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Lattice Structures for Optimal Design and Robust 
Implementation of Two-Channel Perfect- 

Reconstruction QMF Banks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstruct-A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlattice structure and an algorithm are presented for the 

design of two-channel QMF banks, satisfying a sufficient condition for 
perfect reconstruction. The structure inherently has the perfect-recon- 
struction property, Hhile the algorithm ensures a good stophand atten- 
uation for each of the analysis filters. Implementations of such lattice 
structures are robust in the sense that the perfect-reconstruction prop- 
erty is preserved in spite of coefficient quantization. The lattice struc- 
ture has a hierarchical property, in the sense that a higher order per- 
fect-reconstruction QMI; hank can he obtained from a lower order 
perfect-reconstruction QMF bank, siniply by adding more lattice sec- 
tions. Several numerical examples are provided in the form of design 
tables. 

I. INTRODUCTION 

HE problem of quadrature mirror filtering (QMF) has T received substantial attention recently [I]-[  141. These 

filters find application when a signal is to be split into two 
or more frequency bands, with each band subsequently 
processed in an independent manner. Fig. 1 shows a two- 

band QMF bank where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH , ( z )  and H , ( z )  are the “analysis 
filters” (low-pass and high-pass, respectively). The sub- 
band signals x o ( n )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx , ( n )  are undersampled (or “de- 

cimated”) by a factor of two, then transmitted after pos- 
sible encoding [2]. At the receiver end. the signals are 
upsampled, filtered, and recombined to produce the re- 

constructed signal R(n) .  In order to avoid a spectral gap, 
the responses Ho( e lu)  and HI( r J “ )  inevitably overlap, and 
this causes aliasing when the signals are decimated. The 

“synthesis bank” filters F,( z )  and F, (  z )  are usually de- 
signed such that this aliasing efiect is cancelled by the 
“imaging” effect of interpolators [2]. 

The most general relation between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ( z )  and X ( z )  in 
Fig. 1 is given by 121: 

X ( Z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$[Ho(z) Fdz) + H , ( z )  Fd41 X ( z >  

+ t [ H ( ) (  - z )  F,(z)  + HI( -7.) 

. F , ( z ) ]  X (  - z ) .  ( 1 )  
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Fig. 1 .  A two-channel QMF bank. 

It is well known [ I]-[3] that the choice of synthesis filters 
Fk ( z  ) according to 

Fo(z)  = -H1(-z), F , ( z )  = 4 d - Z )  ( 2 )  

cancels the aliasing term [second term in ( l ) ] ,  leading to 

the result 

+ Hdz) Hid -41. ( 3 )  

Once aliasing is thus cancelled, the QMF bank is a time- 
invariant system characterized by the transfer function 

T ( z ) .  Thus, in general, the reconstructed signal R(z) suf- 
fers from amplitude distortion (due to nonconstant 
I T ( e J ” )  I ) and phase distortion (due to nonlinear arg 
[ T ( e  ’”) ] ). It has been known for some time how phase 
or amplitude distortion can be completely eliminated [2], 

[131-[151, [51. 
It has recently been established [4] that, in the QMF 

bank of Fig. 1, amplitude and phase distortion can borh 
be simultaneously eliminated, thereby resulting in a per- 
fect-reconstruction QMF bank, while at the same time ob- 
taining any arbitrary prespecified stopband attenuation for 
the analysis filter. Such a system satisfies 

a ( n >  = c - x ( n  - n o )  (4)  

where c is a constant and n o  is a positive integer. 
In this paper, we consider such two-channel perfect- 

reconstruction systems. Two aspects of such systems will 
be considered: design of the transfer functions Hk ( z )  and 
implementation based on a new family of lattice struc- 
tures. Quantization and roundoff noise effects in these 

structures are analyzed as well. 
Before outlining the purpose of this paper, let us briefly 

recapitulate the design procedure described in [4] for ac- 
complishing perfect reconstruction. First, a linear-phase 
FIR half-band low-pass filter G ( z )  is designed. Such a 
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filter has frequency response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G(e’“) = exp [ - j w ( N  - l ) ]  Go(r ’ “ )  ( 5 )  

where 2 ( N  - 1 ) is the order of the filter, and Go( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe ’O)  is 
the real-valued zero-phase response (or “amplitude re- 
sponse”). Without loss of generality 11 I ,  p. 4851, we as- 
sume that N - 1 is odd. Fig. 2 shows a plot of G,(e’“) 
(solid curve). Notice the symmetry with respect to the fre- 
quency n /2 ,  which can be expressed as 

(6 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ( V -  I )  G ( z )  - G ( - z )  = c . z 

In this paper, the term “half-band filter” is used to de- 

scribe linear-phase FIR filters satisfying (6) for some con- 
stant c. Condition (6) automatically implies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ,  = n 
and implies that the passband error curve is an image of 

the stopband error curve with respect to n /2 .  
Given the half-band filter G ( z )  with response G,)( e I “ )  

as in Fig. 2 (solid curve), it is possible to design a half- 
band filter G ( z )  with positive amplitude response 
G+,o(  e.’“) (dashed curve) simply by defining G + ( z )  = 

G ( z )  + & - “ - I )  . The function G + ( z )  can therefore be 

factorized as G ,  ( z )  = z - ‘ * ’ - ’ )  H o ( z - ’ )  Hdz) ,  where 
Ho( z )  is an FIR low-pass function of order N - 1 having 
real-valued impulse response coefficients. With H,( z )  de- 

signed in  this manner, the choice 

F,,(z) = z - ( j V -  I ’Ho( z - I ) , 

l ( Z  - I )  ( 7 )  F ( ) = 
- ( N -  1)H 

1 2  

results in perfect reconstruction [4], since aliasing is can- 
celled and (3) reduces to a delay. 

H&) and H , ( z ) ,  as designed, form a power-comple- 
mentary pair, i.e., they satisfy 

Hil(z) H,(z-’)  + H , ( i )  H l ( z - ’ )  = d ( 8 )  

for some constant d ,  and therefore cannot horh have linear 
phase [24]. In two-channel QMF banks with linear-phase 
analysis filters, it is possible to obtain perfect reconstruc- 
tion as indicated in  [23]. However, the attenuation char- 

acteristics of such linear-phase analysis filters seem to be 
poor (also see Section VI for further remarks). 

In an actual implementation of Fig. I ,  the coefficients 
of HL ( z )  and FL ( z )  should be quantized (for example, in 
a direct form implementation, the inzpulse response coef- 

ficients are quantized). In spite of this, relation (7) con- 
tinues to be true because the multiplier coefficients in 
H , ( z ) ,  F , ( z ) ,  and F l ( z )  are the same as those in H, , ( z )  
(except for the reordering and sign reversal operations). 
However, once the coefficients are quantized, Hi)( z )  does 
not remain a spectral factor of a half-band filter, and con- 
sequently (3) does not reduce to a delay. Thus, even 
though aliasing continues to be absent, the perfect-recon- 
struction property is actually lost. 

The natural question that arises is this: does there exist 

a structure for implementing the analysis banks such that 
H,,(z) remains a spectral factor of a half-band filter (with 

positive amplitude response) in spite of coefficient quan- 

t G ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. ( e l w )  

Fig. 2 .  The amplitude re5ponses ofthe linear-phase half-band filters G (:) 

and G + ( z ) .  

tization? The answer is in the affirmative and such a struc- 
ture is introduced in Section I1 of this paper. Equation (8) 
holds for this structure regardless of the extent of coeffi- 
cient quantization. This result is new, compared to those 
in [ 1 I ] ,  although the new structure is derivable from those 
treated in [ 1 I ] .  

