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This article gives an overview of both theoretical and experimental
developments concerning states with lattice symmetry breaking in the
cuprate high-temperature superconductors. Recent experiments have pro-
vided evidence for states with broken rotation as well as translation
symmetry, and will be discussed in terms of nematic and stripe physics.
Of particular importance here are results obtained using the techniques of
neutron and X-ray scattering and scanning tunnelling spectroscopy. Ideas
on the origin of lattice-symmetry-broken states will be reviewed, and effec-
tive models accounting for various experimentally observed phenomena
will be summarized. These include both weak-coupling and strong-coupling
approaches, with a discussion of their distinctions and connections.
The collected experimental data indicate that the tendency toward uni-
directional stripe-like ordering is common to underdoped cuprates, but
becomes weaker with increasing number of adjacent CuO2 layers.
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1. Introduction

High-temperature superconductivity in the copper oxides constitutes one of the most

fascinating and challenging problems in modern condensed matter physics. Since its

discovery in 1986 by Bednorz and Müller [1], it has influenced and inspired a vast

variety of both experimental and theoretical developments, ranging from the

tremendous improvements in techniques like photoemission and scanning tunnelling

microscopy (STM) over the development of theoretical tools for strongly correlated

and low-dimensional systems to the discovery of fundamentally new states of matter.

1.1. Doped Mott insulators

Superconductivity in the copper oxides arises from doping of half-filled Mott

insulators.1 While a number of low-temperature properties of the superconducting

state are compatible with BCS-like pairing [2] of d-wave symmetry, the normal state

is highly unconventional and appears to violate Fermi-liquid properties (except,

perhaps, at strong overdoping), in contrast to most other superconductors where

pairing derives from a Fermi-liquid metallic state.

Understanding doped Mott insulators is at the heart of the high-Tc problem [3,4];

however, here both our conceptual and methodological toolboxes are still rather

Advances in Physics 701

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
6
:
4
8
 
2
1
 
D
e
c
e
m
b
e
r
 
2
0
0
9



limited. Phenomenologically, the pseudogap regime in underdoped compounds is not

understood, as is the doping evolution of the normal-state Fermi surface and the fate

of local magnetic moments. Further puzzles are connected to the linear-in-T

resistivity around optimal doping above Tc and the asymmetry between electron- and

hole-doped materials [5–7].

It has become clear that doped Mott insulators are characterized by a plethora of

competing ordering tendencies, with commensurate antiferromagnetism and super-

conductivity being the most prominent ones. Others are incommensurate spin- and

charge-density waves, orbital magnetism with circulating currents, and exotic

fractionalized states with topological order [3,4,8].

Incommensurate uni-directional spin- and charge-density waves, often dubbed

‘stripes’ [9–14], play an interesting role: those states were first predicted in mean-field

studies of Hubbard models [15–18] and later observed in La2�xBaxCuO4 and

La2�x�yNdySrxCuO4 [19,20], belonging to the so-called 214 family of cuprate

compounds. Those stripe states break the discrete translation and rotation

symmetries of the square lattice underlying the CuO2 planes. A conceptually related

state is an (Ising) ‘nematic’, which only breaks the lattice rotation symmetry and

which may occur as an intermediate state upon melting of stripe order [11,21].

Stripes and nematics, together with the associated phase transitions and

fluctuation phenomena, constitute the focus of this review article. While stripe

states were originally thought to be a very special feature of the 214 compounds, this

view has changed. The last few years have seen exciting experimental progress:

signatures of states with lattice symmetry breaking have been identified in a number

of other cuprates and in a number of different probes, and the dependence of the

ordering on external parameters has been mapped out in more detail. In parallel,

stripe-like charge ordering has been identified and investigated in other correlated

oxides, most importantly nickelates [22,23] and manganites [24]. While there are

some important differences between those systems and cuprates, it is likely that the

phenomena are related.

Taken together, the observations suggest that stripe and nematic states are an

integral part of the physics of doped Mott insulators, qualifying them as an

interesting subject of fundamental research in their own right. However, their role

for superconductivity in cuprates is unclear at present. On the one hand, interesting

theoretical ideas of stripe-driven or stripe-enhanced superconductivity have been put

forward. On the other hand, in the cuprates there seems to be an anticorrelation

between Tc and the strength of stripe ordering phenomena, and no (static) stripe

signatures have been identified in the cuprates with the highest Tc. We will return

to this discussion toward the end of the article.

1.2. Why another article on stripes?

Both experimental and theoretical aspects of stripes have been the subjects of other

reviews in the past [9–14]. In addition, stripes have been discussed in more general

introductory or review articles on cuprate superconductors, both from experimental

[5,25–27] and theoretical [3,4,6–8,28,29] perspectives. The most recent and compre-

hensive review closely related to the present subject is the one by Kivelson et al. [11]
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on ‘How to detect fluctuating stripes in the high-temperature superconductors’,

published in 2003.

The main motivation for a new article is that a number of key experiments were

performed in the last few years (i.e. after 2003), such that those and subsequent

theoretical developments are not covered in the above articles. The recent

developments have changed the perception of the community with regard to states

with broken lattice symmetries, making this old subject a very timely one.

1.3. Focus

The goal of this article is to review concepts, experimental results, and theoretical

ideas relevant to lattice-symmetry-broken states in doped cuprate superconductors.

The emphasis is on uni-directional spin- and charge-density waves (stripes) and on

nematic states with broken rotational symmetry. These types of order can co-exist

with bulk superconductivity, and modulated superconducting states will naturally

appear in the discussion.

The insulating regime of zero and very small doping will be discussed only briefly,

as the ordered states occurring there can likely be described by quasiclassical

concepts and are of less relevance to cuprate superconductivity (with caveats to be

noted later).

An exciting upcoming topic is that of circulating-current states, of the d-density-

wave type [30], and of the type proposed by Varma [31,32]. Here, experiments and
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Figure 1. Left: schematic phase diagram of hole-doped cuprates in the temperature–doping
plane. Shown are the phases with Néel-like antiferromagnetic (AF) order and superconduc-
tivity (SC) as well as the pseudogap, strange-metal, and overdoped Fermi-liquid (FL) regimes.
The phases with lattice symmetry breaking, discussed in this article, occur primarily in the
underdoped regime at low temperatures (shaded). Various features of the phase diagram are
not settled, such as the shape of the crossover lines near the superconducting dome, the
character of the pseudogap line, and the character of the overdoped FL-like regime. Not
shown are additional crossovers associated with the onset of pairing fluctuations and with
spin-glass behaviour. Right: electronic structure of the CuO2 planes, with a unit cell containing
a Cu 3d and two O 2p orbitals.
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interpretations are partially controversial, such that, at present, it is too early for an

extensive review. Therefore, the coverage of circulating-current states will be brief

and restricted to a few important experimental and theoretical results.

Even with these restrictions, the amount of published literature is vast.

Therefore, here we will focus most of the discussion on works which appeared

over the last few years, and the coverage of older results will be restricted to a few

key references.

1.4. Outline

To set the stage, Section 2 will introduce the phenomenology of ordered phases in the

language of symmetries, order parameters, and Landau theory. An important aspect

is the coupling of order parameters to structural distortions and to quenched

disorder arising from dopant atoms. Section 3 will give on overview of experimental

data, which either establish the existence of symmetry-breaking order or else can be

used to extract characteristics of such order. Important classes of results, providing

direct evidence for order, are those from neutron and X-ray scattering and from

scanning tunnelling microscopy and spectroscopy.

The remainder of the article is devoted to theory: in Section 4, microscopic

considerations in the language of Hubbard and t–J models (or variants thereof) will

be reviewed, with the focus on identifying mechanisms and conditions for symmetry

breaking. Section 5 then describes concrete theoretical efforts in modelling

experimental characteristics of such symmetry-broken phases – due to the difficulties

with microscopic or ab-initio approaches, most published work in this area is based

on effective phenomenological models which take some input from experiment.

Finally, Section 6 contains attempts to discuss the ‘global picture’, i.e. the

implications of both experiments and effective theories for our understanding of

cuprate high-temperature superconductivity. Conclusions and an outlook will wrap

up the article.

To shorten the notation, the following abbreviations for cuprate compounds will

be frequently used: LSCO for La2�xSrxCuO4, LBCO for La2�xBaxCuO4, LESCO for

La2�x�yEuySrxCuO4 with y¼ 0.2, LNSCO for La2�x�yNdySrxCuO4 with y¼ 0.4,

YBCO for YBa2Cu3O6þ�, BSCCO or Bi-2212 for Bi2Sr2CaCu2O8þ�, Bi-2201 for

Bi2Sr2CuO6þ�, and CCOC for Ca2�xNaxCuO2Cl2. The doping level will be specified

as LSCO-0.12 or YBCO-6.6. Moreover, YBCO-124 denotes YBa2Cu4O8.

2. Ordered phases: phenomenology

This Section will introduce the order parameters (in the Landau sense) of

various ordering phenomena which have been observed or discussed in the

cuprates. The orders break symmetries of the underlying microscopic models, such

as the translation symmetry, the C4h point group symmetry of the two-dimensional

(2d) CuO2 square lattice,2 and charge conservation. The coupling between

order parameters will be discussed in terms of Landau theory, which will be used

to derive global scenarios for phase diagrams and sequences of phase transitions.

704 M. Vojta
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Importantly, the following discussion will only make reference to symmetries, but

not to mechanisms of ordering phenomena. Consequently, terms like ‘spin-density

wave’ or ‘charge-density wave’ will be used (throughout the article) for states with

spatially modulated spin or charge densities, independent of whether the underlying

physics is of weak-coupling or strong-coupling nature.3

An order-parameter field, �ð~r, �Þ, is often introduced such that, in an ordered

phase or close to the ordering transition, it varies slowly in space and time, i.e. the

typical length and time scales of fluctuations are large compared to microscopic

scales. To this end, modulations of the relevant observable on microscopic scales are

absorbed in the definition of �, such that � is associated with a finite lattice

momentum.4

Close to an ordering transition, the effective theory for �ð~r, �Þ can often be

written in the form of a �4 or Landau–Ginzburg–Wilson (LGW) model,5

S ¼
Z

d dr d�
c2

2
ð ~r��Þ2 þ

r0

2
ð��Þ2 þ

u0

24
ð�2�Þ

2 � h � �
� �

þ S dyn, ð1Þ

here for a real n-component field ��ð~r, �Þ, and where hð~r, �Þ is the field conjugate to

the order parameter. r0 is the (bare) mass of the order-parameter field �, used to tune

the system through the order–disorder transition, c a velocity, and u0 the quartic

self interaction. Sdyn contains the � dynamics, which is often of the form (@��)
2;

exceptions arise from fermionic Landau damping or field-induced magnetic

precession dynamics.

2.1. Charge- and spin-density waves

A charge-density wave (CDW) is a state where the charge density oscillates around

its average value as6

h�ð ~R, �Þi ¼ �avg þRe ei
~Qc� ~R�cð ~R, �Þ

h i

: ð2Þ

The scalar order parameter �c is associated with the finite momentum (or charge-

ordering wavevector) ~Qc.
7 In general, �c is complex, with the phase describing

the sliding degree of freedom of the density wave; for the sites of a square lattice,

exceptions are simple modulations with ~Qcx,
~Qcy ¼ �, where �c is real. For

wavevectors ~Qc which are incommensurate with the lattice periodicity, all values of

the complex phase of �c are equivalent, whereas the phase will prefer discrete

values in the commensurate case – the latter fact reflects lattice pinning of the

density wave. In particular, depending on the phase, the resulting modulation

pattern can preserve a reflection symmetry at bonds or sites of the lattices, then

dubbed a bond-centred or a site-centred density wave. For stripe order in

cuprates we will be mainly concerned with ~Qcx ¼ ð2�=N, 0Þ and ~Qcy ¼ ð0, 2�=N Þ,
where N is the real-space periodicity, and N¼ 4 appears to be particularly stable

experimentally.

The modulation (2) describes a uni-directional density wave, with a single

wavevector ~Qc, which also breaks the point group symmetry.8 Alternatively, multiple

modulations with different wavevectors may occur simultaneously. If a wavevector

Advances in Physics 705
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and its symmetry-equivalent partners occur with equal amplitude, then lattice point

group symmetry is unbroken. This is the case in a checkerboard state with equal

modulations along ~Qcx and ~Qcy.

In this article, we shall use the term ‘charge-density wave’ in its most general

sense, referring to a periodic spatial modulation in observables which are invariant

under spin rotations and time reversal; apart from the charge density this includes

the local density of states and the magnetic exchange energy, the pairing amplitude,

and the electron kinetic energy, all defined on the links of the square lattice. Note

that even in a strongly ordered state, the modulation in the total charge density may

be unobservably small because longer-range Coulomb interactions tend to suppress

charge imbalance. This applies e.g. to valence-bond-solid (VBS, or spin-Peierls)

order in a Mott insulator. In the described sense, a columnar VBS state [3] is a bond-

centred CDW with ~Qc ¼ ð�, 0Þ.
A spin-density wave (SDW) is specified by a vector order parameter �s�ð~r, �Þ,

�¼ x, y, z, and the spin-density modulation is given by

hS�ð ~R, �Þi ¼ Re
h

ei
~Qs� ~R�s�ð ~R, �Þ

i

: ð3Þ

Here, ~Qs ¼ 0 describes a ferromagnet, while the parent antiferromagnet of the

cuprates has ~Qs ¼ ð�,�Þ. The field �s� transforms as angular momentum under O(3)

spin rotations and is odd under time reversal.

Both collinear and non-collinear SDWs can be described by equation (3):

collinear: �s� ¼ ei�n� with n� real,

spiral: �s� ¼ n1� þ in2� with n1,2� real, n1�n2� ¼ 0:
ð4Þ

In cuprates, both spiral and collinear orders have been discussed. In the context of

stripe order, our focus will be on collinear order with ~Qsx ¼ 2�ð0:5� 1=M, 0:5Þ
and ~Qsy ¼ 2�ð0:5, 0:5� 1=MÞ, with M¼ 2N such that 2 ~Qs ¼ ~Qc modulo reciprocal

lattice vectors.

Spin anisotropies play an important role, as they can freeze out low-energy

fluctuations in some directions. In the cuprates, a combination of spin–orbit and

crystal-field effects leads to antiferromagnetic moments lying in the a–b plane, and

the Dzyaloshinskii–Moriya (DM) interaction results in a small spin canting out of

the plane in La2CuO4 [33].

Charge and spin ordering can be expressed via expectation values of particle–hole

bilinears. Here, charge and spin orders simply correspond to ordering in the spin-

singlet and spin-triplet channels of the particle–hole pair. Assuming a one-band

description and neglecting the time dependence, we have for charge order

hcy	ð~r Þc	ð~r0Þi ¼ Favgð~r� ~r0Þ þ Fcð~r� ~r0ÞRe ei
~Qc� ~R�cð ~RÞ

h i

ð5Þ

where cy	ð~r Þ is an electron creation operator at coordinate ~r and spin 	, and
~R ¼ ð~rþ ~r0Þ=2. Favg and Fc are short-ranged functions, characterizing the unmodu-

lated state and the modulation, respectively. After Fourier transformation, ~k in Fcð ~kÞ
refers to the internal momentum of the particle–hole pairs (in contrast to their

centre-of-mass momentum ~Qc); it determines the structure of the modulation within
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a unit cell. The simplest possible order corresponds to Fcð~r� ~r0Þ � �~r~r0 , i.e. Fcð ~kÞ is
~k-independent, and we will loosely refer to this as ‘s-wave’ order. However, proposals

of order with non-trivial ~k dependence have also been made. This applies to the

so-called ‘d-density wave order’ [30] and d-wave checkerboard order [34,35], where

the modulations are on lattice bonds, while the modulation on sites vanishes

identically. (Note that the d-density wave state breaks time reversal whereas the

d-wave checkerboard does not.) d-wave order parameters have the interesting feature

that they couple primarily to antinodal quasiparticles, leaving nodal quasiparticles

along the Brillouin-zone diagonal unaffected. In general, the symmetry classification

of Fc has to be done according to the lattice point group of the ordered state: for

a square lattice and uni-directional CDW order with ~Q along the (1, 0) or (0, 1)

direction, s-wave and dx2�y2-wave representations always mix, because the ordering

wavevector ~Qc breaks the symmetry from C4 to C2. Nevertheless, stripes may be

dominated by either the s-wave or the d-wave component of Fc, the latter leading to

valence-bond stripes [36], with little modulation on the square-lattice sites and little

coupling to nodal quasiparticles.

Figure 2 schematically shows the real-space structure of stripes with period four

in the charge sector, illustrating bond-centred and site-centred stripes. The STM

results of Kohsaka et al. [37] are most consistent with bond-dominated stripe order

as in Figure 2(d).

As noted above, the terms ‘charge-density wave’ and ‘spin-density wave’ will be

used without reference to the underlying cause of the modulation; hence, ‘stripe’ is

equivalent to ‘uni-directional charge-density wave’. CDW and SDW states can be

insulating (like Wigner crystals), metallic, or superconducting.

(b)(a)

(d)(c)

Figure 2. Schematic real-space structure of stripe states with period four in the charge sector.
(a) Bond-centred and (b) site-centred stripes with period-eight magnetic order, showing the
on-site hole densities and magnetizations. (c), (d) Bond-centred charge-only stripes, now
showing the modulations in both the on-site hole density and the bond strength (i.e. kinetic
energy). Depending on the form factor Fc in equation (5), the modulation in the spin-singlet
sector can be primarily of (c) s-wave or (d) d-wave type – the latter structure is dominated
by bond modulations.
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2.2. Superconducting pairing

For singlet superconducting pairing, the order parameter is a charge-two scalar

field  ð ~R, �Þ, where ~R and � are the centre-of-mass coordinates of the Cooper pair.

Most superconducting states have a zero-momentum condensate, i.e. an ordering

wavevector ~Qp ¼ 0. However, modulated pairing is possible as well, and we may

write in analogy to equation (5)

hcy"ð~r Þc
y
#ð~r0Þi ¼ Fpð~r� ~r0Þ

h

ei
~Qp� ~R  ð ~RÞ þ e�i ~Qp� ~R � ð ~RÞ

i

: ð6Þ

Because the superconducting order parameter is complex, two fields  and � are

required to implement the sliding degree of freedom of the ‘pair density wave’.

The form factor Fp determines the internal structure of a Cooper pair: for

homogeneous pairing, ~Qp ¼ 0, the angular dependence of Fpð~r Þ leads to the usual

classification into s-wave, dx2�y2-wave, etc. In the cuprates, there is good evidence

for the pairing symmetry being dx2�y2 [38].

