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Abstract

The block diagonalization (BD) precoding technique is a well-known linear transmit strategy for multiuser multi-input

multi-output (MU-MIMO) systems. The MU-MIMO broadcast channel is decomposed into multiple independent parallel

single user MIMO (SU-MIMO) channels and achieves the maximum diversity order at high data rates. The

lattice reduction-aided decoding (LRAD) features the reduced decoding complexity in MIMO communications.

The Lenstra-Lenstra-Lovasz (LLL) algorithm has been extensively used to obtain better bases of the channel

matrix while the complex lattice reduction (CLR) is aimed at improving orthogonality of basis vectors and

shortening them. The orthogonalization and size reduction work are left for the CLR algorithm so that a

modification of the channel matrix is carried out, resulting in better precoding and detection performances.

We also derive bounds for lattice decoding. Simulation results show that the bit error rate (BER) performance

of our proposed algorithm is better than that of conventional ones and it reduces the complexity compared

with the LLL algorithm-based schemes.

Keywords: Complex lattice reduction, Block diagonalization, Multiuser MIMO, Detection algorithms, Proximity

factors, Low complexity

1 Introduction
Multiple-input multiple-output (MIMO) systems have

been proposed for the next-generation wireless commu-

nication systems to increase the transmission capacity,

and therefore, a high-performance and low-complexity

MIMO detector becomes an important issue. The max-

imum likelihood detector (MLD) is known to be an opti-

mal detector; however, it is impractical for realization

owing to its great computational complexity. Signal pro-

cessing is performed on a per-cell basis in conventional

wireless systems. The zero-forcing (ZF) and minimum

mean-square error (MMSE) precoding are the well-

known linear precoding schemes. Although linear pre-

coding techniques have considerably low computational

complexity, they show relatively low performance due to

the susceptible noise amplification, particularly when the

channel matrix is ill-conditioned. The block diagonaliza-

tion (BD) is one of the key processing techniques for

multiuser MIMO (MU-MIMO) systems. The MU-

MIMO downlink channel can be decomposed into mul-

tiple parallel single user MIMO (SU-MIMO) channels

with the use of BD which was first proposed in [1]. Be-

cause of no interference between the users after BD, the

MU-MIMO channel can be transformed into equivalent

SU-MIMO channels [2], and then the SU-MIMO tech-

niques can be applied. Two singular value decompos-

ition (SVD) operations have to be implemented through

the BD algorithm for the complete or full BD reported

in [1, 3]. By using the first SVD, the multiuser interference

(MUI) is forced to be zero and the second SVD is used to

produce orthogonal parallel SU-MIMO channels. By

replacing the first SVD operation with a less complex so-

lution to mitigate the MUI, a QR decomposition-based

BD precoding scheme is presented in [4] for MU-MIMO

systems. QR-BD utilizes a QR decomposition to the MUI-

MIMO channel to obtain the null space of MUI. There-

fore, the complexity of SVD operation on BD precoding is
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reduced by QR operation in QR-BD precoding. A

generalized ZF channel inversion (GZI) precoding

method is developed in [4], where the MUI-MIMO

channel is operated by pseudo inversion and QR

decomposition to mitigate the MUI. Furthermore, the

generalized MMSE channel inversion precoding scheme

denoted as GMI is proposed in [4] to balance the MUI

and the noise for each user effectively.

Lattice reduction (LR) is another preprocessing and

detection technique that has recently attracted significant

research efforts. Yao and Wornell used the LR algorithm

in conjunction with MIMO detection techniques [5]. LR

is a powerful concept for solving diverse problems involv-

ing point lattices. The LR has been successfully used in

signal processing applications including global positioning

system (GPS), frequency estimation, and particularly data

detection and precoding in wireless communication sys-

tems. Besides linear detection schemes based on the ZF or

the MMSE criterion, successive interference cancelation

(SIC) is a popular way to detect the transmitted signals at

the receiver side [6]. The LR has been proposed in order

to transform the system model into an equivalent one

with a better-conditioned channel matrix prior to low-

complexity linear or SIC detection [6]. The symbol error

rate (SER) curves can parallel those of the MLD algo-

rithms by using LR-aided detection schemes, which has

devoted a great deal of interest to exploring the applica-

tion of LR in MIMO systems. The LR-aided detection

schemes with respect to the MMSE criterion have been

extended by Wuebben et al. [6]. In [7], both the LR-aided

SU-MIMO detection and the LR-aided SU-MIMO pre-

coding have been investigated. LR-aided MIMO precoding

for decentralized receivers was discussed in [8–12]. The

aim of the complex LR (CLR) algorithm is to find a new

basis which is shorter and nearly orthogonal as compared

to the original matrix [12]. Therefore, if the second pre-

coding filters for the equivalent SU-MIMO channels after

the first SVD were designed based on the lattice-reduced

channel matrix, a better bit error rate (BER) performance

can be achieved. Then, a CLR-aided regularized BD (RBD)

precoding algorithm is proposed, which not only has a

lower complexity but also achieves a better BER perform-

ance than the RBD or QR/SVD RBD [12, 13].

