.31 dB 0.00dB 0.31 dB 0.00 dB 
18.1 dB 17.0dB 0.00dB 0.00 dB 

Fig. 3. Comparison of the decision regions for MLD and LR-ICD. Minimum 
distances to the decision boundaries are also compared. 

is the minimum amount of noise needed for an error to occur, 
and parameterizes the error probability at high SNR in white 
Gaussian noise as 2Q(d,i./o,), where U: is the noise variance 
per dimension and Q(z) = Jzm(1/d%)exp{-zZ/2). We see 
that for LR-lCD, d,in is shorter, so the performance is worse. 
This is a result of the basis vectors not being onhogonal. We 
now develop a precise bound on the ratio of dzkv to dkyn-'CD 
to quantify the worst SNR gap IO the MLD bound. 

Generalizing Fig. 3 to the complex case, we see that 

columns, while a large improvement in dB is obtained for Hz. 
which has highly correlated columns. 

TABLE I 
SNR GAPS TO MLD PERFORMANCE FOR VARIOUS DETECTORS 

V. RAYLEIGH FADING CHANNELS 
In this section we develop results for ensembles of channels, 

i.e., for a random channel matrix H. We focus on the Rayleigh 
fading case in which the entries of H are independent eN(0 , l )  
random variables, independent of the Gaussian noise. 

A. Complexity 
Since the incremental complexity is dependent on the real- 

ized channel, we plot in Fig. 4 on both linear and logarith- 
mic scales the empirical distribution of the number of iterations 

d"l = ' 1l.i and dk;;lCD = ! 5 needed in the Rayleigh fading envirtmment. Note thdf over 99% 
of Ihc bares arc rcdurcd I n  two iterations or less, and that it be- 
comes increwngly unlikcly to need more iterations 

2 2 "U" 

U here 

Therefore, d::;IcD > (I/&)dzkDD, which corresponds to 
a maximum SNR loss of 3dB. Note that this bound is tight: 
the worst case is achieved by, for example, U = [l 01 , and 

v = (f + $j) [l 11 . However, for many channel matrices 
the ratio is much closer to one. 

min(//ull, IlS(1) 2 illfill, 
so it always performs at least as well as LR-ICD. Comparing to 

quite often in the 2 x 2 case. However, the worst case is still 

In summary, LR can improve the performance of detection 
to within 3dB from optimal in terms of dmin. The actual gap 
depends on how well the particular channel can be reduced. 

Another property of lattice reduction is that it monotonically 
improves detection peIformance. In particular, for both LR- 
ICD and LR-BLAST, each iterationsf the reduction algorithm 
improves the decision region and increases dmin. The more 
correlated the original basis vectors are, the greater the ultimate 
improvement. This behavior is illustrated by the following ex- 
ample channel matrices 

T 

T 

For LR-BLAST, dfh:n-BLAST = 

MLD, dkLR-BLAST = dmi, MLD ,when llOll 2 IIuII. which happens 

dLR-BLAST = dLR-ICD = (l/fi)dfh'kD. m,n mm 

whose resulting SNR gaps are listed in Table I. We see that little 
improvement is obtained for H1, which has nearly orthogonal 

$O.K--. . . . . . . . . . . . . 

a0.4 e 
Y 

z 0. - e 
d . . . . . . . . 

0 1 2 3 4 5 6  
Number of iterations 

0 1 2 3 4 5 6  
Number of iterations 

Fig. 4. Dislribulion of number of iterations needed for 2 x 2 lattice reduction. 

B. Performance 
In Rayleigh fading, the the average error probability P. de- 

cays according to P, - l/SNR" at high SNR, where v is 
termed the order of diversity in the system. The diversity OI- 
der is a reflection of the systems tolerance of and robustness to 
the channel being near singular ( i t . ,  in a deep fade). 

