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Additive Manufacturing Constraints
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Abstract— Lattice structures with different desired physical
properties are promising for a broad spectrum of applications.
The availability of additive manufacturing (AM) technology has
relaxed the fabricating limitation of lattice structures. However,
manufacturing constraints still exist for AM-fabricated lattice
structures, which have a significant influence on the printing
quality and mechanical properties of lattice struts. In this
paper, a design and optimization strategy is proposed for lattice
structures with the consideration of manufacturability to ensure
desired printing quality. The concept of manufacturable element
is used to link the design and manufacturing process. A meta-
model is constructed by experiments and the artificial neural net-
work to obtain the manufacturing constraints. Sizes of struts are
optimized by a bidirectional evolutionary structural optimization-
based algorithm with these manufacturing constraints. An arm of
quadcopter is redesigned and optimized to validate the proposed
method. Its result shows that optimized heterogeneous lattice
structures can improve the stiffness of the model compared
to the homogeneous lattice structure and the original design.
Both the Von-Mises stress and the maximum displacement are
reduced without increasing the weight of designed part. And
by considering the manufacturability constraints, the optimized
design has been successfully fabricated by the selected additive
manufacturing process.

Note to Practitioners—Lattice structures might fail to be fab-
ricated by the additive manufacturing technique if the designed
model exceeds the processability of the machine. Our approach
has the capability of considering the manufacturing constraints in
the design and optimization process. We conducted experiments
to investigate the manufacturability and proposed a method
that can give the domain of the design variables for a selected
manufacturing process. And we also designed an algorithm that
can optimize the lattice structure inside the domain of design
variables. It ensures that the lattice model can be successfully
fabricated by the selected process and the performance is
dramatically increased compared to the original design. Engi-
neers can use our approach to optimize the lattice structure
automatically without knowing the knowledge of optimization
and manufacturability.

Index Terms— Additive manufacturing (AM), design, lattice
structure, manufacturing constraints.
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I. INTRODUCTION

THE word “lattice” originally describes a framework or

structure of crossed woods or metal strips and can be

extended to regular geometrical arrangements of points or

objects over an area and space [1]. In this paper, the lattice

structure is defined as a mesoscale (0.1–10 mm) or

microscale (<0.1 mm) truss-like structure which consists

of interconnected struts and nodes with a certain repeated

arrangement in 3-D space. In this sense, lattice structures can

be regarded as a type of cellular structure on a mesoscale.

Compared to other types of cellular structures including foams

and honeycombs, lattice structures are more flexible to achieve

a wide range of different desired physical properties, such

as high stiffness-weight ratio [2], low thermal expansion

coefficient [3], negative Poisson ratio [4], and high heat

dissipation rate through active cooling [5]. Moreover, it can

also be designed as a bioimplant to enhance the ossesoin-

tegration as well as alleviating stress-shielding effect. Due

to its outstanding performance, lattice structures have been

used in a broad spectrum of applications, including bone and

dental implants [6]–[8], ultralight structures [9], [10], energy

absorbers [11], low thermal expansion structures [12], and

conformal cooling [13].
Traditionally, lattice structures can be fabricated via casting,

sheet metal forming, or wire bonding processes [14]. However,

manufacturing constraints of these processes severely restrict

the complexity of designed lattice structures. These processes

can only be applied to fabricate lattice structures with few

simple unit cell topologies in a regular shape on a macroscale.

This manufacturing limitation has been relaxed by using

additive manufacturing (AM) to fabricate lattice structures.

By fabricating a part layer by layer, AM enables the design

of complex structures without significantly increasing the

cost. Thus, the geometrical freedom provided by AM greatly

enlarges the design space of lattice structures. Lattice struc-

tures with multiscale complexities can be easily fabricated for

a better functional performance. For instance, on a macroscale,

conformal lattice structures [15] can be produced to fit a

complex macroshape with a relatively smooth surface bound-

ary. On a mesoscale or microscale, complex lattice unit cells

have been designed and fabricated to achieve a given gradient

of elastic properties [16]. However, it should also be noted

that every manufacturing process has limitations. AM is no

exception. In particular, some recent research has observed and

studied on the manufacturing constraints of lattice structures

fabricated by different AM processes. The manufacturability

of gyroid lattice structures made of 316L stainless steel
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Fig. 1. Comparison between: (a) homogeneous lattice and (b) heterogeneous
lattice [9].

with selective laser melting (SLM) process has been studied

in [17]. In this research, the lattice structures with unit cell

sizes ranging from 2 to 8 mm with 15% volume fraction

can be successfully manufactured. Based on the fabrication

experiments, it shows that the minimum unit cell size which

can be fabricated mainly depends on particle sizes of metal

powders, since the trapped powders with a big particle size in

a small unit cell are difficult to be removed. Moreover, it also

concludes that the unit cell whose size is larger than 8 mm

is problematic to be fabricated due to the longer distance

of the overhang area. Similar research has been done by

Santorinaios et al. [18] on the lattice cells with vertical and

cross struts fabricated by SLM process. This research also

shows that the lattice structures with large cell size (larger

than 5 mm) are difficult to be fabricated. Since their struts tend

to “slag” during the manufacturing process. To further eval-

uate the manufacturability of lattice structures with different

geometrical configurations, a manufacturability table is used

in [19]. In this research, two different topologies of lattice

cells, gyroid and diamond, are fabricated by SLM process

with Ti6Al4V powders. The building conditions of each type

of cells with different cell sizes and volumes are recorded.

The result shows the lattice structures with a low volume

fraction and 4–5 mm cell sizes mostly failed. Instead of the

study on some lattice topologies, design rules are provided by

Wang et al. [20] to achieve a better manufacturability of 316L

lattice structures fabricated by SLM process. Several set of

benchmark parts have been designed to individually evaluate

the effects of inclined angles and sizes of minimum struts

on the manufacturability of lattice structures [20]. Based on

these benchmarks, a design guideline shows that the struts

with inclined angles smaller than 35° are hard to fabricate.

It also indicates that the minimum fabricatable size of struts

is 0.15 mm.

To help designers consider both freedom and constraints of

AM processes for lattice structures, several design methods for

lattice structures have been proposed. Generally, these design

methods can be divided into two groups: the design of homo-

geneous lattice structures and the design of heterogeneous

lattice structures. As it is shown in Fig. 1(b), a homogeneous

lattice structure consists of unit cells with exactly the same

shape periodically distributed in the design space. Thus, this

type of lattice structures can be considered as homogeneous

materials on a macroscale during the design process. Com-

pared to the shapes and sizes of cells in homogeneous lattice

structures, those of cells in heterogeneous lattice structures

may vary from point to point to achieve a certain type of

functional gradient. A typical example of heterogeneous lattice

structures is shown in Fig. 1(a). By varying thickness of struts,

this lattice structure can achieve a certain elastic properties

gradient along the x-axis.