Among the LR algorithms, the Lenstra-Lenstra-Lovasz

(LLL) algorithm is most commonly used, which was first

proposed by Lenstra et al. in [14]. However, a real value-

based matrix can be processed which may lead to high

complexity when the channel has large dimensions. The

complex LLL (CLLL) algorithm was proposed in order

to reduce the computational complexity [15]. The over-

all complexity of the CLLL algorithm is nearly half of

the LLL algorithm without any performance degradation

[15]. The essence of the LR algorithm is to try to orthog-

onalize the columns of the channel matrix and reduce

its size as well [12]. Gram-Schmidt orthogonalization

(GSO) procedure and size reduction are the two core

components of the LR algorithm. The main contribu-

tions of our paper are summarized as below:

� We propose complex lattice reduction aided with

block diagonalization for MU-MIMO systems.

� A BD-based precoding algorithm is able to separate

several SU-MIMO channels from the MU-MIMO

downlink channel as well as achieve the maximum

diversity order at high data rates and reduce the

interference.

� To reduce the complexity of precoding scheme, we

employ the CLR to replace the SVD of conventional

BD-based precoding algorithm by introducing a

combined channel inversion to eliminate the MUI.

� The LLL algorithm has been used to obtain better

bases of the channel matrix, while the CLR is aimed

at improving orthogonality of basis vectors and

shortening them. We also derive the bounds for

lattice decoding.

� The simulation results show that the BER

performance of our proposed algorithm is better

than that of conventional algorithms and the

complexity is reduced compared with the LLL

algorithm-based schemes.

This paper is organized as follows. A system model is

introduced in Section 2. In Section 3, we present pre-

coding techniques in detail. In Section 4, we describe

complex LR-aided block diagonalization. In Section 5,

MIMO detection algorithms are presented. In Section 6,

we introduce performance bounds for lattice decoding,

and complexity analysis is described in Section 7. Simu-

lation results are presented in Section 8, and conclusions

are drawn in Section 9.

2 System model
The MU-MIMO broadcast model is shown in Fig. 1,

where K users equipped with Ni receiving antennas on

an individual basis and data streams manipulated at the

base station by a precoder with NT antennas are sent to

the corresponding receiving antennas, respectively. The

total number of receiving antennas is NR ¼
X

k

i¼1

N i . We

assume that the total number of transmitted data

streams is r ≤min(NR,NT). The received signal vector

y can be expressed as

y ¼ D HWsþnð Þ; ð1Þ

where D∈ℂ
r�NR is the detection matrix, H∈ℂ

NR�NT is

the complex Gaussian channel matrix with zero mean

and unit variance, W∈ℂ
NT�r is the precoding matrix,
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s ∈ℂr × 1 is the data vector, and n ∈ℂ
r is the Gaussian

noise with independent and identically distributed (i.i.d)

entries of zero mean and variance N0.

3 Precoding technique
In this section, we discuss conventional BD and CLR al-

gorithms. This drawback would be more serious when

the channel is highly correlated. One solution for this

problem is known as BD which was first proposed in [3].

