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Learning is but an adjunct to ourself

And where we are our learning likewise is.

W. Shakespeare

Abstract. This paper studies ways in which the sets of a partition of a lattice in 1l" become

regular model sets. The main theorem gives equivalent conditions which assure that a matrix

substitution system on a lattice in R" gives rise to regular model sets (based on p-adic-like in-

ternal spaces), and hence to pure point diffractive sets. The methods developed here are used

to show that the n-dimensional chair tiling and the sphinx tiling are pure point diffractive.

1. Introduction

There have been two very successful approaches to building discrete mathematical struc-

tures with long-range aperiodic order. These are the substitution methods, notably sym-

bolic substitutions and tiling substitutions, and the cut and project method. In the first

case the structure is typically generated by successive substitution from a finite starting

configuration. In the second it typically appears in one shot as the (partial) projection of

a periodic structure in some "higher" dimensional embedding space [1].

The principal focus in this paper is the relationship between matrix substitution sys-

tems on a lattice and naturally related cut and project formalisms. We start with a partition

of a lattice L in R" into a finite number of point sets U = (U1, ... , Urn ) and a finite set of

substitution rules fi which are affine inflations and under which U is invariant. The main

theorem (Theorem 3) provides conditions on 4) which are equivalent to U t , ... , U„, be-

ing regular model sets (i.e. cut and project sets). One of the characterizations (modular

coincidence) affords a simple computational approach to testing for model sets. In a

later section we go beyond the context of substitution systems and provide an alternative

characterization (Theorem 4) of model sets. We use both types of characterization in

showing that the sphinx and n-dimensional chair tilings can be realized as model sets.
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The connection between substitution systems and cut and project sets is nothing new,
e.g. the Fibonacci chain is often described in terms of a cut by a strip through Z 2 , and
the klotz construction of [2] is a sophisticated elaboration of the same idea. Nonetheless,
substitution systems and cut and project sets are not different formulations of the same
thing, and the relationship between them remains inadequately understood.

In the early study of aperiodic order, the cut and project formalism was always based
on projection into 1l' 1 from a lattice in some higher space JR" x 1Rp, the projection being
controlled by a compact set W C JR °. However, it was already implicit in the much earlier
work of Meyer [14] that W can be replaced by any locally compact abelian group H

and W c H by any compact set with non-empty interior, and the projection method
still produces discrete aperiodic sets with diffractive properties (hence long-range order).
Meyer's terminology for such sets was "model sets" and we use it here in deference to
its priority and to emphasize the greater generality of the internal space H. Model sets
have been studied in detail in [12] and [15]—[19]. The relevance of more general internal
spaces to tiling theory and symbolic substitutions was made explicit in [5] where p-adic
and mixed p-adic and real spaces naturally appear.

One of the important features of making the connection to model sets is that once it
is established, pure point diffractivity is assured (see Theorem 2 for a precise statement
of this). This type of information is generally quite difficult to obtain. For example, our
results shown here prove that the n-dimensional chair tiling and the two-dimensional
sphinx tiling are pure point diffractive. The former has been established for n = 2
previously [5], [20]. The latter is claimed in [20] as being provable by a geometric form
of "coincidence" established there (see below for more on the concept of coincidence).

The p-adic type internal spaces occur when the aperiodic set in question is based
on the points of a lattice and its sublattices in 1[8". An important class of examples
of this type arises from the equal length symbolic substitution systems. Suppose that
A = {al, ... , am ] is a finite alphabet with associated monoid of words A*, and we are
given a primitive substitution a: A --) A* for which the length l of each of the words
or (a; ) is the same. This substitution leads to a tiling of J of tiles of equal length, say
equal to 1. Matching the coordinate of the left end of each tile with its tile type a, we
obtain a partition Ui U ... U U,, of Z, and or may be viewed as comprised of a set of
affine mappings of the form x H lx + v where v E Z.

A lot more is known about equal length substitutions than arbitrary ones, a particularly
important example of this being Dekking's criterion for diffraction [6]. An equal length
aperiodic tiling has pure point dynamical spectrum if and only if it admits a coincidence
(Q is said to admit a coincidence if there is a k, 1 < k < l", for which the kth letter of
each word Q" (a1) for some n is the same).

In this paper we prove a related result, but this time the dimension is not restricted.
Namely, there is again a notion of coincidence (in fact there are two such notions) and
either of these is equivalent to the sets U1, ... , U m being regular model sets. One of the
criteria for coincidence that we give is a straightforward algorithm and thus in principle
is computable.

As we have already pointed out, a consequence of our result is that coincidence
implies the pure point diffractivity of each of the sets U1, ... , U,,,; that is to say, the
Fourier transform of the volume averaged autocorrelation is a pure point measure. We
do not know yet to what extent the condition is equivalent to pure point diffractivity.
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The setting of the paper is entirely at the level of point sets, so necessarily the strong

conditions implicit in the tiling situation are replaced here by a corresponding algebraic

condition on the matrix substitution system: the Perron—Frobenius eigenvalue of the

substitution matrix should equal its inflation constant. This is in fact a compatibility

condition which is necessary for the model set connection to exist in our situation. This

condition, not surprisingly, has occurred elsewhere in the literature (see, for instance,

[13] and [20]). The important result that gets the process off the ground is Theorem 1,

which is largely due to Martin Schlottmann and uses ideas from [10].

Matrix substitution systems, treated at the level of point sets, have recently appeared

in [ 13] under the name of self-replicating Delone sets. In that paper, point sets X are not

restricted to lattices and the principal question revolves around the interesting question

of the existence of tilings of R" by translations of certain prototiles for which the points

of X are the appropriate translational vectors. Also related to our paper is the study of

sets of affine mappings in the context of lattice tilings (see [21] for a nice recent survey

on this). In relation to our paper, the situation there corresponds to the 1 x 1 matrix

substitution systems and the problems become entirely different. Since the tilings there

are lattice tilings, the whole issue of model sets and diffraction is trivial, and the issues

lie more around the complex nature of the tiles themselves.

2. Definitions and Notation

Let X be a non-empty set. For m e Z +, an m x m matrix function system (MFS) on X is an

m x m matrix cD = (I), where each 4 is a set (possibly empty) of mappings X to X.

The corresponding matrix S(1) := (card('I 1)) is called the substitution matrix of

(D. The MFS is primitive if S((D) is primitive, i.e. there is an l > 0 for which S(ct) 1 has

no zero entries.

In this paper we deal only with MFSs which are finite in the sense that card((D i^) < oo

for all i, j. Of particular importance are the Perron—Frobenius (PF) eigenvalue and the

corresponding PF-eigenvector (unique up to a scalar factor) of S((D). We will also have

use for the incidence matrix I (0) of 4), which is defined by

(1	if card(4) 0 0,

= (I (^))`^	10	else.

Let P (X) be the set of subsets of X. Any MFS induces a mapping on P (X  )l by

U U .f (UU)
	U1 	J fEOti

	cIH	_	 (1)
	Um	UU.f(ui)

I fEoml

which we call the substitution determined by (D. We sometimes write ct ij (U1 ) to mean

Uf E $1, •' ` U3 ) .

In what follows, X is a lattice L in lR' and the mappings of c are always affine linear

mappings of the form x H Qx + a, where Q E Endz(L) is the same for all the maps.

Such maps extend to R".
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Let 4), W be m x m MFSs on X. Then we can compose them:

	t1J o4)=((\IIo4))j),	 (2)

where

m	 {g o f I g E 'Pik , f E 4)kj },
(q'o4))ij = U tit iko4kj	and	'Piko4kj := 0

	if ^Yik = 0 or	0.k =1	= 	kj =

Evidently, S('lJ o cp) < S(%P)S(4)) (see (10) for the definition of the partial order).
For an m x m MFS 4), we say that U :_ [Ut, ... , Um ] T E P(X)m is afixed point of

4)if(DU=U.

An affine lattice substitution system on L with inflation Q is a pair (U, 4)) consisting
of disjoint subsets {U) 1  of L and an m x m MFS 4) on L for which U = [U1, ... , U,,, ] T

is a fixed point of (I), i.e.

m

Ui = U U f(Uj),	i = 1,...,rn,	 (3)
j=1 fEO1I

where the maps of 4) are affine mappings of the form x H Qx + a, a E L, and in
which the unions in (3) are disjoint.' In this paper all our matrix substitution systems are
composed of affine mappings on a lattice and we often drop the words "affine lattice,"
speaking simply of substitution systems.

We say that the substitution system (U, 4)) is primitive if 4) is primitive. A second

substitution system (U', ') is called equivalent to (U, 4)) if U' = U, ' and 4) have the
same inflation, and S(T), S(4)) have the same PF-eigenvalue and right PF-eigenvector
(up to scalar factor).