With ak denoting the multiplier coefficients in  the new 
structure, (7) and (8) are satisfied unconditionally for all 
values of ak .  Accordingly, perfect reconstruction [i.e.,  

(4)] is “structurally induced. ” The structure therefore 
forms an ideal candidate, not only for implementation 
purposes, but also for an optimization strategy in design- 

ing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo(z). This procedure is desirable especially for large 
values of N - 1 when the spectral factorization becomes 
increasingly inaccurate and time consuming, particularly 

in view of the fact that there are many zeros of G, ( 2 )  on 
the unit circle. 

The organization of this paper is as follows. In Section 

11, the new lattice structures are presented along with a 
proof of the structurally induced, perfect-reconstruction 
property, and the relation to the half-band filters is rees- 

tablished. Section I11 presents an optimization algorithm 
for directly designing H,( z )  based on lattice parameters. 
According to our experience, the results always yield fil- 
ters with the maximum possible number of stopband zeros 
on the unit circle (see Appendix A for an expression for 
this number), under the constraints of (7) and (8). More- 

over, the peak error in the stopband is monotone decreas- 
ing (rather than equiripple) which is often considered to 
be an advantage [ 2 ] ,  [14]. Section IV presents design ex- 
amples, along with computer simulation of quantization 
effects. Even though the perfect-reconstruction property 
remains intact in spite of quantization, the stopband at- 

tenuation of HL ( z )  decreases with increased quantization, 
but the efiects are quite acceptable, as shown by simula- 
tion examples. Section V includes roundoff noise analysis 

for the QMF structure. The effect of decimators and in- 
terpolators makes the analysis interesting because of the 
apparent “nonstationarity” of the roundoff noise se- 

quence. The “losslessness” property of the lattice struc- 
ture, however, renders the computation of noise-gain rel- 
atively simple. In Appendix B, we show that the lattice 
has about the same relative error in the stopband as in the 
passband; since the lattice has low passband sensitivity 
[6], this provides an upper bound on the quantization ef- 

fect in the stopband. Appendix C includes a short soft- 
ware program which computes the impulse response coef- 
ficients from a given set of lattice coefficients c y k .  In 

Tables I-VII, we have included numerical design exam- 
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TABLE I 

DESIGN DETAILS FOR THE LATTICE FILTERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Filler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA'.= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus Transition Stopband Stopband 

Surnber sprcifid nirasured Randwidth Attenuation Attenuation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S length (r radians) (x radians) z' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjzLq (First Peak) (Last Peak) 

(dR) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(W 
8 A  

12A 

16.4 

12B 

IGB 
3 IB  

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGC 

24C 
3 2 c  

48C 

IGF 

31F 

32F 

18F 

24 I) 
321) 

IPD 
FID 

701) 

32 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 
l8E 
GI E 

0.78 

0.i8 

0.78 

0.io 
0.70 

0.70 

0.62 

0.G2 

0.G2 

0.G2 

0.60 

0.60 

0.60 

0.60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.58 

0.58 

0.58 

0.58 
0.58 

0.54 

0.5-1 

0.5 I 

O.i 'J5 

0.787 

0.i81 

0.715 

0.709 

0.702 

O.GR.5 

0.G2G 

0.643 

0.623 

0.6519 

0.608 

0.605 

0.602 

0.590 
0.587 

0.582 

O.,58O 

0.580 

0.553 

0.5 16 

O..i-13 

0.1.174 

0.1134 

0.1 107 

0.1075 

0.3015 

0.1010 

0.0673 

0.0630 
0.0617 

0.0613 

0.0597 

0.05.10 

0.0527 

0.0510 

0.0-ljo 

0.0-133 

0.0-110 

0.0400 

0.0400 

0.0267 

0.0230 

0.0217 

4 1  

58 

75 

4 1  

52 

i 4  

33 

45 

57 

85 

29 

38 

49 

70 

32 

40 
56 

71 

81 

25 

3'2 
4 0  

.I 3 

61 

79 

'1 1 

56 

81 

39 

53 

67 

X9 

35 

47 

59 

82 

41 

51 

69 

88 

88 

37 

1 9  

56 

TABLE I1 
VALUES OF a ,  FOR OPTIMAL FILTERS 

1. ilter j i R A  kiltrr TILA E ilter t# 1213 

a1 -0.2638026~-01 -0.36iG216e I 01 -0.3096168~+01 

"2 0 7154463ef00 0.1 100022et01 0.9370946ct00 

03  -0.2598479e 100 -0.51i0637ri00 -0.4569771e 100 

fl4 0.6388361e -01 0.23621Y3e-00 0 2276283ei00 

a5 -0.84413141,-01 - 09712722e 01 

"6 0.1716341r-01 0 2795064e-01 

TABLE 111 
VALUES OF a ,  FOR OPTIMAL FILTERS 

-0.4699145e I 0 1  

0 1465103e+01 

- 0.759i957e+00 

0.4216733e+00 

-0.2181804e -00 

0 9405991e-01 

-0.2924380e-01 

0.4905888~-112 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 29665(14P 4 01 

0.Y334946ci 00 

~ 0.5028173e I 00 

0.3051719e. 00 

-0 18i9673e- 00 

O.l10'l99le; 00 

~ 0.5811574e-01 

0.243i997e-01 

ples. Basically, for a given stopband edge and stopband 
attenuation, the set of lattice coefficients c y k  that gives rise 
to the "best filter" H o ( z )  in an L ,  sense is tabulated. This 
is therefore a quick design aid, and saves the designer 
from recomputing standard coefficients by elaborate op- 

timization algorithms. 
Notations: In this paper, superscript t stands for matrix 

transposition. Bold-faced italic letters indicate vectors and 
matrices. The tilde accent stands for transposition fol- 
lowed by reciprocation of functional argument; for ex- 
ample, A(z) = H' (  z - '  ). On the unit circle, this is equiv- 

alent to transposed conjugation. 

~ 

83 

TABLE VI 
VALUES OF a ,  FOR OPTIMAL FILTERS 

Filtrr  if48C Filter #48F Filtrr l i 48U Filtrr :r4XF, 

-O.C315i84r+01 

0.2088393~~ r01 

0. I232629e + 01 

0.8584247~ t+00 

-0 614i275e 2 00 

0.5040390r -00 
-0  402i64Oc -00 

0 3252060e . 00 

-0 2631i20r -00 

0.212S'I83C 100 

0 IC,9440ic t  00 

0.1339247e I00 

0.103104ic IO0 

0.77786I2e-01 

~ 0.566.1952r-01 

0.39661(iie -01 

-0.2648138r-01 

0.1670176e 01 

O.'J831959C - 0 2  

0 531605.1~- 02 

0 25iB539r -02 

0 I07943762 0 2  

-0 3618121r-03 

0.7951759r 04 

-0 .383648ic  01 

0.1247866~ 101 

-0 7220668~-00 

0.4951553~ i 00 

-0 3688423~- 00 

0.2885146~ -00 

-0.2327588~ t 00 

0 1913137~-00 

-0 1598938~ 00 

0 1318106cr00 

-0.1140321e.00 

0.9681 786r-01 

~-0.8223478~-01 

0.696336ir-01 

0.5867790~-0 I 

0:1913i93~-01 

0.4081 7iE.r-01 

0.3353566~ -01 

0 2713113~-01 

0.2 1,495 1 i r  - 0 1 

0.1658255~-01 

0.123860ic ~ 0 I  

0 889.5lE.9c- 0' 