3.1 Block diagonalization

The MUI constraint forces all interference terms to be

zero, which is known as the ZF precoding. The precod-

ing matrix W is designed to satisfy the transmit power

constraint. The channel inversion is applied to both the

ZF and MMSE precoding approaches. An additional

power is needed to force two closely spaced antennas of

a single user in order to receive different signals, which

would be a more serious disadvantage in the event of

the highly correlated channel. The BD is well known as

one of the solutions for this problem. The precoding

matrix is defined as

W ¼ W1;W2;⋯;WK½ �; ð2Þ

where Wi∈ℂ
NT�ri is the i-th user’s precoding matrix

which lies in the null space of the other users’ channel

matrices. Without losing generality, excluding the i-th

user’s channel matrix, ~Hi is defined as

~Hi ¼ HT
i ;⋯;HT

i−1H
T
iþ1;⋯;HT

K

� �T
: ð3Þ

From the SVD of ~Hi, we obtain

~Hi;eff ¼ ~Ui
~Λi

~V
1ð Þ
i

~V
0ð Þ
i

h iH

; ð4Þ

where Ũi and ~Λi denote the left singular vector matrix

and the matrix of ordered singular values of ~Hi , respect-

ively. Matrices ~V
1ð Þ
i and ~V

0ð Þ
i denote the right singular

matrices where each consists of the singular vectors

corresponding to non-zero singular values and zero singu-

lar values, respectively. ~V
0ð Þ
i forms an orthogonal basis for

the null space of ~Hi , that is, we choose Wi¼~V
0ð Þ
i to force

the MUI to be zero. After removing the effect of the inter-

fering users’ streams, the BD maximizes the data through-

put by the well-known water-filling (WF) algorithm and the

highest sum rate is achieved. The SVD is defined as

Hi
~V

0ð Þ
i ¼ UiΛi V

0ð Þ
i V

0ð Þ
i

h iH

: ð5Þ

The product of V
1ð Þ
i and ~V

0ð Þ
i can yield an equivalent

SU-MIMO channel with orthogonal bases. Orthogonal-

ity can be measured by the coefficients μi;j ¼ hi;hjh i
hjk k2 ,

where hi, hj are the columns of the equivalent channel

Hi
~V

0ð Þ
i V

1ð Þ
i .

3.2 CLLL reduction algorithm

A complex lattice is a set of points [9],

ℒ Hð Þ ¼ Hx=hi∈ℂ
N i�NT ; xi∈ℤ þ jℤ ;

� �

ð6Þ

where H ¼ h1; h2;⋯; hNT
f g contains the bases of the

lattice ℒ(H). It is well known that HHH is diagonal when

the channel matrix H in Eq. (1) is orthogonal, and the

decision region of the linear detectors required to find

the nearest lattice point is the same as that of the ML

detector. Actually, any matrix HLR can generate the

same lattice if and only if HLR =HeffT with a uni-

modular matrix. Since the LR scheme is adopted, the

complex valued system model given in Eq. (1) is trans-

formed into the equivalent real valued system as

H¼ ℛ Hð Þ −J Hð Þ
J Hð Þ ℛ Hð Þ

� �

; ð7Þ

y¼ ℛ yð Þ
J yð Þ

h i

; s¼ ℛ sð Þ
J sð Þ

h i

;n¼ ℛ nð Þ
J nð Þ

h i

; ð8Þ

where ℛ ⋅ð Þ;J ⋅ð Þ is the real and imaginary part,

respectively.

Fig. 1 Structure of CLR-aided BD system
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The LR algorithm aims to find a new basis HLR for a

given ℒ(H) which is shorter and nearly orthogonal com-

pared with the original matrix H. Let the orthogonal fac-

tor be represented as μi;j ¼
hi;h

�
jh i

h�jk k2 , where h�j represents

the vectors generated by the GSO procedure.

Definition (δ-LLL-reduced basis): A basis HLR by the

QR decomposition, i.e., HLR ¼ ~Q ~R , is regarded as δ-

LLL-reduced basis where 1/4 < δ < 1, if

ui;j≤1=2; 1≤j < i≤NT ð9Þ

h�k
�

�

�

�

2 þ uk;k−1
	

	

	

	 h�k−1
�

�

�

�

2
≥δ h�k−1
�

�

�

�

2
; 1 < k≤NT ; ð10Þ

where δ ∈ (1/2, 1) is a factor chosen to achieve a good

performance with lower complexity. If only Eq. (9) is sat-

isfied, this basis is the size-reduced basis as well. The

parameter δ influences the quality of the reduced basis.

Throughout this paper, δ = 3/4 as in [14].

4 Proposed complex LR-aided BD
In this section, we combined the BD and CLR techniques.

To cancel the MUI, we took the similar design concept from

BD and thus the MU-MIMO channel can be transformed

into equivalent SU-MIMO channels. We assume that the

channel information is perfectly known both at the transmit

side and the receiving side. We remark that a performance

study of the proposed scheme with imperfect channel infor-

mation and limited feedback can be considered.