Finite-momentum pairing has first been proposed by Fulde and Ferrell [39]

and Larkin and Ovchinnikov [40] (Fulde–Ferrell–Larkin–Ovchinnikov, FFLO), as

a state realized for large Zeeman splitting of the Fermi surfaces in an external field.

More than 40 years later, evidence for such a FFLO state has indeed been found in the

organic superconductor 
-(BEDT–TTF)2Cu(NCS)2 [41] (BEDT-TTF¼Bis(ethylen-

dithiolo)tetrathiofulvalen). In cuprates, finite-momentum pairing in zero field has

been proposed in the context of stripe phases [42,43]; see Section 5.6.2.

2.3. Nematics

States which spontaneously break the (discrete or continuous) real-space rotation

symmetry of the underlying Hamiltonian are often called ‘nematic’ states. The

discussion here will be restricted to homogeneous ( ~Q ¼ 0), time-reversal-invariant,

and spin-symmetric nematic orders.9 Moreover, the focus will be on electronically

driven symmetry breaking: while lattice distortions invariably follow the broken

symmetry, transitions involving simple structural distortions only shall not be

considered ‘nematic’.

The term ‘nematic’ originates in the physics of liquid crystals where it refers to

a phase with orientational, but without translational, order of molecules. An

electronic nematic phase can arise as a Pomeranchuk instability of a Fermi liquid

[44], in which case the ordered phase possesses a full Fermi surface, but can also be

driven by strong correlations and even occur in an insulator, i.e. in the absence of

a Fermi surface. In particular, a nematic phase may occur upon melting of stripe

order, namely when the rotation and the translation symmetries are broken at

separate transitions. Then, a nematic is the intermediate phase between the stripe and

disordered phases [21].10

In the case of a continuous rotation symmetry, the order can be characterized

by an angular momentum l40; e.g. for l¼ 2, the order parameter is a director,

specifying an axis in real space. In contrast, on the square lattice with C4 rotation

symmetry, l¼ 2 (or d-wave) nematic order corresponds to breaking the rotation

symmetry down to C2. One can distinguish dxy and dx2�y2 nematic orders; here we
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shall focus on the latter. The order parameter is of Ising type; globally, it may be

defined via the electronic momentum distribution according to

�n ¼
X

~k

d ~khc
y
~k	
c ~k	i, d ~k ¼ cos kx � cos ky: ð7Þ

A local order parameter can be defined from any spin-singlet bond observable which

is even under time reversal, like the bond kinetic energy,

�nð~r Þ ¼ hcy	ð~r Þc	ð~rþ xÞ � cy	ð~r Þc	ð~rþ yÞi, ð8Þ

the bond magnetic energy, or the pairing strength.

The so-defined nematic order parameter �n measures rotation symmetry

breaking. As such, it is finite in a uni-directional density wave state as well: the

density wave will induce a �n proportional to j�cxj2� j�cyj2 or j�s�xj2� j�s�yj2; see
Section 2.5. Strictly speaking, the density wave is not a nematic state, as translation

symmetry is broken as well. However, here we shall use the term ‘nematic order’

synonymously to lattice rotation symmetry being spontaneously broken.11

In recent years, nematic phases have been proposed as explanations of some

puzzling experimental observations, such as the enigmatic ordering transition in

URu2Si2 [45] and the low-temperature phase near the metamagnetic transition of

Sr3Ru2O7 [46].

2.4. Loop-current order

While SDW, CDW, and nematic orders have been experimentally identified at least

in some cuprates with reasonable confidence, other symmetry-breaking order

parameters (apart from superconductivity) have been suggested but are more

controversial. Most prominent are various forms of loop-current order, proposed as

origin for the pseudogap behaviour of underdoped cuprates. Charge-current loops

break the time-reversal symmetry and induce orbital moments. In particular, orbital

antiferromagnets are characterized by current loops with directions alternating from

plaquette to plaquette on the lattice, such that the total moment is zero and hence

there is no global edge current.

Varma [31,32] has proposed different patterns of current loops within a unit cell

of the CuO2 plane, such that the order exists at wavevector ~Q ¼ 0, but has vanishing

total moment. The description of these states in general requires a three-band model

of the CuO2 plane, with Cu and O orbitals; however, the symmetry of the state �II

of [32] can also be represented in a one-band model (case G in [47]). The magnetic

moments are expected to point in a direction perpendicular to the CuO2 layers, but

in principle loop-current order could also involve oxygen orbitals outside layers,

resulting in canted moment directions.

A distinct type of state was proposed by Chakravarty et al. [30] as resolution of

the pseudogap puzzle, namely an alternating current pattern with ~Q ¼ ð�,�Þ with
d-wave form factor [48,49], dubbed a d-density wave. In fact, symmetrywise this

state is a generalization to finite doping of the so-called staggered flux phase which

appeared in early mean-field studies of Hubbard–Heisenberg models [50].
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Recent neutron-scattering experiments reported magnetic order in the pseudogap

regime at ~Q ¼ 0, which has been interpreted as evidence for the loop current of �II

type, and we shall come back to these experiments in Section 3.1.3. Some other

neutron-scattering experiments have also been argued to be consistent with d-density

wave order, and will be mentioned in Section 3.1. We shall, however, refrain from

a detailed discussion of loop-current states in this article, considering that some

aspects of both theory and experiment are either controversial or not fully settled.

2.5. Order-parameter coupling and global phase diagrams

In the presence of multiple ordering phenomena, the various order parameters are

locally coupled. The general form of this coupling can be deduced from symmetry

arguments. For any two order parameters �1 and �2, a density–density coupling term
vj�1ð~r, �Þj2j�2ð~r, �Þj2 in the LGW theory is generically present. The sign of v depends

on microscopic parameters and decides about repulsion or attraction between �1
and �2. For instance, if �1,2 represent horizontal and vertical CDW order param-

eters, then v40 will lead to uni-directional (stripe) order, whereas v50 results in

bidirectional (checkerboard) order.

More interesting are couplings involving one order parameter linearly. Those

terms are strongly constrained by symmetry and momentum conservation. A

nematic order parameter �n in a tetragonal environment couples to a CDW and

a SDW according to

�1�nðj�cxj2 � j�cyj2Þ þ �2�nðj�s�xj2 � j�s�yj2Þ; ð9Þ

note that j�cxj2, etc., carry vanishing lattice momentum. A CDW order parameter

couples to a spin-density wave �s, a uniform superconducting condensate  0, and

a modulated condensate  , � , equation (9), according to

�3ð��c�2s þ c:c:Þ þ �4ð��c � � þ c:c:Þ þ �5ð��c 0 
� þ �c 0

� � þ c:c:Þ: ð10Þ

The couplings �3,4 are allowed only if the ordering wavevectors obey ~Qc ¼ 2 ~Qs

and ~Qc ¼ 2 ~Qp, respectively, whereas �5 is only allowed if ~Qc ¼ ~Qp.

The listed terms imply, for example, that a uni-directional density wave induces

nematic order via �1,2 and that a collinear SDW with ~Qs induces a CDW with 2 ~Qs via

�3. As a consequence, a transition into a stripe-ordered state may occur as a direct

transition from a disordered into a CDWþSDW state, or via intermediate nematic

and CDW phases; see Figure 3. The phase diagram of the corresponding Landau

theory has been worked out in detail by Zachar et al. [51]. Whether the intermediate

phases are realized depends again on microscopic details; weak-coupling theories

typically give a direct transition into a CDWþ SDW state.

Similar considerations can be applied to the coupling between stripes and

superconducting condensates arising from �4,5. In particular, the co-existence of

stripes and superconductivity induces a modulated component of the condensate.

A detailed analysis can be found in [53].

An external Zeeman magnetic field couples only quadratically to any of the order

parameters, as all have vanishing uniform magnetization. The orbital part of an
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external field will have a strong influence primarily on the superconducting order, by

inducing vortices. These considerations will be important in discussing the field

tuning of ordering phenomena in Section 3.5.3.

2.6. Concept of ‘fluctuating order’

‘Fluctuating order’ describes a situation on the disordered side of, but close to, an

ordering transition, such that precursor effects of the ordering phenomenon are

visible in physical observables. Regarding symmetries or symmetry breaking,

‘fluctuating order’ is equivalent to ‘no order’. For metallic systems and in the

absence of additional symmetry breaking, a regime of fluctuating order can then be

adiabatically connected to the weakly interacting Fermi liquid.

In weakly interacting and/or high-dimensional systems, the fluctuation regime is

usually tiny and restricted to the immediate vicinity of the critical point. In contrast,

large-fluctuation regimes typically occur in strongly coupled and/or low-dimensional

systems.

Fluctuating order is characterized by a correlation length � and a typical

fluctuation energy (or frequency) D. The physical properties at distances larger than �
and energies smaller than D will be those of the disordered phase. On length scales

smaller than �, the system is critical (not ordered, as sometimes implied) – this

follows directly from standard scaling arguments. However, if the anomalous

dimension  of the order parameter is small, then spectral features of the critical

regime are not very different from those of the ordered phase, e.g. the branch points

in the critical spectrum follow a dispersion similar to that of Goldstone modes of the

x

T
e
m

p
e
ra

tu
re

x x

SC SC SC
CDW+SDW

CDW+SDW

CDW+SDW

CDW

CDW

nematic

(a) (b) (c)

nematic

Figure 3. Schematic phase diagrams, illustrating possible transition scenarios into stripe-
ordered states. The vertical axis is temperature, whereas the horizontal axis – where x may
represent doping – tunes the interplay between superconductivity and spin/charge order,
which is assumed to be competitive. The solid (dashed) lines are transitions into lattice-
symmetry-breaking (superconducting) states. Case (a) corresponds to a weak-coupling
scenario, with a single stripe-ordering transition, while case (c) may be realized at strong
coupling, with distinct transitions for nematic, charge, and spin orders. Assuming that
increasing x also moves the system from strong to weak coupling, the intermediate case (b) is
possible as well. Effects of lattice pinning and incommensurability are ignored, as is the
interplay between stripe/checkerboard and horizontal/diagonal orders. Quenched disorder will
smear out both CDW and nematic transitions and likely turn the SDW into a cluster spin glass
[52]. In addition, a structural anisotropy will smear out the nematic transition as well; see
Section 2.7.
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ordered state.12 Close to a quantum critical point, D is typically the gap in the

collective-mode spectrum, and at low temperatures � and D scale with the distance to

criticality according to �/ jr� rcj�� and D/ jr� rcj�z, where r is the tuning parameter

(e.g. doping) and � and z are the correlation-length and dynamical exponents of the

transition at r¼ rc.

Fluctuating order is invisible to static probes (unless there is some form of

pinning, see below). Some probes, like elastic neutron scattering or muon spin

rotation (�SR), are quasistatic, i.e. average over a time scale which is large compared

to electronic scales, but can be comparable to the time scale, 1/D, of collective

fluctuations. As a result, the ‘ordering’ temperature as determined by quasistatic

probes will not be unique, but instead depend on the type of probe – this is a typical

signature of a large-fluctuation regime.

A direct probe of fluctuating order is given by the low-frequency dynamic

susceptibility, �ð ~k,!Þ. The imaginary part �00ð ~k,!Þ will be strongly peaked at the

ordering wavevector, ~k � ~Q, and at !�D (provided sufficient energy resolution of

the experiment), and the real part �0ð ~Q,! ¼ 0Þ will diverge at the critical point. In the

spin sector, �00 can be measured by inelastic neutron scattering; in the charge sector,

electron energy-loss spectroscopy (EELS) is in principle the appropriate method;

however, to date its energy resolution (40.1 eV) is insufficient to detect fluctuating

stripes in cuprates. Note that the static structure factor Sð ~kÞ, being an energy-

integrated quantity, is not a suitable probe for fluctuating order near a quantum

phase transition, because it is not directly sensitive to the low-energy part of the

fluctuation spectrum.13 (This is different near a classical phase transition, where Sð ~kÞ
and �00ð ~k,! ¼ 0Þ contain the same information, because the temperature T is much

larger than the relevant fluctuation frequencies.)

While all statements here were for a clean system, the presence of quenched

disorder qualitatively modifies the picture. In particular, disorder can induce pinning

of otherwise slowly fluctuating order, such that it is detectable by static probes. This

will be discussed in more detail in the next subsection.

2.7. Influence of structural effects and disorder

So far, we have discussed the concepts of ‘order’ and ‘phase transitions’ without

taking into account the effects of structurally broken lattice symmetry and of

quenched disorder. These effects often severely complicate (and also sometimes

simplify) the identification of ordered phases [11].

2.7.1. Uni-axial in-plane anisotropy

For our discussion, the most important structural effect is that of a uni-axial lattice

anisotropy of the CuO2 plane, which breaks the C4 rotation symmetry.14 While such

anisotropies are absent in the BSCCO15 and CCOC compounds, they are important

in YBCO and 214 materials.

In YBCO, in addition to the CuO2 planes, there exist chain layers with CuO

chains running parallel to the orthorhombic b axis. For doping �� 0.4, this results

in an orthorhombic structure with inequivalent a and b axes (with lattice constants

a5b). Single crystals commonly are ‘twinned’, i.e. contain both orientations of
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chains, such that macroscopic measurements average over the inequivalent a and b

directions. However, it has become possible to produce de-twinned crystals, and

relevant experimental results will be described below.

In the order-parameter language, the anisotropic structure results in a (small)

global field coupling linearly to nematic and quadratically to CDW and SDW

orders. Hence, a transition to a nematic state will be smeared; conceptually, the

electronic nematic state remains well defined only for a large electronic anisotropy

in the presence of a small structural anisotropy. In contrast, the transition to a stripe

state remains sharp, with its critical temperature being enhanced.

In the 214 compounds, various structural modifications occur as a function of

temperature. A transition from a high-temperature tetragonal (HTT) structure to

a low-temperature orthorhombic structure (LTO) occurs at a doping-dependent

transition temperature between 200 and 500K. This HTT!LTO transition occurs

as a result of the bond-length mismatch between the CuO2 planes and the La2O2

bilayers. This mismatch is relieved by a buckling of the CuO2 plane and a rotation of

the CuO6 octahedra. In the LTO phase, the crystallographic axes are rotated by 45�

with respect to those of the HTT phase; in this article, we shall use the coordinate

notation of the HTT phase unless otherwise noted. In terms of electronic parameters

of the Cu lattice, the LTO phase is characterized by inequivalent diagonals.

While LSCO remains in the LTO phase down to lowest temperatures, the

compounds LBCO, LESCO, and LNSCO display an additional low-temperature

tetragonal (LTT) phase. The LTO!LTT transition occurs between 50 and 150K

and is driven by the smaller radius of e.g. the Nd and Eu ions compared to La. In the

LTT phase, the CuO6 octahedra are rotated such that now the a and b axes of the Cu

lattice are inequivalent. Therefore, in the LTT phase, there is again a field coupling

to nematic order in each CuO2 plane, which is relevant for stabilizing stripe order.16

However, the direction of the in-plane anisotropy alternates from plane to plane,

rendering the global crystal symmetry tetragonal and macroscopic in-plane

anisotropies absent.

Concrete numbers for the in-plane anisotropies can be extracted from first-

principles calculations. For the LTT phase of 214 compounds, a simple estimate can

be obtained from the octahedral tilt angles. For a tilt angle of �	 4–5� in LNSCO-

1/8, the relation tx/ty’ jcos(�� 2�)j gives a hopping anisotropy of about Dt/t�
1–1.5% [55,56]. In YBCO the situation is more complicated, as both the structural

distortion and the CuO chains contribute to the (effective) hopping parameters in the

planes. Recent local-density-approximation (LDA) calculations [57] indicate that

ta5tb and Dt/t� 3–4%.

In principle, an electronic in-plane anisotropy can also be induced by applying

uni-axial pressure to an otherwise isotropic sample. However, those experiments tend

to be difficult. A few experimental results are available, demonstrating the interplay

of lattice distortions and stripes [58].

2.7.2. Quenched disorder

Most superconducting cuprates are ‘dirty’ materials, in the sense that chemical

doping in non-stoichiometric composition inevitably introduces disorder (exceptions

are e.g. the oxygen-ordered YBCO-6.5 and YBCO-124 compositions).17 The physics
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of disorder in cuprate superconductors is extremely rich and only partially

understood; the reader is referred to a recent review of both experimental and

theoretical aspects [59].

For the discussion of ordering phenomena, it is important that the disorder

potential couples to the charge sector of the CuO2 plane. From symmetry, this

disorder then is of random-mass type for a SDW order parameter, i.e. an impurity at

~x0 acts as ��2s ð~x0Þ, whereas it is of much stronger random-field type18 for a CDW

order parameter, ��cð~x0Þ. For a nematic order parameter, the coupling is also of

random-field type, except for pure site disorder which does not locally select

a direction.

Ordering in the presence of randomness is a difficult problem in statistical

mechanics, which is not fully understood even in the classical case. Some important

questions are about (i) the existence of a true ordered phase, associated with a sharp

ordering transition, (ii) the nature of the phase transition, and (iii) the existence of

regimes with anomalous properties near the (putative) phase transition. In the

following, we shall only touch upon a few aspects relevant to cuprates and the focus

of this article, and refer the reader to the literature, namely to [60] for the famous

Harris criterion about the stability of phase transitions in the presence of

randomness, [61] for the Imry–Ma argument about the stability of ordered phases,

[62] for an overview of the random-field Ising model, and [63] for an overview of

rare regions near phase transitions.

In the random-mass case, the ordered phase is characterized by true symmetry

breaking and survives as a distinct phase. The phase transition is expected to be

sharp, albeit perhaps modified compared to the clean case according to the Harris

criterion, with the exception of certain quantum phase transitions with order-

parameter damping [63].

In contrast, in the random-field case the effects of quenched disorder are more

drastic. In low dimensions, the ordered phase ceases to exist, because the system

breaks up into domains which are pinned by the local fields [61]. Consequently, there

is no sharp phase transition upon cooling, and the correlation length is finite even in

the zero-temperature limit. This applies in particular to the random-field Ising model

in two space dimensions, and is expected to hold for discrete ZN symmetries as

well.19 As the system is at its lower critical dimension d�c ¼ 2, the domains are

exponentially large for weak disorder. In the case of continuous symmetry, the lower

critical dimension is shifted to d�c ¼ 4. Experimentally, random-field pinning implies

that static probes will see a gradual, i.e. smeared, onset of order. Rather little is

known about dynamical properties in the quantum case. On the disordered side of

a quantum phase transition, randomness will induce in-gap spectral weight, and it is

conceivable that the smeared phase transition is accompanied by slow glass-like

order-parameter dynamics.20

For stripes, the conclusion is that the charge-ordering transition is generically

smeared due to random-field effects (assuming the inter-plane coupling to be weak).