0 ROi2120e ~ 0 2  

11. THE QMF LATTICE STRUCTURE 
In a recent paper [6], a new class of nonrecursive cas- 

caded lattice structures was introduced for the implemen- 

. .  
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TABLE VI1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
VALUES OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,,, FOR O P T I M A L  FILTERS 

tation of FIR digital filters. These structures, shown in 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 ,  can be used for the synthesis of any scalar FIR 
transfer function H (  z )  with no restriction on the location 

of the zeros. In Fig. 3 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, are such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi i + k i  = 1; 
thus, the lattice coefficients k,  and k, have magnitudes 
bounded above by unity. Fig. 4 shows a “denormalized” 

implementation, obtained by defining zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, = k , / k ,  and in- 
troducing the scale factors P = k l  k 2  * . * k,,- (or, equiv- 
alently, P 2  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII:=-,‘ ( 1  + y?)-’). Here, the magnitudes 
of y, are no longer bounded above by unity. For conve- 

nience of future notation, in Fig. 4, after each lattice sec- 
tion, we denote the pair of ‘‘unscaled” transfer functions 

by P, (z ) ,  Q,,,(z) (notice that the subscript m also indi- 
cates the order of th,e transfer functions). The transfer 

functions Ho(z) = P N - I ( z )  and p l (z )  = Q N - , ( z )  are 
given by P , V - ~ ( Z )  = PPN- I ( z ) ,  Q N - I ~ )  = P Q N - I ( z ) .  
It can be shown [6] that the lattice structures of Figs. 3 
and 4 satisfy the “power complementary property” [17] 

a a 

I H,, (e j ” )  1’ + I H l ( e J “ )  1’ = d (9)  

where d is some constant depending upon the multipliers 

in the structure. For Fig. 3 ,  d = 1 if k ,  and k, satisfy 
k;?, + k i  = 1 exactly (which is not possible when these 
coefficients have finite wordlength). The significant fact, 
however, is that d is constant, and that (9) implies (8) by 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-k1 ... ----$!G -kN-l 

2‘1 1 GN.,(Z) 

ko k i  kN-l =H1(2) 

Fig. 3. The cascaded lattice structure 

Fig. 4. A “denormalized” implementation of the cascaded lattice struc- 
ture. 

analytic continuation (assuming real impulse responses). 

This observation suggests that the lattice structure will 
generate appropriate analysis filter transfer functions 
H&) and H l ( z )  for the perfect-reconstruction QMF bank, 
as long as they satisfy the further condition 

o( - Z F 1 ) ,  (10) 
- ( N -  1” H I ( z )  = z 

as required by (7). Conditions (9) and (10) [or equiva- 
lently, (8) and (lo)] are precisely the conditions satisfied 
by the analysis filters in [4]. In this paper, this pair of 
conditions will be jointly referred to as the “power-com- 

plementary image condition” (PCI condition), and if the 

pair { H o ( z ) ,  H l ( z ) }  satisfies the PCI condition, we will 
call it the “power-complementary image pair” (PCI 
pair). Note that the PCI condition is sufficient for perfect 
reconstruction, but not necessary (Section VI). 

In a design example of this type of lattice structure 

which was reported in [6], the following observation was 
made (without proof): if the lattice transfer functions sat- 
isfy (10) then the coefficients k, satisfy 

k 2 - k  0 - i - - 4, kirn = 1 form > 0. (11) 

In terms of y,, the relation (1 1) is equivalent to 

y i  = I ,  7 2 ,  = ~ f o r r n  > 0. (12) 

In other words, the lattice structure can be redrawn as in 
Fig. 5 .  In this section, we will formally show that the 
lattice structure satisfies (12) if and only if the transfer 
functions H o ( z ) ,  H , ( z )  satisfy the PCI condition. The im- 
portance of this observation is that the structure of Fig. 5 
generates a PCI pair regardless of the values of y l ,  y 3 ,  
. . .  , etc. Accordingly, quantization of yk in Fig. 5 does 
not affect the PCI property. 

Let us first prove by induction that if relation (12) holds, 

that is, if the lattice structure of Fig. 4 reduces to the form 
in Fig. 5 ,  then the lattice transfer functions satisfy the PCI 
condition. For this, we show that, in Fig. 5, if { P, - l ( z ) ,  
Q ,  - I ( z )  } is a PCI pair then so is { P, + l ( z ) ,  Q ,  + l ( z )  }. 
The basis for the inductive argument can be established 

by noting that { P o ( z ) ,  Q o ( z ) }  and { P l ( z ) ,  Q , ( z ) }  which 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  The QMF lattice, pertaining to the proof in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 

are given by 

1 
P ~ ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Qo(z)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 9  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJz 

are PCI pairs. Now suppose that the pair { P,,, - I ,  Q,, - I } , 
where m - 1 is odd, satisfies the PCI condition. The lat- 
tice structure relates { P f n + l ( z ) ,  Q,+l(z)}  to {P,,,-I(z), 
Q,- l ( z ) }  as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Pm+ I ( Z )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY n1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1 

(Qin+I(z)) = (:,,+I 1 

From (13) 

p, t i (z)  P,+i(z) + QIn+~(z)Qm+i(z) 

= ( 1  + ~ t + , )  {pni-I(z) ~ m - I ( z )  

+ Q m - I ( ~ ) ~ m - l ( z ) }  = constant. 

Thus, { P, + l ( z ) ,  Q, + ) ( z )  ) satisfies relation (9). From 

(1319 Q ~ + ( I ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ r n + l P m - l ( z )  + z - 2 Q n - l ( z )  = 

Pm - I - Y m + l Z  in - I 
- n i - 1 ) ~  ( - z - l )  + -2z  - ( m  - 1 ) 

( - z - l )  = z - ( m + l )  PmfI ( -z- ' ) .  Therefore, { P , n + l ( z ) ,  
Q,, l ( z ) }  satisfies a relation of the form (10). So 

{P,n+l(z), Q m t  I ( z ) }  is a PCI pair. This shows that, in 
the lattice of Fig. 5 ,  every pair { P2,,- l(z), e,,- l ( z ) } ,  
m = 1 , 2 ,  . . .  , N/2,  satisfies the PCI condition. 

We now prove the converse, that is, if the lattice trans- 

fer functions in Fig. 4 satisfy the PCI condition, then re- 
lation (12) holds, so that the lattice reduces to the form in 
Fig. 5 .  First observe that, without loss of generality, the 
order of the transfer functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN - 1 can be assumed to 
beodd [11, p. 4851. Assumethat { P , , , + I ( ~ ) ,  Q , , + I ( z ) } ,  
where m + 1 is odd, is a PCI pair, i .e . ,  

f3m+I(z) P f n + i ( z )  + Qni+I(z)Qni+I(z) = constant 

(14)  

(15)  
- ( m + l )  

Q m +  ~ ( z )  = z P,,, + I (  -2 - I 1 7 

where PI,, + l ( z )  = C:~=+O' z -'p,,, + I .; and Q,, + ~ ( z  1 = 

Pf , I+1 ,oPf~ i+ I .n r+ l  + 0, (16)  

so that PI,, + I (  z ) has order m + I ,  and has a nonzero con- 
stant term. Now, (14) implies P , ~ + I . u P ~ , ~ + I . , , ~ + I  + 
q,,,+ I , O q , n + I ~ , , i + I  = 0, hence, (16) also implies that 