For homogeneous lattice structure, most of research is

focusing on its unit cell. Topology optimization and homog-

enization techniques can be applied to generate the lattice

unit cell which can achieve the desired properties. In order to

achieve the fabricatable unit cell, the manufacturing constraints

such as the minimum member size [21] can be considered in

the optimization procedure of microcell structure. To further

improve the functional performance of homogeneous lattice

structures, some concurrent optimization methods [22]–[24]

have been developed to update the cell topology as well

as the macroshape of lattice simultaneously. Compared to

other methods only focusing on single design scale, these

concurrent methods generally show a better performance on

multifunctional applications [22].

Compared to homogeneous lattice structures, heterogeneous

lattice structures generally provide more design freedom.

Designers can control the distribution of some lattice parame-

ters to achieve a better functional performance. To achieve this

goal, several design and optimization methods for this type of

lattice structures are proposed. A general framework for lattice

structures fabricated by AM processes is proposed in [10]. This

general framework can be divided into two stages. In the first

stage, size optimization is applied to optimize the size of lattice

struts for a better mechanical performance. In the optimization

procedure, the size of lattice struts is constrained in a prede-

fined range based on the manufacturability of the machine.

Then in the second stage, another optimization process is

applied to obtain the optimal process parameters for each strut

based on the proposed concept manufacturable element (ME).

Besides the size optimization, several density-based topology

optimization methods [25]–[30] have also been applied to

design the heterogeneous lattice or cellular structures for a bet-

ter mechanical performance. Among them, different types of

material interpolation functions are used to establish the rela-

tionship between the properties and parameters of mesoscale

structures. Based on these interpolation functions, a topology

optimization problem is formalized and solved to get the opti-

mal relative density distribution. Then, the mapping functions

are further used to convert the result of topology optimization

to the distribution of the lattice relative density. In the mapping

functions of some proposed methods, like Rosen’s method,

predefined manufacturing constraints are considered. In alter-

native of density-based optimization methods, bidirectional

evolutionary structural optimization (BESO) method [9] has

also been modified and applied to design heterogeneous lattice

structures. This method tries to simulate the bone remolding

process by moving materials from low stress struts to high

stress struts. Compared to density-based optimization methods,

BESO-based method can easily deal with those stress-related

constraints during the optimization process. To further reduce

the size of design variables, a heuristic optimization method

has been developed by Nguyen et al. [31]. This method gener-

ally converts the original problem into the optimization process

with two design variables: maximum and minimum sizes of

struts. Then, size matching and scaling method have been

applied to determine the size of each strut in the design domain
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with the consideration of local stress states. Like other methods

mentioned here, predefined upper and lower bounds of struts’

size are considered as constraints from manufacturing.

In summary of those existing design and optimization meth-

ods of lattice structures for AM, it is notable that the functional

performance of parts can be further improved by using hetero-

geneous lattice structures. Moreover, as to the manufacturabil-

ity of AM-fabricated lattice structures, most design methods

only simply consider the constraints on the thickness of struts.

However, other geometrical parameters such as the inclined

angle [20] and the horizontal overhang [17] may also affect the

fabrication quality and manufacturability of lattice structures,

and the effects of those parameters are not totally independent.

Even though some design rules [20] have been provided, most

of them failed to consider the interaction between different

geometrical parameters. Thus, it is difficult to directly integrate

those rules into a general design and optimization process of

lattice structures.

To solve the mentioned issues, a design and optimiza-

tion method of lattice structures is proposed in this paper

with the consideration of manufacturability constraints of

AM processes. In this method, a concept called ME is used

to link the design and manufacturing process. To predict

the quality and manufacturability of each ME, the artificial

neural network (ANN) is established as a meta-model for the

selected AM process for a certain type of material. Based

on the predicted value, the manufacturing constraint of each

ME can be obtained. Then, obtained constraints will be used

in the BESO-based lattice optimization process to get the

optimal size distribution of lattice struts. In this paper, fused

deposition modeling (FDM) process, one of the most widely

used AM processes for thermal plastic polymers, is used as an

example to illustrate the proposed method. However, it should

be noted that this methodology can be further applied to

other different types of AM processes with different materials.

Moreover, compared to existing design methods, the proposed

method can automatically consider the effects of different

geometrical parameters on the manufacturability of lattice

structures in the optimization procedure. Thus, it can guarantee

the processablity of designed lattice structures.

In order to clearly describe the proposed method, this paper

is organized as follows. In Section II, several basic concepts

which are used in the proposed method are presented first.

Based on these concepts, the proposed design method and its

related meta-model of the manufacturing process are carefully

explained in Section III. In Section IV, a case study is used

to further illustrate and validate the proposed method, and

a discussion on the design results under different types of

constraints is provided. At the end, this paper is wrapped up

with conclusions and future research directions.

II. BASIC CONCEPTS

A. Physical Entity

To represent the design space of lattice structures, the con-

cept named as physical entity is used in this paper. According

to the previous research [32], physical entity is defined as a

concrete entity which is implemented for physical behaviors

required by given functions. Physical entity mainly consists

Fig. 2. Example of FSs and FVs [35].

of the information of the design boundary for the detailed

design stage. It can be considered as the input for the proposed

design method. This input can be obtained from the functional

design step in the conceptual stage [33] or directly extracted

from the existing parts. Generally, a physical entity should

include two types of information: geometrical information and

material information. Material information includes a set of

feasible materials which can achieve the defined functions of

a physical entity. In most cases, the shape of physical entity

is only defined on a macroscale. As to the information related

to mesostructure or microstructure of physical entity, they are

also considered as the material information in this paper.

Besides the material information, concepts of functional

surfaces (FSs) and functional volumes (FVs) [34] are used

to represent the geometrical information of a physical entity.

In this paper, an FS is referred to the key surface of a physical

entity to realize the requested functions, such as assembly

surfaces or loading surfaces. An FV is a geometrical volume

of a physical entity which is used to link the surfaces and assist

FSs to achieve the required functions. A typical example of

FSs and FVs is provided and shown in Fig. 2. In this figure,

those green-tagged surfaces represent FSs, while the FV is

shown in the gray color to connect those FSs. The FSs of this

example are designed for three different purposes. The bottom

two surfaces are used to provide a vertical support. Another

two cylindrical surfaces with connected surfaces on their top

are designed for the assembly of bolts. The cylindrical hole on

the top of the part is used to hold a bearing. It should be noted

that in some design cases, the FSs or FVs for a given physical

entity after the conceptual design stage is not totally fixed.

For these design cases, the parametric representation for FSs

and FVs is needed. The detailed information of parametric

representation is beyond the scope of this paper. A detailed

discussion of parametric representation of FV can be found

in [33].

B. Lattice Unit Cell Model

To represent the topology of a repeating element inside the

lattice structures, lattice unit cell model is proposed. In this

model, the node of a lattice cell is defined in a unit cubic space

shown in Fig. 3, which can be represented by a 3-D tuple p

p = (e1, e2, e3) ∈ P ⊆ [0, 1]3 (1)

where ei is the i th component of the tuple and P is the set

which contains all the nodes of a lattice unit cell. To represent
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Fig. 3. Unit cubic defined in a parametric space.