For any affine mapping f: x i-± Qx + b on L we denote the translational part, b, of
f by t(f).  We say that f, g E 4) are congruent mod QL if t (f) - t(g) mod  QL. This
equivalence relation partitions 4) into congruence classes. For a E L, 4)[a] :_ { f E

Ui,j 4),J I t(f) - a mod QL}.

We say that 4) admits a coincidence if there is an i, 1 < i < m, for which fl . 1

0, i.e. the same map appears in every set of the ith row for some i. Furthermore, if 4)[a]

is contained entirely in one row of the MFS (fi) for some a E L, then we say that (U, 4))

admits a modular coincidence.

3. Substitution Systems on Lattices and Properties

Let L be a lattice in R". A mapping Q E Endz(L) is an inflation for L if det Q 0 and

00

n Q k L = {0}.	 (4)
k=0

1 In the case that one has unions (3) which are not disjoint there arises the natural question of the mulit-
plicities of points, or more generally densities of points which are invariant under the substitution. For more
on this see [3] and [13].
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Let Q be an inflation. Then q := IdetQI = [L : QL] > 1. We define the Q-adic

completion

L=LQ=limL/QkL	 (5)
i k

of L. L will be_supplied with the usual topology of a profinite group. In particular, the

cosets a + Qk L, a E L, k = 0, 1, 2, ... , form a basis of open sets of L and each of

these cosets is both open and closed. When we use the word coset in this paper, we mean

either a coset of the form a + Qk L in L or a +_Q k L in L, according to the context. An

important observation is that any two cosets in L are either disjoint or one is contained

in the other. The same applies to cosets of L.

We let µ denote the Haar measure on L, normalized so that µ(L) = 1. Thus for

cosets,

A(a + Q k L) = 
IdeI	

= 1 •	 (6)
 qk

We also have need of the metric d on L defined via the standard metric:

IIxII := qk	if x E Qk L \Qk +1 L,	
11011 = 0.	 (7)

From lk° o Qk L = { 0}, we conclude that the mapping x H {x mod Qk L }k embeds

L in L. We identify L with its image in L. Note that L is the closure of L, whence the

notation.

Let (U, 4)) be a substitution system on L. Identifying L as a dense subgroup of L, we

have a unique extension of 4) to an MFS on L in the obvious way. Thus if f E 4) ;j and

f: x i-+ Qx + a, then this formula defines a mapping on L, to which we give the same

name. Note that f is a contraction on L, since IIQx1I = ( 1 /q )I IxII for all x E L. Thus

d1 determines a multi-component iterated function system on L. Furthermore, defining

the compact subsets

Wi:=Ui,	i=1,...,m,	 (8)

and using (3) and the continuity of the mapping, we have

m
W, = U U f(WW ),	i=1,...,m,	 (9)

j=1 fE(D1j

which shows that W = [W1, ... , Wm ]T is the unique attractor of 4) (see [3] and [9]).

We call (W, ci') the associated Q-adic system. We cannot expect in general that the

decomposition in (9) will be disjoint, so we do not call (W, ci') a substitution system.

For X, Y  E W, we write

XY	if Xi<Y i for all 1<i<n,
X <Y	if Xi <Y 1 for all 1 <i <n.

Similarly, for A, B E M,(R),

A < B	if Ai j < B,3 for all 1 < i, j < n,	
(10)

A <B	if A,3 < B, for all 1 < i, j <n.

We begin by recalling a couple of results from the Perron—Frobenius theory.
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Lemma 1. Let A  be a non-negative primitive matrix with PF-eigenvalue X . If 0 <

AX < AX, then AX = AX.

Proof. We can assume X # 0. Since 0 < A.X and A > 0, X > 0. Let X' > 0 be a
PF right-eigenvector of A. Let a = max{(X;/XI) I 1 < i < m}. Then X <_ aX ' and X
is not strictly less than aX'. Claim X = aX'. If X # aX', then 0 < AN (aX — X) =

aA"X' — A N X for some N, since A is primitive. So A N X < A N X  < aA''X ', i.e.
X < aX'. This is a contradiction. Therefore AX = AX. q

Lemma 2. Let ), be the PF-eigenvalue of the non-negative primitive matrix A  and let

it be an eigenvalue of a matrix B where 0 < B < A. If A  0 B, then I AI < X .

Proof. Let Y  be a right eigenvector for eigenvalue It of B, with Y  = [Y 1, ... , Y m ]T

Let Y  = [ I Y1 I , • • • , I Yr I ] T :A 0. Then J p I Y  < BY  < AY. Let XT be a positive left

eigenvector for A with PF-eigenvalue A. So I µ I X T Y <  T BY < X T AY= AX T Y. This
shows that lµl < X. If Iµj =A, then AY < AY. By Lemma 1, X Y = AY. Since A isa
primitive matrix, A '" Y = Am Y  > O for some m. So Y > O. From k Y < BY  < AY  = X  Y ,
we have AY = BY . Therefore A = B. q

Lemma 3. Let (U, 1) be a primitive substitution system. Then for all 1 E N, (U, 1l )
is a primitive substitution system.

Proof. Let i, j, k E {l, 2, ... , m). All the maps g E 1,k have domain Uk and disjoint
images in U. Moreover, all the mappings g are injective. Likewise all the maps f of ikj
have domain Uj and disjoint images in Uk. Thus all the maps g of E cIjk o <Dkj have
domain U^ and disjoint images in U1. Furthermore, 1 2 U = 4(1)U) = cI)(U) = U. So
(U, (D2) is a substitution system. The argument extends in the same way to (U, 4 i ). The
statement on primitivity is clear. q

Theorem 1. Let (U, (D) be a primitive substitution system with inflation Q on L. Let
(W, fi) be the corresponding associated Q-adic system. Suppose that the PF-eigenvalue
of S(c) is Idet QI and L = U1 W,. Then

(i) S(c) = (S(4)) T , r > 1 ;
(ii) F.(W) = (1/Rr) >j 1(S(c1 r))p.(WW), for all i = 1, ... , m, r > 1;

0
(iii) foralli = 1.....m, W$ 0andA(aW,) =0.

Proof. For every measurable set E C L and all f E cI ,

µ(.f(E)) _ l^(Q(E) -f-a) _ 
Idet 

QI,u(E),
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where f: x r-p Qx + a. In particular, µ(f(Wj)) = (1/q)wj, where wj := j (Wj) and

q = I det Q I . We obtain

ml
w, <	r card((V);i)wj

j=1 q

from (9).	 _

Let w = [w 1, ... , wm f . Since U W, = L, the Baire category theorem assures us

that for at least one i,
0

WØ	 (11)

and then the primitivity gives this for all i. So w > 0 and

	

w < I S((D`)w < qr S(4)'W,	for any r > 1.	 (12)
qr 

Since the PF-eigenvalue of S(cZ')' is q'' = Idet QI' and S(4)'' is primitive, we have from

Lemma 1 that

	w = I S(c r)w = qr S(c) r w,	for any r > 1.	(13)qr

The positivity of w together with S(c') < S(cI)' shows that S(V) = S(c)'. This
proves (i) and (ii).

o	 _
Fix any i E {1, ... , m}, let W; contain a basis open set a + Q'L with some r E 7L >o

0
by (11). Since (U, (D') is a substitution system, a + Q'L CW,C W, = U7 t (4)')-.Wj .

In particular,_(a + Q' L) fi g(Wk) # 0 for some k E {1, ... , m} and som e g E (4 ),k .
However, g(L) = b + Q'L for some b E L, so (a + Q'L) fl (b + Q'L) # 0. This

means a+Q rL =b+Q'L.Thus

_ o

g(Wk) Cg(L)=a+ Q'LCW;.	 (14)

0	0

Forall f E (V) lj , j E (1, 2, ...,m}, f is clearly an open map, soU^ 1 (4') 1 (Wj )CW; .
Thus

8W1 = W,\ W, = U(4r)ij(WJ) \Wi

C U((^ r)ij(Wj)^(^ r )iJ(WI))
j=t

m

C U(^ r )tj(aWj).	 (15)
j=1

Note that due to (14) at least one g in (cV) ;k does not contribute to the relation (15).

Let vi := µ(8W1), i = 1,...,m and v := [vI, ... , Vm]T. So v _< (1/q')S(4 )v.

Actually, by what we just said,

0 < v< qr S'v < -1 S(d>r )v = I S((D) r v,	 (16)
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where S  < S(c)r, S' 0 S(fi)'. Now applying Lemma 1 again we obtain equality

throughout (16). However, by Lemma 2 the eigenvalues of (1 /q') S' are strictly less in

absolute value than the PF-eigenvalue of (1/q')S(4)', which is 1. This forces v = 0,

and henceµ(aWl) =0,i = 1,...,m. q

In what follows, the central concern is to relate the sets Ul and the sets A; := Wl n L.