~ m + l  - - I  , = z q,,i + I ,  ;. Assume that 

q , n + I , o q m + I , n i + ~  f 0, i.e.9 Q n i t  I ( Z )  also has orderm + 
1 and a nonzero constant term. We first show that { P,,,(z), 
Q,( z )  } is also a PCI pair. Let PI, ( z )  = C :"= z -'pin. and 

and Q,(z) to P, + ( z )  and Q,,, + l ( z )  as follows: 

Q,(z) = E!,' i = o  z qm, l .  The lattice structure relates P,,, ( z )  

1 

( > E ( z ) )  = 1 + rt+1 

1 Y m + I )  ( P m  + I ( z  1 ) . ( 
* (-,,,,+, 1 Q m +  ~ ( z )  

Since the 2 X 2 matrix in (17) is orthogonal, we can read- 
ily verify, based on (14), that { PI,, ( z ) ,  Q,,, ( z )  } is a power 
complementary pair, i .e.,  

pni(z) Pni(z) + Qni(z)Qiii(z) = constant. (18) 

Let us prove that it also satisfies a relation similar to (15). 
Equation (17) gives 

( 1  + Y f , + l )  Pf,i(-z-i) 

= P r n + ~ ( - z - ' )  + Ym+lQrn+l(-Z-I) 

In view of (15) and the assumption that m + 1 is odd, 

Q ( - z P 1 )  = -z" '+ l  P f , + l ( z ) .  So we have ( 1  + 

= zm"{(l  + y ~ , + l ) z - l  Q , ( z ) } .  Therefore, { P , ( z ) ,  
Q,,(z)} is a PCI pair, i.e., it satisfies (18) and 

T+I  
Y m + l > f ' n i ( - z - I )  = z""{Qrn+~(z) - Y m + 1 f ' m + l ( z ) )  

Q,,,(z) = z-"P,( - z - ' ) .  (19) 

We now prove that pln.In = q,n,o = 0, i .e.,  P,,(z)  is 
actually of order m - 1, and Q,, ( z )  can be expressed as 

z - 'Qm - I (  z ) .  In other words, the structure of Fig. 4 re- 
duces to that of Fig. 5 .  Equation (18) implies, in partic- 

ular, that 

Pni.oPt,i,m + qni,oqni.,,i = 0. (20) 

qni.0 1 ( - 1 )  ~ n i , m ?  qm.m = Pm.0. (21) 

Equation (19) implies that 
-in 

From (20) and (21) we obtain p,,i,opf,,,r,i = 0 (since m + 
1 is odd). Equation (17) describes the process of reducing 
the order of P,, + I (  z )  and Q,,, + I (  z )  by 1. For this order 

reduction to take place, it is clear that we must have 

P, ,J+ I . f f J+ l  + Y f , 1 + 1 ~ f , 1 + 1 . , , , + 1  = 03 

~ m + i  = - ~ i ~ i + ~ . ~ i i + ~ / ~ i i i + l . ~ n + ~ ~  ( 2 2 )  

where q,,, + I ,  by assumption, is nonzero. From (17) 

and (22), we have Pn1.0 = (P, , r+I .o  - ~ f ~ i + l , f ~ ~ + l ~ f f l - i . 0 /  

q f f l + l . f , l + I ) / ~ ~  + ~ ? , + l \ .  Using (21) we see that ifp,,,., 
= 0, thenp;,,l.o = -p ; i+ l , f , l+ l ,  which violates (16). So 

i.e.7 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  The QMF lattice, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,,, = y 2 , , -  , .  

we must havep,,, # 0, hence, pm,m = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqm,o = 0. Thus, 
if we define 

Pm-l (z)  = Prn(Z>, Q m - l ( z )  = z Q m ( z )  (23) 

then all the conditions satisfied by the pair { P,, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl ( z ) ,  
Q , + , ( z ) }  arealso satisfiedby { P m p 1 ( z ) ,  Q m - l ( z ) } .  If 
pm - - turns out to be zero, then two more stages will 
be skipped. Otherwise, the upward recursion continues 
until we obtain 

P l ( Z >  = Pl,O + z-’Pl,l 

Q I ( z )  = - P I , I  + z-Ip1.0 

PO(Z> = Q o ( z )  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJz’ (24) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

This concludes the proof that if { P N -  l ( z ) ,  Q N -  l ( z )  } 
satisfies the PCI condition, then the lattice in Fig. 5 re- 
alizes it. 

For the rest of this paper, we shall be concerned only 

with the class of lattice structures in Fig. 5 which we call 
“the QMF lattice.” For ease of future notation, the QMF 
lattice is redrawn as in Fig. 6, where C Y ,  = ~ 2 ~ ~ -  I .  

Relation Between the QMF Lattice and Half-Band Fil- 
ters with Positive Amplitude Responses: We have proved 

that the transfer functions P N -  I ( z )  and Q N -  l ( z )  of the 
QMF lattice, with N - 1 odd, satisfy the PCI condition, 
viz., (18) and (19), for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = N - 1. Now let 

N - 1 b - I )  P N - I ( Z ) .  (25) 
G ( ) = z - ( N - I ) P  + z  

Relation (25) shows that G + ( z )  is a linear-phase filter 
having nonnegative zero-phase (or “amplitude” ) re- 

PN- I (  - z )  = - z - ( ~ - ’ ) Q ~ -  l ( z )  Q N -  l ( z - l ) .  Therefore, 

G + ( z )  - G + ( - z )  = z - ( ~ - I )  * constant, (26) 

which means that G + ($) is a half-band filter. In other 

words, P N P l ( t )  and Q N - l ( z )  are spectral factors of 
G + ( z )  and G + ( - z ) ,  respectively, which are half-band 
filters of order 2 ( N  - l ) ,  with positive amplitude re- 
sponses. 

sponse. From (25), G.1-z) = - Z - ( ~ - ’ ) P  N -  I (  - z  - I >  

111. THE COMPLETE QMF BANK 

The analysis bank is now as in Fig. 6, which can be 
drawn in the form of Fig. 7, where E ( z )  is a 2 x 2 trans- 
fer matrix. Since each lattice section in Fig. 6 is orthog- 

onal, the transfer matrix E ( z )  is unitary on the unit circle. 
More generally, E ( z )  satisfies the property 

E ‘ ( z - l )  E ( z )  = z, 

9d-E E (3) 

Fig. 7. The analysis bank 

which is called paraunitariness [ 161, [2 13 (if the factor /3 
in Fig. 6 is dropped, then E ( z )  would satisfy E ‘ ( z - ’ )  
E ( z )  = cZ for a constant c ) .  

In order to obtain perfect reconstruction, the synthesis 
filters should be taken as in (7) where H o ( z )  is P N - I ( z )  
and H l ( z )  is Q N P 1 ( z ) .  From Fig. 1 ,  we have 

But we know that 

hence, 

where m ,  = ( N  - 2 ) / 2 .  The complete analysis-synthesis 
system can therefore be drawn as in Fig. 8(a). The inter- 
nal structure of Z - ’ ~ ’ E ‘ ( Z - ~ ) ,  which we call the “trans- 

posed version” of the analysis lattice, is shown in Fig. 9. 
The complete system in Fig. 8(a) is such that i ( n )  = 

c * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n  - N + 1 ) for all n ,  regardless of the values of 

CY,. Accordingly, if we optimize a ,  so as to minimize the 
stopband energies of the analysis filters, then the optimi- 
zation routine will automatically restrict its search to those 
transfer functions which satisfy the perfect-reconstruction 
property. This is the topic of the next section. 

A second way to interpret the PCI property of Fig. 8(a) 
is this: based on standard identities [2], the structure can 
be redrawn as in Fig. 8(b). Since E ( z )  is paraunitary, the 
product z - ” ”E ‘ ( z - I )  E ( z )  reduces to cz-’”’Z for some 
constant c, and hence, by inspection of Fig. 8(b), we get 
i ( n )  = : c x ( n  - 2mI - 1 ) .  