Fig. 4. Graphical view of data structure of ME for lattice structures.

each strut of lattice unit cell, the node pair l is used and

expressed as

l = {pi , p j }, pi p j∈P. (2)

Based on the definition of lattice nodes and struts, the topology

of lattice unit cell can be expressed as a unidirectional graph G

G = {P, S} (3)

where S is the set that contains all the struts inside the lattice

unit cell. According to different design requirements, different

lattice unit cell topologies are selected by designers. Based

on the defined lattice unit cell model, lattice frame which

represents the topological skeleton of lattice structures can be

built. This process is discussed in Section III-C.

C. Manufacturable Element of Lattice Structures

To link the design and manufacturing process, a concept

called ME is used in this paper. This concept is originally

defined in [10] as a predefined, parametrized decomposition

of a volumetric region of a part. Based on this original concept

and the characteristics of lattice structures focused in this

paper, an ME of lattice structure is defined as a lattice strut

with its related geometry, material, and process information.

To parametrically represent each ME of lattice structures in the

proposed design method, a data structure of ME is proposed

and its graphical view is shown in Fig. 4.

It is clear that ME of lattice structures consists of three

types of data. They are geometrical data, material data, and

process data. The geometrical data of ME can be further

divided into two categories: the line segment and the cross-

sectional shape. A line segment consists of a pair of nodes

Fig. 5. General design flow of proposed design method.

to represent the midline of a strut, while the cross section

can be defined by the shape and its related parameters, such

as the diameter of a circle or the size of a square. Besides

geometrical data, the material data are another very important

factor. To clearly describe material compositions of fabricated

lattice struts, both the material type and its grade should be

included in the data model of ME. The last key factor for

ME is the process data. It should be noted that different

AM machines may have different manufacturing capabilities,

even though they belong to the same type of AM technologies.

Thus, as to process data of ME, a certain AM machine should

be determined first. Then, based on the selected machine, its

related fabrication strategy and fabrication parameters can be

decided. Among these three types of data, the geometrical

data are the primary concern of the proposed design method

in this paper. Thus, they have been considered as design

variables during the optimization process. As to material

data and process data, they can both be decided during the

early conceptual design stage based on material selection and

process selection strategy. Thus, these two types of information

are regarded as the input of the proposed design method.

III. METHODOLOGY

A. General Design Flow

The general design flow of the proposed design method is

shown in Fig. 5. As it is shown in this figure, four types

of data are considered as the input of the proposed design

method. Among them, functional and design requirements are

the most important factors, since it should be determined

at the beginning of the whole design process. This type

of data describes the functional behaviors and the related

requirements of a designed part or product. Based on the

functional and design requirements, other three types of data

can be obtained from the conceptual stage. The general goal

of this proposed method is to generate a manufacturable lattice

structure with a better performance under given functional

and design requirements. To achieve this purpose, the general
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design flow of the proposed design method is given and

shown in Fig. 5. Its entire process can be generally divided

into four steps which are discussed in the following sections,

respectively. Besides these four major steps, an ANN-based

meta-model of selected AM process is built and applied to

obtain the manufacturing constraints for each ME during the

design and optimization process. Thus, this model and its

related experiments are also going to be explained in detail.

B. Initial Design

In the initial design step, some macroscale design parame-

ters such as the weight or volume target for each FV should be

determined. These parameters will be regarded as the design

constraints in the following optimization step. To achieve this

purpose, the density-based topology optimization is used in

the initial design stage. Specifically, for a design problem of

a minimum compliance with a constrained volume, the math-

ematical formulation of density-based topology optimization

can be expressed as

Find : x ∈Rn, x = (x1, x2, . . . ,xn)

Minimize: c = f T u

s.t. : K (x)u = f
∑

xivi ≤ V

0 <ε<xi≤ 1 (4)

where x represents an n-D vector which contains the relative

density of each element inside the FVs of physical entity; c is

the structural compliance which can be calculated from the

global external force vector f and a global displacement vec-

tor u; K (x) is the global stiffness matrix; vi is the volume for

i th element, and V is the upper limit of the total volume; ε is

a small positive value which is slightly larger than 0 to avoid

the singularity of the stiffness matrix during the optimization

process. In this paper, ε is selected as 0.001. To solve the

topology optimization problem defined in (1), several methods

including solid isotropic material with penalization (SIMP)

[36] can be applied. Based on these methods, the optimal

relative density distribution can be obtained. This distribution

can be used as a reference to determine the volume target for

each FV. Particularly, for FV j , its volume target VFV j can be

calculated based on the following equation:

VFV =
∑

xivi (5)

where xi is the volume of the i th element inside FV j , and

vi is its optimal relative density obtained from topology

optimization. For those FVs with solid material, this volume

constraint can be achieved by removing materials in the low

relative density area like traditional topology optimization

routine. As to those FVs filled with lattice structures, the cal-

culated volume constraint from (5) can be used to calculate

the struts’ thickness of homogeneous lattice structures which

will be regarded as the initial design in the BESO-based

lattice optimization method. Since BESO-based optimization

method used in this paper only moves materials from the low

stress region to the high stress region, it can guarantee that

the total volume of lattice structures unchanged during the

Fig. 6. Comparison between: (a) uniform lattice and (b) conformal lattice [9].

design optimization process. Generally speaking, the volume

constraints generated in the initial design stage provide a

foundation for the following optimization process.

C. Lattice Frame Generation

In the second step of the proposed design method, lattice

frame which represents the topological skeleton of lattice

structures is generated for the given FVs. To achieve this

objective, several parameters including type of lattice frame

and size of lattice cell need to be determined. Generally,

lattice structures can be divided into two different types

according to its frame configuration. They are uniform lattice

structures (also known as periodic lattice structures) and

conformal lattice structures. A comparison between these two

types of lattice frames is given in Fig. 6. As it is shown

in Fig. 6, the lattice frame of uniform lattice structures

consists a periodically distributed lattice cell. Thus, each cell

in the uniform lattice has the same size, shape, and topology.

As to the conformal lattice, the size and shape of lattice

cell’s frame may vary to adapt to the macroshape of design

boundary. Compared to uniform lattice structures, conformal

lattice structures can guarantee the integrity of cells on the

boundary of an FV. Thus, it can avoid some poorly connected

struts located on the boundary of FV which are shown

in Fig. 6(a). However, it should be noted that to generate

conformal lattices for an FV with a complex geometry is

not an easy task. Even though there is some research on

conformal lattice generation [32], [37], most of them are

limited to simple or regular shape. Moreover, the property

of uniform lattices is comparatively easy to be controlled by

carefully choosing the right cell size and topology. To consider

both advantages and disadvantages of those two types of

lattice structures, a general guideline is provided here to assist

designers in decision-making. Generally, if an FV is bounded

by the FSs which play roles as aesthetic or assembly purposes,

then this FV is suggested to be filled with conformal lattice

structures. Otherwise, uniform lattice structures can be used.