Clearly, Ai D Ui. The next lemma groups a circle of ideas that relate this question to

the boundaries and interiors of the W.

Lemma 4. Let U„ i = 1, ... , m, be point sets of the lattice L in ]R". Let Q be an
inflation of L and identify L with its image in its Q-adic completion L. Define Wl := Ul

inLandA,:=W;nL.

0

(i) If U1 ,..., U", are disjoint and µ(A; \U;) = Ofor all i = 1, ... , m, then W;
a

nWj= Oforalli#j.

(ii) If L = U1 U, and Wl n Wj= 0 for all i # j, where i, j E (1, ... , m), then

Al \U;CUT 1 aWj foralli=l,...,m.

(iii) If µ(8Wi ) = Oforallj = 1, ... , m and Al\Ul C U7 1 0Wi , then µ(A i \Ul ) _

0.

0

Pmof. (i) Suppose there are i, j E (1, ... , m} with W, n Wi # 0. We can choose

a E (Wl n Wi) n L, since L is dense in L and Wi n Wi is open. Choose k E Z+ so that
_	 0

a + Q' L C Wl n Wj . Note that a + QkL C A, n A. Then
m

U(Al\Ui) ? ((a + Qk L)\Ui) U ((a + Q k L)\(JJ)
l=1

= (a+Qk L) \(UUnUi)

= a + Qk L,	since the Ui , i = 1, ... , m, are disjoint.

So
m	 m

T A(Ai\Ui) > µ U(Al\Ul)
l=1	 l=1

µ(a + Qk L)

> 0,

contrary to assumption.
0	0

(ii) Assume Win Wi = 0 for all i # j. For any i E 11, ... , m },

(A , \U)\ Ul ) C	Ui n W,	since L =	UlU	U)

C U(W, n W,) c U 8Wj	(since W; n Wj= 0 for all i # j).
i#i	 j=1

(iii) Obvious.	 q
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4. Model Sets

We recall the notion of a model set (or cut and project set) [ 17]. A cut and project scheme

(CPS) consists of a collection of spaces and mappings as follows:

Rn 4L JR." x G	G
U	 (17)

L

where I[8" is a real Euclidean space, G is some locally compact Abelian group, and

L C l[8" x G is a lattice, i.e. a discrete subgroup for which the quotient group (IR" x G)/L

is compact. Furthermore, we assume that 7rl I L is injective and ire (L) is dense in G.

A model set in R" is a subset of IR" which, up to translation, is of the form A (V) _

{n l (x) I x E L, r2 (x) E V} for some cut and project scheme as above, where V C G

has non-empty interior and compact closure (relatively compact). When we need to be

more precise we explicitly mention the cut and project scheme from which a model set

arises. This is quite important in some of the theorems below. Model sets are always

Delone subsets of ]I8", that is to say, they are relatively dense and uniformly discrete.
0

We call the model set A (V) regular if the boundary 8V = V\V of V is of (Haar)

measure 0. We also find it convenient to consider certain degenerate types of model

sets. A weak model set is a set in JR' of the form A (V) where we assume only that V
is relatively compact, but not that it has a non-empty interior. When V has no interior,

A (V) is not necessarily relatively dense in ]I8" but regularity still means that the boundary

of V is of measure 0.

Theorem 2 [ 19]. If A  = A(V) is a regular model set, then A is a pure point diffractive

set, i.e. the Fourier transform of its volume-averaged autocorrelation measure is a pure
point measure.

This theorem was established for real internal spaces by [8] and its full generality, as

stated here, in [19]. For a new simpler proof of this result see [4]. It is this theorem that

is a prime motivation for finding criteria for sets to be model sets.

Now let (U, c) be a substitution system with inflation Q on a lattice L of R" and let

L be the Q-adic completion of L. This gives rise to the cut and project scheme:

Rn	IlanxL — L

U	(18)
L — L	L

t	*-	(t, t)	--> t

where L:={(t,t) ItEL} CJ1 xL.

We claim that (1W' x L)/L is compact. L is clearly discrete and closed in Rn x L.

Since (R" x L)/L is Hausdorff and satisfies the first axiom of countability, it is enough

to show_that it is sequentially compact [11]. If {(xi, z)+ L} is a countable sequence in

(1W' x L)/L, then there is a subsequence {(x i , zi) + Lis with {x; + L} s a convergent

sequence, since Rn/L is compact. We can rewrite {(x i , z;)+L)s as ((x', z;) +L }S, where
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{xl }; Es converges to x in r. Since L is compact, there is a convergent subsequence {z } s ,

to some z in L. Thus {(x,', z;)}s' converges to (x, z) in R' x L. Therefore (W x L)/L

is sequentially compact. _

Note also that nl IL is injective and r2(L) is dense in L.

Lemma 5. Let U;, i = 1, ... , m, be disjoint point sets of the lattice L in R'. Identify

L and its image in L. Let W := U, in L and Al := W fl L. Suppose that µ(3W,) = 0

foralli = 1,...,m.

(i) If AI \U C U7=1 8Wj, then, relative to the CPS (18), U, is a regular weak model

set when Wi is empty, and U, is a regular model set when Wi is non-empty.

(ii) If L = U7= 1 Ui and each U, is a regular model set, then A, \U; C U7= 1 aWj for

alli = 1,...,m.

Proof. (i) Assume that A;\U C U7
= 1 3W^ for all i = 1, ... , m. Since µ(8W) = 0

foralli = 1,...,m,

µ(Wi)=µ(wi)=µ(W, U8WJ).	 (19)

0

SinceA, = W,fL,U, = V(1LwhereV, := W,\(A i \U,).NowV, DW1 \U^ 1 8Wj .

From W; \ U7 aW^ CV;C V, C V, = W, and (19), µ(VS \ V,) = 0. So U, is regular.
0	0

If W i = 0, then V; = 0 also. Then Ui is a regular weak model set. On the other hand,

for any i with W, # 0, 1'z 0 and V is compact. Then it follows that U, = A (Vi ) is a

regular model set for the CPS (18).
o	_ o

(ii) Suppose that Vl 0, p (V; \ V,) = 0, where U, = V1 fl L, and L = U = 1 U. Then
o _ o

from A i \U1 = A(W)\A(Vi ) C W1 \V1 C W,\ V; = V,\ Vi , we have µ(A ; \U) = 0
0	0

for all i = 1, ... , m. By Lemma 4(i) and (ii), Wi fl Wj = O for all i ¢ j and A; \ U; C

uJ i 8 Wj.	 q

Theorem 3. Let (U, c1') be a primitive substitution system with inflation Q on the
lattice L in l[8". Suppose that the PF-eigenvalue of the substitution matrix S(c) is equal
to Ides Q I and L = U"_ 1 U,. Then the following are equivalent:

(i) There is a primitive matrix function system tI! admitting a coincidence, where

(U, 41) is equivalent to (U, 0 M ) for some M> 1.
(ii) The sets Ui, i = 1, ... , m, of U are model sets for the CPS (18).

(iii) For at least one i, U, contains a coset a + Q M L for some M> 1.
(iv) (U, (D M ) admits a modular coincidence for some M > 1.

Proof. (i) = (ii) Suppose that (U, 41) admits a coincidence and is equivalent to

(U, q M ) Fix i E { 1, ... , m} with n7 i '4' # 0 and let g be in this intersection.
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Recalling (9), and in view of the choice of g, we have

	N(W^) (t	tt(f(Wj))^ — µ(g(Wk) n g(Wi)),
j_1 fE%Pij

for any k, 1 E { 1, ... , m } with k 0 1. On the other hand, from Theorem 1(ii)

I m	m

	=gtit E(S(W))i1Ni(WW) = E E I-^(.f(W,))•	 (20)
j= 1	j=1 .fE`Pij

	0 	0

Thus, in fact,µ(g(Wk)flg(W)) = Owheneverk 1. It follows at once that Wk fl Wi= 0
for all k # 1, since the measure of any open set is larger than 0.

0

Recall that W; # 0 and µ(8W) = 0 for all i = 1, ... , m. Then by Lemmas 4(ii) and
5, U;, i = 1, ... , m, are model sets in CPS (18).

(ii) = (iii) Assume that U;, i = 1, ... , m, are model sets in CPS (18), i.e. U, _
o	 _ o

A (V,) = Vi n L for some V, with Vi =A 0. Thus there is a coset a + Q M L C Vi and, since
we can always choose the coset representative from the dense lattice L, we can arrange
thata+QM L C U,.