The spin-ordering transition could still be sharp; however, the coupling between spin

and charge sectors may invalidate this guess: short-range charge order can induce

magnetic frustration in the spin sector, leading to the spin-glass behaviour.

Whether this setting allows for a sharp phase transition is not known.
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Experimentally, both spin- and charge-ordering transitions appear to be broad and

glassy; see Section 3.6.

Pinning of multiple equivalent collective modes, e.g. horizontal and vertical

stripes, can lead to interesting phenomena [65,66]. If the clean system would display

uni-directional order, random-field pinning tends to globally restore the rotation

symmetry, because domains of different orientations will occur. Locally, rotation

symmetry will still be broken (unless the repulsion between the two order parameters

is much weaker than the disorder effect). In contrast, if the clean system has

a tendency to bidirectional (checkerboard) order, pinning may locally induce some

anisotropy. As a consequence, random-field pinning makes it difficult to deduce the

nature of the clean order (stripes vs. checkerboard), in particular for weak order and

strong pinning.21

3. Experimental evidence for lattice symmetry breaking

Let me turn to actual results of experiments on cuprate superconductors. While

it seems that detecting a symmetry-breaking order should be a straightforward

undertaking, both fundamental and practical problems complicate matters.

The most important fundamental problem is related to the effect of quenched

disorder, described in Section 2.7. Disorder from chemical doping acts as a random

field for the CDW order parameter; hence, it is a relevant perturbation. Thus, the

charge-ordering transition is smeared, most likely eliminating thermodynamic

singularities. A second fundamental problem is that macroscopic manifestations of

broken rotation symmetry can only be expected when uni-directional stripes in all

CuO2 planes are commonly aligned in one direction. Such a single-domain situation

cannot be expected to be realized, mainly because of the random-field effects, unless

a global symmetry-breaking field exists which selects one stripe direction; see

Section 2.7. The best candidate here is the YBCO family.

The direct observation of superstructures is nevertheless possible and will be

discussed below. Here, practical issues such as the availability of sufficiently large

single crystals, clean surfaces, etc., become important, but those issues have been

resolved at least partially. Scattering experiments which average over a large spatial

area are again faced with the domain problem: if e.g. domains of both horizontal and

vertical stripes are simultaneously present, distinguishing this from a local super-

position of both (i.e. checkerboard order) requires a careful analysis.

As a result of those efforts, signatures of translation symmetry breaking have

been found in a variety of hole-doped cuprates, most notably in LNSCO, LESCO,

and LBCO. The phase diagrams of the latter two are shown in Figure 4, where the

results from different measurement techniques have been collected. For the three

materials, the order can be consistently interpreted in terms of uni-directional SDW

and CDW orders, i.e. stripes, over a wide doping range. Moreover, static

incommensurate SDW order has been established in La2CuO4þ�, in LSCO for

x50.13, and for YBCO for �
 0.45 (but in the latter case the order is only short

ranged and of glassy character). An exciting recent development is the clear

observation of stripes in STM experiments on BSCCO and CCOC compounds,

although it has to be kept in mind that STM probes the surface layer only.
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Figure 4. Phase diagrams of LESCO (upper) and LBCO (lower). For LESCO, the data points
represent the superconducting Tc [68], the charge-ordering temperature Tch from resonant soft
X-ray scattering [69], the spin-ordering temperature Tsp from neutron scattering [70] and from
�SR [55], and the LTO–LTT transition temperature TLTT from X-ray scattering [55]. For
LBCO, the data are Tc [71,72] (stars, squares), TLTT from X-ray scattering [73,74] (crosses,
circles), Tch from X-ray scattering [73], and Tsp from neutron scattering [73,74] (filled squares,
triangles) and from �SR [75]. The lines are guides to the eye only. The published data display
a rather large spread, with transitions often being broad, which may be due to effects of
disorder and/or sample inhomogeneities. Moreover, data obtained on polycrystals and single
crystals may differ substantially: for LBCO-1/8, �SR results show Tsp	 29K for polycrystals
[75] and Tsp	 40K for single crystals [76].
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As discussed in more detail in Section 6.1, stripe signatures seem to weaken with

increasing number of adjacent CuO2 layers in hole-doped compounds, and have not

been reported in electron-doped cuprate materials.

Direct observations of stripe order are corroborated by more indirect probes:

nuclear magnetic resonance (NMR) nuclear quadrupole resonance (NQR), and �SR
experiments provide evidence for inhomogeneous magnetism in the 214 compounds,

with a temperature dependence similar to that seen in scattering experiments. Besides

the temperature and doping dependence of the symmetry-breaking order, its

dependence on an applied magnetic field has been studied as well, which allows one

to draw conclusions about the relation between superconductivity and stripe order.

In principle, translational symmetry breaking should leave well-defined traces in

the dispersion of all elementary excitations due to band backfolding and the opening

of Bragg gaps. However, clear-cut experimental signatures are difficult to identify,

due to a variety of complications: disorder and the simultaneous presence of

horizontal and vertical stripes tend to smear the signal, and matrix-element effects

do not allow us to observe all bands. The experimental results for magnetic

excitations, phonons, and the single-electron spectrum as measured by angle-

resolved photoemission (ARPES) will be discussed in subsections below.

Signatures of rotation symmetry breaking have been most clearly identified in

underdoped YBCO, both in transport and in neutron scattering. In particular, the

magnetic excitation spectrum of YBCO-6.45 was found to develop a spatial

anisotropy below about 150K; see Section 3.2.4. Whether these data should be

interpreted in terms of a Pomeranchuk instability of the Fermi surface or in terms of

fluctuating stripes is open at present and will be discussed in Section 5.9. Locally

broken rotation symmetry is clearly visible in STM data obtained from the surface of

underdoped BSCCO and CCOC, where it is accompanied by stripe formation; see

Section 3.3.

3.1. Static order in neutron and X-ray scattering

Long-range order accompanied by breaking of lattice translation symmetry leads to

sharp superlattice Bragg peaks in diffraction experiments. Those can be detected by

neutrons or by X-rays. Experiments require sufficiently large single crystals, which

are by now available for many cuprate families.

3.1.1. Spin-density waves seen by neutron diffraction

Experimental evidence for static stripe-like order was first found in neutron-

scattering experiments on LNSCO with doping level 0.12 [19,20], which is

a superconductor with an anomalously low Tc of roughly 5K. Those experiments

detected static spin correlations with an onset temperature of about 55K, which were

peaked at wavevectors ~Qsx ¼ 2�ð0:5� �s, 0:5Þ and ~Qsy ¼ 2�ð0:5, 0:5� �sÞ, i.e. at four
spots slightly away from the (�,�) antiferromagnetic (AF) order of the parent

antiferromagnet. At the same time, neutron scattering was used to locate the LTO–

LTT structural transition at 70K and the onset of charge order slightly below this

temperature, with ordering wavevectors ~Qcx ¼ 2�ð��c, 0Þ and ~Qcy ¼ 2�ð0, � �cÞ.
Within the experimental accuracy, �s¼ �c/2¼ 0.12, where �s¼ �c/2 is expected on
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symmetry grounds for co-existing collinear SDW and CDW orders; see Section 2.5.

This type of order was later found in LNSCO also for doping levels 0.08
 x
 0.20,

using both neutron and X-ray scattering [77,78]. The incommensurability roughly

follows the doping level, �s	 x for x
 0.12, whereas it tends to saturate for larger x,

with �s	 0.14 at x¼ 0.20 (Figure 5).22

In fact, incommensurate dynamic correlations were detected much earlier in LSCO

at various doping levels, with a similar wavevector dependence on doping [92,93].

Subsequent elastic neutron scattering experiments found quasistatic magnetic order,

with wavevectors obeying �s	x, in superconducting LSCO for x50.13 [80,94]. This

makes clear that LSCO is closely located to a quantum critical point (QCP) associated

with incommensurate SDW order. Indeed, inelastic neutron scattering on LSCO-0.14

reported scaling behaviour of the magnetic excitation spectrum, consistent

with a nearby QCP [95]. Low-energy incommensurate fluctuations then occur as

precursors of static order at these wavevectors; see Figure 6 and Section 3.2.2.

Impurity doping experiments of LSCO, with a few percent of Cu atoms replaced

by non-magnetic Zn, support the idea of nearly ordered stripes in LSCO: Zn induces

elastic intensity for x¼ 0.14 [100], whereas it somewhat broadens the elastic peaks at

x¼ 0.12 as compared to the Zn-free sample [87,88]. These observations support the

notion that Zn impurities tend to pin stripes, although it should be noted that Zn is

also known to induce magnetic moments in its vicinity [101–103], which certainly

contributes to the slowing down of spin fluctuations.

Static incommensurate SDW order, similar to that of LNSCO, has also been

detected in neutron scattering on La2CuO4þ� [86], LBCO-1/8 [104], and LESCO-0.15

[70]. In the latter two compounds, the full doping range of static magnetic order has

0.00 0.05 0.10 0.15 0.20 0.25

Doping x 

0
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2εs
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2εs’

0.5

0.5

LNSCO

LSCO

La2CuO4+δ

Zn-LSCO

YBCO

ε s,
 √

2
ε s,

Figure 5. Summary of experimental data illustrating the doping dependence of the
incommensurability �s in the cuprates (the so-called ‘Yamada plot’). Results have been
obtained by different groups: LNSCO [19,20,78] (squares); LSCO [79–84] (triangles);
La2CuO4þd [85,86] (rhombi); Zn-doped LSCO [87,88] (circles); and YBCO [89–91] (crosses).
For LSCO, the plot also shows the incommensurability

ffiffiffi

2
p
�0s of the diagonal modulations

observed for x
 0.06 (filled triangles). For both YBCO and La2CuO4þ�, the x values
corresponding to the hole-doping level are estimates only. Note that most data points are
slightly below the line �s¼ x (solid). The vertical dashed line is the boundary between
insulating and superconducting phases in LSCO.

718 M. Vojta

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
6
:
4
8
 
2
1
 
D
e
c
e
m
b
e
r
 
2
0
0
9



been mapped out by other probes: in LBCO, magnetization and �SR measurements

have established magnetic order for 0.095
 x
 0.155 [70,75], while �SR measure-

ments give evidence for magnetic order in LESCO over the entire doping range up to

x¼ 0.20 [55]. The La2CuO4þ� system, where interstitial oxygens are positioned in

every fourth La2O2 layer for �	 0.12 (the so-called stage-four structure), displays an

incommensurability of �s	 0.12 at a hole doping level of roughly 0.15. Remarkably,

SDW order and bulk superconductivity appear simultaneously at Tc	 42K [86].

However, the behaviour of this compound has been attributed to phase separation

into magnetic and superconducting domains [105].23

To fully characterize the SDW order common to the 214 compounds, more

information is required. The first question, triggered by the finding of four magnetic

Bragg peaks, is whether the order consists of two types of uni-directional stripe

domains with a single ~Q vector each, or whether it is of checkerboard type with two
~Q vectors. The experiment did not detect magnetic peaks along the diagonal

direction, i.e. at locations 2�(0.5� �0, 0.5� �0); this rules out a checkerboard with

modulation directions along (1, 0) and (0, 1), but could be compatible with

a checkerboard of diagonal stripes [88]. However, such a structure would lead to

diagonal CDW peaks, which were not detected.24 Hence, the most plausible

(a)

(b)

Figure 6. Comparison of constant-energy scans at 3meV through an incommensurate
magnetic peak (along path shown in inset) for (a) La1.85Sr0.15CuO4 and (b)
La1.48Nd0.4Sr0.12CuO4. Both scans are at T¼ 40K4Tc and illustrate the similarity of low-
energy fluctuations in non-stripe-ordered (a) and stripe-ordered (b) 214 compounds.
(Reprinted with permission from [112]. Copyright 1999 by the American Physical Society.)
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interpretation is that of two types of large domains (i.e. horizontal and vertical)

in which uni-directional SDWs and CDWs co-exist. In fact, if stripes follow the

structural distortion pattern of the LTT phase, then the stripe direction can be

expected to rotate by 90� from plane to plane.25

The second question concerns the size and orientation of the spin moments in the

SDW phase. The size of the ordered moment per Cu site was determined from

neutron scattering in LSCO to vary between 0.04 and 0.07 �B for 0.06
 x
 0.1 and

to reach a maximum of 0.1 �B for LSCO-0.12 [94]; in LNSCO-0.12 and La2CuO4þ�
the neutron-scattering results yield moment sizes of 0.1 and 0.15 �B [20,86]. In

comparison, �SR experiments suggest a moment size of 0.3–0.35 �B, i.e. roughly

60% of the value in the undoped parent compound, for LNSCO, LBCO-1/8, LSCO-

0.12, and La2CuO4þ� [108,109]. Note that the �SR moment sizes are usually inferred

from a simulation of the �SR signal taking into account the spatial stripe structure

[108,110], which consists of small and large moments, and the quoted numbers

denote the maximum (not average) moment size in the stripe state. The remaining

discrepancy regarding the moment size is not fully understood, and disorder in the

moment directions as well as calibration issues of neutron scattering may play a role.

The moment orientation was studied on LNSCO-0.12 using polarized neutron

scattering by Christensen et al. [111]. The moments are primarily lying in the CuO2

plane, as in the undoped parent compounds, consistent with conclusions drawn from

susceptibility measurements [72]. However, the neutron result was not entirely

conclusive with respect to the in-plane orientation: the polarization signal was found

consistent with either a collinear single- ~Q (i.e. stripe-like) structure or a non-collinear

two- ~Q structure, but was inconsistent with a single- ~Q spiral or a collinear

checkerboard order. Together with the simultaneous existence of charge order, the

data are again consistent with collinear ordering, but a direct proof is still missing.

The third question concerns the correlation length of the SDW order, both

in-plane and along the c axis. In the 214 compounds, the in-plane order reaches

correlation lengths �ab of 200 Å and beyond; however, is often not resolution limited

(which points toward disorder effects and/or glassy behaviour [112]). In contrast, the

correlation length �c in the c direction is typically only one inter-plane distance, with

the exception of the field-induced signal in LSCO-0.10 [113], where �c corresponds
to six inter-plane distances.

The weak c-axis correlations of stripes can be rationalized considering that, with

stripe directions alternating from plane to plane, interactions between second-

neighbour layers are required to align the stripe pattern along the c axis. Such

interactions will be small and have to compete with pinning forces from defects – it is

no surprise that the latter are dominant. In contrast, in the case of field-induced

order, ‘correlated’ pinning by vortex lines can enhance three-dimensional

correlations.

A fourth question is: how important is the LTT distortion for the appearance

of static stripes? A number of studies [104,114,115] have been devoted to the

compounds La15/8Ba1/8�xSrxCuO4 with doping level 1/8, where the LTT distortion

of LBCO-1/8 weakens with Sr doping and disappears at x	 0.09. These studies

suggest that static stripe order is tied to the LTT distortion, i.e. it disappears in

favour of stronger superconductivity around x	 0.09. In contrast, a very recent

pressure study on LBCO-1/8 revealed that stripe domains still occur in the
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high-pressure, high-temperature tetragonal (HTT) phase above pressures of 2GPa

[116]. If verified, this would constitute an exciting example of simultaneous,

electronically driven, spontaneous breaking of rotation and translation symmetries.

In the insulating regime of both LSCO [80,84] and LNSCO [99] at very small

doping, x50.055, a different type of magnetic order has been found. Here, elastic

peaks were found at ~Qs ¼ 2�ð0:5� �0s, 0:5� �0sÞ, i.e. in the diagonal direction of the

Cu square lattice. The incommensurability follows �0s 	 x=
ffiffiffi

2
p

for 0.025x50.055;

thus, the peak distance to (�,�) appears to follow the same linear x dependence as

for superconducting compounds with 0.0555x50.125. This may suggest a common

origin of the SDWs in both doping ranges and, consequently, the low-doping SDW

order has been interpreted in terms of diagonal stripes. However, no evidence for

charge order has been reported for x50.055. An alternative scenario consists of

spiral SDW order without accompanying CDW order [117–119]. To my knowledge,

polarized neutron scattering – which would be able to distinguish the two

alternatives – has not been performed to date.

In other cuprate families, static incommensurate spin order has not been

detected, with the exception of strongly underdoped YBCO: a conclusive set of data

stems from de-twinned crystals of YBCO-6.35 and YBCO-6.45 where neutron-

scattering measurements of Hinkov et al. [91] and Haug et al. [96] detected

incommensurate quasistatic order at wavevectors 2�(0.5� �s, 0.5). However, the data

on YBCO-6.45 suggest that the order is weak and glassy: quasistatic order in neutron

scattering sets in below 30K, with a correlation length of about 20 Å only, and �SR
measurements detect static order only at 1.5K [91]. The findings of [91,96] are

broadly consistent with earlier neutron-scattering reports using twinned crystals

[90,97,98]. While Mook et al. [90] suggested the presence of stripe order in YBCO-

6.35, Stock et al. [97,98] reported the existence of a ‘central mode’ in quasi-elastic

scattering, centred at (�,�) and corresponding to glassy short-range order. Note that

the effect of twinning on the in-plane geometry has been nicely demonstrated in [91],

i.e. twinning smears an incommensurate signal such that it appears as a single peak at

(�,�). In a stripe picture, the incommensurate SDW order in underdoped YBCO

would correspond to stripes along the b axis. In YBCO-6.45, �s	 0.045, while the

nominal hole doping is x	 0.085. These values are inconsistent with the relation

�s	 x, established for stripe order in LSCO with x51/8.

Finally, we briefly mention the neutron-scattering search for commensurate (�,�)
antiferromagnetic order in superconducting cuprates, which was primarily motivated

by the proposal of staggered loop-current order (dubbed d-density wave) in the

pseudogap regime [30]. There were several observations of AF order in the

underdoped YBCO samples [120–122], with ordered moments of about 0.02–0.05

�B. However, polarization neutron analysis revealed that the order is dominated by

moments aligned in the CuO2 plane, as in the insulating parent compound.