After the determination of lattice types, the topology of the

lattice unit cell also needs to be determined. For both uniform

and conformal lattice structures, the topology of a unit cell can

be selected from the cell library which is a database for unit

cell models. In this database, different lattice cell topologies

are linked to different types of properties. For example, based

on the loading condition of lattice struts, lattice cells can be

divided into two types: bending dominant lattice and stretching

dominant lattice [38]. In the structural design for a better
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stiffness, stretching dominant lattice cell is preferred, since the

strut of this type of lattice is only under an axial load, which

may exhibit better stiffness than its counterpart. However,

in the design of compliant structures or energy absorption

structures, bending dominant lattice structures are preferred.

To further assist designers in selecting a suitable lattice unit

cell from the unit cell library, material selection strategy [39]

can also be used based on the material chart with effective

properties of different cell topologies.

The size of lattice structure is another parameter needs

to be considered in the current design stage. The size of

the uniform lattice structure can be precisely controlled by

three independent parameters. They are sizes on X, Y, Z -axes

of the cell coordinate system. As to conformal lattice struc-

tures, their size is defined as a diameter of a circumscribed

sphere of bounding box of lattice cell. Unlike uniform lattice

structure, the size of conformal lattice structures cannot be

accurately controlled, since both size or shape of lattice cells

may vary inside the FV. Thus, in this design step, an average

size of conformal lattice is used. To help designers select an

appropriate cell size, two design guidelines are provided.

Guideline 1: The lattice cell size is suggested to be smaller

than the minimum size of functional features.

Guideline 2: The lattice cell size l is suggested to satisfy

the following condition:

p(l, tmin) < ρ∗
l (6)

where the ρ∗
l is the upper bound of the minimum relative

density that lattice structures can achieve; tmin is a vector

which contains the minimum fabricatable thickness of each

strut in the lattice unit cell. Once the cell topology and process

data are determined, the value of vector tmin is fixed. p(l, t) is

the function to calculate the relative density of a given lattice

cell. The form of this function varies between cells with

different topologies and struts’ cross-sectional shape. However,

they all depend on two independent variables: cell size l and

a vector t which contains the thickness of each strut inside

the cell. For example, the function pcubic(l, t) which is used

to calculate the relative density of cubic cell with struts in

square cross-sectional shape can be expressed as

pcubic(l, t) = 1 − 3

(

1 −
t

l

)2

+ 2

(

1 −
t

l

)3

(7)

In (7), all the struts are assumed to have the same thickness.

Thus, in this equation, t is a scalar which represents the

uniform thickness of struts in a lattice unit cell.

These two guidelines generally provide two limitations on

the size of a lattice cell. Based on the first guideline, it can

be concluded that the cell size cannot be too large. If it is

larger than the minimum size of functional features, the lattice

structures cannot be guaranteed to fully fill every corner of

the design space. In the other word, there might be some void

regions in the design space when the first guideline is violated.

Designers will lose controllability on those regions in the sub-

sequent optimization process. The second guideline provides

a lower bound of cell size based on the manufacturability

of selected AM process. Once the AM process and material

are determined, the minimum fabricatable strut’s thickness

is fixed. The decreasing of the cell size will significantly

increase the minimum achievable relative density. It limits

the freedom of designers in the sebsequent optimization

process. Moreover, it will also make the lattice structures

lose the porosity which leads some issues on the simulations;

therefore, the value of ρ∗
l defined in (6) is suggested to be

equal or smaller than 0.3 for efficient optimization as well as

simulation. It should also be noted that the change of cell size

inside the bounded region defined by the above two guidelines

will lead slight change of the optimal functional performance.

In order to achieve the optimal performance, designers can

do the optimization with several different cell sizes and then

select the cell size which can achieve the best performance.

Based on those design parameters determined at the begin-

ning of this step, the lattice frame can be generated inside

the design space. The general lattice frame generation method

is given in this paper. Its process can be further divided

into two substeps. In the first substep, hexahedron primitives

can be generated inside the given FVs. For a uniform lattice

structure, its hexahedron primitives should be exactly periodic.

Thus, the kernel generation method discussed in the previous

research [9] can be used. As to conformal lattice, the vol-

ume meshing technique can be used to generate hexahedron

primitives in FVs with regular geometry. For an FV volume

with complex geometry, auxiliary volume [32] can be built

to convert a complex geometry into a simple and mapped

shape. Since both ways have been exhaustively discussed

in [9] and [32], this paper will not repeat them again.

In the second substep, the selected lattice cell topology can

be populated into the generated primitives from the last sub-

step. The generated hexahedron primitive can be represented

by the positions of eight corners which are denoted as Ci j k ,

i, j, k = 0, 1. Once the positions of eight corners of hexahe-

dron primitive are determined, the positions of all the lattice

node inside this hexahedron primitive can be calculated by a

tri-linear interpolation function. For example, the position cp

of node p inside the given hexahedron primitive Ci j k can be

calculated by

c j k = c1 j ke1+c0 j k(1−e1) (8)

ck = c1ke2+c0k(1−e2) (9)

cp = c1e3+c0(1−e3) (10)

where (e1, e2, e3) is the 3-D tuple represents the node p

inside the lattice unit cell model discussed in Section II. After

calculating the position of each node, the frame of lattice

struts can be built based on unidirectional graph G by linking

the related nodes. Finally, to trim those connected struts with

the boundary of FV, the final frame of lattice structures can

be obtained. To illustrate these two substeps of lattice frame

generation, an example of arc shape FV is given and shown

in Fig. 7.

D. Manufacturable Element Construction

To link the design and manufacturing process, a concept of

ME is used in this paper. As mentioned in Section II-C, each

ME mainly consists of three types of information. They are

geometrical data, material data and process data. Both material
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Fig. 7. Lattice frame generation.

and process data can be obtained as the input of the proposed

design method. Thus, in this section, the focus is on how to

build geometrical data based on the input lattice frame and

physical entity.

As shown in Fig. 4, the geometrical data of lattice ME can

be further divided into two types of data. They are line seg-

ments to represent the midline of the strut and its cross section.

It should be noted that the line segment of the lattice ME is

defined in the processing coordinate system rather than the

design coordinate system where the lattice frame is generated.

Thus, to construct the line segment of ME, the transformation

matrix between the design coordinate system and the process-

ing coordinate system is needed. This transformation matrix

can be easily calculated once the fabrication orientation is

determined. To simplify the process, the FVs with lattice struc-

tures will be considered as a solid volume temporarily. Based

on this simplification and summarization of existing research

related to orientation determination, two general guidelines are

provided in this paper. These two general guidelines should be

considered sequentially.

Guideline 1: To select the orientation which can guarantee

the geometrical quality of FSs.

Guideline 2: To select the orientation with minimal volume

of support structures.

Based on the processing orientation, a lattice strut can be

easily converted to a line segment for the geometrical data

of ME. As for cross-sectional data, the shape of the cross

section can be predefined by users. But, it is impossible to

finally decide the size of a lattice strut in current step. Thus,

instead of using one value as the size parameter, a set of

all the possible sizes of a lattice strut is set as the size

parameter in this step. The manufacturing quality of this set

of size parameters will be evaluated based on the proposed

meta-model discussing in the following section. Based on the

predicted results, a subset of them which can satisfy the quality

requirement is chosen as the design space of BESO-based

lattice optimization algorithm discussed in Section III-F.