(iii) (iv) Assume that for at least one i, U; contains a coset a + Q M L. Fix i.
Iterate 4) M-times. Then each function f in the matrix function system cM has the form
f: x H QM x + b. For each j, let G1 := { f E (G M )ij I t(f) - a mod Q M L}. (Recall
that t(f) is the translational part of f.) From U, = U7

=
1 UfE(4) M )i . f (U1), we obtain

a + Qm L C U7
= 1 UfEGJ f (Uj). In fact,

m

a + QML = U U f(UU),	 (21)

j= 1 fEGj

since the right-hand side is clearly inside a + QM L. From the fact a + QM L C (J, we
get M [a] = U7

=
1 Gj C U =1 Therefore (D m has a row containing an entire

congruence class 4)M [a].
(iv) = (i) Assume O m has a row, say the ith row, containing an entire congruence

class 4) M [a]. Let Gj := (DM [a]fl(ttM) ij . Then U 1 UfEG . f(U3 ) C a+Q M L. Recall

that 
U7= 1

 Uj = L and U = 4 M (U). It follows that the elements of a + Q m L can be
obtained from the matrix function system (D M only from the mappings of 4 M [a], and
indeed they must all appear as images of the mappings of ct,M [a]. Thus

m

a + Q M L = U U f (U1 ) C U.	 (22)
j=1 feG,

On the other hand,
m

a + QM L = U QM (Uj) + a,	(23)
j= 1

which is a disjoint union.
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	We now alter our matrix function system qM as follows: Define g: L	L by

g(x) = QMx + a. We may, by restriction of the domain, consider g as a function on Uj,

j = 1,...,m. Wedefine'by

p11ij = ((1DM )ij\Gj) U {g},

l Wkj = (O M )ki	if k i,

for all j. From (22) and (23), the 4;j, j = 1, ... , m, consist of maps from Uj to Ui

and have the same total effect on U, as the (4M)1, j = 1, ... , m. Thus (U, 4') is a
substitution system admitting a coincidence.

Since S((D m ) is primitive, the incidence matrix I(c ,M) is primitive. Then I(4') is
also primitive, since J(M) < 1(4'). So 4' is primitive. In addition, 4' has the inflation
Q M for L which is the inflation in O M .

We claim that S(4'), S(4) M ) have the same PF-eigenvalue and right PF-eigenvector.
Then (U, I1) is equivalent to (U, (DM )•

0	0

We verify first that Wk n Wj = 0 for all k, j E { 1, ... , m } for which k # j. We
can assume that m > 1, since there is nothing to prove when m = 1. With i fixed as
above, let gl E Gl = (M) ii [a] # 0 for some 1. Take any k E {1, ... , m}. There is
Mp E Z+ for which ((D Mo )lk $ 0. Choose f E (4Mo )lk. Let gl: x H QMx + al,
where al - a mod Q M L, and f: x N QMOx + b with b E L. Then gl o f: x r-*

QM+Mox + Q M b +al. So gl o f E (C)M+Mo
)ik[al + Q M b]. Furthermore, (al + Q M b) +

QM+Mo (L) C al + Q M L C U,.
Let N := M + M0, c := a1 + Q M b, and p := gl o f. Note that

m

	c + QN L = U U h(Uj),	 (24)
j=1 hEH^

where Hj = (4)N ); [c].

There are at least two functions in U7=1 Hj, since, for all, j, Uj # L. We can write

c + QN L in the form

	C + QN L = U{QN Uj + Q N ah +C j E {l, ... , m} , h E Hj , ah E L},	(25)

where we have used the explicit form of each of the mappings h E Hj . This union is
disjoint, and as a consequence the elements ah E L for h in any single Hj are all distinct.
In particular we have ap coming from Hk. From (25) we have

m

L = U U (Uj + ah)	 (26)
j=1 h€ HH

and separating off Uk,
m

L = Uk U U U (Uj + ah — ap),	(27)
j=1hEH'

where HJ := Hj if j # k and Hk := Hk\{p}. Again these decompositions are disjoint.

However, we also know that Uk and U";̀ _, Uj are disjoint, and it follows that
j$k

m	m

U UI C U U (Uj + ah — ap).

i='	j=1 hEH
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Taking closures,

m	in

U Ww CU U (W1 + ah — aP ).	 (28)
i='	j=1 hEH
j*k

On the other hand, if we apply Theorem 1(ii) to 1 N and look at (24) we see that

m	 m

µ(c + Q"L) = 	p(h(Wj)) = ^ E lc(Q N (Wj + ah ) + c),
j=1 hEH1	j=1 hEH,

and hence

m	 m

l^(L)=lc(Wj+ah)=A(W3+ah—an ).
j=1 hEHJ	 j=1 hEH,

Thus

m

I- W = I-^(Wk) + L	L(Wj + ah — ap )
j=1 hEH.'

which, after taking closures in (27), gives

m

	i Wk n (U U (Wj + ah — aP) =0.	(29)
j=1hEH

Finally, from (28) and (29) we obtain

m

/^ Wkn U Wj =0,

j#k

o	O

from which Wk fl Wj= 0 for all j E {1, ... , m} for which j :0 k. Since k is arbitrary in

{1, ... , m}, this establishes the first verification.

Now

A ^ g(Wj))	Ides QM1 µ ( I W^)

1

^det QMI

	0 	0

(from it()Wj ) = 0, Wi fl Wj= 0 for all i j)
m

_ E tt(g(Wj))•	 (30)
j=1
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Again using Theorem 1(ii), this time for 4M, we obtain

W Idet QMI S((Dw,

where w =[µ (W1), ... ,µ(Wm )] T . The part of this relation in W, which pertains to the
coset a + QM L is

µ(a + QML) _	(f (W,)).	 (31)
j=1 fEGj

However, from (23),

µ(a + QML) _ It ( U w). 	 (32)

Together, (30), (31), and (32) show

w	(det 
QMIS(^Y)w.

Since w > 0 and S(tII) is primitive, S(') has PF-eigenvalue I det QM I and PF-eigenvector
w as required.	 0

Remark. Let A = {a 1 , ... , am } be an alphabet of m symbols and let o be a primitive
equal-length alphabetic substitution system on A, that is,

(i) Q: A —) A9 for some q E Z+ ;
(ii) the m x m matrix S = (S;  ), whose (i, j) entry is the number of appearances of

a; in a (as ), is primitive.

According to Gottschalk [7], for some iteration ak of Q, there is a word w E Az

which is fixed by a in the sense that

ak (w0w1 .••) = WOW, ... ,

ak(... w_2w_1) = ... w-2w-1•	 (33)

Replacing ak by a and q k by q if necessary we can suppose that k = 1, and assume then
that a(w) = w.

We can view w as a tiling of R by tiles of types a1, ... , am , all of the same length 1.
If we coordinatize each tile by its left-hand endpoint so that w1 gets coordinate 1, then
we obtain a partition U1 U ... U Um of Z and an m x m matrix function system c of
q-affine mappings derived directly from a: namely, aaj = ai, a, gives rise to the
mappings (x i••+ qx + l — 1) E c ;, j , I = 1, ... , q.

We take as our cut and project scheme

R E— R X ?Lq —> Zq

U (34)
z- 2 - z
z <— (z, z) --p z

(see (18)), where Zq is the q-adic completion of Z.
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According to Theorem 3, the Ui's are model sets for (34) if and only if for some
iteration aM of a, there is a k E 7G for which all the mappings fi: x r-+ qMx + l with
l = k mod qM lie in one row of OM .

Since cr a1 has qM letters in it, there are qM mappings in the jth column of 1M.

Furthermore, since the letters aMaj are represented by contiguous tiles, their coordinates
fall in a range of consecutive integers, and so the mappings of the jth column of p M

are the maps fi, where 0 < l < qM, in some order. In particular, all of the mappings in
(DM are of this restricted form. It follows that modular coincidence is equivalent to the
existence of a row of 4M, say the ith row, and a k, 0 < k < q A1 , so that fk belongs to
each of4M,...,^m

This condition precisely says that there is a k so that the kth position of a m (a1)

contains the same letter a, for all j. This is the well-known coincidence condition of
Dekking [6], and he has proved that for non-periodic primitive equal-length substitutions,
this condition is equivalent to pure point diffractivity of the dynamical spectrum. It
is straighforward to show that S((D) has its PF-eigenvalue equal to Idet Q1. Thus we
have

Corollary 1. Let c, be a primitive equal-length (= q) alphabetic substitution with a

fixed bi-infinite word w. Let h(a) = max{n > 1 I gcd(n, q) = 1, n divides gcd{i
w i = wo)) where w = (wj)j Ez. Assume h(a) = 1. Let 4) be the corresponding matrix

function system and let Z = Ul U • • • U Um be the corresponding partition of Z. Then

the following are equivalent:

(i) there is an M so that a I has a coincidence in the sense of Dekking;

(ii) (U, c), where U = [U1, ... , U.], has a modular coincidence;

(iii) the U, 's are model sets for (34);

(iv) the U, 's are pure point diffractive.