We employ a similar strategy derived from the BD

scheme in order to eliminate the interference between

users. We successfully transform the MU-MIMO chan-

nel into equivalent SU-MIMO channels after the pre-

coding. Each equivalent SU-MIMO channel has the

same properties as a conventional SU-MIMO channel,

and when increasing the number of transmit antennas of

the MU-MIMO system by one, the number of spatial

channels of each user is also increased by one. The

equivalent SU-MIMO channel is given by

Heff ¼ HW ð11Þ

The received signal at the receiving side is

y¼Heff sþn ð12Þ

By using the CLLL algorithm, we can make the col-

umns of Heff orthogonal and shorter, that is

HLR ¼ HeffT: ð13Þ

We can rewrite Eq. (12) as

y¼HeffTT
−1sþn¼HLRzþn; ð14Þ

where z = T− 1s and HLR possesses a better channel qual-

ity, and we can design the detector based on the better

detector performance which can be achieved due to less

noise enhancement increased by HLR. The basic idea

behind approximate lattice decoding (LD) is to use

LR in conjunction with traditional low-complexity

decoders. With LR, the basis B is transformed into a

new basis consisting of roughly orthogonal vectors.

And the complexity is reduced also compared to the

SVD technique.

5 MIMO detection algorithms
5.1 ZF and MMSE detection algorithms

The interference is completely suppressed in a ZF detector

by multiplying the receiving signal vector y with the

pseudo-inverse of the channel matrix H†
LR ¼ HT

LRHLR


 �

−1

HT
LR . Given the received signal y in Eq. (14), the MLD

problem consists of determining the vector z with the

highest likelihood, that is, solving the following integer

least squares problem [7]:

~zML ¼ arg min
z∈ℤ r

y−HLRzk k2: ð15Þ

However, the MLD is usually impractical due to its

complexity that grows exponentially with the number of

constellation points and the number of transmitted

streams r. The decision step consists of mapping each

element of the filter output vector

~sZF ¼ H†
LRy ¼ sþ HT

LRHLR


 �

−1
HT

LRn ð16Þ

onto an element of the symbol alphabet by a minimum

distance quantization, which in case of M-QAM corre-

sponds to a simple rounding operation to the allowed

range of values. For an orthogonal channel matrix, ZF is

identical to ML. The MMSE detector takes the noise

term into account and thereby leads to an improved

performance.

~sMMSE ¼ H†
LRy ¼ HT

LRHLR þ σ2nI

 �

−1
HT

LRy: ð17Þ

5.2 Lattice-reduction-aided linear detection

Linear detection is optimal for an orthogonal channel

matrix. For s ∈ ℤm, we also have z ∈ ℤm, so s and z stem

from the same set. The idea behind LR-aided linear

detection is to consider the equivalent system model in

Eq. (14) and perform the nonlinear quantization on z

instead of s. For LR-aided ZF, this means that first

~zLR−ZF ¼ T−1
~sZF ¼ HLRy¼zþHLRn ð18Þ

is calculated, where the multiplication with HLR usually

causes less noise amplification than the multiplication

with H†
LR in Eq. (14) due to the roughly orthogonal col-

umns of HLR. Therefore, a hard decision based on
~zLR−ZF is in general more reliable than one on ~sZF . We

Khan et al. EURASIP Journal on Wireless Communications and Networking  (2015) 2015:254 Page 4 of 9



may apply a MMSE filter instead of the ZF solution in

order to get an improved estimate for z. One obvious

way is given by the MMSE-solution of the lattice-

reduced system (Eq. (14))

~zLR–MMSE ¼ HT
LRHLR þ σ2

nTT
–1


 �–1
HT

LRy¼T–1
~sMMSE

ð19Þ

5.3 Lattice-reduction aided SIC

As shown in several publications, e.g., [16, 17], SIC can

be well described in terms of the QR decomposition of

the channel matrix. Applying this strategy to the system

model from Eq. (14), we get

~zLR–ZF–SIC ¼ ~QTy¼~Rzþ ~QTn; ð20Þ

where ~Q and ~R have already been calculated by the LLL

algorithm. Similar to linear detection, we can consider

the lattice-reduced version of the extended system

model with the equivalent channel matrix HLR¼ ~Q ~R .

This leads to LR-aided MMSE-SIC with decision vari-

ables given by

~zLR–MMSE–SIC ¼ ~QTy¼~Rzþη; ð21Þ

where the newly defined noise term η also incorporates

residual interference. The detection procedure equals

that of LR-aided ZF-SIC.

6 Performance bounds for lattice decoding
In this section, we shall introduce an analytic tool for

approximate LD. However, such results do not directly

translate into how close approximate LD is to LD in

terms of the minimum distance, which is more useful in

digital communications [18].