Considering, on the one hand, that other high-quality single crystals with a similar

doping level do not show a similar order [123] and, on the other hand, that impurity

substitution can induce antiferromagnetic order at 300K even at optimal doping

[124], it is likely that the observed AF order is not a generic property of the

underdoped state. Subsequently, Mook et al. [125] reported polarized neutron

experiments suggesting the existence of a weak AF quasi-2d order with moments

perpendicular to the CuO2 plane. However, the estimated magnitude of the ordered
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moment is 0.0025 �B, which is close to the experimental threshold of detection [125].

No subsequent experiments have reported conclusive evidence for magnetic order

at or near (�,�) setting in at the pseudogap scale.

3.1.2. Charge-density waves seen by X-ray scattering

Although the picture of stripe order, i.e. co-existing SDWs and CDWs, was already

proposed in the context of the first magnetic neutron scattering results in 1995, the

first unambiguous observation of charge order was only made by Abbamonte et al.

in 2005 [132]. The primary reason is that neutron and non-resonant X-ray scattering

can only detect charge order indirectly by the associated lattice distortion, as these

techniques are mainly sensitive to the nuclear scattering and the core electron

scattering, respectively.

Nevertheless, results from neutron and non-resonant X-ray scattering have

provided valuable information on charge ordering, because lattice distortions can be

expected to follow charge order regarding both the amplitude and the temperature

dependence. In particular, high-energy X-rays allow the use of a synchrotron source

to obtain high-intensity and high-momentum resolution [130]. Using these

techniques, charge-order superlattice peaks were found in LNSCO for doping

levels 0.08
 x
 0.20 [20,77,78,126,130] and recently in LBCO-1/8 [73,127].

In this context, studies using extended X-ray absorption fine structure (EXAFS)

are worth mentioning, which provide information on local lattice displacements.

In LNSCO-0.12, lattice fluctuations have been found to strongly increase below the

charge-ordering temperature [128]. A similar effect was found before in LSCO-0.15

[129], supporting the idea of dynamic stripes in this material.

The most direct information on the charge modulation in cuprates can be

obtained by resonant soft X-ray scattering using photon energies at the O K and the

Cu L edges [131]. This technique was applied to stripe-ordered LBCO-1/8 by

Abbamonte et al. [132] and to LESCO at various doping levels by Fink et al. [69].

In LBCO-1/8, charge superlattice peaks were detected at an in-plane wavevector

2�(0.25� 0.02, 0) with an in-plane correlation length �ab of about 480 Å (¼125 lattice

spacings). The dependence on vertical momentum was consistent with a period-two

order in the c-axis direction, with a small correlation length of �c9 2 inter-plane

distances (which is consistent with the X-ray study of [127]). The onset temperature

of the signal was Tch	 60K, which almost coincides with the temperature of the

LTO–LTT transition in this sample. The form factor of the scattering signal was

used to extract an estimate of the actual modulation amplitude in the charge sector.

Assuming the orbital charge-order pattern obtained in a slave-boson analysis of

stripes in the three-band Hubbard model [133], the authors obtained a large

modulation of oxygen hole densities varying between 0.03 and 0.12, i.e. by a factor of

four, within a unit cell. However, it has to be emphasized that this analysis is strongly

model dependent, and the assumed modulation pattern, although bond centred,

appears inconsistent with that obtained in STM [37].

Recently, resonant soft X-ray scattering was also performed on LESCO [69],

with some results shown in Figure 7. For doping x¼ 1/8, the order appeared at

Tch¼ 80� 10K at a wavevector ~Qc ¼ 2�ð0:228, 0Þ whereas, for x¼ 0.15, Tch was

70� 10K and ~Qc ¼ 2�ð0:254, 0Þ. The correlation length �ab was about 80–100 lattice
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spacings, while �c was of order unity. In contrast to LBCO, the LTO–LTT transition

in LESCO occurs at significantly higher temperature (TLTT	 125K), while spin

ordering has been detected at 25K (45K) by �SR (neutrons) [55,70]. Thus, LESCO

displays a sequence of well-separated phase transitions with Tsp5Tch5TLTT.

Taken together, the neutron and X-ray experiments establish a number of

important characteristics of the order in the 214 cuprates: (i) CDW order sets in at

higher temperatures than SDW order, and both co-exist at low T. Thus, CDW order

is unlikely to be only a subleading consequence of collinear SDW order in the sense

of equation (10). (Of course, this does not exclude that stripe formation is driven by

antiferromagnetic exchange.) (ii) The ordering wavevectors are related; �s¼ �c/2
within error bars. (iii) The wavevector dependence on doping �c(x) is inconsistent

with a simple nesting scenario of CDW formation, because �c increases with x,

whereas the distance between the antinodal Fermi surface decreases (see e.g. [136]).

Figure 7. Resonant soft X-ray scattering results on LESCO. Left: temperature dependence of
h scans along (h, 0, l) showing superstructure reflections of LESCO-1/8 and LESCO-0.15 using
O K (l¼ 0.75) and Cu L3 (l¼ 1.6) photon energies. The curves are vertically shifted for clarity;
the solid lines are fits to the data. Right: temperature dependence of the intensities of the
superstructure reflections, normalized to the intensity at T¼ 6K. The dotted line is
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tch � T
p

fit. The estimated spin-ordering temperatures are marked by arrows [55,70].
(Reprinted with permission from [69]. Copyright 2009 by the American Physical Society.)
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It should be noted that no signatures of charge order have been reported for

LSCO, even in the doping regime x50.13 where the SDW order appears static. Also,

resonant X-ray scattering failed to detect charge order in CCOC-1/8 [134], where

STM has established the existence of a period-four charge-ordering pattern [37,135].

Here, two explanations are possible: either the STM pattern exists at the surface

only, or the correlation length of the charge order is too small to be detectable by

X-rays at present. Indeed, the intensity of the X-ray signal scales with �2ab; thus,
assuming �ab of 10 lattice spacings [37] renders the signal 100 times smaller than for

LBCO-1/8 (for comparable CDW amplitudes), which is below the sensitivity limit of

the experiment.

3.1.3. Magnetic order at ~Q ¼ 0

Over the last few years, indications for a distinct type of order have been found in

several experiments, which were motivated by the proposal [31,32] for the pseudogap

phase in terms of a spontaneous loop-current order within the unit cell of CuO2

planes, with ordering wavevector ~Q ¼ 0.

The most direct indication for circulating-current order comes from recent elastic

polarized neutron scattering experiments [137–139]. Such measurements are difficult,

as the magnetic signal is located on top of a large nuclear Bragg peak. Therefore, the

magnetic Bragg peak26 has to be obtained as a difference between spin-flip and non-

spin-flip neutron-scattering signals. As the spin-flip ratio is an unknown constant,

the subtraction is done by suitable rescaling of one of the signals such that the

difference at high temperatures is zero. While the initial experiments on YBCO at

doping levels �¼ 0.5–0.75 were somewhat controversial, the experiment was repeated

on a larger sample of YBCO-6.6 [138], with consistent results: the data suggest the

magnetic order at wavevector (0, 0) at a doping-dependent temperature which varies

from 300K for YBCO-6.5 to 170K for YBCO-6.75; these values appear to match the

accepted pseudogap temperatures T* for these samples. (Note that the subtraction

procedure renders the determination of a sharp onset temperature difficult.)

Recently, a similar neutron-scattering signature of magnetic order in the pseudogap

state was obtained in the tetragonal single-layer HgBa2CuO4þ� compound [139].

In all cases, the moment amplitude is of order 0.1 �B, and the moments are

oriented roughly in a 45� angle with respect to the planes. As susceptibility

measurements appear to exclude ferromagnetic order of this magnitude, the ordered

moments within a unit cell apparently compensate each other. One possibility is spin

moments on oxygen atoms with opposite directions; another one is given by the

loop-current order of Varma [31,32]. In the latter case, however, the moment

directions suggest that the current loops involve out-of-plane oxygen orbitals.

A number of other experiments are worth mentioning: early ARPES experiments

on BSCCO using circularly polarized photons reported a dichroic signal indicating

time-reversal-symmetry breaking in the pseudogap state [140] (however, at the time,

the result was questioned by others). A search for static fields in the pseudogap

regime using �SR of LSCO gave a null result [142]. Static screening of the muon

charge, leading to a local change in the doping level, has been invoked to explain the

absence of a signal [143]. However, a null result was also reported from NMR

measurements in the pseudogap regime of Y2Ba4Cu7O15�� [144]. Very recently,
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extremely sensitive polar Kerr effect measurements detected signatures of broken

time reversal in the pseudogap regime in a series of underdoped YBCO crystals [141].

The straightforward interpretation of the Kerr signal is in terms of ferromagnetic

order, however, with a tiny magnitude of 10�5 �B per Cu atom. A puzzling aspect of

the Kerr measurements is that memory effects have been found to survive up to room

temperature far above T*. At present, the relation of the Kerr effect to the neutron

observations is not settled. Finally, careful measurements of the magnetic suscep-

tibility in underdoped YBCO revealed a small kink in samples with 0.45�50.8

[145]. The kink may signify a thermodynamic phase transition and occurs at

a doping-dependent temperature which appears to match the onset temperature of

the described neutron signal.

Although these results are exciting, further experiments are needed to check

whether loop-current order is indeed a common feature of high-temperature

superconducting cuprates, and also to establish the relation between different

possible experimental signatures. A brief theoretical discussion of loop-current order

is given in Section 5.10.

3.2. Inelastic neutron scattering

High-resolution inelastic neutron scattering, used to probe the spectrum of magnetic

fluctuations as well as of phonons, has been performed extensively on 214 cuprates,

on YBCO, and, to a lesser extent, on BSCCO. For other materials, the lack of

sufficiently large single crystals limits the available data.

While the most direct observation of translation symmetry breaking is via Bragg

peaks in elastic scattering, the spectrum of finite-energy excitations can provide

information complementary to that of elastic scattering probes, such as the energy

range and character of the fluctuations. Moreover, the presence of excitations at very

low energies and specific wavevectors is usually a precursor of an ordered state,

i.e. incommensurate low-energy spin excitations will occur close to stripe ordering.

Inelastic scattering is also a suitable probe for rotation symmetry breaking: an

anisotropic fluctuation spectrum must arise from an anisotropic state, as the local

excitation created by the external perturbation cannot change the symmetry. As

explained above, such a situation can only be expected in the presence of

a (structural) anisotropy field, as otherwise both types of domains will be present

with equal weight. The candidate material is YBCO, where indeed signatures of

rotation symmetry breaking have been identified; see Section 3.2.4.

3.2.1. Magnetic excitations of ordered stripe phases

For static spin stripe order, the existence of low-energy magnetic excitations (spin

waves) follows from the Goldstone theorem.27 Low-energy incommensurate

excitations have been probed in a number of stripe-ordered 214 cuprates, but

extensive data over a wide range of energies are available only for LBCO-1/8.

Such data, taken by Tranquada et al. [146], are shown in Figure 8. Remarkably,

rather well-defined collective excitations are visible at all energies up to 200meV.

At low energies, four spots near (���/4, �) and (�, ���/4), i.e. the ordering

wavevector, are observed. The spots are found to disperse toward (�,�) with
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increasing energy, where they meet at around 50meV. This is essentially consistent

with spin-wave theory, although the expected spin-wave cones (i.e. intense ellipses

in constant-energy scans) are never observed, possibly due to a combination of

broadening and matrix-element effects. Interestingly, the spectrum at elevated

energies does not appear to follow a simple spin-wave dispersion. Instead, the

excitation branch above 50meV is very similar to that of a two-leg spin ladder with

an exchange constant J	 100meV [146]. Constant-energy cuts show four intense

spots in the diagonal direction from (�,�), i.e. the scattering pattern has rotated by

45� from low to high energies. At an energy of 200meV, the experimental intensity

distribution has reached the boundary of the magnetic Brillouin zone, but at the

same time becomes damped rather strongly. The locations of the intensity maxima

Figure 8. Left: neutron-scattering results from ordered stripes in LBCO-1/8 (from [146],
reprinted by permission from Macmillan Publishers Ltd: Nature 429, 534. Copyright (2004)).
Shown are constant-energy cuts through the magnetic excitation spectrum �00s ð~q,!Þ. Energy
has been integrated over the ranges indicated by the error bars. Panels (a)–(c) were measured
with an incident neutron energy of 80meV, panels (d)–(g) with 240meV, and panel (h) with
500meV. Right: theoretical result from a model of coupled spin ladders (reprinted with
permission from [147], copyright 1999 by the American Physical Society), as described in
Section 5.3. The signals from horizontal and vertical stripes have been added. (Results
obtained in [148–150] are very similar.) Note that only the reduced Brillouin zone of (�,�)
magnetic order is shown.
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in constant-energy cuts, shown in Figure 8, trace out an ‘hour-glass’ dispersion,

Figure 9.

As will be discussed in detail in Section 5.3.1, the low-temperature excitation

spectrum of LBCO-1/8 can be nicely described by simple models of coupled spin

ladders [147–150], provided that the response of horizontal and vertical stripes is

summed up, Figure 8. In the absence of perfect charge order, a model of fluctuating

(or disordered) stripes appears more appropriate [151], which can account for the

data as well.

3.2.2. Incommensurate spin excitations and hour-glass spectrum

Investigations of the spin-excitation spectrum have played a prominent role in

cuprate research, mainly because spin fluctuations are a candidate for the glue that

binds the Cooper pairs.

Figure 9. Universal hour-glass dispersion of magnetic excitations in cuprates. Comparison of
measured dispersions along ~Q ¼ 2�ð0:5þ h, 0:5Þ in LSCO-0.10 (up triangles) and LSCO-0.16
(down triangles) from Christensen et al. [159], in LBCO-1/8 (filled circles) from [146], in
YBCO-6.5 (squares) from Stock et al. [163], and in YBCO-6.6 (diamonds) from Hayden et al.
[158]. The energy has been scaled by the superexchange energy J for the appropriate parent
insulator. For YBCO-6.6, the data at higher energies were fitted along the [1, 1] direction; the
doubled symbols with bars indicate two different ways of interpolating the results for the [1, 0]
direction. The upwardly dispersing dashed curve corresponds to the result for a two-leg spin
ladder, with an effective superexchange of � 2

3
J; the downward curve is a guide to the eye.

(Figure 6.3 of [166]. Reproduced with kind permission of Springer Science and Business
Media).
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Historically, the observation [152] of the so-called ‘resonance mode’ in optimally

doped YBCO below Tc, located at 41meV and ~Q ¼ ð�,�Þ, triggered enormous

activities. The doping dependence of the resonance energy was mapped out [153,154],

and a similar resonance was also found in other cuprates [155,156]. On the other

hand, the 214 family of cuprates displayed low-energy excitations at incommensurate

wavevectors [79–81]. As a result, it was believed that the underlying magnetism is

very different, and that the behaviour of the 214 compounds is rather special.

This view was challenged by a series of detailed neutron-scattering experiments

[146,157–163], which mapped out the spin excitations of various, mainly under-

doped, cuprates over a wide energy range. For YBCO, dispersive excitations were

found which emanate from the resonance peak and disperse both upwards and

downwards in energy [157,158,161–163]. For stripe-ordered LBCO, the incommen-

surate low-energy excitations were found to merge at (�,�) at 50meV, and an upper

excitation branch emerges which is well described by the spectrum of a spin ladder

[146], as discussed above. For LSCO a similar excitation structure was found, with

incommensurate low-energy excitations dispersing toward (�,�) and dispersing

outwards again above 50meV [159,160,164]. Very recently, signatures of an hour-

glass spectrum were reported as well for optimally doped BSCCO, although the

features in constant-energy cuts are relatively broad [165].

Taken together, these experiments provide evidence for an excitation spectrum of

hour-glass form being common to many cuprates. Indeed, plotting the scattering

intensity maxima as a function of momentum and rescaled energy, i.e. relative to the

exchange constant of the parent compound, results in Figure 9, which suggests

universality of the hour-glass spectrum. In addition, it shows that the relevant energy

scale for magnetic fluctuations is J.

This prompts the question for a common microscopic origin of the excitation

spectrum. While a weak-coupling description based on random-phase approxima-

tion (RPA) captures some features of the YBCO data, a picture of stripes is clearly

appropriate for the 214 compounds where low-energy incommensurate excitations

are clear precursors of ordered stripes; see Figure 6. It has been proposed early on

that dynamic stripes are responsible for incommensurate excitations below the

resonance energy in YBCO as well [167,168], but opposite views were also put

forward [157]. We shall return to this discussion in Section 5.3.2.

Despite the similarities there are, however, a number of important differences

between the cuprate families which should be mentioned: (i) while YBCO displays

a sizeable spin gap at low temperatures except for small dopings below �50.5, the

spin gap in the 214 materials is small. (ii) In YBCO, constant-energy cuts at the

resonance energy show a very sharp peak at (�,�) [157,158,162,163,169]. In contrast,

in LSCO the peak is broader and well fitted by the sum of two incommensurate

peaks [160,164]. (iii) In YBCO, again with the exception of small dopings below

�50.5, the spectra above and below Tc are significantly different. At optimal doping,

a clear spin gap opens below Tc together with the resonance appearing, while most of

the structured response disappears above Tc. In both YBCO-6.6 and YBCO-6.95, the

lower branch of the hour glass is only present below Tc, but strongly smeared above

Tc [169,170]. In contrast, in LSCO and LBCO the spectral changes at Tc are weaker

[146,164,171,172]. (iv) To my knowledge, an hour-glass dispersion has not been
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measured in other cuprates, with the exception of optimally doped BSCCO [165],

mainly due to the lack of large single crystals required for neutron scattering.

It should be pointed out that the approximate universality of the hour-glass

spectrum, when plotted as in Figure 9, only applies to doping levels between 10%

and optimal doping. For smaller dopings, both the incommensurability �s and the

energy Ecross, where upward- and downward-dispersing branches meet, decrease.

In LSCO for x51/8, both vary roughly linearly with doping, and Ecross/400meV	 x

has been reported. Interestingly, this also includes the insulating small-doping phase

of LSCO, which is characterized by static order with diagonal incommensurate peaks

and displays an hour-glass-like spectrum as well [173].

For LSCO at large doping, incommensurate low-energy spin excitations have

been found to survive throughout the entire superconducting phase, disappearing

only at x¼ 0.30, where the sample becomes non-superconducting [174]. In this

overdoped regime, the wavevector-integrated magnetic intensity below 60meV drops

with doping, and almost vanishes at x¼ 0.30 as well [175]. These findings point to

an intriguing relation between magnetism and superconductivity. Moreover, they

strongly argue against simple Fermi-surface nesting as the source of magnetic

fluctuations even in overdoped cuprates, because the magnetic intensity drops within

a small doping window despite the Fermi surface becoming more well defined with

increasing x [175].