We note that this interesting equivalence of model sets for (34) and pure point diffrac-
tivity is more than we can yet prove in the higher dimensional substitution systems.

Remark. The condition height = h(a) = 1 in Corollary 1 should be stressed. For
example, consider the substitution a such that a(a) = aba, a(b) = bab, which is of
height 2. There is no coincidence in any o M , so the points of type a (or b) do not form
model sets for (34). However, the set of a-points (and likewise the set of b-points) does
form a translate of a lattice and hence is pure point diffractive.

5. Sphinx Tiling

Long we sought the wayward lynx

And bowed before the subtle sphinx

But solved we not the cryptic sphinx

Before we found the wayward links.

Anon

In this section we take up sphinx tiling. This is a substitution tiling whose subdivision
rule is shown in Figs. 1 and 2.
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Fig. 1. Sphinx inflation [Type 1].

It has 12 sphinx-like tiles (up to translation). If we choose a single point in the same
way in each sphinx, then we arrive at 12 sets of points. We wish to show that each of
these sets is a regular model set. Actually we make a slight alteration to this, choosing
several points from each tile, but this is equivalent to our original problem.

Each sphinx can be viewed as consisting of six equilateral triangles of two orientations.
In this way, any sphinx tiling determines a tessellation of the plane by equilateral triangles.
We consider the centre points of the triangles of one orientation. These clearly form a
lattice L, once we have chosen one of them as the origin. Note that some sphinxes have
two points and others have four points in L. We give names to each tile and the points
in it as shown in Fig. 3. Then the 12 types of sphinx partition L into 36 subsets forming
a matrix function system. We show that these are model sets for a 2-adic-like cut and
project scheme of the form of (18).

With the origin as shown, the coordinates are chosen so that in the standard rectangular
system (1, 0) is the lattice point directly to the right of (0, 0). It is more convenient to
replace this by an oblique coordinate system: L = {ae + bw a, b E Z}, where
e = (1, 0), w = ( 2, 3-/2) in the standard rectangular system and relative to this basis
we can identify L and Z 2 and denote ae + bw by (a, b). The basic inflation shown in
Fig. I gives rise to the map

T:xH2Rx+(1,0),

where R is a reflection in R2 through the x-axis, i.e. in the new coordinates, R(1, 0) _

(1, 0), R(0, 1) = (1, —1).
The various types of points are designated by letter pairs ia, where i e {1, ... , 12)

and a E {a, ... , d) (of which only 36 actually occur). Let U, be the set of points of
type ia. On the basis of this we can make mappings of each point set to other point sets.

Using Figs. 1-3, we consider the following mappings:

the la-points --> the 9a, 9b, 9c, 9d, 4a, 4b, 4c, 4d-points,

Fig. 2. Sphinx inflation [Type 2].
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Fig. 3. Twelve sphinx tiles.

the lb-points -^ the la, 1b, 4a, 4b, 4c, 4d-points,

the 4a-points --^ the 12a, 12b, 4a, 4b, 4c, 4d-points,

the 4b-points -^ the la, lb-points,

the 4c-points	the 4a, 4b, 4c, 4d-points,

the 4d-points --^ the la, lb-points.

Define

hl: x H Tx + (0, 0),	h2: x H Tx + (1, 0),

h 3 : x H Tx + (0, 1),	h4: x H Tx + (-1, 1),

h 5 : x H Tx + (-1, 0),	h6: x H Tx + (0, -1),

h 7 : x H Tx + (1, -1),	h8: x r- Tx + (2, -1),

h9 : x H Tx+(-1,2),	h10: x H Tx+(-1,-1).

Let f be the function of the form x H Tx + b which maps the j,3-point into the

ia-point. Then each mapping can be described by [Type 1] and [Type 2].

[Type 1]

f9ala = h4 : x i-+ Tx + (-1, 1),	flalb = h2: x i-a Tx + (1, 0),
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Abla = hg: x H Tx + (-1, 2),

f9cla = h3: x H Tx + (0, 1),

f9dla = h2: x H Tx + (1, 0),

f = hl: x H Tx+(0,0),

Abla = h6: x H Tx + (0, -1),

facia = h7: x H Tx + (1, -1),

.f4dla = h 8 : x H Tx + (2, -1).

f1b1b = h1: xi-* Tx + (0, 0),

f 1b = h5: x H Tx + (-1,0),

f4b1b = h1o: x H Tx + (-1, -1),

f4c1b = h6: x H Tx + (0, -1),

f4d1b = h7: x H Tx + (1, -1),

fla4b = h 2 : x H Tx + (1, 0),

f1b4b = hl: x H Tx + (0, 0).

fla4d = h1: x H Tx + (0, 0),

f1bad = h5: x H Tx + (- 1, 0),

[Type 2]

fl2a4a = h1 xH Tx + (0, 0),

.f12b4a = h4 x H Tx + (-1, 1),

faa4c = h 1 : x H Tx + (0, 0),

.f4b4c = h6: x ^-+ Tx + (0, -1),

.f4c4c =h7: x-* Tx+(1,-1),

f4d4c = h8: x H Tx + (2, -1).

All points in a sphinx having 2-points in it are mapped as in [Type 1] changing
the translation part according to the orientation and reflection of the sphinx relative to
sphinx 1. Likewise, all points in a sphinx having 4-points in it are mapped as in [Type 2]
relative to sphinx 4.

Now we can list the 36 x 36 matrix((D) of affine mappings that make up our substitution
system (Table 1).

We can check that S(4) has PF-eigenvalue 4 and is a primitive matrix and the union
of point sets is L. We used Mathematica to check that property (iv) in Theorem 3 is
satisfied in (D 8 (it may actually be satisfied at some lower power). Certainly in 0 8 there
are a large number of modular coincidences. Theorems 1 and 3 say that all 36 point sets
are regular model sets in CPS (18).

6. The Total Index and Model Sets

In this section we derive another criterion for determining when a partition of a lattice
is a partition into Q-adic model sets, the difference this time being that there is no
substitution system involved.

We assume that we are given a lattice L in lRI and an inflation Q on L as in (4).
The notation remains the same as before. The main ingredient is a non-negative sub-
additive function called the total index which is defined on the subsets of L and its Q-adic
completion L.

For any subset V of L the coset part of V is defined as

C(V) := U{C I C is a coset in V}. (35)

The key point to remember in what follows is that two cosets in L or L) are either disjoint
or one of them is contained in the other. If C = a + Qk L is a coset, then we write [L : C]
for the index of the subgroup QkL in L.
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Table 1. Sphinx matrix function system (4).

0	h 2	0 0	0 0 0 0	0 b y 0 h l 0	0 0	0 0	0 0	0 0 0	0 0	0 0	0 0	0 0 h l 0 0	0 0 0

0	h l 0	0 SS 0 0	0 h 1 0 h 5 0	0 0	0 0	0 0	0 0 0	0 0	0 0	0 0	0 0 b y 0	0 0	0 0

0	0 •	0 0	0 h l h 7 0 0	0 0 0	0 0	0 b y 0 0	0 0 0	0 •	0 0	0 0	0 0	0 0	0 0 h7 0

0	0 0	0 0	0 h 2 h 0 0 0	0 0 0	0 0	0 h2 0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0 h 0 0

0	0 0	0 0	0 h 3 h 2 • 0	0 0 0	0 0	0 h3 0. 0 0 0	0 0	0 0	0 0	0 0	0 0	0 0 h 2 0

0	0 0	0 0	0 h 9 h 3 • 0	0 0 0	0 0	0 h 9 0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0 h3 0