IV. DETERMINATION OF THE LATTICE COEFFICIENTS 

USING OPTIMIZATION TECHNIQUES 

The “desired frequency responses” of the transfer 

functions P,+ , ( z )  and Q,- l ( z )  are of the form in Fig. 
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(b) 

Fig. 8.  (a) The complete QMF 5tructure. ( b )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA redrawing of  ( a ) .  

Fig. 9. Internal details of the synthesis bank 

Fig. 10. Desired frequency responses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the lattice transfer functions 

10. Accordingly, we formulate an objective function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiT  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP N - l ( e J u )  1 ’  dw. 

0,  

The parameter w ,  depends on the desired stopband edge 

of P N - I ( e J w ) .  The objective function involves only the 
stopband energy of PN-  l ( z ) .  Since the lattice automati- 
cally ensures the relation (26), the stopband energy of 
&,- l ( z )  is equal to that of P,+ l ( z )  and is automatically 
minimized. Moreover, in  view of the relation ( 2 5 ) ,  a good 

stopband of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP + , ( z )  ensures a “good passband” of 
& N - l ( z ) ,  and vice versa. In summary, minimization of 
the above simple objective function ensures that P,+ l ( z )  
and Q N -  l ( z )  are good low-pass and high-pass filters, re- 
spectively. 

The “denormalized” lattice configuration is more 

suited for the nonlinear minimization problem than the 
normalized one, for two main reasons. First, if the nor- 
malized implementation is used, then additional con- 

straints must be included so as to ensure that the coefE- 

cients k,,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk,,, are bounded above by unity in magnitude, 
whereas the denormalized coefficients CY,,, have no con- 
straint on their range of values. Second, computation of 
the objective function and its gradient based on a,,, is less 
time consuming, because it involves a smaller number of 

square-roots’ and simpler gradient expression. Note that 

even if k,,,, ill, are expressed as cos %,,,, sin %,,, to reduce 
the number of square roots and simplify the gradient 

expression, their computation is time consuming because. 

‘On most general-purpox computers. coinputation of square root5 and 
tranwendental functions take\ much longer time than add/multiply opera- 

tions. 

on most general-purpose computers, the sine and cosine 
are computationally as costly as the square root. 

To solve the minimization problem, we invoked a sub- 

routine called FMFP [18] which is based on the quasi- 
Newton method with Davidon-Fletcher-Powell update of 
the approximate Hessian matrix. As with most nonlinear 
optimization problems, the solution at convergence de- 
pends heavily on the initial parameter estimates. 

The design results, presented in Tables I-VII, are ob- 
tained after solving the nonlinear minimization problem 

for various values of w and N - 1. These tables have all 

the information required for most design applications. The 
method underlying these results is described in the rest of 

this section. 
Hierarchical or Nesting Property of the Lnttice: A n y  

pair { P , , ? ( z ) ,  Q , , , ( z ) }  in Fig. 6 is a PCI pair. In the op- 
timized QMF lattice, the purpose of each lattice section 
is to generate a better PCI pair { P l l 1 + ? ( z ) ,  Q , , , + ? ( z ) }  
(better in the sense of smaller stopband energy) from a 

given PCI pair { P,, ( z ) ,  Q,,, ( z )  } .  As we progress toward 
the right in Fig. 6, we get better and better PCI pairs (and 
a,, gets smaller and smaller in magnitude for large i n ) .  
This is an important hierurchicaf or nesting property of 
the lattice: if we delete the rightmost lattice section, we 
do not destroy the perfect-reconstruction property, but 
only decrease the available stopband attenuation of the 
analysis filters. Such a nesting property is of course not 

displayed by the direct-form implementation of a PCI pair. 

Initial Estimates Using Method of Direct Diffferenria- 
tion: Since the number of coefficients cy,, is large for high- 
order filters P N -  l (z ) ,  it is difficult to obtain an optimal 
solution in a reasonable amount of time, starting from a 

random guess of their values. By “optimal solution” we 

mean a filter which is close to the one obtained from the 
Smith-Barnwell procedure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4], and which possesses the 

maximum possible number of zeros on the unit  circle (see 
Appendix A). We found that, with a systematic way of 
computing the initial estimates, an optimal solution could 
always be obtained. 

In view of the hierarchical property of the QMF lattice, 
we obtain an initial estimate of the coefficients a,,, one at 
a time starting from the left of the lattice in Fig. 6. Since 
one variable is optimized at a time, each step can be done 
by direct differentiation. With each pair of “unscaled” 

transfer functions { Pr,,,- l ( z ) ,  Q,,,,- H I  = I ,  2 ,  
* . , N / 2 ,  in Fig. 6 ,  let us associate a pair of “scaled” 

transfer functions { P2,,,- l ( z ) ,  Q2,,,- defined as 

+ C Y : )  - I .  Suppose that the first m - 1 coefficients { a  I ,  
. . .  , a,,, - I } are known ( / T I  > l ) ,  hence, the unscaled 
transfer functions P,,,, - i( z )  and Q7,,, - 3  ( z )  are known. We 
want to determine a,,, such that 

{ P 2 / , , - I ( Z )  = ( P , , , / J z )  P,,,,- ,(Z) where Pi ,  = ny=, ( 1  
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e = 1  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiT  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ e ' 2 " P 2 m - 3 ( e ' w )  Q z t n - 3 ( e - ' " )  

W r  

+ e- '2wP2m-3(e-J")  Q z m - 3 ( e 1 w ) }  do. 

If e is equal to zero, then a ,  = 0 would minimize a,. 
Otherwise, we set 

a@m - 

a&, 1 + a ,  
2 {ea; - (a  - & ) a ,  - e }  

to zero, and obtain two roots 

2 e  

Since a@,/aa, is of the same sign as e for a ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI rootz 
or a ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL rootl and of the opposite sign of e for rootz < 
a ,  < rootl, the objective function +, is minimal at a,,, 
= root, if e is strictly positive, and at a ,  = root, if is 

strictly negative. 
To start the above recursive procedure from no known 

coefficients, a ,  is set to be - 1, since a quick calculation 
would show that 

= j T  )Pl(ei")  l 2  dw 
WX 

is minimal at this value of a I .  

Using the described method, we were able to find up to 
21 initial estimates of a,, which were then taken as inputs 
to the quasi-Newton routine and subsequently led to an 
optimal solution. The resulting analysis filters are then of 
order 2 (21 ) - 1 = 41. A larger number of initial esti- 
mates obtained from the above method, e.g., 33, does not 
lead to an optimal solution. Therefore, in order to design 
filters of order higher than 4 1, we used the optimal set of 

corresponding to a filter of lower order, e .g . ,  41, hav- 

ing the same w s, as the first part of an ordered set of initial 
estimates, then augmented it by a few more coefficients 
a,,, (about 3 or 4) using the method described previously, 

then used this new set of a ,  as input to the quasi-Newton 

routine to obtain a new optimal solution of higher order; 
the process was then repeated if the desired order had not 

been reached. We augmented a known set of a ,  by only 
a few more at a time because a large number of added a ,  
might lead to a suboptimal solution. 

We also have tried to adjust the set of initial estimates 
of a,n before invoking the quasi-Newton routine, by op- 
timizing one a ,  at a time, from the leftmost end of Fig. 
6, keeping other coefficients fixed. This procedure is 
slightly more complicated. The improvement on the final 
objective function is not substantial. 