3.2.3. Phonon anomalies

Charge order naturally couples to the lattice: static charge order will lead to periodic

atomic displacements and cause backfolding of the phonon branches. One can expect

that slowly fluctuating charge order induces corresponding precursors, which should

be manifest in anomalies in the phonon dispersion and line width near the charge-

ordering wavevector. Hence, strong stripe-related effects should be visible in

a momentum scan of the phonon dispersion perpendicular to the stripe direction,

with a strength dictated by the overall electron–phonon coupling and by matrix

elements which depend on the specifics of the charge order and the phonon mode.

While various reports on phonon anomalies are in the literature, it has not been

conclusively established which of them are related to stripe order. Essentially all

studies focused on optical phonon branches, which exist in the energy range of 60–

100meV and can be easily distinguished from other excitations seen in neutron

scattering.

For LSCO at x¼ 0.15, McQueeney et al. [179] reported a discontinuity in the

longitudinal optical (LO) dispersion branch at 10K, which was interpreted as

evidence for unit-cell doubling. However, a subsequent study [180] of the same

compound arrived at a different conclusion: the data speak in favour of a continuous

dispersion of this bond-stretching mode. In addition, the strongest broadening was

observed near wavevectors (0.5–0.6�, 0), which can be taken as a precursor to stripe

ordering with a periodicity of 4–3 lattice spacings. The softening of the LO phonon

at (�/2, 0) is in fact found in LSCO over a wide doping range, including strongly

overdoped samples at x¼ 0.29 [181], suggesting that it is unrelated to translational

symmetry-breaking tendencies. For YBCO, conflicting results on phonon anomalies

have been reported [167,182], their relation to stripe order being unclear at present.
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A comprehensive neutron-scattering analysis of bond-stretching phonons in

stripe-ordered cuprates was performed by Reznik et al. [176,177]. Both LBCO and

LNSCO at doping x¼ 1/8, known to have static stripe order, displayed strong

anomalies near wavevector (�/2, 0). The broad line shapes were interpreted in terms

of two (instead of one) phonon branches. A subsequent X-ray scattering study with

higher resolution [178] essentially confirmed the broad line shapes, but showed that

the two-peak interpretation is not justified. The observed phonon anomaly is

strongest at the lowest T of 10K, and the phonon lines sharpen with increasing

temperature. The authors extended the measurements to LSCO at doping levels

x¼ 0.07, 0.15, and 0.3, and found broad lines at (�/2, 0) for the x¼ 0.07 and 0.15

samples, while narrow lines where found in the non-superconducting x¼ 0.30

compound.

It appears plausible to associate the bond-stretching phonon anomalies with the

tendency toward stripe order. A theoretical study of the phonon dynamics in the

presence of static stripes [183] seems to support this assertion, although the interplay

of fluctuating stripes and phonons has not been investigated theoretically. There are,

however, serious caveats with this interpretation: static stripes should cause multiple

phonon branches due to backfolding, which are not clearly observed experimentally

(this could be related to matrix-element effects). More importantly, the stripe-

ordering wavevector in the 214 compounds is known to vary with doping, in both the

spin and charge sectors (see Figure 5), but the phonon anomalies do not show

a similarly large shift in momentum space. Also, a somewhat similar LO phonon

anomaly was found [184] in optimally doped YBCO-6.95, where there is otherwise

little evidence for stripe behaviour.

An interesting alternative interpretation [184,185] of the phonon anomalies

invokes one-dimensional physics: it has been suggested that the observed anomalies

are due to 2kF effects of essentially one-dimensional metallic stripes, and hence occur

in a direction parallel to the stripes. This scenario would explain the weak doping

dependence of the anomaly wavevector as, in such a one-dimensional picture, kF
within a stripe is expected to vary weakly with x for x
 1/8. It remains open why no

backfolding effects are observed.

In the context of phonons coupling to stripes, thermal conductivity measure-

ments may provide additional information. The phonon thermal conductivity of

LSCO was found to be strongly suppressed at low temperature, with the

suppression being correlated with superconductivity [186]. Remarkably, the

suppression was absent in non-superconducting stripe-ordered LNSCO and

LESCO. While these findings were originally interpreted [186] as evidence for

phonon scattering off fluctuating stripes, a careful re-analysis [187] showed that

soft phonons, caused by the structural instability of the LTO phase, provide

a scattering mechanism which can account for the observed suppression of heat

transport. Conceptually, a separation of soft-phonon-induced and soft-stripe-

induced scattering is difficult.

As there can be no doubt about a strong coupling of stripes to the lattice, as

evidenced e.g. by the large isotope effect [68] in stripe-ordered LESCO, more

experimental and theoretical work is required to elucidate the interplay of stripes and

phonons.
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3.2.4. Anisotropic magnetic spectra and nematic order

A state with broken rotational symmetry causes a neutron-scattering intensity

�0sð~q,!Þ with directional ~q-space anisotropy, and vice versa. However, such a spectral

asymmetry is wiped out if domains of different orientations co-exist and are probed

by the neutron beam. This complication can be avoided by a small symmetry-

breaking field. Among the cuprates, de-twinned crystals of YBCO have precisely this

property: for dopings �� 0.4 the presence of the CuO chains induces a structural

orthorhombic distortion, which should be able to align nematic domains.

In a remarkable experimental effort, the spin-fluctuation spectrum of de-twinned

superconducting YBCO crystals has been studied in detail by Hinkov et al.

[91,157,169]. In YBCO, one expects bilayer splitting of all magnetic modes; all the

following information applies to magnetic excitations which are odd under bilayer

exchange unless otherwise noted.

In moderately underdoped YBCO-6.85 and YBCO-6.6 the spin excitations are

gapped. Below Tc, the spectrum is consistent with the hour-glass shape described

above. While its high-energy part above the resonance energy approximately obeys

the square-lattice symmetry, the low-energy part is significantly anisotropic in both

compounds [157,169]: in YBCO-6.6, the intensity at 33meV displays strong

incommensurate peaks along the a axis, whereas the corresponding peaks along

the b axis are weak [169] – this anisotropy may be consistent with nematic behaviour.

However, as a function of temperature, the spectra change smoothly except at the

superconducting Tc, i.e. no signature of a nematic ordering transition has

been detected. The results of Hinkov et al. [157,169] are consistent with earlier

reports of anisotropic spin fluctuations at 24meV on a partially de-twinned YBCO-

6.6 crystal [167].

More intriguing is the behaviour in strongly underdoped YBCO-6.45 [91] with

Tc¼ 35K: at this doping concentration, the neutron spectrum is essentially gapless at

40K and below. At low energies of e.g. 3 and 7meV, the intensity distribution in

�0sð~q,wÞ takes the form of an ellipse in momentum space around (�,�), i.e. the

intensity is broadly distributed along the a axis while it is less broad along the b axis;

see Figure 10. At energies of 3meV and below, the intensity along the a axis is well

fitted by the sum of two Lorentzians at incommensurate wavevectors 2�(0.5� �s,
0.5). Plotting the incommensurability �s at 3meV as a function of temperature shows

an order-parameter-like behaviour, i.e. it decreases with increasing temperature and

vanishes at around 150K, i.e. far above the superconducting Tc; see Figure 10.

Although the orthorhombic structural distortion is expected to smear out a sharp

nematic phase transition, a reasonable interpretation of the data is in terms of

a spontaneous onset of both magnetic incommensurability and magnetic anisotropy

of the electronic system at around 150K. This is suggestive of a nematic phase

transition. The strong increase of the in-plane transport anisotropy below 200K

[188] of a YBCO sample of similar doping level appears consistent with this

interpretation; see Section 3.4.1. (Whether the NMR/NQR work on YBCO of [189],

showing two inequivalent planar O sites but only a single type of Cu site, is related

to nematic order is not known.)

The quasistatic neutron signal shows a significant upturn below 30K but,

according to �SR, static magnetic order sets in only below 2K, with an ordered
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moment of about 0.05 �B. This is consistent with very slow, perhaps glassy, spin

dynamics at low temperatures [91].

Interpreting the incommensurate magnetism in YBCO-6.45 in terms of stripes,

the stripes run along the b direction, which appears consistent with the resistivity

anisotropy, �a4�b. However, as noted above, reports on static charge order in

underdoped YBCO are controversial.

The anisotropies of the spin-fluctuation spectra in YBCO suggest the existence of

a nematic QCP around �c¼ 0.5 [91] (although one cannot exclude the possibility that

nematic transitions also exist at larger �, but with a strong smearing due to the large

orthorhombicity). A magnetic QCP may exist at the same or a slightly smaller

doping, but static magnetic order for �5�c and zero field [284] appears to be

restricted to extremely low temperatures, while nematic order extends well into the

pseudogap regime.

3.3. Scanning tunnelling microscopy

The techniques of scanning tunnelling microscopy and spectroscopy (STM/STS)

have contributed enormously to the exciting progress in the field of cuprates over the

past decade [27]. With the caveat of being only sensitive to the physics of the sample

surface, STM has provided real-space images of apparently intrinsic inhomogeneities

in BSCCO, allowed for a detailed analysis of local impurity physics, and unravelled

the tendency toward ordering phenomena accompanied by lattice symmetry

breaking – the latter will be summarized here. As STM is essentially a static

measurement, ‘fluctuating’ stripes can only be detected if pinned by impurities.

Figure 10. Signatures of nematic order in YBCO-6.45. Left: energy and temperature evolution
of the a–b anisotropy of the spin correlations. Full squares and empty circles represent data
points measured at fixed K along a and at fixed H along b, respectively, where (H,K) is the in-
plane momentum. Scans are normalized and background subtracted. Solid lines represent the
results of fits with one or two Gaussians. Right: temperature and energy evolution of
parameters characterizing the spin-excitation spectrum. The parameters are the results of fits
to the raw data. Shown are the incommensurability �� �s (red symbols) and the half-width-at-
half-maximum of the incommensurate peaks along a (��1

a , black symbols) and along b (��1
b ,

open blue symbols) in reciprocal lattice units, measured at 3meV. (From [91], Science 319, 597
(2008). Reprinted with permission from AAAS).
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High-resolution STM experiments require high-quality sample surfaces, which

currently restricts the application to BSCCO and CCOC. Although STM data have

been reported for YBCO and 214 compounds as well, atomic resolution is often not

achieved, and the quality of the surface layer can be problematic.

STM experiments measure the current I between tip and sample as a function of

voltage V and position ~r. Assuming an energy-independent electronic density of

states in the tip, the measured dI/dV is equivalent to the spatially resolved local

density of states (LDOS), �ð~r,E Þ, up to an ~r-dependent tunnel matrix element which

depends on the set-point conditions [37,190]. For cuprates, it is commonly assumed

that the measured LDOS at low energies reflects the properties of the CuO2 layers, as

the additional layers between crystal surface and topmost CuO2 plane are insulating.

However, the tunnelling path through those layers may non-trivial, as discussed in

Section 5.5.

3.3.1. Quasiparticle interference vs. charge order

In order to extract possibly periodic signals from LDOS maps �ð~r,E Þ, a Fourier

transformation to momentum space is routinely used. The resulting quantity �ð ~k,E Þ,
dubbed FT-LDOS, can show well-defined structures for various reasons.28 (i) If

a modulation in the charge sector with wavevector ~Q is present, then �ð ~k,E Þ will
show ‘Bragg’ peaks at ~k ¼ ~Q at all energies E. (ii) Friedel oscillations caused by

impurities will contribute to momentum-space structures in �ð ~k,E Þ as well.

Importantly, these structures will be energy dependent due to the energy–momentum

dispersion of the single-particle excitations [191].

The first observation of such generalized Friedel oscillations, or ‘quasiparticle

interference’ (QPI), made by Hoffman et al. [192] in the superconducting state of

optimally doped BSCCO, was subsequently confirmed and extended [193–195]. In

interpreting the experimental data, a simple recipe, dubbed the ‘octet model’, was

used to extract information about the single-particle dispersion from the peak

locations in the FT-LDOS. The extracted Fermi surface and superconducting gap

show good agreement with results from ARPES [195], which is remarkable, as STM

is usually not a probe with momentum-space resolution. There are, however,

a number of problems with the octet-model interpretation of QPI, and we will give

a theoretical discussion in Section 5.5.

The presence of the QPI phenomenon poses a serious problem in the search for

charge order: as doped cuprates are intrinsically dirty, the QPI signals are not weak

and therefore are not easy to disentangle from modulations due to collective charge

ordering, in particular if the charge order is only short ranged due to strong disorder

pinning. Therefore, the experimental search for charge order concentrated on

identifying non-dispersive peaks in the FT-LDOS �ð ~k,E Þ, in particular near the

wavevectors (�/2, 0), (0, �/2) corresponding to period-four charge order as known

from the 214 cuprates.

3.3.2. LDOS modulations

Spatial modulations in the dI/dV signal, suggestive of charge order, were first

detected near the vortex cores in slightly overdoped BSCCO in an applied field of
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7 T [196]. The spatial pattern resembled a checkerboard; for more details, see

Section 3.5.3 below.

Subsequently, different measurements of the FT-LDOS in zero magnetic field in

optimally doped and underdoped BSCCO led to some controversy: while Howald

et al. [197,198] and Fang et al. [199] interpreted their data as evidence for an

underlying charge-density modulation (co-existing with QPI features), Hoffman

et al. [192] and McElroy et al. [193] asserted that their data are consistent with QPI,

not showing signs of a CDW. In this debate, Howald et al. have pointed out that the

peaks in the FT-LDOS which were associated with QPI in [192,193] display a much

weaker dispersion below 15meV compared to what is expected from the octet model

(Figure 11). Whether this is simply a failure of the octet model or indeed evidence for

charge ordering is difficult to decide; see Section 5.5. Moreover, Fang et al. [199]

showed that the heights of the superconducting coherence peaks display

a modulation very similar to that of the low-energy LDOS, with a period of 4.5 a0.

Unambiguous evidence for charge order (albeit with a short correlation length)

came from LDOS measurements in the pseudogap regime of BSCCO by Vershinin

et al. [200]. An underdoped BSCCO crystal with a Tc of 80K, measured at 100K,

Figure 11. FT-LDOS data, �ð ~k,E Þ, of optimally doped BSCCO, taken at 8K. Shown are line
scans as a function of kx along the (1, 0) direction, and as a function of energy (colour scale).
Top: LDOS (dI/dV). Bottom: LDOS integrated up to the given energy (I/V ). The peak at
2�(0.25, 0) displays little dispersion. (Reprinted with permission from [197]. Copyright 2003
by the American Physical Society.)
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displayed non-dispersive peaks in the FT-LDOS below 40meV, corresponding to

a modulation period of 4.7 a0; see Figure 12. The observed FT-LDOS signal was

shown to be incompatible with QPI [200,201], essentially because the octet

wavevectors q1 and q5 did not disperse at all. (The measured data below Tc

displayed dispersing peaks, compatible with [192].) A plausible interpretation is that

QPI signatures become progressively weaker with increasing temperature, as

quasiparticles are ill defined in the pseudogap regime over a large fraction of the

Figure 12. Fourier analysis of DOS modulations measured in slightly underdoped BSCCO
(Tc¼ 80K) in the pseudogap regime at 100K. (A) Fast Fourier transform (FFT) of an
unprocessed conductance map acquired over a 380 Å by 380 Å field of view at 15mV. (B) The
FFT has peaks corresponding to atomic sites (coloured black and labelled A), primary (at 2�/
6.8a0) and secondary peaks corresponding to the b-axis supermodulation (coloured cyan and
labelled S), and peaks at 	2�/4.7a0 along the (H, 0) and (0, H ) directions (coloured red and
labelled Q). (C) The energy evolution of the peaks in (B), scaled by their respective magnitudes
at 41mV. (D) Two-pixel-averaged FFT profiles taken along the dashed line in (B) for the DOS
measurement at 15mV shown in (A) and measurements acquired simultaneously at 0mV and
�15mV. The positions of key peaks are shown by dashed lines and labelled according to their
locations in (B). (From [200], Science 303, 1995 (2004), reprinted with permission from
AAAS).
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Brillouin zone. As a result, it becomes easier to identify signatures of CDW

formation. Whether, in addition, charge order is enhanced in the pseudogap regime

is unclear.

More recent STM measurements of various underdoped BSCCO samples have

established that non-dispersive FT-LDOS peaks also occur in the superconducting

state, namely at elevated energies above 30–40meV. While those peaks were

originally associated with pseudogap patches of the inhomogeneous sample [194],

they have been recently argued to be generic features of the approach to the Mott

insulator [202] (see also next subsection). A connection between strong gap

inhomogeneities and the presence of non-dispersive FT-LDOS peaks has been

pointed out in [203,204]: in both the superconducting and the pseudogap

regimes, non-dispersive peaks occurred predominantly in strongly inhomogeneous

samples or sample regions. This appears plausible under the assumption

that pinning due to disorder plays a dominant role in inducing the static modulation.

A charge-order signal much stronger than that in BSCCO was identified in the

low-temperature LDOS of underdoped samples of CCOC with dopings x¼ 0.08–

0.12 [135]. Here, the LDOS at all energies below the pseudogap energy of 100meV

displayed a clearly visible checkerboard modulation with spatial period four.29

ARPES experiments on similar samples of CCOC detected nearly nested, but

incoherent, antinodal Fermi surface pieces with almost doping-independent

nesting wavevectors close to (�/2, 0) and (0, �/2). The authors proposed that these

antinodal regions are responsible for charge ordering in the spirit of a weak-coupling

scenario [206].

Very recently, non-dispersive FT-LDOS peaks at energies below 30meV were

reported in single-layer BSCCO-2201 [207]. The modulations displayed a doping-

dependent spatial period between 4.5 a0 (underdoped) and 6.2 a0 (optimally doped).

This tendency is opposite from the one of the CDW wavevector in the 214

compounds (where the modulation period becomes smaller with increasing doping),

and consequently a weak-coupling scenario has been suggested as the origin of the

modulations [207].

Field-induced LDOS signals near vortex cores have been investigated in more

detail in BSCCO [208–210] and also observed in YBCO [211]; they will be described

in Section 3.5.3 below.

In the experiments described so far, clear-cut evidence for (locally) broken

rotation symmetry was lacking (although the data of both Hoffman et al. [196] and

Howald et al. [197] indicate a weak local breaking of C4 symmetry). Superficially,

this might be more consistent with checkerboard than stripe order. However, as

discussed in Section 2.7, pinning of stripes by impurities can result in checkerboard

(instead of stripe) patterns, in particular if the clean system is on the disordered side

of a stripe-ordering transition [65,66].