Consider a fixed but arbitrary n-D complex lattice Λ.

The decision regions of ZF and SIC have 2n faces. We

only have to study n distances due to symmetry. The i-

th distance of ZF is di,ZF = (1/2)‖hi‖ sin θi, for i = 1,…, n,

where θi denotes the acute angle between and the linear

space spanned by the other n − 1 basis vectors h1,…, hi −

1, hi + 1,...., hn. For the SIC detector, the i-th distance is

given by 1=2ð Þ h�i
�

�

�

�.

The minimum distance of the lattice decoder is

dLD = (1/2)λ(Λ), where λ(Λ) is the length of the short-

est vector of lattice Λ. We are motivated to define

the proximity factors measuring the proximity be-

tween the performances of LD and approximate LD

as follows:

ρi;ZF≜ sup
d2
LD

d2
i;ZF

¼ sup
λ2 Λð Þ

hik k2 sin2θi
ð22Þ

ρi;SIC≜ sup
d2
LD

d2
i;SIC

¼ sup
λ2 Λð Þ
h�i
�

�

�

�

2
ð23Þ

For each decoder, an error occurs when the noise falls

outside of R. Accordingly, given the basis B, the error

probability for vector x is given by

Pe Bð Þ ¼ P x≠0=x ¼ 0ð Þ ¼ P n∈Rð Þ ð24Þ

To keep the results general, we write SNR = c/σ2,

where c is a constant depending on the problem. By the

symmetry of the Voronoi cell, we have the lower bound

on the conditional decoding error probability of LD

Pe;LD SNR;Bð Þ≥2Q dLD

σ

� 

¼ 2Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
LD:SNR

c

s0

@

1

A:

ð25Þ

Meanwhile, the union bound on the conditional error

probability of ZF reads

Pe;ZF SNR;Bð Þ≤2
X

n

i¼1

Q
di;ZF

σ

� 

ð26Þ

where the factor 2 is due to symmetry. The union

bound for SIC admits a form similar to Eq. (26). Given

the same basis matrix B, the conditional error probabil-

ity of LR-aided ZF can be bounded above as

Pe;ZF SNR;Bð Þ≤2
X

n

i¼1

Q
dLD

ρi;ZFσ

 !

¼ 2
X

n

i¼1

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
LD:SNR

c:ρi;ZF

dLD
ffiffiffiffiffiffiffiffiffiffiffiffi

ρi;ZFσ
p

s
 !

: ð27Þ

since d2
i;ZF≥ρi;ZF :d

2
LD by definition (Eqs. (22)–(23)) and

since Q(·) is a decreasing function. It is worth pointing

Table 2 Computational complexity of QR/SVD-BD [22]

Steps Operations Flops Case

1 H =QR 16K N2
TNi þ NTN

2
i þ 1=3N3

i


 �

12544

2 Heff = HW 8NRN
2
T 1728

3 Hi;eff¼UiΛiV
H
i 64 9=8N3

i þ NTN
2
i þ 1=2N2

i Ni


 �

13248

Table 1 Complexity of LR algorithm

Steps Operations Flops Case (2, 2, 2) × 6

1 QR 16K N2
TNi þ NTN

2
1 þ 1=3N3

1


 �

12544

2 HW 8NRN
2
T 1728

3ZF CLR HT
LR


 �T
25:6K N2

TNi−NTN
2
i þ 1=3N3

i


 �

3891

4ZF HT
LR HLRH

T
LR


 �

−1
K 2N3

1−2N
2
i þ Ni þ 16NTN

2
i


 �

1192

4MMSE HT
LR HLRH

T
LR


 �

−1
K 18N3

1−2N
2
i þ Ni þ 16NTN

2
i


 �

1566
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out that while the distance dLD is a function of B, ρi,ZF is

not. Now, combining (25) and (26), we have

Pe;ZF SNR;Bð Þ≤
X

n

i¼1

Pe;LD
SNR

ρi;ZF
;B

 !

: ð28Þ

Since Eq. (28) holds for any B, averaging out B, we obtain

Pe;ZF SNRð Þ≤
X

n

i¼1

Pe;LD
SNR

ρi;ZF

 !