Nonlinear Optimization Techniques: There is a wide 
variety of nonlinear optimization techniques to choose 
from. We selected the quasi-Newton method because, for 
this method, the number of iterations needed for conver- 
gence was relatively small (although each iteration might 
be more time consuming than that of other methods such 
as the conjugate-gradient technique). We also have tried 
the conjugate-gradient method by invoking the routine 
ZXCGR of the IMSL software package [19], and it re- 

sulted in an optimal solution similar to the one obtained 
with the quasi-Newton method. Both methods require the 
information on the gradient of +. This can be computed 
without invoking approximate first-difference techniques, 
by directly differentiating with respect to the lattice pa- 
rameters, as follows. From the lattice structure, we get 

* ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa m  -;!:-2) S ( Z 2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f) 
where V ( z 2 )  and S ( z 2 )  are 2 X 2 matrices of polyno- 

mials whose coefficients are functions of { 

respectively, and can be computed using the lattice up- 
ward recursion (28). This implies 

a ( N / z ) - l ,  . * * 3 a , + * ) , a n d  {a,, l- l j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa , - 2 7  . . . , a l } ,  

From (27), we have 

The above integrand can be easily computed as the cross 
correlation of PN-  I ( e J w )  and aP,- I (e 'w) /aa , .  Thus, the 
gradient of @ can be directly computed. 

Design Example: The specifications for the filter 

pN-I(z) are: order = N - 1 = 47 ( i .e . ,  there are N/2 
= 24 coefficients a,,,), w ,  = 0 . 6 ~ .  First, we solved an 
auxiliary lower order filter problem with the same w r :  21 
initial estimates of a were computed using the method 
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of direct differentiation described earlier, and were used 

as inputs to the quasi-Newton routine to subsequently pro- 
duce the coefficients of the optimal filter of order 2 ( 2  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) 
- 1 = 41. Then, adding to this list of resulting coeffi- 

cients three more coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ,  using the method of di- 
rect differentiation, we obtain 24 initial estimates of a m 

for the original design problem. Again, the quasi-Newton 
routine was invoked, which finally returned the lattice 
coefficients for the optimal filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP47(z ) .  

Fig. 11 shows the magnitude response of P4,(elW) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$,,(eJ") in decibels. As expected, the passbands of the 

filters are extremely good (even though this is not the pri- 
mary concern in QMF applications). The minimum atten- 
uation in the stopband is 70 dB. The filter, with the same 
order and w r ,  as returned by the Smith-Barnwell scheme 
based on spectral factorization of an equiripple half-band 
filter, would theoretically have an attenuation of 72 dB in 
its equiripple stopband. 

Figs. 12 and 13 depict the magnitude responses of 
p47( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeJw ) after a 5-bit quantization, using signed-digit 

code, of the lattice coefficients a ,  and of the impulse re- 
sponse coefficients, respectively. From these plots, the ef- 
fect of quantization seems to be the same for both cases 
in the stopband region. But a magnification of the plot of 
I p4,,(eJ") 1 '  + 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ47(eJ")  1' (see Fig. 14) clearly shows 
the superior performance of the lattice: it retains the 
power-complementary property after quantization while 
the direct-form implementation does not. Hence, the PCI 
condition is satisfied by the QMF lattice even after quan- 
tization. This suggests that, for a prespecified quantiza- 
tion level, it might be possible to obtain a better QMF 
lattice by solving the nonlinear optimization problem with 

the variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY , constrained to be powers-of-two or sums 

of powers-of-two. This aspect is currently under investi- 
gation. 

Fig. 15 shows the magnitude response of the filter hav- 
ing the same order as the previous example, i.e., 47, but 
with w ,  equal to 0 . 6 2 ~ .  Notice that, in this case, the min- 

imum stopband attenuation is 85 dB. The filter with the 
same order and w A ,  as returned by the Smith-Barnwell 
scheme, would have a theoretical stopband attenuation of 

86 dB. 
From Fig. 12, we observe that the passband sensitivity 

is extremely good. But it should be noticed that, for QMF 

applications, the stopband sensitivity is more important 
than the passband sensitivity. In Appendix B, we show 
that the lattice has approximately the same relative error 
in the stopband as in the passband; however, this fact does 
not imply that it has good stopband sensitivity. 

Other design examples are summarized in the form of 
convenient design tables in Tables I-VII, a subset of 
which has essentially the same specifications, i.e.,  filter 
length and transition bandwidth, as the ones given by 
Johnston [13]. For ease of comparison, the filters in this 
subset are also denoted by the same filter numbers as the 
ones in [ 131. Although the lattice filters outperformed the 
filters in  [13] in regard to stopband attenuation, the reader 
should keep in mind that, for a filter length of N, the filters 

2 w 

- 6 2 . 3 0 0  

- 1 0 0 . 0 9 0  
0 ,  0 . 1 0 0  0 . 2 0 0  0.300 0 , 4 0 0  0 . 5 0 t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N O R M R L I Z E D  F R E Q U E N C Y  

Fig. 1 1 .  Plot of I p47(e1u) I and 1 Q,,(eJW) 1 ,  with w ,  = 0 . 6 ~ .  
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Fig. 12. Plot of 1 p,,(eJY) 1 after 5-bit quantization of the lattice coefi- 
cients. 
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Fig. 13. Plot of I p47(e1w) 1 after 5-bit quantization of the impulse response 

coefficients. 

in [13] require only N/2 multipliers for implementing 
both H & )  and H , ( z ) ,  while the lattice filters require N 
multipliers. This, of course, is the price paid for the PCI 
property. 

The reason we tabulate the lattice coefficients CY.... and 

. .  
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Fig. IS. Plot of I P,,(e1*) 1 and 1 Q,,(eid) 1 ,  with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ,  = 0 . 6 2 ~ .  

not the impulse response coefficients, is because the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,,, 
specify the lattice more concisely and, with the same 
number of precision bits, allow a more accurate compu- 
tation of the impulse response coefficients (by way of a 
simple software program which is provided in Appendix 
C). Moreover, roundoff errors in a,,, do not affect the PCI 
property. 

V. NOISE ANALYSIS 

We are interested in determining the noise variance at 
the output of the two-channel QMF structure of Fig. 8, 
where the analysis and synthesis banks are as in Figs. 6 
and 9, respectively. In order to reduce the probability of 
internal signal overflow, the scaled version of the lattice 

should be used. In this configuration, /3 is decomposed 

into N / 2  factors of the form 1 /-, where each fac- 
tor is associated with the appropriate lattice section, as 

shown in Fig. 16. The transfer matrix of this section is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l l  i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl*U? -;= - 

1 I d 1 . U :  

Fig. 16. A scaled lattice section of thc analysis bank. 

which can be verified to be paraunitary ( i .e . ,  T : ( z - ' )  

T, ( z )  = I ) .  In practice, the scale factors 1/- are 

replaced with simple sums of powers-of-two to reduce the 
multiplier count, but we shall assume, for simplicity of 
analysis, that T, ( z )  is indeed of the above form. 

Assuming fixed-point arithmetic and that quantizers are 
inserted prior to each lattice section in the analysis bank 
and after each lattice section in the synthesis bank, we 

have the noise model of Fig. 17. As per usual assump- 
tions [20 ] ,  we assume the noise sources to be uncorre- 
lated, zero-mean, and white, with variance a2  each. These 

assumptions continue to be true as long as the signal vari- 
ance is considerably larger than the noise variance [25]  
(this, in turn, is true provided the wordlengths used for 

filtering operations are not excessively small). 