3.3.3. Tunnelling asymmetry

A critique which has been voiced against the analysis of modulations in dI/dV, as

described in the last subsection, is related to the possibly position-dependent

tunnelling matrix element in the STM experiment. The standard measurement

protocol is to adjust the tip height at each position such that a constant current flows
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at some (high) set-point voltage. In the presence of significant charge inhomogene-

ities, the tip height will then be modulated as a function of ~r as well, rendering dI/dV

inequivalent to the LDOS. Moreover, this effect will depend on the set-point

conditions.

To separate physical modulations from set-point effects, it was proposed to study

the LDOS ratios

Zð~r,E Þ ¼ �ð~r,E Þ
�ð~r, � E Þ , Rð~r,E Þ ¼

R E

0
d!�ð~r,!Þ

R 0

�E
d!�ð~r,!Þ

: ð11Þ

The physical content of these ratios, which measure spectral particle–hole

asymmetry, is non-trivial. For one-band models of weakly doped Mott insulators,

both Z and R have been argued to be proportional to the hole density [212,213].

Maps of Rð~r,E Þ, taken in underdoped BSCCO and CCOC, have been analysed

by Kohsaka et al. [37]. The tunnelling asymmetry at 150mV was found to be strongly

inhomogeneous, with a spatial pattern interpreted as ‘electronic cluster glass’. A

number of properties of the observed Rð~r,E Þ are indeed remarkable: (i) the

modulations are centred on the Cu–O–Cu bonds and are strongest on the O (instead

of Cu) sites, with a contrast of up to a factor of two. (ii) The modulation pattern

locally breaks C4 symmetry down to C2, i.e. uni-directional domains, suggestive of

stripe segments, are clearly visible. (iii) The modulations in the Rmap of BSCCO and

CCOC are essentially indistinguishable (although differences exist in the energy-

resolved LDOS spectra). In both cases, the spatial correlation length of the

modulation pattern is of order 10 lattice spacings. (iv) In both cases, the order

co-exists with well-established superconductivity, with a Tc of 45K and 21K for

BSCCO and CCOC, respectively.

Subsequently, maps of Zð~r,E Þ were used to analyse QPI in slightly underdoped

CCOC [190] and strongly underdoped BSCCO [202]. In CCOC, the spatial period-

four modulations are so strong that QPI features are hard to detect in the LDOS

[135]. In contrast, QPI peaks were observed in the LDOS ratio Zð ~k,E Þ below 20meV

[190]. The fact that Z is more sensitive to QPI features than the LDOS itself was

rationalized by arguing that charge order causes modulations in the LDOS which

are approximately in phase between positive and negative energies, whereas QPI

modulations occur approximately in antiphase. In BSCCO, dispersing QPI peaks

in Zð ~k,E Þ were observed at low energies as well [202]. However, above a doping-

dependent crossover energy the Zð ~k,E Þ spectra change: some QPI peaks disappear,

while others cease to disperse. Interpreting the dispersive peaks within the octet

model suggests that the QPI signal exists for quasiparticles inside the antiferromag-

netic Brillouin zone only [202]. The non-dispersive features at elevated energies

correspond to a modulation period of approximately 4a0, with little doping

dependence. Interestingly, the modulations in Zð~r,E Þ appear strongest (as a function

of energy) at the local pseudogap energy D1 that is of order 100meV.

Although a comprehensive understanding of the asymmetry maps Zð~r,E Þ and
Rð~r,E Þ is difficult, as it necessarily involves Mott physics, the described results

strongly suggest that a tendency toward bond-centred stripe order is present at the

surface of both underdoped BSCCO and CCOC. This stripe-like order, primarily

visible at elevated energies, co-exists with well-defined low-energy quasiparticles and
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bulk superconductivity.30 In both BSCCO and CCOC, the charge order exists

without long-range magnetic order, although spin-glass-like magnetism has been

reported in CCOC [214]. The result in Figure 13, showing that the main modulation

is on oxygen, suggests that a quantitative description requires a three-band instead

of a one-band model for the CuO2 planes.

3.4. Other probes

Besides neutron scattering and STM, a broad variety of other experimental

techniques have been employed to detect and investigate ordering phenomena

accompanied by lattice symmetry breaking. Here, we shall give a quick overview,

without pretence of completeness.

3.4.1. Transport

Transport measurements have been used to search for tendencies toward order. Two

possible signatures are obvious: (i) if the ordered phase is less conducting than the

Figure 13. Valence-bond glass as seen in STM. (A) and (D): R maps of Na-CCOC and Dy-
Bi2212, respectively (taken at 150mV). The blue boxes in (A) and (D) indicate areas shown in
panels (B), (C) and (E), (F). (B) and (E): Higher-resolution R maps within equivalent domains
from Na-CCOC and Dy-Bi2212, respectively. The locations of the Cu atoms are shown as
black crosses. (C) and (F): Constant-current topographic images simultaneously taken with
panels (B) and (E), respectively. The markers show atomic locations, used also in (B) and (E).
(From [37], Science 315, 1380 (2007), reprinted with permission from AAAS).
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disordered phase, then the resistivity will show an upturn below the ordering

temperature. (ii) If the ordered phase globally breaks rotation symmetry, then the

resistivity will develop an in-plane anisotropy.

With the exception of the small-doping insulating regime, i.e. x50.055 in LSCO,

stripe phases appear generally conducting, i.e. are not of Wigner-crystal type.

Temperature-dependent resistivity measurements often show a small upturn feature

upon cooling below the stripe-ordering temperature Tch. Although d�/dT50 at

low T in stripe-ordered cuprates (above Tc), an exponential rise of the resistivity

signalling insulating behaviour is never seen.

Optical conductivity measurements in LBCO-1/8 [215] find a residual Drude

peak even in the charge-ordered regime at low T, which has been interpreted as

a ‘nodal metal’ state, i.e. ungapped nodal quasiparticles co-exist with stripe order.

This finding is consistent with the absence of a gap in earlier optical conductivity

data taken on LNSCO-1/8 [216]. The presence of nodal quasiparticles in stripe

phases is also compatible with results from photoemission and STM experiments

[136,190,217]. Note that, on the theory side, arguments against [218,219] and in

favour [36,220–222] of nodal quasiparticles in stripe phases have been put forward.

For small stripe amplitude, the survival of nodal quasiparticles immediately follows

from the fact that the ordering wavevector ~Q does not connect the nodal points

[47,222,223], while for larger stripe amplitude a substantial d-wave component of

the charge order can protect nodal quasiparticles [36,224].

The optical conductivity data in LBCO-1/8 [215] show a rapid loss of spectral

weight below 40meV that occurs below about 60K	Tch, consistent with the

development of an anisotropic gap. However, the existence of strong far-infrared

peaks (between 20 and 100 cm�1) at low temperatures, present in earlier data on

LSCO and LNSCO [216,225] and interpreted in terms of stripe pinning [226], could

not be confirmed. This disagreement has been tentatively attributed to surface

problems [215].

A detailed resistivity study of LSCO at finely spaced dopings [227] identified

specific doping levels, defined by peaks of the resistivity at fixed temperatures of 50

and 100K as a function of doping. These peaks, albeit being weak, have been

interpreted as magic doping fractions 1/8, 1/16, 3/16, 3/32, and 5/32, and suggested

to be a signature of a hierarchy of checkerboard charge-ordered states. While this

idea is interesting, other measurements in the 214 materials are more consistent with

stripe instead of checkerboard order. The presence of special commensurate doping

levels with enhanced ordering is also expected for lattice pinning of stripes, although

the set of special doping fractions may be different.

Let me now turn to more direct ordering signatures. States with broken in-plane

90-degree rotation symmetry will display anisotropic transport properties, e.g. a d.c.

resistivity tensor with �xx 6¼ �yy. This applies both to nematic and to stripe phases

but, as discussed in Section 2.7, requires a single-domain sample. Hence, de-twinned

YBCO is again the prime candidate. The magnitude of the anisotropy will depend on

details of the order and the electronic scattering mechanisms: a metallic nematic state

has a full Fermi surface (the same applies to most small-amplitude stripe states);

hence, velocity and scattering anisotropies become important.

In-plane resistivity anisotropies in de-twinned YBCO with dopings �¼ 0.35–1

have been investigated by Ando et al. [188]. While an anisotropy is present for all
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temperatures and dopings due to the presence of the CuO chains in this material, the

anisotropy decreases with cooling below 200K for �40.6, but increases for �50.6.

This effect is particularly significant for �¼ 0.35 and 0.45, where the ratio �a/�b
increases from 1.3 at room temperature to 2–2.5 at low T. This result is consistent

with the onset of nematic order inferred from neutron scattering in YBCO-6.45 [91];

see Section 3.2.4. Note that the presence of a sharp onset temperature cannot be

expected, because rotation symmetry is broken by the orthorhombic distortion of

the crystal from the outset.

In stripe-ordered 214 compounds, global resistivity anisotropies cannot be

observed, due to the plane-to-plane alternation in the stripe direction in the LTT

phase. Noda et al. [228] instead measured magnetotransport in stripe-ordered

LNSCO at various doping levels. For doping x51/8, the data show a distinct drop

of the Hall coefficient at a temperature of order 80K where stripe charge order is

believed to set in. This has been interpreted as evidence for one-dimensional charge

transport deep in the stripe-ordered phase of LNSCO for x51/8, with a crossover to

more two-dimensional transport for x41/8. However, subsequent theoretical work

indicated that this picture is too simple: a nearly vanishing Hall coefficient can be

obtained in a quarter-filled stripe phase independent of the total doping level, not as

a result of one-dimensional transport, but of an approximate particle–hole symmetry

at this particular stripe filling [229,230].31 A rapid drop in the Hall coefficient upon

cooling has also been observed in LBCO-0.11 [233], with the Hall coefficient

becoming negative at lowest temperatures. A simplistic interpretation would be in

terms of electron pockets arising from band backfolding [234], but correlation effects

may again change the picture [230].

Measurements of the Nernst effect in both LNSCO and LESCO showed

a distinct low-temperature enhancement of the Nernst signal for dopings between

0.12 and 0.20, with the signal onset occurring at a temperature T� which tracks the

pseudogap temperature [235]. (Interestingly, the values of T� of LSCO-0.12 and

LESCO-0.12 are essentially equal, around 140K.) As T� roughly follows the onset

of stripe order, the Nernst signal was interpreted as evidence for a stripe-induced

Fermi-surface reconstruction. However, the present data appear as well consistent

with a pseudogap-induced Nernst signal of non-stripe origin. Measurements at lower

dopings might help to disentangle these possibilities.

3.4.2. Photoemission

Angle-resolved photoemission spectroscopy (ARPES) is the method of choice to

obtain momentum- and energy-resolved information on the single-electron spectral

function.32 Compared to neutron scattering, ARPES is only sensitive to a surface

layer of the sample with a thickness of order 5–20 Å, depending on the

photon energy. Quality and resolution of ARPES data have improved tremendously

over the past decades, although the current ARPES energy resolution, being

typically 2–10meV, is not as good as that of state-of-the-art neutron scattering. An

experimental problem is that ARPES requires samples with high-quality surfaces;

those are routinely available for BSCCO and CCOC. Extensive ARPES studies have

also been performed on a number of 214 cuprates, with by now comparable data
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quality. In contrast, YBCO suffers from a charge imbalance at the surface, rendering

the interpretation of corresponding ARPES difficult.

I start with a description of a few general features of ARPES spectra on

underdoped cuprates, primarily obtained on BSCCO crystals. A common observa-

tion [25,26,206,236,237] is that low-energy electronic states along the diagonal

(nodal) direction in momentum space appear to be rather well defined, i.e. produce

sharp peaks in energy-distribution curves (EDCs). In contrast, states near (��, 0)
and (0,��) (antinodal points) are broad and appear gapped even above Tc.

The disparate behaviour of the two regions in momentum space, also dubbed ‘nodal–

antinodal dichotomy’, is also reflected in the temperature dependence of the line

widths: upon lowering T, nodals become sharper, while antinodals tend to be

broader.

Below Tc, experiments find a gap consistent with d-wave symmetry, sometimes

mixed with higher harmonics such that the gap near the nodes is smaller compared to

a pure d-wave shape. Moving into the pseudogap regime above Tc, antinodals remain

gapped, whereas near-nodal states are essentially gapless, leading to apparent

segments of the Fermi surface. These observation lead to the concept of ‘Fermi arcs’,

with a temperature- and doping-dependent arc length [237]. From theoretical studies,

it has been proposed that the arcs may in fact be Fermi pockets centred along the

nodal direction, with the outer part of the pockets being nearly invisible to ARPES

due to matrix-element effects [238,239]. The distinct temperature and doping

dependence of the antinodal and near-nodal gaps has also prompted proposals of

a two-gap scenario, with the gaps in the two regions in momentum space being

caused by different underlying physics [240].

The absence of a well-defined antinodal quasiparticle has sometimes been

interpreted as (indirect) evidence for ordering tendencies (e.g. of CDW type)

primarily carried by antinodals [206], which could be consistent with a RPA picture

of CDW formation. However, opposite experimental views have also been put

forward [241].

We now turn to the question of how ARPES spectra are directly affected by

symmetry-breaking order: broken rotation symmetry should be visible directly in

momentum-resolved data of properly aligned crystals, and broken translation

symmetry should lead to Bragg gaps and multiple bands via band backfolding.

To my knowledge, unambiguous evidence for spontaneously broken rotation

symmetry has not been detected in cuprate ARPES to date. As discussed above, the

simultaneous presence of domains with different preferred directions – either in

a single plane or in adjacent planes – makes rotation symmetry breaking difficult to

observe (unless the experiment would be sensitive to the topmost CuO2 layer only,

which in addition had to be single domain). The exception would again be YBCO,

with complications arising from the presence of CuO chains; however, high-quality

photoemission data for underdoped YBCO, showing the full temperature depen-

dence of the spectrum, is not available to my knowledge.

With broken translation symmetry (or other stripe signatures) in ARPES, the

situation is more involved. An early experiment on stripe-ordered LNSCO-0.12 [242]

at 20K has found distinct signatures near the Fermi energy, namely a cross-shaped

intensity distribution in the Brillouin zone and no evidence for nodal quasiparticles.

These features were attributed to stripes with strong charge modulation; in
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particular, the straight horizontal and vertical Fermi-surface pieces near the

antinodal points were interpreted as evidence for prominent one-dimensional

behaviour.33 This view was subsequently supported by model calculations which

started from weakly coupled chains or ladders and assumed a strong one-

dimensional-like modulation (Section 5.4). However, the results of [242] remained

controversial [244–246], and later experiments with improved samples and energy

resolution could neither verify the strong cross-shaped intensity pattern nor the

absence of nodal quasiparticles [245]; instead, Fermi arcs were found at 15K above

Tc¼ 7K [246]. However, clear-cut stripe signatures were not detected.

For stripe-ordered LBCO-1/8, an ARPES study [136] at 16K, much below the

charge-ordering temperature, also failed to detect signatures of stripe-like super-

structures, but instead reported an anisotropic gap along the Fermi surface, with

angle dependence being consistent with a d-wave form factor. A recent higher-

resolution experiment [247] mainly confirmed this data, but also indicated that the

gap slope changes rather abruptly along the Fermi surface, suggestive of a two-

component gap. While the large antinodal gap may be interpreted in terms of

pseudogap physics, the origin of the smaller near-nodal gap is unclear at present,

with fluctuating d-wave pairing [43] or d-wave stripe order [36] being two

candidates.

Other recent ARPES measurements are worth mentioning: data obtained on

stripe-ordered LESCO-1/8 [217] displayed weak signatures of both rotation

symmetry breaking and band backfolding, which may be consistent with the

expected period-four charge order. However, not all features are consistent with

model calculations (Section 5.4). For stripe-ordered LNSCO-1/8, Chang et al. [246]

verified the existence of Fermi arcs and, in addition, observed a second Fermi surface

crossing near the Brillouin-zone diagonal, suggestive of band backfolding leading to

a Fermi-surface pocket. The location of this second branch appears consistent with

(�,�) order, i.e. a unit-cell doubling. The branch is visible up to 110K, i.e. far above

the charge-ordering and LTT transitions, and a similar branch is seen in LSCO-0.12

(but not at other LSCO doping levels). We note that hints for the existence of Fermi-

surface pockets have also been detected in ARPES in the pseudogap regime of

underdoped BSCCO [248], however, with the pocket not being centred around (�/2,
�/2). At present, the explanation of these observations is open.

In summary, a satisfactory experimental verification of the theoretical expecta-

tion for electronic spectra of stripe phases is still missing. Clearly, more experiments

are called for, with candidate materials being the stripe-ordered 214 materials,

studied systematically as a function of doping, temperature, and field, and

underdoped YBCO, where signatures of rotation symmetry breaking have already

been detected in neutron scattering.

3.4.3. �SR, NMR, and NQR

Techniques sensitive to local properties have been very useful in characterizing

ordering tendencies in cuprates. �SR has been used to detect magnetic order via

static (or slowly fluctuating) hyperfine fields; magnetic ordering as determined by

�SR typically gives lower ordering temperatures Tsp as compared to elastic

neutron scattering (e.g. Figure 4), due to the different frequency windows of the
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two techniques.34 �SR also allows one to determine the magnitude of the

magnetic moment relative to some known reference (e.g. the undoped parent

compound) as well as the volume fraction of the order. For striped 214

compounds, the moment size is typically found to be half of that in the undoped

compound, but with reduced volume fraction [108,109]. �SR has been used to

map out the magnetic phase diagram of LESCO, where spin stripe order replaces

superconductivity over a large doping range [55,110], as well as of YBCO, LSCO,

and LBCO [75,249].

NMR and NQR provide related information and have been used extensively in

the context of stripes. The broadening of NMR lines at low temperature in LSCO

[250,251] provides evidence for local spatial inhomogeneities. NQR measurements

have detected a so-called ‘wipeout effect’, i.e. the gradual loss of the Cu NQR signal

below some temperature. While this was originally interpreted as a direct measure of

charge stripe order [252], subsequent work has established that the wipeout is due

to a slowing down of spin fluctuations which accompanies the tendency toward

stripe order [253–255].