E. Meta-Model for AM Constraints

The objective of using meta-model in this research is to

obtain the manufacturing constraints for each ME during the

design and optimization process. To simplify the process of

getting meta-model, only the influence of the geometrical

parameters on the manufacturability is considered in this paper.

Therefore, the material and process parameters are set to be

constant in the whole process. Based on the minimum recog-

nition of the machine and the properties of lattice structure,

like porosity, a design domain of geometrical data of MEs is

obtained. This predefined domain is imported to the meta-

model, and by setting printing quality in the meta-model,

the design domain is adjusted to satisfy this printing quality.

The meta-model is expressed as

W = Ŵ(U, q); W ⊂ U (11)

where U is the predefined design domain, q is the required
manufacturing quality, Ŵ represents the function of the meta-

model, and W is the design domain with the consideration of

manufacturing constraints.

To obtain the meta-model of a selected AM process, several

experiments are conducted to get the raw data of the printing

quality at first. To obtain the relation between design parame-

ters of lattice struts and its geometrical deviation, ANN model

trained by the obtained raw data is utilized in this paper. For

different types of MEs, the geometrical data could be different.

Multiple ANNs would be trained by different categories of

raw data. Then, the meta-model of a selected AM process

is constructed by the trained ANNs. In this paper, FDM

process is selected to fabricate samples for the experiment, and

the obtained meta-model is only valid for this manufacturing

process. However, the method of constructing the meta-model

can be implemented on other AM process.

1) Design of Experiment:

a) Geometrical parameters of the lattice structure: In the

experiment, three types of geometrical data, the diameter D,

the length L, and the inclined angle θ are defined to build

the ME. D is the size of the cross section of the ME, L is

the length of the line segment of the ME, and θ is the angle

between the line segment of the ME and the printing platform.

The formulation of L and θ are defined as

L = |−→ps−
−→pe | (12)

θ = 90° −

∣

∣

∣

∣

∣

cos−1

(−→
ps−

−→
pe

)

·−→z

|−→ps−
−→pe |

∣

∣

∣

∣

∣

(13)

where ps and pe are the position of the start point and endpoint

of the strut, �z is the unit vector perpendicular to the printing

platform.

According to the different tool paths shown in Fig. 8,

lattice struts can be divided into three types, the horizontal
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Fig. 8. Tool paths for different types of struts. (a) Horizontal strut.
(b) Inclined strut. (c) Vertical strut.

Fig. 9. Models of test samples in the experimental and geometrical data.
(a) Horizontal group. (b) Nonhorizontal group.

struts (θ = 0°), vertical struts (θ= 90°), and slanted

struts (0° <θ< 90°). Because the tool path of vertical struts

and slanted struts are similar, vertical struts can be seen

as a special case of slanted struts with 90° inclined angle.

Therefore, the experiment contains two groups of samples:

one is the horizontal group, and the other is the nonhorizontal

group, as shown in Fig. 9.

After doing the preliminary test of the selected FDM

machine, proper values of defined geometrical data are cho-

sen for the experiment to find the relationship between the

manufacturability and these data. For the horizontal group,

L has six levels from 10 to 60 mm. For the nonhorizontal

group, θ has nine levels from 10° to 90°. And for both groups,

D has five levels from 1 to 5 mm. It should be noted the

number of experimental groups is not always fixed. If the

trained ANN model is not accurate enough, more groups of

experiments can be added in those critical regions following

the procedure as the initial set of experiments. These extra

experiments can further refine the ANN model and make it

more accurate especially on those highly nonlinear regions.

b) Manufacturing process: This paper concentrates on

the influence of manufacturing constraints on topology opti-

mization under a certain fabricating condition. Therefore, man-

ufacturing parameters are constants during the whole printing

process. FDM process is used to fabricate the MEs. The

STereoLithography (STL) file is sliced by Z-Suite software.

And the FDM printer is Zortrax M200. The printing material

is Z-ABS [40]. All the process parameters are summarized

in Table I. The printing speed of M200 only has two levels

without a specific value, and normal level is selected in this

paper. To get a more reliable result, each sample is printed

three times, and the result is obtained from the average value.

TABLE I

PROCESS PARAMETERS

Fig. 10. Deflection of horizontal struts. (a) Deformed area. (b) Definition
of Df.

Fig. 11. Cantilever area of slanted struts.

2) Measurement and Result:

a) Criteria of manufacturability: To find the manufactur-

ing constraints for lattice structures under a certain fabricating

process, proper criteria of manufacturability should be pre-

defined. There are several critical issues for horizontal struts

and slanted struts. For horizontal struts, while printing the first

layer of overhang struts, the filament is melt and extruded

by the nozzle at a high temperature, so it cannot be cooled

immediately. Because of no support structure, the first layer

tends to deform due to its gravity and the deposition force of

the second layer. Therefore, the thickness in the middle of the

strut is larger than its two ends, which is shown in Fig. 10(a).

If the deflection of the bottom is too large, the geometry

will be inconsistent with the design model. Consequently,

the deflection can be a criterion for horizontal struts. The

deflection, which is shown in Fig. 10(b), is defined as

D f = Tmax − Tmin (14)

where D f is the deflection of the strut, and Tmax and Tmin are

the maximum and minimum thickness of the strut.

For slanted samples, the difficulty is concentrated on the

cantilever area of each new layer, which is shown in Fig. 11.

With the inclined angle decreasing, the length of the cantilever

area Lc is getting longer. It is encountering the same problem

as the first layer of the horizontal strut. Lc is calculated by

Lc = t/ sin θ (15)

where t is the thickness of each layer, θ is the inclined angle

of the slanted strut.

Lc will affect the thickness of the strut in certain directions.

ta and tb are defined as the thickness of the strut in two

directions to illustrate the different influence of Lc, as shown

in Fig. 12. The thickness in certain direction is significantly

influenced by Lc, as shown in Fig. 12(b). But in some direc-

tions, the phenomenon is not obvious, as shown in Fig. 12(a).

Therefore, tb, as defined in Fig. 12(b), is measured to
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Fig. 12. Thickness of slanted struts in different directions. (a) Thickness in
the direction that is not affected by Lc. (b) Thickness in the direction that is
greatly affected by Lc.

Fig. 13. Image analysis of the horizontal strut. (a) Original image.
(b) Sharpened image for edge detection.

Fig. 14. Experimental result of horizontal group.

investigate the influence of an inclined angle on the deviation

of the strut thickness.

b) Result of horizontal group: Because it is hard to find

the largest deflection of the horizontal strut directly measured

by a caliper. The image analysis method is used to find

the maximum deflection point and measure it by pixels. The

image of one strut is shown in Fig. 13. Fig. 13(a) shows the

photograph taken by a camera. Then the image is sharpened

to find the edge of the strut by MathWorks Image Processing

Toolbox [41], which is shown in Fig. 13(b). A gauge block is

measured by this approach to calibrate the size of the pixel.

The resolution of this measurement method is 0.03 mm. The

deflection ratio Rh is defined in (16) to illustrate the deflection

of horizontal struts compared to the strut thickness

Rh =
D f

D
×100% (16)

where D f is the deflection and D is the design diameter of

the horizontal strut.