ð29Þ

for arbitrary SNR. In particular,

Pe;ZF SNRð Þ≤nPe;LD
SNR

ρZF

� 

: ð30Þ

The relations Eq. (29) and Eq. (30) hold irrespective of

fading statistics, and similar relations exist for SIC. They

reveal, in a quantitative manner, that approximate LD

performs within a constant bound from LD. The mere

effect on the error rate curve is a shift from that of LD,

up to a multiplicative factor n, which obviously does not

change the diversity order. In other words, the diversity

order is the same as that of LD [18]. Therefore, existing

results on the diversity order of LD can be extended to

approximate LD. Moreover, since LD achieves full

receive diversity in the uncoded V-BLAST system [19],

approximate LD also achieves full diversity. This provides

an alternative way of showing the diversity order of

LR-aided decoding given in [19, 20].

7 Complexity analysis
The LLL algorithm leads to a significant reduction of

the computational complexity. The complexity of the

LLL reduction algorithm depends on the random basis

matrix H. We use the total number of flops to measure

the computational complexity of the existing algorithms

[12, 13, 21, 22]. We summarize the total flops needed

for the matrix operations below:

� Multiplication of m × n and n × p complex matrices:

8mnp

� QR decomposition of an m × n(m ≤ n) complex

matrix: 16(n2m − nm
2 + 1/3m3)

� SVD of an m × n(m ≤ n) complex matrix where only

Σ and V are obtained: 32(nm2 + 2m2)

� SVD of an m × n(m ≤ n) complex matrix where

U, Σ, and V are obtained: 8(4n2m + 8nm2 + 9m3)

� Inversion of an m ×m real matrix: 2m3
− 2m2 +m

For the case shown in Tables 1 and 2, the complexity

of the LR-ZF is about 46.1 % of BD and 70.3 % of QR/

SVD-BD, while the complexity of the LR-MMSE is about

55.8 % of BD and 85.1 % of the QR/SVD-BD [12].

Clearly, the algorithm requires the lowest complexity.

We focus on the computational complexity reduction

of the alternative BD methods. The complexities of the

alternative methods are usually compared by the number

of floating point operations (flops). A flop is defined as a

real floating operation, e.g., a real addition, multiplica-

tion, division, and so on. Based on the analysis, we

summarize the computational costs of the alternative

BD methods, where QR-BD denotes the BD method

Fig. 6 The comparison results for the BER performances versus Eb/N0
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similar as SVD-BD but replacing the SVD operation

with the fast Givens QR operation.

We give the calculated results of the flops of the alterna-

tive methods in Figs. 2 and 3. We consider the case that

NT =KNk as shown in Fig. 2. We set Nk = 2 and express

the computation cost as a function of NT. We consider

the case that KNk <NT while expressing the computation

cost as a function of Nk.

8 Simulations results
In this section, we evaluate the BER performance of the

LR-aided linear precoding. We use both linear ZF and

MMSE precoding schemes with the conventional LLL

algorithm. From Fig. 4, linear precoding jointly applied

with LLL algorithm clearly outperforms the linear

precoding. At a target BER of 10− 3, the gain in the

transmission power is 7.5 dB.

The performances of the successive detection schemes

with optimum ordering are provided in Fig. 5. Note that

this improvement comes at almost no cost because the

complexity of SIC is comparable to that of linear de-

tection. Again, detection with respect to the LR sys-

tem significantly reduces the BER. The LR-MMSE-SIC

scheme achieves almost ML performance, while the

main computational effort is required only once per

transmitted frame.

The analysis of probability of error is compared to the

BER results of simulations.

We investigate the performance comparison in terms

of BER given a bit SNR, i.e., Eb/N0 in Fig. 6. The 4×4

MIMO precoding and detection techniques are given

and compared with the proposed schemes. Figure 6

shows the comparison where 16-QAM modulation is

used. The ML is the best performance of all techniques,

while the LR-MMSE outperforms the LR-ZF. It is clear

that the performance of BD precoding with LR is as

almost similar to the LR-MMSE detection in Fig. 6.

9 Conclusions
In this paper, several detection schemes for multiple

antenna systems are investigated, which make use of

the LR algorithm proposed by [14]. It is shown that

the performance of our proposed algorithm is better

than that of conventional methods and the complexity

is reduced compared with the LLL-based schemes. It

is clear that the performance of BD precoding with

LR is as almost similar to the LR-MMSE detection.

Aside from the improved performance, it is suggested

that the MMSE-based LR has a significantly smaller

complexity than the ZF-based LR. Simulation results

evidence that our proposed algorithms have substan-

tial performance gains compared to the existing MU-

MIMO linear precoding and BD detection.
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