Subsequent NMR/NQR studies provided details about the spatial distribution of

doped holes [189,256,257] in LSCO and YBCO, giving evidence for spatial

inhomogeneities at low doping. In underdoped YBCO, with oxygen content below

6.4 and located close to the transition to the insulator, �SR has detected static

magnetic order of glassy character which co-exists with superconductivity [91,258].

For YBCO at larger doping, it has been argued from NQR measurements that

charge inhomogeneities arise only from the presence of local oxygen vacancies [259];

this would be consistent with a SDW and/or CDW critical point being located at

very small doping. A particularly remarkable finding is that of two inequivalent

planar O sites, with only one type of Cu site, in YBCO over essentially the entire

doping range [189]. This interesting result may be related to the tendency toward

electronic nematic order. Unfortunately, a detailed experimental study of the

temperature dependence of oxygen NMR/NQR has not been performed to date.

Together with an in-depth theoretical analysis, this would be highly revealing about

nematic ordering. NMR measurements have also exploited the field dependence of

magnetism in YBCO [260,261]; see Section 3.5.3 below.

NMR has been as well applied to LESCO [262,263], which is known to display

static stripes, with charge order setting in around 75K at x¼ 1/8. The results show

a distinct change in the O NMR spectra below 80K, and have been interpreted [263]

in terms of a correlation between local hole doping and domain walls in the

spin modulation, as expected from stripe phases. Also, the static stripe order and/or

the LTT distortion characteristic of LESCO apparently act to suppress the very

slow spin fluctuations, which are present in LSCO, in favour of ordered

magnetism [262,263].

3.5. Relation to superconductivity

The experiments described so far have established the existence of stripe-like order in

certain underdoped compounds, and the data suggest that the phenomenon is in fact

common to a variety of cuprate families. Then, a central question is about the
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relation between stripes and superconductivity. A number of relevant experiments

have been performed that will be summarized in the following. A detailed theoretical

discussion will be given in Section 5.6.

3.5.1. Tc suppression and 1/8 anomaly

Do stripes promote or inhibit superconductivity? First information can be obtained

by looking at the transition temperatures of both ordering phenomena. The bulk

superconducting Tc as a function of doping follows the well-known parabolic dome

shape – this applies in particular to compounds with little stripe signatures, e.g.

multilayer BSCCO. In contrast, in the single-layer 214 materials which tend to stripe

formation, the situation is different: the superconducting materials LSCO and LBCO

display a pronounced Tc suppression at approximately 1/8 doping, first observed in

LBCO [71] (which was later found to display static stripe order). This phenomenon

has been termed the ‘1/8 anomaly’. If the LTT distortion is stabilized by co-doping as

in LNSCO and LESCO, then superconductivity is replaced by non-superconducting

stripe order over a large part of the doping range. Notably, bilayer YBCO also

displays features which may be of similar origin as the 1/8 anomaly in LSCO: the

doping dependence of Tc in YBCO shows a shoulder near oxygen content 6.4, and

the penetration depth is found to have a distinct maximum [264].

As stripe order is known to be particularly strong near 1/8 doping, the 1/8

anomaly is commonly attributed to stripes competing with superconductivity. In line

with this interpretation, most cuprate materials display either quasi-long-range stripe

order (like LESCO and LNSCO for x
 1/8) or well-developed bulk super-

conductivity. Exceptions, with static stripes apparently co-existing with supercon-

ductivity at lowest T, are LBCO near x¼ 1/8 as well as LNSCO and LESCO at

larger hole doping, x0 1/8.35 In LSCO with x
 1/8 superconductivity co-exists with

quasistatic incommensurate spin order, but here no direct evidence of charge order

has been reported. In superconducting LSCO, spin order can be induced for larger x

by applying a magnetic field; see Section 3.5.3. In underdoped BSCCO and CCOC,

the signatures of charge order seen by STM co-exist with well-developed

superconductivity.

For LBCO with 0.11
 x
 0.15, the stripe-ordering temperature is above the

superconducting Tc. The most extensive data set is available at doping x¼ 1/8,

displaying a remarkable hierarchy of temperature scales [73,266], which demon-

strates that the physics is far more complicated than a simple competition of two

ordering phenomena would suggest. The structural transition to the LTT phase is

located at 55K, immediately followed by the charge-ordering transition around

54K. Spin order sets in around 42K, accompanied by a large drop in the in-plane

resistivity �ab. However, �ab only vanishes below 16K, whereas �c vanishes below

10K. Finally, a bulk Meissner effect is seen below 4K. This set of highly non-trivial

data is puzzling: in addition to competing orders, it likely involves dimensional

crossover and disorder effects. The temperature regime above 10K has been

interpreted in terms of fluctuating 2d superconductivity, and we will come back to

this in Section 5.6.2. A detailed experimental discussion is given in [73].

The competition between superconductivity and stripes, which are stabilized by

the LTT distortion of some of the 214 compounds, is visible in a number of other
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effects. In LESCO, where stripes exist for x50.2, the oxygen isotope effect on the

superconducting Tc was studied in [68]. For a non-stripe-order x¼ 0.24 sample

essentially no isotope effect on Tc was seen, whereas Tc decreased significantly by

1.5K in an x¼ 0.16 sample upon substituting 16O by 18O. A plausible interpretation

is that the isotope substitution primarily strengthens stripe order, thereby

suppressing superconductivity. This would then also be a nice confirmation of

stripe–lattice coupling, although a detailed modelling is not available.

Related are the pressure studies of 214 compounds in [58,116,267–270].

Hydrostatic pressure applied to stripe-ordered LNSCO-0.12 leads to a large increase

of the superconducting Tc [268,270]; similar data have been obtained for LBCO

[116,267] and LESCO [269]. Uni-axial in-plane pressure increases the super-

conducting Tc in both non-stripe-ordered LSCO and stripe-ordered LESCO and

LNSCO. However, while the pressure directions [1 0 0] and [1 1 0] are equivalent

for LSCO, there is a significant anisotropy for stripe-ordered LESCO-0.16 [58], with

the Tc increase occurring for pressure along the [1 1 0] direction. From these

experiments, it is believed that pressure reduces the tilt angle of the CuO6 octahedra,

i.e. tends to stabilize the orthorhombic symmetry of the lattice, thereby suppressing

stripe order and hence enhancing superconductivity. The maximum Tc is typically

reached at high pressures in the HTT phase [270] when the CuO2 planes are flat.

Interestingly, the pressure-induced increase in Tc is rather slow for x¼ 1/8 as

compared to x¼ 0.12 or 0.13 [267], and signatures of stripe order have been found

to survive in the HTT phase of LBCO-1/8 [116].

3.5.2. Temperature dependence of stripe signatures

Insight into the interplay of ordering phenomena can be gained by studying their

temperature dependence. Distinct behaviour is found depending on whether stripes

or superconductivity dominate.

We begin with the materials showing well-developed stripe order according to

scattering probes. For LBCO with 0.11
 x
 0.15, LNSCO, and LESCO charge

order sets in below the LTT transition followed by quasistatic spin order at lower T,

and superconductivity with a very small (or zero) Tc. While Tch9TLTT in LBCO

and LNSCO, the two transitions are well separated with Tch5TLTT in LESCO. All

compounds have Tsp5Tch, i.e. charge order exists without spin order.36 No

appreciable changes of charge and spin order have been reported upon crossing Tc.

The materials LSCO-0.12 [94] and La2CuO4.12 [86], displaying SDW order

(without reported signatures of charge order), share an interesting feature: within the

experimental accuracy, the superconducting Tc equals Tsp. This may be related to

a property of LBCO-1/8 noted above: the spin-ordering transition at Tsp is

accompanied by a large drop in the in-plane resistivity (but bulk superconductivity is

not reached here). Whether these findings are coincidental or rather signify a positive

correlation between magnetic order and pair formation is unclear at present. Note,

however, that a magnetic field separates Tsp from Tc in La2CuO4.12 [271] and Tsp

from the resistivity drop in LBCO-1/8 [266]. Phase separation has been under

discussion for La2CuO4þ� [105]; interestingly, a theoretical scenario based on phase

co-existence of competing SDW and superconducting orders has been shown to allow

for Tc¼Tsp for a range of parameters [106].
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We now turn to the temperature dependence of incommensurate spin excitations.

For stripe-ordered LBCO-1/8, the evolution of the low-T hour-glass spectrum was

studied in [272]. The low-energy incommensurate signal is well visible at 65K above

Tch	 55K, but deteriorates at 300K. However, the upper excitation branch above

50meV changes little from 5K to 300K. This was interpreted as evidence for a stripe

liquid in [272]. In LSCO, the temperature dependence of the excitation spectrum

is similar: while excitations at high energies display only a weak temperature

dependence, the low-energy excitations become much more structured at low T.

While in optimally doped LSCO this crossover is tied to Tc [172], it occurs at a higher

temperature in underdoped LSCO-0.085, which has been attributed to the

pseudogap [164]. Remarkably, incommensurate excitations below Tc are even seen

in overdoped LSCO [174], but disappear for doping x¼ 0.30 outside the

superconducting dome.

In optimally and slightly underdoped YBCO, a clear hour-glass dispersion with

a sharp resonance at (�,�) is observed at low T. In YBCO-6.95, the lower branch

disappears completely above Tc, with damping being rather strong [170]. In YBCO-

6.6 with Tc¼ 61K, the low-T hour glass is replaced by a ‘Y’-shaped dispersion at

70K, and the resonance intensity is strongly reduced [169]. Turning to strongly

underdoped YBCO, a ‘Y’-shaped dispersion is seen in YBCO-6.45 (Tc¼ 35K) both

above and below Tc, with the low-energy intensity being strongly enhanced at low T;

however, this increase does not appear tied to Tc [91].

It is worth noting an interesting aspect of the temperature dependence of spin

fluctuations: while in optimally and overdoped compounds, cooling and in particular

the onset of superconductivity usually reduce the magnetic low-energy spectral

weight (i.e. often a clear spin gap opens below Tc), this is not the case in strongly

underdoped materials, where instead magnetism appears enhanced.

Finally, we briefly discuss the CDW signatures as detected with STM. Here, only

a few studies at elevated temperatures are available and restricted to BSCCO

[200,204]. The data indicate robust period-four CDW features in the pseudogap

regime, likely pinned by sample inhomogeneities. The comparison with data

obtained at low T is complicated by the signatures of quasiparticle interference at

low T, which are weak or absent at elevated T: at low T, it is difficult to assign peaks

in the FT-LDOS uniquely to either quasiparticle interference or charge order (while

this ambiguity does not exist above Tc); see Section 3.3. Whether this implies that

CDW tendencies are enhanced in the pseudogap regime as compared to the low-T

superconducting phase is not known.

While a one-line summary is difficult, a common feature seems that in

underdoped compounds the ordering tendencies develop below the pseudogap

temperature (although long-range order may set in only at very low T ). Moving

toward optimal doping, ordering tendencies weaken, and the influence of the

superconducting Tc becomes more significant, with strongly damped behaviour

above Tc.

3.5.3. Magnetic field tuning of order

The application of a c-axis magnetic field to superconducting cuprates has been

found to enhance the tendency toward spin and charge order in a variety of cuprates.
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These experiments provide strong evidence for a competition of stripes and

superconductivity, as will be discussed below. The concrete modelling of this

competition is described in Section 5.6.1.

A series of experiments is concerned with enhanced magnetism in an applied

field. Particularly striking are low-temperature neutron-scattering experiments on

214 compounds. Where well-developed superconductivity and quasistatic incom-

mensurate spin order co-exist, the latter is found to be significantly enhanced by

a field of order 10 T. This applies to LSCO with x9 1/8 [113,171,273,274] and to

La2CuO4þ� [271,275]. For LSCO-0.10, the ordered moment increases from 0.03 �B

at zero field to 0.15 �B per Cu at 14.5 T [273]. Inelastic measurements show that the

spectral-weight transfer is restricted to energies below 1.5meV, albeit with a non-

trivial temperature dependence [171]. In superconducting compounds without

quasistatic order, but located close to a magnetic instability, an applied field can

reduce the gap to spin excitations and eventually drive the system into a magnetically

ordered state. This is again nicely seen in LSCO [172,274,276–278]; see Figure 14 for

data from LSCO-0.145 [274]. For this composition, with Tc¼ 36K, inelastic neutron

scattering show that the low-temperature spin gap decreases continuously as

a function of the applied field and closes at about 7 T, consistent with a field-induced

Figure 14. Left: field tuning of magnetic order in LSCO (reprinted with permission from
[274]. Copyright 2008 by the American Physical Society). Shown are the field dependences
of the elastic neutron scattering intensity at ~Qs for LSCO with x¼ 0.105, x¼ 0.12, and
x¼ 0.145 and LNSCO-0.12. The solid lines are fits to the theory of Demler et al. [441]; see
equation (17) in Section 5.6.1. Moment sizes are plotted relative to LNSCO-0.12; the moments
at zero field were estimated from �SR and the grey colours indicate the corresponding errors.
The LSCO-0.145 data are presented in arbitrary units. Right: low-energy LDOS, integrated
between 1 and 12meV, of slightly overdoped BSCCO in a field of 5 T, as measured by STM
(from [196], Science 295, 466 (2002). Reprinted with permission from AAAS). A checker-
board-like modulation around each vortex is clearly visible.
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quantum critical point [278]. In �SR experiments on 214 compounds field-enhanced

magnetism is observed as well [76,274].

In contrast to these observations of field-enhanced order, in compounds with

well-established stripes the field effect in neutron scattering is either weak, as in

LBCO-1/8 [279], or absent, as in LBCO-0.095 [74], LNSCO-0.12 [274], and LNSCO-

0.15 [280]. High-resolution X-ray scattering in LBCO-1/8 found a slight field

enhancement of the correlation length of the charge order, but no measurable

increase of the intensity [281]. Note, however, that transport experiments on LBCO

and LNSCO have been interpreted in terms of field-enhanced charge order [282,283].

Oxygen NMR experiments in fields up to 42 T, mainly performed on YBCO,

found two components with distinct temperature dependences in the spin–lattice

relaxation rate [260,261]. The results were interpreted as enhanced antiferromagnetic

fluctuations in the vortex cores, and have been linked to the enhanced magnetism in

neutron scattering, described above.

A clear-cut neutron-scattering observation of field-enhanced static order in

YBCO is that of Haug et al. [284] in de-twinned YBCO-6.45. At 2K, the quasi-elastic

intensity at incommensurate wavevectors was found to increase by a factor of two

from zero field to 15 T, with the intensity increase I(B) being approximately linear.

In turn, the inelastic response between 2.5 and 4meV decreased with field. From

�SR, the zero-field ordered moment in YBCO-6.45 is rather small, about 0.05 �B

at 2K, indicating that YBCO-6.45 is closely located to a magnetic QCP.

A search for field-induced ordering with the additional advantage of spatial

resolution has been performed using scanning tunnelling microscopy. Hoffman et al.

[196] observed a checkerboard modulation in the local density of states in slightly

overdoped BSCCO in an applied field of 5 T; see Figure 14. The LDOS, integrated

over an energy window between 1 and 12meV, showed a modulation with period

4.3a0 around each vortex, with a decay length of approximately 8 a0, significantly

larger than the vortex-core size.

As with the zero-field modulation, it is interesting to check whether the spatial

periodicity of the field-induced modulation is energy dependent or not. For BSCCO,

Levy et al. [208] reported an energy-independent modulation with period

(4.3� 0.3)a0 and four-fold symmetry. Matsuba et al. [209] detected a small breaking

of the C4 symmetry toward C2, and furthermore emphasized that the modulations at

positive and negative biases are in antiphase. In optimally doped YBCO, STM

experiments in a field of 5 T also found signatures of charge order with a period of

(4.25� 0.25) a0 [211]. While these experiments suggest field-induced CDW order near

the vortices, a recent detailed analysis of quasiparticle interference in a field in

CCOC [210] was interpreted differently: the field enhancement of the QPI vectors q1
and q5 may also induce a checkerboard-like structure in the LDOS.

At this point, a crucial difference between the spin and charge channels in an

applied field has to be emphasized: while static order in the spin channel is

necessarily accompanied by spontaneous symmetry breaking, this is not for the case

for charge fluctuations: those are pinned by the vortices which break the lattice

translation symmetry and couple linearly to the CDW order parameter, similar to

impurities. Hence, incommensurate fluctuations (in either the spin or the charge

channel), which would be gapped in the absence of vortices or impurities, cause weak

inhomogeneous modulations in the charge channel (i.e. of both the density and the
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LDOS) due to pinning. In such a case, the LDOS modulations are not expected to be

energy independent [285,286]; see Section 5.5.

Summarizing, in superconducting compounds where spin or charge order in zero

field is weak or absent (but ‘almost’ ordered), an applied magnetic field operates

to stabilize the order, whereas fully developed stripe order displays little field

dependence. In principle, the physical origin of these phenomena could be either

a direct coupling of the field to the spin/charge order parameter, or an indirect

coupling where the field-induced vortices in the superconducting order parameter

shift the balance between superconductivity and stripe order toward stripes.

The strength of the field effect and the nearly linear increase of the order parameter

with field point toward the second, indirect, possibility, because effects of a direct

coupling between field and CDWs/SDWs would be quadratic in the field. Indeed,

a phenomenological theory based on competing order parameters [441,442] accounts

for a large part of the data; see Section 5.6.1 and Figure 14.

Finally, we note that, for electron-doped cuprates, reports both pro [287, 288]

and contra [289] field-enhanced magnetism are in the literature. However, in all cases

the spin correlations were found at the commensurate wavevector (�,�).

3.6. Glassy behaviour

Glassy behaviour, usually arising from a manifold of low-lying many-body states

which are separated by large energy barriers, has been seen in a variety of

underdoped cuprates at low temperatures. While canonical spin-glass physics arises

in spin systems under the influence of both disorder and geometric frustration, the

situation in cuprates is more involved due to the presence of charge carriers.

A spin-glass phase has been identified early on in LSCO in the insulating doping

range 0.025x50.055 [290–292]. Irreversibility and glassy freezing, as evidenced

e.g. in magnetization and a.c. susceptibility, are seen below temperatures of 5–10K.

Remarkably, similar glassy behaviour is also seen for larger doping, where spin-glass

order appears to co-exist with superconductivity [249,250,293]. Taking together

NMR and NQR results with those of neutron scattering, one concludes that this

phase is not a ‘simple’ spin glass with little spatial correlations, but instead displays

well-defined incommensurate antiferromagnetic correlations. This has been dubbed

‘cluster spin glass’ [52,290].

In fact, the incommensurate magnetic order in the 214 compounds as well as in

underdoped YBCO is characterized by a wide regime of very slow fluctuations.