•	• 0 h6 0	hl 0 0	0 0	0 0 0	hg 0	0 0	0 hl 0 0 0	0 •• 0	0 0	0 0	0 0	0 0	0 0

•	0 0 h1 0	h 3 0 0	0 0	0 0 0	h i 0	0 0 0 b y 0 0 0', 0 0	0 0	0 0	0 0	0 0	0 0	0 0

h l h0 0	0 0	0 0 0	0• h 1 0 0	0 0	0 0 0 0	0 0 0	h g 0	0 0	0• 0 0	0 0	0 0	0 0
h 6 h 10 0	0 0	0 0 •	0 0 h6 0 •	0 0. 0	0 0	0 0 0 h, 0 0	0 0	0 0	0 0	0 0	0 0	0 0
h, h g •	0 0	0 0 0	0 0 h 7 0 0	0 0	0 0	0 0	0 0 0	h 6 0	0 0	0 0	0 0	0 0	0 0	0 0
h 0 h 7 0	0 0	0 0 0	0 0 h g 0 0	0 0	0 0	0 0	0 0 0	h, 0	0 0	0 0	0 0	0 0	0 0	0 0
0	0 0	0 0	0 0 h 4 0 0	0 0 0	0 0 h 4 0 h l 0	0 0 0	0 0 h 0	0 0	0 0	0 0	0 0	0 0
•	0 0	0 0	0 0 h 1 0 0	0 0 0	0 0 h 1 0 h7 0	0 0 0	0 0 h 7 0	0 0	0 0	0 0	0 0	0 0
•	0 0	0 h 1	0 0 0. 0	0 0 h 1 h 3 0 0 0	0 0	0 0 0	0 0	0 0	0 0	h3 0	0 0	0 0	0 0
00 0	0 h 4	0 0 0	0 0	0 0 h 4 h 9 0 0 0	0 0	0 0 0	0 0	0 0. 0	h 9 0	0 0	0 0	0 0
0	0 0	0 h 0	0 0 0	0 0	0 0 h 5 h 4 0	0 0	0 0	0 0 0	0 0	0 0	0 0	h 4 0	0 0	0. 0 0
•	0 0	0 h l o 0 0 0	0 0	0 0 h a p h 5 0	0 0 0 0	0 0 0	0 0	0 0	0 0	h 5 0	0 0	0 0	0 0
0	0 0	0 0	0 0 0	0 0	0 0 h 2	0 0	0 0	0 0	0 h 1 0	0 0	0 0 0 0	h l h2 0 0	0 0	0 0
0	0 0	0 0	0 0 0	0 0	0 0 h 0	0 0. 0	0 0	0 h 7 0	0 0	0 0	0 0 h7 h 0 0 0	0 0	0 0
0	0 0	0 0	0 0 0	0 0	0 0 h7	0 0	0 0 0 0	0 h b 0	0 0	0 0	0 0	h 6 h 7 0 0. 0	0 0
0	0 0	0 0	0 0 0	0 0	0 0 h g	0 0	0 0	0 0	0 h i 0 0	0 0	0 0	0 0 h 1 0h 6 0 0	0 0	0 0
0	0 0	0 0	0 0 0	0 0	0 0 0	0 h t 0 0	0 0	0 0 0	0 0	0 h 3 0 h l	0 0	0 0	0 0	0 hg
0	0 0	0 0	0 0 0	0 0	0 0 0	0 h g 0 0	0 0	0 0 0	0 0	0 h l 0 h 6	0 0	0 0	0 0	0 hl

h 4	0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0	0 0	0 0 0	h l h4 0 0	0 0	0 0	0 0 h l 0	0 0
b y	0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0	0 0	0 0 0	h3 b y 0 0	0 0	0 0	0 0 h 3 0	0 0
h 3	0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0	0 0	0 0 0	h 2 h 3 0 0	0 0	0 0	0 0 h 2 0	0 0
h2	0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0	0 0	0 0 0	h 8 h 2 0 0	0 0	0 0	0 0 h 8 0	0 0
0	0 h i	0 0	0 0 0	0 0	0 0 0	0 0	0 0	0 0 h 5 0 h l	0 0	0 0	0 0	0 h 5 0 0	0 0	0 0
0	0 h 2 0 0	0 0 0	0 0	0 0 0	0 0	0 0	0 0 h l 0 b y	0 0	0 0	0 0	0 h l 0 0	0 0	0 0
0	0 0	0 0	0 h b 0	0 0	0 0 0	0 0	0 0	0 0	0 0 0	0 0	0 0 h l 0	0 0	0 0	0 0 h l h g

0	0 0	0 0	0 h yo 0	0 0	0 0 0	0 0	0 0	0 0	0 0 0	0 0	0 0 h 6 0	0 0	0 0	0 0 hs h io

0	0 0	0 0	0 b y 0	0 0	0 0 0	0 0	0 0	0 0	0 0 0	0 0	0 0 h 4 0	0 0	0 0	0 0 h 4 h a

0	0 0	0 0	0 b y 0	0 0	0 0 0	0 0	0 0	0 0	0 0 0	0 0	0 0 h 9 0	0 0	0 0	0 0 h 9 h 4

0	0 0	0 0	0 0 0 h l 0	0 0 0	0 0	0 0	0 0	0 0 0	0 h 7 0 0	0 0	0 0	0 h7 0 h l 0 0
0	0 0	0 0	0 0 0 h 4 0	0 0 0	0 0	0 0	0 0	0 0 0	0 h 1 0 0	0 0	0 0	0 h l	0 h 4 0 0

Lemma 6. The coset part of V can be written as a disjoint union of cosets in V.

Proof. If V contains no cosets, then the result is clear. Suppose V contains cosets. Let

C l = a I + Qk ' L be a coset in V with k1 minimal. Consider V\C 1 . No coset can be partly

in C 1 and partly in V\C 1 . Thus, if V\C1 contains no cosets, then C(V) = C 1 . Otherwise

let C2 be a coset a2 + Qk2 L with k2 minimal in V\C1. Then C(V) D C I UC2. We continue

this process. Since there are only finitely many cosets for Qk L in L, either we obtain

C(V) = C 1 0 • • • U C, for some r or C (V) D C I UC2U • • • , where k 1 <k2 < • • • is infinite

and unbounded. In the latter case, C(V) = U 1 Ci is our required decompostion. If not,

there is a coset C = a + QkL in V such that C c U'°=1 C 1 . Then there is C, with

k i _ 1 <k < k i . This contradicts the choice of C,. q

For V C L, we call a decomposition C(V) = (J, Ci of C(V) into mutually disjoint

cosets using the algorithm of Lemma 6, an efficient decomposition of V into cosets. In

this case we call c(V) := >J [L : C ; ] -1 the total index of V. Since any coset is an

efficient decomposition of itself, we have c(V) = F, c(C,). We will see shortly that the

total index is finite.

It is useful to note that an efficient decomposition of C(V) = J, C, of C(V) into

cosets has the following special property: if D is any coset of V, then necessarily D C C,
for some i.
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Lemma 7. Any two efficient decompositions of C(V) are the same up to rearrangement

of the order of the cosets. In particular the total index is well-defined.

Proof. Let C(V) = U C' be a second decomposition of C(V) determined by the same
algorithm as in Lemma 6. Then with k1 as in the lemma, let D1, ... , Dr be all the cosets
of V of the form a + Qk  L. These are all disjoint and by the algorithm all of them
must be chosen in the decomposition of C(V), and they all occur before all the others.
Thus C1, ... , Cr and Ci, ... , Cr' are D1,..., Dr in some order. Removing these and
continuing in the same way the result is clear. q

We have similar concepts in L. For W C L we have the coset part C*(W) of W and
C*(W) can be written as a disjoint union of cosets in W. Let C*(W) = U 1 D, where
D,, i = 1, 2, ... , are mutually disjoint cosets in W. We call c*(W) :_ Fi [L : D;]-1

the total index of W. This time we do not need to be careful about the way in which
the decomposition is obtained since the total index is nothing else than the measure
µ(C*(W)) of C*(W).

Given an efficient decomposition C(V) = U 1 _ 1 C; into disjoint cosets in L, we define
C(V) :_ Ui_ 1 C, C L. This is actually an open set in L. Since [L : C] = [L: C] we

see that c(V) = c*(C(V)). In particular, it follows that the total index of any subset V
of L is finite and bounded by it(C(V)).

Lemma 8. For X , Y  C L and X  C Y , and any decomposition C(X) = U i C1 into

disjoint cosets, >, c(C1) < c(Y ). In particular, c(X) < c(Y ).

Proof. Assume first that Y  is a single coset C. Then

c(C1 ) _ 	c* (C) _	ts(C) < µ(C) = c * (C) = c(C),	(36)
t	̂	r

since the cosets remain distinct after closing them in L.
In the general case, let C(Y) = Uj_ 1 C^ be an efficient decomposition of Y. Since

X C Y, each C1 C Y. In view of the remark above about efficient decompositions, there
is for each i a unique j for which C1 C C. Thus we can arrange the C's so that

00

C(X) = U U C1,	 (37)
j-1 iEA^

where A j : _ {i I C, C CC }. Now U ; EA . C l C Ci , so by the first part of the proof,

EtEAj c(C1 ) < c(C5). Finally,

c(X) = Y, ^c(C 1 ) < >c(C^) = c(Y). q	 (38)
j f EAj

Lemma 9. Let U„ i = 1, ... , m, be disjoint point sets of the lattice L in R". Let

A; = U; f1 L and C (U,) be the coset part in U. Then U"` 1 (A; \ U1) C L\ U"' 1 C (U, ),

with equality if L = U1 U1.
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Proof. For x E U1 C( U1 )  there is a coset C C C(U1 ) for  which x E C C U1 . Let
C = a +_ Qk L, a E L. Suppose x is a limit point of U3 in L for some j 0 i. Then, since
a + Qk L is an open neighbourhood of x, (a + Qk L) n U; ,{ 0, i.e. (a + Q" L) n U^ 0.