The effect of the first noise source el( n ) can be deter- 

mined separately as follows. Since the complete QMF 
structure inherently has the perfect-reconstruction prop- 
erty, the contribution of e l (n )  to the total output noise is 

clearly equal to &eI(n - N + 1 ) .  Referring to Fig. 17, 
the effect of each pair of noise sources {e, ( n ) ,  b, ( n ) } ,  
i = 2 ,  . . .  , N ,  on the total output noise signal can be 
considered independently for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. For the moment, let 
us ignore the presence of the decimators and interpola- 
tors. Consider the noise sources { e, ( n ) ,  b, ( n )  } located 
at the inputs of lattice section i (or  at its outputs if it is a 
section in the synthesis bank, i.e.,  if i > N / 2 ) .  Let 

{e, , , , , , (n) ,  b , ,ou t (n ) }  be the noise signals that appear at 
the outputs of lattice section number N ,  as a result of 
{ e, ( n  ), 6, ( n  ) } . The transfer matrix of the cascade of 
lattice sections numbered i (or  i + 1 ,  if i > N / 2 )  through 
N is paraunitary since it is a product of paraunitary ma- 

trices.' It can be verified that, because of this paraunitary 
property, the resulting noise signals { e , , ou t (n ) ,  b,,.ut(n) ] 
are uncorrelated, zero-mean, and white, with the same 

variance a' (see Appendix D). Now, in the absence of the 
decimators and interpolators, the total noise signal at the 
output of the complete QMF structure is 

Since all the noise sources e , ( n ) ,  b, ( n ) ,  2 5 i I N ,  are 

painvise uncorrelated, the resulting noise signals e,, ( n )  

'Depending on the value of i ,  this cascade comprises either some sec- 
t ions  of the analysis bank and the whole synthesis bank, or the whole syn- 
thesis bank. or  just part of the syntheqis bank. However. these detail? are 
irrclcvant to our derivation 
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synthesis bank 
* ... analys is  bank * 

Fig. 17. The noise model for the complete QMF structure. 

and bj,out(rz), 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ,  are also painvise uncorrelated. 
Therefore, it is clear that E [ e ( n  ) ] = 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa% = ( N  + 
2 )  a2,  where E[ * ] denotes the expected value, and a: de- 
notes the variance of e ( n ) .  

Now, consider the decimators. Since they only com- 
press the time axis, and since the noise signals entering 
them are assumed to be wide-sense stationary, the statis- 
tics of the noise signals are unaffected by them. Next, 
consider the interpolators at the inputs of the synthesis 
bank. Even if the input sequence to an interpolator is wide- 

sense stationary, the output is not wide-sense stationary 
since it contains a well-defined subsequence of zeros. To 
circumvent this problem in the noise analysis, we can re- 

draw the complete QMF structure as in Fig. 18. Essen- 
tially, we replace the double delay of each internal lattice 
section of the block R ( z 2 )  = z - " - ' ' E ~ ( z - ~ )  by a single 

delay. Let eout(n)  and b,,,(n) be the noise signals that 
appear at the outputs of R ( z )  in Fig. 18, as a result of all 
internal noise sources [ except zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe l  ( n ) 1. Based on the above 
reasoning, we then have 

E[e,,t(n)] = E[bout(n)] = 0, 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(N - 1) a26(n1  - n 2 )  

where R ( - , 
this to that total output noise is 

) is the autocorrelation. The contribution of 

1 
if n is even. 

In general, e ' ( n )  is not wide-sense stationary since its 
autocorrelation depends on the parities of the sample 
numbers, but for this particular case where eout(n)  and 
bout(n) are white, uncorrelated, have zero mean and the 
same variance, e ' ( n )  is also white, has zero mean and a 
variance equal to a'( N - 1 ) /2 .  Adding to this variance 
the ones contributed by eN+ I and the noise signal result- 
ing from e , ( n ) ,  which are a' and 2 2 ,  respectively, we 
obtain the total output noise variance. In conclusion, the 
total roundoff noise variance at the location of the recon- 

structed signal i ( n ) ,  due to all noise sources internal to 
the QMF bank, is a 2 ( ( N  - 1)/2 + 3) .  

Coding Noise: In any practical application of the QMF 

bank, the decimated versions of the signals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxo( n ), xi( n ) 

Fig. 18. An equivalent complete QMF structure. 

(Fig. 1) are encoded using one of many standard tech- 

niques [ 2 2 ] .  The coding is usually done at a much coarser 
level than the quantization during filtering. Such coding 
noise sources cannot be modeled as additive uncorrelated 

white noise sources. Consequently, the above results do 
not apply in this case. 

VI. CONCLUDING REMARKS 

In this paper, a structure and an algorithm have been 
presented for the design of two-channel QMF banks sat- 
isfying the sufficient conditions of perfect reconstruction 
introduced in [4]. The structure automatically satisfies 
these sufficient conditions, while the algorithm ensures a 
good stopband attenuation for each of the analysis filters 
H k ( z ) .  The results obtained by using the algorithm for 

various values of stopband frequency w ,  and filter order 
N - 1 are tabulated in Tables I-VII; these design tables 

are provided as a quick design aid, to save the designer 
from recomputing standard coefficients by complex opti- 
mization algorithms. 

It will be of interest to restrict the lattice coefficients to 
be powers-of-two, and perform a "discrete space opti- 
mization," so as to obtain computationally efficient anal- 

ysis bank structures. The basic nature of the lattice guar- 
antees perfect reconstruction even with such powers-of- 
two coefficients. 

It is easy to see that, with FIR analysis and synthesis 
filters, the PCJ property [i.e.,  (7) and (S)] is not necessary 
for the perfect-reconstruction (PR) property. From Fig. 

8(b), we see that a more general sufficient condition for 
perfect reconstruction is R ( z )  E ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF k Z .  For exam- 
ple, if E ( z )  is FIR with det [ E ( z ) ]  equal to a delay, it is 

trivial to see that R ( z )  = zPkAdj E ( z )  will lead to the 
PR property (Adj denoting the adjugate or cofactor ma- 
trix). 

Next, in all the schemes discussed here and in [4], it is 
true that E ( z )  is lossless. The losslessness condition on 
E ( z )  means that H,( z )  and H I (  z )  are power complemen- 
tary, and so cannot both have linear phase [24]. As indi- 

cated above, losslessness of E ( z )  and the relations in (7) 
are not necessary conditions for PR property. In fact, with 

. .  
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det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ E ( z ) ]  equal to a delay but E ( z )  not lossless, one 
can obtain linear-phase analysis filters, and design ex- 
amples can be found in [23] .  However, the attenuation 

characteristics of these design examples are poorer than 
those of the class of filters without linear-phase con- 
straint, first introduced in (41. 

For the linear-phase case, perhaps the most judicious 
and practical scheme would be to use any of the tech- 
niques proposed over the last decade [1]-[3], [ 131-[15],  

which do not insist on theoretical perfect reconstruction. 
These techniques are such that aliasing and phase distor- 
tion are completely eliminated (in spite of multiplier 

quantization) and amplitude distortion is minimized in a 
systematic fashion [ 131, [ 141. In applications where lin- 
earity of phase of the analysis filters is important, these 
earlier techniques seem to be most promising. 