In the 2 x 2 case, lattice reduction improves the diversity v 
achieved by ICD and BLAST detection to that of MLD. To see 
this, the average symbol error rate (SER) Curves for @e various 
detection methods are plotted in Fig. 5 for 16-QAM. The top 
two curves are for ICD and BLAST detection. In the high SNR 
regime, they both have diversity 1. Note that for BLAST, if 
there were no error propagation, the diversity for the entry de- 
tected second would have been 2. However,it s actual diversity 
is only 1 due to error propagation from the entry detected first, 
which itself experiences only diversity 1. 

The lowest curve is for MLD. The two curves immediately 
above it and parallel to it correspond to LR-ICD and LR- 
BLAST. In the high SNR regime, all three evidently have di- 
versity two. This shows the improvement in diversity provided 
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for example, the edge points. In some extreme cases, it is even 
possible for a point to have all its nearest neighbors distance 
d,i, away to be outside the constellation, resulting in the ef- 
fective d,i, to be actually greater. For these reasons, LR based 
detection, which treats the constellation as an infinite lattice, is 
slightly further sub-optimal compared to MLD, which takes ad- 
vantage of the finite size of the constellation. However, as the 
constellation gets larger, these differences diminishes. This fi- 
nite constellation effect is apparent from extending the constel- 
lation to 64-QAM and 256-QAM from the original 16-QAM. at 
the 25dB SNR level. The corresponding SER curves for MLD 
are plotted in Fig. 7 together with the corresponding SER of 
LR-BLAST. We can see that as the constellation gets larger, the 
gap between MLD and LR-BLAST becomes smaller. 

Fig. 5. 
cmplcx case. T ~ E  eonstellation used is I6-QAM. 

Symbol crmr rate curves for various detection mcthodS in the 2 x 2 

by using lattice reduction. Notice, with lattice reduction, the 
relative benefits of BLAST detection over ICD is smaller; this 
is a result of the basis vectors becoming more orthogonal. 

It is also insightful to examine the empirical cumulative den- 
sity of & for these detectors, which is depicted in Fig. 6. Rel- 
ative to the original ICD and BLAST detection (dashed curves), 
it is evident that with lattice reduction (solid curves), the prob- 
ability of having small is substantially reduced. Further- 
more, comparing the LR CUIVeS to the MLD curve (dotted), we 
see that the performance gap is much less than the worst.case 
3dB SNR loss. This is because channels yielding these larger 
losses are rare. 

64 25 
QAM mnrtellation size 

16 

Fig. 7. The gap ktwcen SER of MLD and LR-BLAST diminisher with in- 
ereasing c~n~tellation size. The noise level is such that SNR is 25dB for the lwAM conrtellation. 

Fig. 6. Comparisons of the cumulative density of d i i n  

Note that Fig. 6 reflects the diversity behavior seen in Fig. 5 
from a different angle. Indeed, the SER is related to a kind of 
“outage” probability, the probability of dkin being less than a 
threshold which is inversely related to SNR. 

One feature in Fig. 5 that is not captured by Fig. 6 is the gap 
between the LR curves and the MLD curve. This is because the 
detection performance is also affected by the number of near- 
est neighbors and, indirectly, the size of the constellation. In a 
finite constellation, some points have fewer nearest neighbors, 

VI. SUMMARY AND FUTURE WORK 
In this paper, we proposed new coherent detection methods 

for MlMO communication systems. These methods signifi- 
cantly improve the performance of traditionally employed low- 
complexity detectors, in particular,lCD and BLAST detection, 
by incorporating lattice reduction. We studied the small (2 x 2). 
uncoded, coherent systems in detail. We presented an itera- 
tive lattice reduction algorithm for optimal decoding and stud- 
ied its complexity. We showed that the number of iterations 
needed is typically low and it is increasingly unlikely to need 
more. We also showed that, relative to optimal MLD, LR tech- 
niques is sub-optimal by no more than 3dB in terms of SNR for 
any Gaussian channel, and allows us to achieve the same diver- 
sity on the Rayleigh fading channel, assuming sufficiently large 
constellations are used. 

The proofs and simulations in this paper are limited to the 
2 x 2 case. However,for higher dimensional cases, we believe 
lattice reduction could be very useful as well. Work in this di- 
rection is in progress. 
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