The result of Rh is shown in Fig. 14. The result indicates

that the Rh is increasing with the increase of the L. When

D gets larger, the percentage of deflection will decrease. So it

can be concluded that the ratio of the deflection of horizontal

struts is not only related to the length of the strut, but also

related to the design diameter. Therefore, when considering the

manufacturability of horizontal struts, both the diameter and

the length of horizontal line segments should be considered.

Fig. 15. Experimental result of nonhorizontal group.

c) Result of nonhorizontal group: The thickness of

inclined struts tb is measured by a caliper with 0.01 mm

accuracy. The ratio of the thickness deviation of slanted

struts Rs is defined in (17) to measure the discrepancy ratio

compared to the designed thickness

Rs =

(

|tb−D|

D

)

×100% (17)

where tb is the thickness defined in Fig. 12(b) and D is the

design diameter.

The results of Rs are shown in Fig. 15. As the plot shows,

the value gets a huge increase when θ decreased to 10°.

Rs of 1- and 2-mm struts is higher than that of thicker struts.

And 1- and 2-mm struts tend to be less stable when the

θ is less than 60°. It can be concluded that the thickness of

the discrepancy is influenced by the diameter as well as the

inclined angle of the strut.

3) Artificial Neural Network: In this paper, the ANN is used

to predict the manufacturability of the lattice structure and

build the meta-model. ANN is a massively parallel distributed

processor consists of simple processing units. Due to large

scale of parallel distributed structure as well as the ability

to learn and generalize, ANN has computing power to solve

complex problems that are currently intractable [42].

Because the data obtained from the experiment are not

sufficient to determine the manufacturability of the lattice

struts with specific geometrical data. The relationship between

the manufacturability and geometrical data should be more

comprehensively established. Since ANN is a nonlinear model.

And it is often used when the relationship between the input

and output variables is not completely understood or even

unknown. Therefore, it is suitable for this research to build

the nonlinear relationship between the manufacturability and

geometrical parameters. And this model can analyze more

input parameters without much effort so that if designers want

to consider the influence of process parameters as well as

design parameters the ANN model is also valid to predict the

result. Another advantage of ANN is that when new data are

obtained in the later fabrication, it can be imported to the

network to improve the performance.

Multilayer perceptrons are used for this research. Typically,

the network consists of three types of layers, the input layer

that collects the input data, one or more hidden layers that

makes connections between the input and output layer and
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Fig. 16. Regression plot of horizontal group.

analyze data, and an output layer that returns the learning

results. The algorithm used for this problem is a back-

propagation. It contains a forward pass which fixes the synap-

tic weights, and a backward pass which adjusts the synaptic

weights in accordance with an error-correction rule [42].

A sigmoidal nonlinearity defined by the logistic function, as

shown in (18), is used to model the nonlinear relationship

y j =
1

1 + exp(−v j )
(18)

where v j is the weighted sum of all synaptic inputs plus bias

of neuron j , and y j is the output of the neuron. The weights

will be tuned in the training process until the error reduces to

an acceptable level.

The data obtained from the experiment are trained in

the MATLAB ANN tool. The input data of the horizon-

tal group contain 30 samples. Each sample consists of

2 elements, L and D. The output data only have one element,

which is the Rh . Thirty samples are divided into the training

group (22 samples), validation group (4 samples), and testing

group (4 samples). The number of hidden neurons is set

to be 5. Mean square error is used as the error evaluation

function. And the regression R values measure the correlation

between outputs and targets. The regression plots across all

samples for the percentage of deflection are shown in Fig. 16.

It shows the relationship between the actual network outputs

and the associated target values. If the linear regression fits

to this output–target relationship closely alongside the line

connecting the bottom-left and top-right corners of the plot,

it means the network has been successfully trained to fit the

data [43].

The data of the nonhorizontal group contain 45 samples.

The input sample consists of two elements, the diameter and

Fig. 17. Regression plot of nonhorizontal group.

Fig. 18. Interpolation of horizontal group.

the inclined angle. The output sample only has one elements

that is Rs . The training group, validation group, and testing

group have 35 samples, 5 samples, and 5 samples, respectively.

Other settings are the same with those of horizontal struts. The

regression plot of the nonhorizontal group is shown in Fig. 17.

After establishing the neural network of the input data and

output data, it can be used as an interpolation approach to

predict the result that was not obtained by the experiment. For

the horizontal group, D is interpolated from 0.5 to 5 mm with

0.1 mm as the interval, and L is from 1 to 60 mm with 1 mm

as the interval. The interpolation result by the neural network

is shown in Fig. 18. The z-axis is the ANN predicted Rh . For

the nonhorizontal group, θ is from 1° to 90° with 1° as the

interval. The range of the D is the same as that of horizontal

struts. The interpolation result is shown in Fig. 19. The

z-axis is the ANN predicted Rs . These two interpolation plots

visualize the ANNs for horizontal and nonhorizontal struts.
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Fig. 19. Interpolation of nonhorizontal group.

Fig. 20. (a) Inclined strut with stringing. (b) Horizontal strut with stringing.

Fig. 21. Quality of inclined strut with Rs (a) over and (b) less than 10%.

If more types of geometrical data are defined, the ANNs could

be more complex which may not be visualized. When using the

meta-model, the first step is to choose the ANN according to

the type of the strut. A user-defined quality tolerance is set for

the meta-model. Particularly for this research, it is found that

the horizontal struts whose deflection ratio is larger than 25%

and that the vertical or slanted struts whose discrepancy ratio

is larger than 10% may have the printing quality issues like

stringing phenomenon as shown in Fig. 20. The filament will

be detached and the printed shape is no longer the cylindrical

shape as what it supposed to be. For the horizontal strut,

the maximum deflection only happens at the middle region

of the strut. It is found that the acceptable ratio is larger

than the inclined strut. For the inclined struts, as shown in

Fig. 21, it is found if the discrepancy ratio is larger than

10%, the stringing phenomenon happens, and the strut gets

unstable at the tip which will influence the connection between

each strut. This has been verified by printing the unit cell

of the strut (shown in Fig. 22). This may not significantly

influence the strength of a single strut, but it may affect the

quality of the following printing and the strength of the whole

structure. Due to this reason, those specific values are selected

as the quality tolerance in this paper. It should be noted

that different designers can select different quality tolerance

based on their requirements. In some special cases, more than

one type of quality tolerance is needed. Then, the predefined

design domain will be imported into the meta-model. Finally,

Fig. 22. Failure at the joint of the strut with Rs equal 20%.

the acceptable design domain can be determined by the quality

tolerance and manufacturing constraints are obtained.

F. BESO-Based Lattice Optimization

The last step of the proposed method is to optimize the

size of each strut for a given lattice frame with respect to the

volume constraints from initial design stage. In this process,

the manufacturing constraints from the meta-model described

in Section III-E. should also be satisfied. To achieve this

purpose, a BESO-based optimization algorithm is used. This

algorithm is originally proposed by Querin et al [44] to update

the shape and topology of structures for a better functional

performance. It simulates the remodeling process of human’s

bone which is known as Wolff’s law [45]. Recently, this

algorithm has been modified and successfully applied to the

design of heterogeneous lattice structures [9]. Compared to

other optimization methods for lattice structures, there are

three advantages of BESO method for lattice structures. First,

like other heuristic optimization method, it does not require the

calculation of gradients. Thus, it is easier for implementation.