APPENDIX A 

Let N,,,,, be the maximum number of zeros that 
PN-l(z) can have on the unit circle. Recall that N - 1 is 
odd. It can be shown that if N / 2  is even, then Nzeroc = 
N / 4 ,  and if N / 2  is odd, then there are two cases: 

a) N,,,,, = ( N  + 2 ) / 4  if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP+ I(e") has a zero at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = 

b)N,,,,, = ( N  - 2 ) / 4  if P N - , ( e J " )  does not have a 

The proof is as follows. Let P,- l ( z )  be a spectral factor 
of G + ( z )  (25).  G + ( z )  and G ( z )  are shown in Fig. 2.  
Figuratively speaking, G + ( e  '") is obtained from G ( e  /") 
by "pushing" the curve upward by an amount of 6. It is 
clear from Fig. 2 that G + ( e ' " )  has only double zeros, 
and the number of the doubl: zeros, N(,:, which is equal 
to the number of zeros of PN-  I ( e  '"), is related to the 
number of zeros of the derivative of G ( e  I"). Since G (  z )  
is a linear phase FIR filter, we have G ( e'")  = 

c, (cos w )  ". This implies 

a, and 

zero at w = a. 

N -  1 

Let NGG be the number of zeros of G' ( e  I " )  in the interval 
[0, a], and N ,  denote the number of zeros of G ' ( e ' " )  in 
the interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ u s ,  a ] .  Since G ( e ' " )  is a half-band filter, 
we have NG, = 2N,. In ( A . l ) ,  the term sin w contributes 
two zeros, while the sum term contributes a maximum of 
N - 2 zeros. Thus, N ,  can be at most ( 2  + ( N  - 2 ) ) / 2  
= N / 2 .  

Suppose that G ( e J w )  has no zero at w = a. If N ,  is 

Fig. 19. Pertaining to Appendix B. 

even, this means that G ( e  'O) is positive at w = a and 
has N , / 2  extrema of value -6. Thus, after "pushing" 
the curve up by 6, there is no zero at w = a, and N,: = 

N , / 2  which is at most equal to N / 4 .  If N, is odd, then 
G ( e'") is negative at w = ?r and has ( N ,  + 1 ) / 2  extrema 
of value -6. Thus, after "pushing" it up by 6, there is a 
double zero at w = T,  and Ndz = ( N ,  + 1 ) / 2  which has 

a maximum value of ( N  + 2 ) / 4 .  
Suppose that G ( e'") has a zero at w = a (necessarily 

a double zero since G ( z )  is linear phase and has even 
order). After "pushing" it up by 6, there is no zero at w 
= a .  If N,  is even, then G (e'") is negative near w = a,  

and has N , / 2  extrema of value -6. Thus, Ndz = N , / 2 .  If 
N,  is odd, then G ( e'") is positive near w = ?r, and has 

( N ,  - 1)/2extremaofvalue -6 .  So, Ndz = ( N ,  - 1 ) / 2  
which is at most equal to ( N  - 2 ) / 4 .  This concludes the 
proof. 

APPENDIX B 

Consider the half-band filter G + ( e  *") shown in  Fig. 2.  
The filter P N -  , (e ' " ) ,  obtained by spectral factorizing the 
normalized G, ( e ' " ) ,  is as shown in Fig. 19. Let 26, and 
262 be the peak-to-peak ripples in the passband and stop- 

band, respectively. From Fig. 19, we have 1 - 261 = 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/J1+26, = J26/ J1+26. Thus, 26 = I / (  1 - 

261)2 - I .  This implies 6 2  = 2 -  = 2 4 .  Let 
26; and 26; be the new peak-to-peak ripples, resulting 
from quantization of the lattice coefficients. Typically, we 
will have 6; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 6,  and 6; I &. Let E ,  = 6; - 6, and e 2  
= 6; - a2 .  The relative errors in ripple sizes are t l  /6 ,  = 

6;/S2 - 1 = Js;/s, - 1. Thus, e 2 / 6 2  = Jtl/s,+l 
- 1. Since the lattice has low passband sensitivity [6], 

e I / ? j I  << 1, hence, = 1 + ~ ~ / 2 6 ~ .  In 
other words, = ~ ~ / 2 6 ~ ,  which shows that the rel- 

ative change in the stopband ripple size is only half as 
much as that in the passband. This, however, does not 
imply that E ?  itself is "small;" although we cannot con- 
clude that the stopband sensitivity is low, we do obtain an 
upper bound on the quantity E >. 

(6;  - 61)/61 1 6 ; /6 ,  - 1,  ~ 2 / 6 2  = (6; - 6 2 ) / 6 2  = 

APPENDIX C 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

c this subroutine computes the coefficients of P ( z )  and Q ( z )  
c from a set of alphas. Inputs and outputs are in single precision. 
c inputs : array alpha(n), n 
c outputs: coefficients of P ( z )  and Q ( z )  in the arrays p (2n) ,  q(2n)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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subroutine getpq(alpha, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn ,p ,  q) 
real*4 p ( n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ n) ,q(n + n),pold(lOO),qold(lOO) 

If R is orthogonal, i .e.,  RR‘ = R ‘ R  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ, then 

E [ f ( n ) f ‘ ( n ’ ) ]  = a2Z6(n - n ’ ) ,  (A.4) real*4 alpha(n) 

n 2 = n + n  

c compute scale factor 

10 

20 
22 

25 

30 

40 

50 

prod =alpha( l)*alpha( 1) + 1. 
do 1 0 i = 2 , n  
prod=prod*(alpha(i)*alpha(i) + 1 .) 
continue 
beta = sqrt(O.S/prod) 
pold( 1) = 1. 
pold(2) = -alpha( 1) 
qold( 1) =alpha( 1) 
qold(2) = 1. 
m=2 

p(l)=pold(l) 
P(2) =pold(2) 
do 40 j = 4 , n 2 , 2  
q( 1) =alpha(m)*pold( 1) 
q(2) = alpha(m)*pold(2) 

if (j.eq.4) goto 22 
do 20 i=3 , j -2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i )  =pold(i)-alpha(m)*qold(i-2) 
q ( i )  =alpha(m)*pold(i) + qold(i-2) 

continue 
do 25 i = j - 1 , j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p ( i ) =  -alpha(m)*qold(i-2) 
( i  ) = qold(i - 2) 

continue 
do 30 i = l , j  

pold(i) =p(i) 
qold(i ) = q ( i  ) 

continue 
rn=m+l  
continue 

do 50 i = l , n 2  

p (i)  =beta*p (i) 

q(i)=beta*p((i) 
continue 
return 
end 

APPENDIX D 

Let e o ( n )  and e l ( n )  be two uncorrelated, zero-mean, 
white random processes [20]. Let a 2  = E [ e i ( n ) ]  = 

E [ e : ( n ) ]  be the common variance. Clearly, e o ( n )  and 
e, (n  - 2 )  are also uncorrelated. Defining e ( n )  = [ e o ( n )  
e l ( n  - 2 ) ] ‘  to be a vector-random process, its covariance 

matrix is 

C ( n ,  n ’ )  = E [ e ( n )  e f ( n ’ ) ]  

= a216(n - a ’ ) .  (A.2)  

If we now define f ( n )  = Re ( n )  to be a new vector-ran- 

dom process, then 

E [ f ( n ) f ‘ ( n ’ ) ]  = R E [ e ( n )  e ‘ ( n ’ ) ]  R‘ 

= R C ( n ,  IZ’ ) R‘ = u2RRf .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A .3 )  

that is, the components o f f  ( n  ) are white and uncorre- 
lated, and have equal variance a2 .  

By repeated application of these principles in  Fig. 17, 
we can verify that every pair of noise sources { e; ( n  ), 
bi ( n )  } creates a pair of uncorrelated white noise signals 

{ ( a ) ,  b,,,,, ( n )  } of equal variance u2  at the two out- 
put terminals of the Nth lattice section 
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