However, then U, fl U1 # 0, contrary to the assumption. This means x ¢ U 1 (Ai \Ui ),
proving the first part.

Suppose that L = U = 1 U, and x E L but x ¢ U°•_ 1 C(U,). Then x E U, for some U,

but there is no coset in U, which contains x. For any k E Z+ , Bk(x) := x + Qk L is an
open neighbourhood of x in L and L n Bk(x) U„ by assumption. Since L = U"_ U„

(L n Bk (x)) n U^ # 0 for some j i. So we can choose xk E (L n Bk (x)) n UJ . Then we

get a sequence {xk } convergent to x as k --* oo. Choosing a subsequence lying entirely
in one U1 shows that x E A1 for some j # i. Since x E U, and U, U1 are disjoint,
x E AJ \UJ. q

Theorem 4. Let U1, i = 1, ... , m, be disjoint non-empty point sets of the lattice L in

IR' . Let C (U,) be the coset part in U1, let c(U,) be the total index of U^, and let W, be the

closure of U, in L. Then F_" c(U,) = 1 if and only if the sets U;, i = 1, ... , m, are

regular weak model sets in the CPS (18) and L = U = 1 W,.

Proof. (=) Assume that E"` 1 c(U;) = 1. Let U,,,+ i := L\ U 1 U,,,. Using Lemma 8

and the fact that c(L) = 1, we see that c(U,,,+1) = 0 and 'j' c(U,) = 1. For this
reason we can assume, in proving that the U, are weak model sets, that U = 1 U, =L in
the first place.

For j 0 k the cosets of C(U) (of which there may be none!) and those of C(Uk) are

disjoint from one another, and the same applies to C(U3) and C(Uk). Thus

µUZ%u( i)) _Eµ(c(U1))_	c(U,)=1
\i=1

and

=0.	 (39)

Now note that a W1 n U"` 1 C(U1 ) = 0 for any j. If not let a E 8W; n C(Uk) for
_	Q

some k. Since C(Uk) C Wk, we see that j 0 k. However, a E W3, so a is a limit point

of UU, and C(Uk) is an open neighbourhood of a, so UU n C(Uk) # 0. This violates the

disjointness of the U,'s. We conclude that 3Wj C L\(U 1 C(U1 )) and hence that

µ(8Wi ) = 0,	 (40)

for all j = 1, ... , m. Note also that

A i \Ul C U(A^\Uj )
j=t

m

C L\UC(U3 )	(by Lemma 9)
j-1
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m	 m

= L\ U(C(Uj) n L) = L\ UC(Uj).
j=1	j=1

This shows that

	l-^(Aj\Ur) lc (L\ (UUi))) < I't I= 0.	(41)
 ;=1

0

By Lemma 4(i) and (ii), W, n Wj = 0 for all i 0 j and (A ; \ U;) C U7
=

1 d Wj for all

i = 1,..., m.
Using Lemma 5(i) we obtain that the sets U„ i = 1, ... , m, are regular weak model

sets in the CPS ( 18). 2

Since U"` 1 C(U,) C U 1 W, µ(U=1 W; ) = 1. Thus T\ U=1 W; is open of mea-

sure 0 and L = U = 1 W t . This last argument does not require that U = 1 U, = L.
0

(=) Assume that U1 = A(V,) = V n L where V\ V has measure 0 and L =

U1 W, . Thus U, C V; and W, := U, C V; . Since L is dense in L and for x E V, every
0	 0

open ball around x contains points of V n L C U1, it follows that U; - V,. This proves

that V C W, CV. So µ(Vi)=µ(W;)andµ(W,\ V3=0. Now

ÙW^=( IUVt)v().

a	0

So µ(U 1 W,) = µ(CJ"' 1 V,). Also the disjointness of the U, gives Vt n Vj= 0 for

i 0 j (since L is dense in L). Finally,

m	 m o 1	m	o

1 = t-t(Uwi =l^(UVi
)

= Igo

=	c(V;)<>c(VjnL)<>c(U;)<1.	 q

Corollary 2. Let (U, c) be a primitive substitution system with inflation Q on the
lattice L in W. Suppose that the PF-eigenvalue of the substitution matrix S(d>) is equal
to Idet QI and L = U"_ 1 U1. Then E"=1 c(U,) = 1, where c(U,) is the total index of U,,
if and only if the sets U;, i = 1, ... , m, are model sets in CPS (18).

0

Proof. Use Theorem 1 to determine that for all i, W ; # 0. Now use Theorem 4 and

footnote 2.	 q

Corollary 2 gives us another criterion to be model sets under the same circumstances

as in Theorem 3.

2 Whenever W # 0, U; is actually a regular model set.
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_	 I1
Fig. 4. Two-dimensional chair tiling inflation.

7. Chair Tiling

The two-dimensional chair tiling is generated by the inflation rule shown in Fig. 4. There
are four orientations of the chairs in any chair tiling. In [5] it was shown that chair
tiling has an interpretation in terms of model sets based on the lattice Z2 and its 2-adic
completion as internal space.

In this section we generalize this result to n-dimensional chair tiling using the results
of the last section (see Figure 6 for an example of the three-dimensional chair). To make
things clearer we begin with the case n = 2.

I. Chair Tiling in R2

The starting point is to replace each tile by three oriented squares. Figure 5 shows the
inflation rule, for one chair, in terms of oriented squares. The resulting tiling is a square
tiling of the plane in which each of the squares has one of four orientations. The centre
points of each square form a square lattice which we identify with Z2 by assigning
coordinates as shown.

Let U; be the set of centre points corresponding to squares of orientation (i) as given
in Fig. 5. We start out from a basic generating set A 2 :_ {(x1, x2) I xi E (0, —1}} and
determine the precise maps for the substitution rules of Fig. 5.

Pt1I -
IiiLi

'

-\	/	i
(1)	(2)	(3)	(4)

Fig. 5. Two-dimensional chair tiling substitution.
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Letting el := (0, 0), e2 := (1, 0), e3 := (1, 1), and e4 := (0, 1), these maps are
defined as

fi,t: U, -^ Ui by (x, i) H (2x + ei , j)	if j o i ±2,

^2) : U, -± U, by (x, i) H (2x + e , i)	ifft,t	 Y	 i	 j =i ± 2,

where

t + 2	if i < 2,
i, j E {1, 2, 3, 4},	x E Z2 ,	i± 2 :=

i-2	if i>2.

These are the maps of an affine substitution system (D. In fact, if we define

h 1: x F- 2x + e1, h2: x - 2x + e2, h3: x i- 2x + e3, h4: x -> 2x + e4,

then

fi,l = h1, .fl,2 = h1, .f^,	= h3, fi,4 = hi,

f2,1 = h2, f2,2 = h2, f2,3 = h2, f2,2 = h4,

•f3,3)
 = h1, 13,2 = h3, f3,3 = h3, f3,4 = h3,

f4,1 = h4, f44= 	h2, f4,3 = h4, f4,4 =h4,

and

{hl, h3}	{h1) {} {hl}

{h2}	{h2, h4} {h2} {}

{}	{h3} {h3, hi] {h3}

{h4}	{} {h4} {h4, h2]

Inflating A2 by the substitutions above we generate the four point sets U„ i =

1, 2, 3, 4. The precise description of U, is the following:

00 2'r -1

Ul = U U ((0, 0) + 2k (2, 0) + t(1, 1) + 2k • 4Z2 )
k=0 t=0

oo 2k-1	 00

u  U((0,0)+2k(0,2)+t(1, 1)+2k •4Z2)U U {t(1, 1)},
k=0 t=0	 t=-oo

002k-1

U2 = u U((-1,0)+2k (2,0)+t(-1, 1)+2k •4Z2)
k=0 r=0

00 2k-1

U U U ((-1,0) + 2'(0, 2) + t(-1, 1)+2k •4Z )
k=0 t=0
00

U U{(0, -1) + t(1, -1)},
t=0

00 2k -1

U3 = U U((-1,-1)+2 k (2,0)+t(-1,-1)+2k •4Z2 )
k=0 t=0
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cc 2't -1

UU U((-1,-1)+2k (0,2)+t(-1,-1)+2k •4z2 ),
k=O t=O

00 2k -1

U4 = U U((0,-1)+2k (2,0)+t(1,-1)+2k •4Z2 )

k=O t=O

00 2k -1

UUU((0,-1)+2k (0,2)+t(1,-1)+2k •4Z2)
k=O t=O

Oc

U U{(-1, 0) + t(-1, 1)}.

t=0

Each of these decompositions is basically into cosets, with the exception of three

trailing sets in types 1, 2, 4 which we designate by V1, V2, V4 , respectively.