Second, compared to other heuristic optimization methods

such as pattern search, the convergence rate can be increased

by considering the stress inside the heuristic function dur-

ing the design optimization process. Apart from these two

advantages, the manufacturing constraints are also easier to

be considered during the optimization. Due to these reasons,

the BESO-based optimization method is chosen in this paper.

Its mathematical representation can be expressed as

To find : t =(t1, t2, . . . , tn)

Minimize: P I =

(

i=n
∑

i=1

σVMi Vi (ti )

)

/(F · L)

s.t. : K (t)u − P = 0
i=n
∑

i=1

Vi (ti ) ≤ Vconst

t i
min≤ti≤t i

max (19)

where t is the n-dimensional vector contains the size of each

strut ti in the generated lattice frame. PI is the performance

indicator of a structure to measure how well the overall

structure is performing against an idealized fully stressed

design [44]. σVMi
and Vi represent the maximum Von-Mises

stress of the i th strut and its related volume, respectively.

F and L are two parameters used to describe an idealized

load case, where F is a representational force and L is a

reference length. Their values can be predefined by designers

based on the size of FV and its related loading condition.

During the optimization process, the values of these two
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Fig. 23. General work flow of BESO-based optimization algorithm for
heterogeneous lattice structures.

parameters will keep unchanged. K is the global stiffness

matrix of the lattice structure which can be regarded as a

function of design variable t in this problem. u is the vector

of nodal displacement in lattice structures and P is the nodal

load. Vconst is the value of volume constraint which can be

calculated from the initial design stage by (5). Vi (ti ) is a

function to calculate the volume of i th strut inside the lattice

structure. The form of this function may vary depending on

the cross-sectional shape of the strut and its length. t i
min, t i

max

represent the lower and upper boundary of the size of lattice

struts. The minimum size of struts t i
min may vary strut by

strut, since it is mainly determined by the manufacturability

of struts. Its value can be obtained from the proposed meta-

model described in Section III-E. As to the upper bound of

struts thickness t i
max, it is mainly controlled by the maximum

allowable porosity of designed lattice structures. This value

can be predefined by designers.

To solve the problem defined in the (19), the BESO-based

optimization algorithm is used in this paper, and its general

working flow is shown in Fig. 23. The key of this algorithm

is the relocation of materials from low stress struts to high

stress struts. To control this process, three parameters can be

used. They are rejection ratio (RR), size remove ratio (RT),

and RR incremental value ri. Among them, RR is the ratio to

control the threshold of stress for the struts whose material

needs to be removed. Suppose σMAXVon is the maximum

Von-Mises stress of all the struts in the lattice frame,

if the Von-Mises stress σVMi of strut si satisfy

σVMi
< RR × σMAXVon, then a certain amount of volume

should be removed from this strut until it reaches the lower

bound of strut’s size t i
min.

RT is used to control the material removal rate for lattice

struts. The following equations can be used to calculate the

removed volume Vr total of each lattice strut:

tri =

{

RT × ti , if ti > t i
min/(1 − RT)

t i
min, if ti ≤ t i

min/(1 − RT)
(20)

Vr total =

i=n
∑

i=1

(A(ti ) − A(ti − tri ))li (21)

Fig. 24. Arm of quadcopter and its loading condition, (a) arm of quadcopter,
original design, (b) loading condition.

Fig. 25. Physical entity of the arm of quadcopter.

where tri is the target size of lattice after material removal

process; A(ti ) is the function to calculate the area of cross

section with respect to the size of cross section ti . li is the

total length of i th strut.

Between two iterations, the incremental value ri is used to

update the current RR based on the following equation:

RRn+1 = RRn + ri (22)

where RRn and RRn+1 are the RR values used in the nth and

n + 1th iteration, respectively.

To judge the convergence of the optimization process,

the difference of PI values between two iteration steps is used.

If the difference is smaller than a given value, the optimization

process can be stopped. For the detailed steps of this algorithm,

readers can refer the previous research paper [9].

After the optimization process, size of each lattice strut can

be obtained. Based on the data and lattice frame, geometrical

model of lattice structures for a given FV can be generated.

To combine this model with other FVs with solid material,

the final design can be obtained.

IV. CASE STUDY AND DISCUSSION

To further illustrate the proposed design and optimization

method, a design case of the quadcopter arm is given in this

section. Its original design and loading condition are shown

in Fig. 24.
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TABLE II

MATERIAL PROPERTIES OF ABS

The major function of this part is to transfer the lifting

force from the propeller to the frame of quadcopter. To achieve

this function, four design requirements which are summarized

based on general design and fabrication guidelines of quad-

copter [46], [47] are listed in the following.

1) The maximum displacement at point c should be smaller

than 7 mm under given load condition.

2) The maximum stress should be smaller than the yield

stress of selected materials.

3) The total weight of part should be smaller or equal

to 33 g.

4) The main body of frame should be porous to minimize

the drag force when the air passes through it vertically.

Based on the functional description and design require-

ments mentioned above, a physical entity with 16 FSs and 3

FVs (shown in Fig. 25) is built on the conceptual design stage.

Acrylonitrile-butadiene-styrene (ABS) is selected as material

for this physical entity. Its material properties used in this

paper are summarized in Table II. This generated physical

entity is regarded as the input of the proposed design method.

Among those sixteen FSs, FS1 to FS9 are assembly surfaces

for the motor, while FS10 to FS16 are assembly surfaces

for the main frame of a quadcopter. To connect those FSs,

three FVs are used. Among them, FV1 and FV2 are filled

with solid material, while lattice structure is used in FV3 to

reduce drag force when air passes through. Based on those

FSs and FVs, the design space and nondesign space can be

built for the topology optimization. They are shown in Fig. 26.

The topology optimization formulation shown on (4) has been

applied to this design and solved by an SIMP-based topol-

ogy optimization solver called OptiStruct [48]. In this initial

optimization process, the volume constraint has been added

to control the total volume of optimized shape. The result is

shown in Fig. 26. Based on this result, volume constraints of

each FV are calculated by (5) and listed in Table III. Since

the FV1 and FV2 are filled with the solid material, its shape

can be directly obtained from the initial topology optimization

process by removing the material in the low relative density

region. The optimized shape of FV1 and FV2 is shown

in Fig. 27. As to FV3, the volume constraint from the initial

design stage is regarded as the volume constraint for lattice

optimization which will be discussed in the following portion

of this section.

After the initial design, the lattice frame is built to fill

the FV3. To build the lattice frame, two types of parameters

need to be determined. The first parameter is the lattice

topology. In this case study, a cubic-center lattice cell is

selected due to its stretching-dominant properties. As to cell

size, general guidelines provided in Section II have been

considered. Moreover, since FV3 is in a regular shape, with

careful selection of cell size, it is possible to make the

Fig. 26. Topology optimization of initial design.