We can prove the correctness of this as follows:

Let Ui, U2, U3, U4 be the sets on the right-hand sides, respectively. Note that

(i) The generating set A2 is contained in U,' adequately, i.e.

(0, 0) E Ui, (0, -I) E Uz, (-1, -1) E Ui, (-1,0) E U.

(ii) Claim that Ui U4_ 1 4 ,3 U' , i = 1, 2, 3, 4. Check that for any i,

4	00k_

h(U) C U U U((-e,)+2k+1 (2(ei -ej ))+2t(e i±2 -e; )
i=' k=O t=O

i0ia±2

+2' .4Z2 ) U V,

C U;,

4	00k_

h,t2(Ui') C U U U ((-e1) + 2k+1 (2(e - e1)) + (2t + 1)(e^±2 - e,)
i=' k=O t=0

i#i,i±2

+2""  .4Z2) U Vt

C U;,

h 1 (U/) C (-2el + e i + 4Z2) U (-2e1±2 + e, + 4Z2 )

C Ui', where 10i, i ±2, 1 E ti, 2,3,4}.

(iii) U1', i = 1, 2, 3, 4, are all disjoint. Two cosets or non-coset sets chosen from U,
and U5, where j 0 i, i ± 2, cannot intersect, since they are different modulo 2.

Futhermore, two of the cosets or non-coset sets chosen from U, and U 2 cannot

intersect either, since for a + 2k • 4Z2 C U,, b + 2' • 4Z2 C U' 2 with k < 1,

a-b 00mod2k •4Z2 .

Now since Ul, U2, U3, U4 are generated from A2 by (D, U, c U, for all i = 1, 2, 3, 4.

Also from U Ui = 7L2 , we get U U, = 7L2 . Since all U,, i = 1, 2, 3, 4, are disjoint,

U, = U, foralli = 1,2,3,4.
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Fig. 6. Three-dimensional chair tile.

Finally, for any i = 1, 2, 3, 4, the cosets within U1 are clearly disjoint, so

	oo 2k -1	1	°°	2k	1

2 k=o r=0 
(2k • 4) 2	2 k=o 16 • (2k)2	4.

Thus E i 1 c(U1 ) = 1. Theorem 4 shows that U1, i = 1, 2, 3, 4, are regular model sets.

II.	Chair Tiling in 118"

In this section we generalize the foregoing to the n-dimensional chair tilings for all

n > 2. The n -chair is an n -cube with a corner taken out of it, Fig. 6 The inflation rule,

which we spell out algebraically below, is geometrically the obvious generalization of

the two-dimensional case.

We transform the geometry by replacing each chair by a 2" — 1 oriented cube, as

before, and coordinatize the lattice formed by the centres of the cubes, starting from the

basic generating set An := {(xl, ... , x,,) I x 1 E {0, —1}}. There are 2" orientations of

cubes and hence 2" types of points (but only 2" — 1 of these types appear in the starting

set A,,).

For each k > 0 let ,B (k) be the binary expansion so + E 12 + e222 + • • of k, sl E (0, 1 }.

We define the basic orientation vectors el, ... , e2n by

_ (eo , ... , s,r _ 1 ) the binary digits of 8 (i — 1)	if i
e;

	(1,...,1)— ei_2,-i	 if i>2n -1 .

We determine the sets U1, i = 1, ... , 2", of all i -type points in Z" from the points of

the basic generating set A,,, using the inflation rules below.

The types of the points of A,, are as follows: for x = (x1, . .. , x,,) E A,r ,

when x„ = —1;

XEU1 ,forwhich6(i-1)=(1,...,1)+x,

when x,, = 0;

if x = (0, ... , 0), x E U1

otherwise, x E U1+2n-i, for which $(i — 1) = (1, ... , 1) — ((1, ... , 1) +x).

The idea of considering our vectors in the form (1, ... , 1) + x is to make it easy to

compare them with the basic orientation vectors.

This conforms with what happens when n = 2: there are 2' — 1 types in the basic

starting set that are in 2n -1 — 1 complementary pairs and one pair of vectors (0, . .. , 0)

and (-1, ... , —1) of the same type, namely of type 1.
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Define

	f jj : U; --^ U1 by (x, i) N (2x +e1, j)	if j 0 i±2' ,

fi«) : U;	U, by (x, i) H (2x + e1 , i)	if j = i f 2i -1 ,

where

i+2'	if i<2
i, j E{1,...,2},	xEZ ,	i ±2"-1:_

i — 2" -i	if i > 2r -1 .

Let D be the matrix function system. Define h 1 : x H 2x + e, i E { 1, ... ,

+2"

(h1,h 1+20-n}{hl}... {} ...{h i }

zn _ 2n-1

4
{h2n}{h2n} . •	{}	... {h2-_2n-i, h2 }

Inflating A n by the maps, we get the precise description of U1 :

2"	cc 2k -1

U' = U U U (( —ej) -I- 2k (2(ei — e1)) + t(e1t2n-i — e)+2' • 47C`) U Vi,

i='	k=O t_0

where

00
	U {t(e if2n- — ei))	 if i = 1,

t=—o0

V1 = U {t(e, — e1±2n- , ) + (—e1t2^-i)}	if i # 1,	1 ± 2 t ,	(42)
t=0

0	 if i=1+2" -1

The equalities can be proved in the same way as in the two-dimensional case.

Let U' j be the set of the right-hand side in (42). Note that:

(i) The generating set A n is contained in U' adequately, i.e.

	

e1EUi	if i=1,

	

E Ul	if i } 1, 1 ± 2" -1 ,

	— e12n-i E U1	if i = 1 ±2''.

(ii) Claim that U, D U 1	i = 1, ... , 2. Indeed for i E { 1, ... , 2"},

2"	cc 2k -1

h i (Uj ) C U U U ((— et) + 2k+i (2(e 1 — e3 )) + 2t (ei±2n-i — e 1 )

i='	k=0 t=O

+2'' • 4Z") U Vt

C U;,
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2"	o0 2k -1

h1f2"-- (U1) C U U U (( — et) + 2
k+1 (2(ei — e;)) + (2t + 1)

i='	k=0 t=O
1#I.rf2"- ^

x (e,f2"-1 — e,) + 2k
+ 1 . 4Z") U V1

C U[,

h; (Ui) C (-2et + e, + 4Z 11 ) U (-2e t±2"-i + e i + 42 11 )

C U1,	where lzhi,	i±2" -1 ,	lE{1,...,2}

(iii) U; , i = 1, ... , 2", are disjoint. Two cosets or non-coset sets chosen from U1
and UJ, where j # i, i f 2n-1 , cannot intersect, since they are different modulo

2. Futhermore, two of the cosets or non-coset sets chosen from U1' and Ul't2"_,
cannot intersect either, since for a + 2" • 4Z" C U1, b + 21 •4Z" C UI±21 with

k<l,a—b00mod2k •4Z

Now since U, , i = 1, ... , 2" , are generated from A n by , U1 C U, for all i = 1, ... , 2" .

Also from U 1 U1 = 7G", UZ_ 1 U[ = Z". Since all U,', i = 1, ... , 2", are disjoint,
U, = U, for all i = 1,...,2".

For any i = 1, ... , 2", all the cosets in U[ are disjoint, so

no 2k-1	1	 no	2k	1

c(U1 ) > (2" —2). E E (2k 4)n = (2" —2). E 2211 . (2k)fl = 2n
k=0 t=O	 k=0

Thus F-2_ 1 c(U,) = 1. Theorem 4 shows that U, i = 1, ... , 2', are regular model sets.
To get a model set interpretation of the chair tiling itself we proceed as follows. We

observe that every arrow points to the inner corner of exactly one chair. We label each
chair by its inner corner point which is at the tip of exactly 2" — 1 arrows. These comer
points give us 2" sets X1, ... , X 2" according to the type, and all lie in the shift L' =
(? , ... , Z) + Z" of our lattice Z". Let f , i = 1, ... , 2" , be (2 , ... , 2) — e1, respectively.
Then U1 +f, is the set of tips of all arrows of type i and U +f, = L' n (V, + f ), for

0

some V; C Z2 for which Vi is compact, 1'z 0, and  (8V1) = 0. Now

X,=L'n n (v;+f;)

which is the required regular model set description of X,, since

a (l (v; + f;) C U 8(v; + f; )
ilfz"	 ltf2"

and/1(8(V1 +f;))=0forall j =1,...,2".
From this result we can show that if we mark each chair with a single point in a

consistent way, then the set of points obtained from all the chairs of any one type also
forms a regular model set, and hence a pure point diffractive set.
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