TABLE III

CONSTRAINTS OF VOLUME

Fig. 27. Updated FVs after initial design.

TABLE IV

DIMENSION OF THE UNIT CELL

boundary of FV3 smooth. In other words, the FV3 can be

divided by lattice cell size without remainders on the boundary.

Based on these rules, the cell size is selected and summarized

in Table IV, and the uniform lattice frame has been built which

can full fill the FV3.

In order to provide the manufacturing constraints for the

following lattice optimization process, the MEs of designed

lattice frames need to be built. During the construction process

of MEs, the printing orientation of lattice structures needs

to be decided at first. To determine this parameter, three

criteria are considered. First, to avoid the support structure
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Fig. 28. Printing orientation.

TABLE V

GEOMETRICAL PARAMETERS AND CONSTRAINTS

IN OPTIMIZATION ALGORITHM

in the cylindrical surface, those functional surfaces FS2–FS9

and FS11–FS14 should be perpendicular to the printing plat-

form. Therefore, only two orientations can satisfy the first

criterion. The second criterion is that for the functional vol-

ume FV1, the printing orientation should minimize the support

structure. Obviously when the functional surfaces FS1 and

FS10 are placed at the bottom of the platform, FV1 can

be printed without supporting structures. The last criterion is

that the printing layout of the model should fit the printing

volume of the selected machine. Consequently, the printing

orientation is determined, as shown in Fig. 28. Besides the

printing orientation, the predefined design domain of struts’

thickness is also determined in this stage. This predefined

domain ranges from 0.6 to 5 mm. The upper and lower

bounds of this domain are determined based on the minimal

resolution of the machine as well as the porosity constraints.

Based on those parameters mentioned above, the MEs of

designed lattice structures can be built and input into the

established metal-model. the manufacturing constraints can be

obtained with the given quality tolerance (Rh is set to be

less than 25% for horizontal struts and Rs is set to be less

than 10% for slanted and vertical struts in this case study).

Then the lower and upper bounds of the design domain with

manufacturing constraints are found. All the geometrical para-

meters and constraints are summarized in Table V. The arm

of the quadcopter is optimized under those manufacturability

constraints and given parameters for optimization algorithm

summarized in Table VI. After 52 iterations, the optimization

converged (the change of the PI index is less than a given

value 0.001), which is shown in Fig. 29. The CAD model of

the optimized quadcopter arm shown in Fig. 30(a) is success-

fully fabricated [Fig. 30(b)] by the selected FDM machine. The

arm of the quadcopter is also optimized without considering

the manufacturability constraints of lattice structures. This part

is failed during the manufacturing process.

The simulation results of different types of design configu-

rations are summarized in Table VII. Compared to the original

TABLE VI

VALUE OF PARAMETER USED IN THE OPTIMIZATION ALGORITHM

Fig. 29. PI index with respect to number of iterations.

Fig. 30. Optimized quadcopter arm with manufacturing constraints.
(a) CAD model. (b) FDM-fabricated part.

design and the design of homogeneous lattice structures, it is

obvious that optimized heterogeneous lattice structures can

significantly improve the structural stiffness without increasing

its weight. To further verify this conclusion, physical tests

on both homogeneous lattice and optimized heterogeneous

lattice have been done. In the physical tests, a tensile test

machine (ADMET MicroEP series with 45N load sensor) is

used to apply the given load and measure the displacement

on the end of arm. A clamp is used to fix the other end

of arm. The experimental setup used in this paper is shown

in Fig. 31. The results of physical tests are also summarized

in Table VII. It shows a small deviation (less than 0.1 mm)

between experimental results and physical testing results. This

deviation is mainly caused by the anisotropic material proper-

ties of printed ABS material which has not been considered in

the current paper. However, both simulation and experimental
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TABLE VII

COMPARISON OF SIMULATION RESULTS

Fig. 31. Setup of physical test.

data show a clear trend that the designed lattice structure can

significantly improve the structural stiffness compared to its

original design (shown in Fig. 24) and homogeneous lattice.

Generally, the efficiency of the proposed design method has

been validated by both simulation and physical results.

To further evaluate the efficiency of the proposed lattice

design and optimization method, the part [shown in Fig. 32(b)]

directly obtained from traditional topology optimization rou-

tine (SIMP) has also been considered as a benchmark part

in this paper. The displacement contours of optimized lattice

structures and topology optimization result are compared and

shown in Fig. 32. Even though the topology optimization

results can achieve slightly better stiffness, the large area of

the overhang region in the topology optimized part makes it

difficult to be directly fabricated without support structure.

Moreover, as it is shown in Table VII, optimized lattice

structures may achieve a smaller maximum Von-Mises stress

compared to topology optimization result.

Another interesting fact which can be observed from

Table VII is that the optimized lattice with uniform constraint

can achieve a better stiffness than that of nonuniform con-

straints obtained from the proposed method as well as the

result of topology optimization. In this paper, the uniform

constraint refers smallest cylinders that can be printed by the

selected machine. Its value is 0.6 mm for the selected machine.

This constraint is uniformly applied to all the struts during the

optimization process. Compared to the optimized lattice with

nonuniform constraints, the uniform constraints can provide a

larger design freedom for designers. Thus, the structure can

be further optimized to achieve better performance. However,

this structure cannot be fabricated with the selected machine,

since the dimension of optimized struts violates the constraints

Fig. 32. Comparison between optimized lattice structures and topology
optimization result. (a) Displacement contour of optimized lattice structures.
(b) Displacement contour of topology optimization result.

summarized in Table V. Based on this fact, it can be inferred

that if the process related parameters, such as printing strategy

and process parameters, can be optimized to alleviate the

existing manufacturing constraints, the performance of parts

can be further improved by the proposed design method.

V. CONCLUSION

In this paper, a design method of lattice structures under

the manufacturability constraints of AM process has been

proposed. The meta-model for the selected AM process is

obtained from experiments and ANN. A BESO-based opti-

mization process is used to find the optimum struts’ thickness

distribution.

Several conclusions can be drawn from this paper are as

follows.

1) The lattice structures generated by the proposed design

method can improve the stiffness of the model.

Von-Mises stress and displacement can be reduced with-

out increasing the volume.
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2) The heterogeneous lattice structure optimized by the

proposed method has a better performance compared to

the homogenous lattice structure.

3) The meta-model obtained from the experiment and

ANN has ensured the manufacturability of the lattice

structure by certain AM process.

4) If the design domain can be enlarged, which in this paper

means that if the lower bound of the struts’ thickness can

be smaller, the performance can be further improved.

Future research will be focused on the following prospects.

First, relations between struts’ geometrical dimensions and

mechanical properties need to be further investigated. This

relation can provide a feedback to lattice simulation and

optimization model with more accurate material properties.

Second, other two aspects of MEs including the material data

and the process data, can be further investigated in the future

research to build a more comprehensive meta-model for lattice

structures. Finally, the process parameter can be optimized to

obtain a larger feasible area for design and optimization.
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