The best indication is that the apparent ordering temperatures extracted from

different probes are significantly different: in elastic neutron scattering, the onset of

quasistatic order is often seen at temperatures a factor of two (or more) higher than

the onset of order in �SR. Moreover, the ordered state is often characterized

[98,112,163] by only medium-range magnetic correlations and sometimes even by

almost isotropic spin orientations (dubbed ‘central mode’ behaviour by Stock et al.

[163] for YBCO). All these properties point toward the glassy nature of the

incommensurate order. The slowing down of spin fluctuations in the low-

temperature limit has been argued to persist essentially up to optimal doping
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[293–295]. Spin-glass-like behaviour was also reported in CCOC in the doping range

0.055x50.12; for x¼ 0.12 it co-exists with superconductivity [214].

A number of observations have also been attributed to glassy behaviour in the

charge sector. In the insulating regime of LSCO, resistivity noise measurements

suggest the existence of a charge glass, but only below 0.3K, i.e. far below the

spin-freezing temperature [296]. This is supported by detailed impedance spectros-

copy in LSCO-0.03 [297]. For stripe-ordered LESCO, NMR experiments [255]

revealed a distinct slowing down of the spin dynamics below 30K (whereas glassy

spin freezing only appears at 5K) – this was attributed to a glassy ‘stripe liquid’

forming at 30K, which in turn slows down the spins. In addition, resistivity

measurements in LSCO in both the insulating and superconducting regimes have

been interpreted in terms of glassy behaviour in the charge sector; see [295] for

a discussion.

Finally, the STM results of Kohsaka et al. [37] suggest the existence of a period-

four valence-bond glass in BSCCO and CCOC, based on the fact that the observed

order is static, but short ranged. However, dynamical aspects of glassy behaviour

were not studied there.

On the theory side, relatively little work has been done to investigate these

collective glass states. Glassy behaviour in the charge sector is not unexpected, given

the presence of strong collective effects in the spin-singlet channel, i.e. valence bonds

and stripes, which couple linearly to disorder of potential-scattering type. The vast

amount of literature on the random-field Ising model is relevant in this context;

see [62] for an overview. However, the dynamics in the quantum regime is not well

understood. The interplay of singlet formation and disorder has recently been

investigated in a large-N framework and shown to lead to a distinct valence-bond

glass phase [298].

The origin of glassy behaviour in the spin sector is clearly related to carrier

doping, as the underlying square-lattice structure of cuprates is unfrustrated. In the

insulating regime at low doping, a picture [118] of holes that are localized at random

positions and induce local spiral distortions of the spin background [117,299]

appears appropriate. At higher doping, the situation is less clear. However, it is

conceivable that ordering tendencies in the charge sector, which are short ranged due

to quenched disorder, plus competing interactions cause frustration in the spin

sector, driving it glassy.

We note that behaviour reminiscent of randomness-induced glassiness can even

arise in the absence of quenched disorder, i.e. purely from interactions. This

remarkable phenomenon has been theoretically demonstrated in [64] in a simple

stripe model with competing (i.e. frustrated) interactions, but is poorly understood

in general. The NMR results of [293] for LSCO-0.12, showing spin-glass features

which depend only weakly on the level of chemical disorder, may point in this

direction as well.

In summary, both the spin and charge order observed in underdoped cuprates

display glassy features, which, however, strongly mix with collective effects. More

theoretical work is needed, for example, in order to understand how the glassy

behaviour influences the low-temperature magnetic excitation spectrum measured in

neutron scattering.
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4. Microscopic mechanisms

After the survey of experimental evidence for lattice symmetry breaking in cuprates,

we now turn to the theory side. The most important questions appear to be: (i) which

microscopic ingredients (on the level of model Hamiltonians) are required to obtain

symmetry-broken phases as observed in experiment? (ii) Which general principles

can be identified as driving forces of such symmetry breaking? (iii) Beyond

symmetries, concrete theoretical results for observables (e.g. neutron or STM

spectra) have to be contrasted with experimental data. In this section, we shall

address (i) and (ii), covering mainly stripes (but briefly also spiral and nematic

states), while (iii) is the subject of Section 5.

Remarkably, early mean-field studies of the Hubbard model predicted the

formation of inhomogeneous states at small doping, with stripes being one variant.

These theory papers, published in 1989–1990, preceded the 1995 experimental

reports on evidence for stripes, with an enormous subsequent growth of theory

activities. Naturally, this Section can only give a partial coverage, and we refer the

reader to previous review articles for alternative expositions [12–14].

4.1. Microscopic models: Hubbard and t–J

Based on band-structure calculations, the low-energy electronic properties of the

cuprate superconductors are commonly assumed to be dominated by the Cu 3dx2�y2

and O 2px,y orbitals of the CuO2 planes; see Figure 1. Supplementing the one-particle

terms by local Coulomb repulsion results in a three-band Hubbard or ‘Emery’ model

[300]. At half filling, the system is a charge-transfer insulator, with one hole per Cu

orbital and filled O orbitals.

It is commonly assumed37 that under certain conditions, namely the hopping

matrix elements being smaller than both the charge-transfer energy and the on-site

Coulomb repulsion, the low-energy physics of such a model can be mapped onto

a simpler one-band Hubbard model [302],

H ¼ �
X

hiji	
tij c

y
i	cj	 þ c

y
j	ci	

� �

þU
X

i

ni"ni#, ð12Þ

defined on the square lattice formed by the copper sites. The Hubbard repulsion U is

roughly given by the charge-transfer energy of the original CuO2 system; for the

cuprates U¼ 8t is a common choice, where t is the nearest-neighbour hopping.

For large Coulomb repulsion, U� t, the one-band Hubbard model can in turn be

mapped onto a t–J model [303,304], with Jij ¼ 4 t2ij=U. In this mapping, doubly

occupied sites are excluded from the Hilbert space, and virtual hopping processes

between neighbouring sites transform into an antiferromagnetic Heisenberg

exchange, leading to

H ¼ �
X

hiji	
tij ĉ

y
i	 ĉj	 þ h:c:

� �

þ
X

hiji
Jij ~Si � ~Sj �

ninj

4

� �

, ð13Þ

where the electron operators ĉ
y
i	 exclude double occupancies, ĉ

y
i	 ¼ c

y
i	ð1� ni,�	Þ. At

half filling, all sites are singly occupied, hopping processes are suppressed, and the
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t–J model reduces to the well-known square-lattice spin-1
2
Heisenberg model.

The mapping from the Hubbard model to the t–J model can be understood as an

expansion in t/U; we note that higher orders in this expansion generate additional

terms in equation (13) like ring exchange and spin-dependent three-site hopping

which are in general not negligible; see e.g. [305,306]. Very accurate perturbative

mappings up to high order can be obtained using the method of continuous unitary

transformations; this has been done for the Hubbard$ t–Jmapping in [306]. At half

filling, a direct mapping from the three-band Hubbard model to the Heisenberg

model has also been discussed [307]. It is worth emphasizing that the discussed

mappings imply transformations for all operators, i.e. care has to be taken when

calculating observables with one of the effective models.

In general, models like (12) and (13) have to be supplemented by longer-range

Coulomb interactions, as metallic screening can be expected to be poor in particular

close to the Mott-insulating phase. However, such terms are often neglected for

simplicity.

At present, an open question is how much of the cuprate physics is captured by

one-band models of Hubbard or t–J type. This concerns, for example, the

fundamental issues of superconductivity and of the strong asymmetry between

hole-doped and electron-doped materials. Numerical methods applied to the one-

band models have reproduced a number of salient features of the cuprate phase

diagram (see e.g. [308]), including superconductivity, but the results also indicate that

other properties are not properly reproduced; see Section 4.3 below. However, other

workers have raised doubts regarding the existence of superconductivity in the one-

band models, based on numerical results [309] not showing sufficiently strong

pairing.38 While this debate is open, physics of the three-band model will eventually

be important to fully understand cuprate properties.39

4.2. Stripes: concepts and mean-field theories

Nearly in parallel, Zaanen and Gunnarsson [15], Poilblanc and Rice [16], Schulz [17],

and Machida [18,312] employed mean-field approximations to the one-band and

three-band Hubbard models to study the physics slightly off half filling. Their real-

space Hartree–Fock approaches allowed for inhomogeneous charge and spin

distributions, with mean fields representing on-site densities. The results showed

a clear tendency of holes preferring to agglomerate in the presence of an

antiferromagnetic background. The most favourable configurations were such that

the holes formed parallel one-dimensional lines, later on dubbed ‘stripes’.

The Hartree–Fock stripes have a number of interesting properties: (i) the stripes

form � (or ‘antiphase’) domain walls of the antiferromagnetic order (Figure 2).

(ii) The number of holes per unit length of stripe, �l, is unity, such that a stripe

distance of n lattice spacings gives a total doping of 1/n. Those stripes are often called

‘filled stripes’ (or ‘empty’ in an electron picture), and result in insulating behaviour.

The formation of such stripes reflects a tendency of the antiferromagnetic

background to expel holes. Indeed, in the t–J model at low doping, phase

separation into hole-rich and hole-poor regions was found [313], and hole droplets

also appeared in numerical studies of the three-band Hubbard model [314]. For the
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mean-field Hubbard stripes, it was argued that quantum fluctuations lead to

a bunching of stripes [52]. In all situations, the presence of additional long-range

Coulomb interactions is expected to disfavour phase separation, and stripe-ordered

states may result. Such frustrated phase separation [52] has become an important

concept in correlation physics. Subsequent phenomenological theoretical work

supported this notion: the presence of interactions with two distinct length scales was

shown to give rise to stripe-like structures [315,316].

The experiments of Tranquada et al. [19,20], establishing stripe order in LBCO

and LNSCO, uncovered deficiencies of the early Hartree–Fock stripes.

Experimentally, stripes were found to be conducting instead of insulating and,

consistent with this, the ordering wavevectors were more compatible with half-filled

instead of filled stripes. At lowest temperatures, stripes were even found to co-exist

with bulk superconductivity.

As a result, analytical and numerical activities were directed to find and study

metallic and superconducting stripe phases. While the numerical works will be

summarized in the following subsections, We shall briefly discuss alternative mean-

field approaches here, most of which are based on slave-boson formulations of the

Hubbard or t–J models.

Metallic stripes with a filling close to 1/2 were found in a Gutzwiller variational

treatment of the one-band Hubbard model [320]. Metallic vertical stripes compete

with insulating diagonal stripes, and long-range Coulomb interaction is required

to stabilize the former. Later, a systematic slave-boson analysis of the three-band

Hubbard model [133] found nearly half-filled metallic stripes to be stable without

long-range Coulomb interactions. These stripes were bond centred, with a doping

evolution of the stripe distance reminiscent of what is found experimentally, i.e. the

Yamada plot of Figure 5. Similar metallic stripes were also obtained in mean-field

treatments of one-band Hubbard models including second-neighbour hopping

[321,322]. Lattice anisotropies, such as exist in the LTT structure of 214 materials,

were taken into account in the real-space Hartree–Fock study of [323]. As expected,

both hopping and exchange anisotropies are quite effective in stabilizing stripe

structures. In all cases, the stripe order co-exists with well-developed antiferromag-

netism in the hole-poor regions.

While the mean-field theories sketched so far used decoupling fields on the lattice

sites, conceptually different mean-field descriptions employ bond variables. Those

appear in the resonating-valence-bond (RVB) [324] and large-N mean-field theories

[50,317] of the t–Jmodel. The Sp(2N ) large-N limit of the t–Jmodel [317], with mean

fields being anomalous bond variables, was used to describe stripes in [223,318,319].

In the Sp(2N ) approach, fermionic pairing is naturally implemented, while magnetic

interactions lead to singlet dimerization, i.e. spin-Peierls-like bond order [3], instead

of antiferromagnetic long-range order. In this mean-field theory, states with finite

doping are superconducting at T¼ 0. The dimerization of the undoped paramagnetic

Mott insulator survives for a finite doping range, while at large doping

a homogeneous d-wave superconductor emerges. At small doping, the system is

unstable toward phase separation. Upon including long-range Coulomb interactions,

superconducting stripe states are found, with bond order inherited from the undoped

system. Thus, the width q and periodicity p of the stripes are even, with p and q

depending on doping and Coulomb repulsion. For t/J values relevant to cuprates

Advances in Physics 753

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
6
:
4
8
 
2
1
 
D
e
c
e
m
b
e
r
 
2
0
0
9



and q¼ 2, the stripe filling is close to 1/2, and the doping evolution of 1/p is similar

to the Yamada plot. On the basis of these results, a global phase diagram for doped

Mott insulators on a square lattice was proposed in [318]; see Figure 15.

Superconducting checkerboard states were investigated as well [319], which turned

out to closely compete with stripes. Noteworthy indications for paramagnetic stripes

being favoured over antiferromagnetic stripes were found before in numerical

calculations for coupled t–J ladders [325].

The evolution from a bond-ordered Mott insulator to a d-wave superconductor

was investigated in more detail using a bond-operator approach [326]. Other models

for striped superconductors have been proposed [327], and corresponding mean-field

theories have been used extensively to describe concrete experiments; see Section 5.

More recently, renormalized mean-field and variational Monte Carlo calculations

have been used extensively to study in detail the real-space structure of paramagnetic

superconducting stripe states [42,328–330].
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Figure 15. Left: global ground-state phase diagram for doped Mott insulators on a square
lattice, proposed in [318] (reprinted with permission from [318]. Copyright 1999 by the
American Physical Society), as a function of doping and the amount of quantum fluctuations
in the spin sector. The latter is tuned by N in an Sp(2N ) generalization of the spin symmetry or
by the strength J0/J of a competing frustrating interaction. C (M) denote the translation
(magnetic) symmetries which can be spontaneously broken. All states at finite doping are
superconducting; insulating Wigner-crystal states will occur at very small doping (not shown).
The insets illustrate the types of lattice symmetry breaking, with circle sizes denoting the
amount of hole doping per site, and line widths denoting the strengths of the square-lattice
bonds. Superconducting stripe states with periodicity p, with p even, occur naturally as a result
of hole doping into a paramagnetic dimerized Mott insulator. At large doping, the state
becomes a d-wave superconductor without additional symmetry breaking. Right: phase
diagram emerging from the mean-field treatment of an extended Sp(2N ) t–J model (reprinted
with permission from [319]. Copyright 2002 by the American Physical Society), as a function
of t/J and the strength of the long-range Coulomb interaction V/t at a fixed doping of 0.20. All
states with the exception of the Wigner crystal are superconducting. ‘Full stripes’ refers to
states where the charge modulation in the large-N limit is maximal, i.e. the hole density is zero
in the hole-poor regions, whereas the ‘partial stripe’ states have a finite hole density there.
Plaquette (or checkerboard) states generically compete with stripes.

754 M. Vojta

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
6
:
4
8
 
2
1
 
D
e
c
e
m
b
e
r
 
2
0
0
9



A first-principles view on stripes was obtained from a LDAþU calculation of

a CuO2 plane, focused on a period-four stripe state (in the charge sector) at 1/8

doping [331]. The self-consistent stable stripe solution was found to be bond centred

and strongly antiferromagnetic with period eight in the spin sector (note that singlet

formation cannot be described by LDAþU). The calculated photoemission

intensity, integrated over a large energy window, was found to be roughly consistent

with the early ARPES result of [242].

A common deficiency of most mean-field-like approaches to stripes is that the

charge modulation within a unit cell is very strong, i.e. the hole-poor regions are

essentially undoped. Quantum fluctuations can be expected to reduce the

modulation; see Figure 16 for a result beyond mean field. Further, it should be

emphasized that the filling of stripes, �l, cannot be sharply locked to a particular

doping-independent value (e.g. �l¼ 1/2): if this were the case, then it could only be

the consequence of the existence of an incompressible state at this filling, which,

however, then would be insulating instead of metallic.

From a one-dimensional perspective, metallic stripe phases may display further

instabilities: apart from superconductivity, density waves with 2kF or 4kF along the

stripe direction may occur. Those have been seen using density matrix renormaliza-

tion group (DMRG) techniques [332], but not experimentally to date.

Some theory papers have also discussed Wigner-crystal states, e.g.

Wigner crystals of Cooper pairs [333], in particular in connection with checker-

board structures observed in STM. However, considering the metallic character of

stripes in the 214 cuprates, this type of approach may be too far on the strong-

coupling side.

0.35

0.2

0 12 16

lx

0.0

0.1

0.2

n
h
(l

x
)

4 8 12 16
−0.4

0.0

0.4

S
π (lx )

Figure 16. Bond-centred stripe state in the t–J model as obtained from DMRG (reprinted
with permission from [335]. Copyright 1999 by the American Physical Society). Left: hole
density and spin moments for the central 8 8 region of a 16 8 t–J system. The diameter
of the grey circles is proportional to the hole density nh, and the length of the arrows is
proportional to hSzi, according to the scales shown. Right: hole density nh (solid circles) and
spin-structure function S� (open squares), averaged over each column in the 16 8 system.
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4.3. Numerical results

Numerically exact solutions of microscopic models for the CuO2 planes play an

essential role in the cuprate high-Tc research. Naturally, stripe (and other symmetry-

broken) states have been searched for, with limited success.

Of the available methods, exact diagonalization is limited to system sizes below

40 sites, being too small to detect clear-cut stripe signatures. Quantum Monte Carlo

(QMC) and DMRG techniques can treat larger systems, with the former usually

being unable to access low temperatures and the latter being restricted to the ground

state and to quasi-one-dimensional systems. Dynamical mean-field theory (DMFT)

[341,342], extended to a small number of inequivalent sites, may be used to search for

stripes. However, such a method does not capture inter-site correlations beyond the

single-particle level. This problem can be overcome using modern cluster extensions

[340] of DMFT, provided that the clusters are sufficiently large to host stripes.

However, these computationally demanding methods share the QMC problem of

being restricted to elevated temperatures. In this section, we shall discuss results,

obtained with the listed techniques, relevant for lattice symmetry breaking in cuprate

superconductors – the focus will be on the existence of and conditions for symmetry-

broken phases.

Due to the limited system or cluster sizes, currently all numerical techniques have

severe difficulties in providing detailed momentum- and energy-resolved spectral

information, which could be compared to experimental data. Therefore, simplified

effective models are commonly employed for this purpose, with an overview given

in Section 5 below.

4.3.1. Stripes in DMRG

In an effort to search for stripe states, White and Scalapino have applied DMRG to

the t–J model on clusters of sizes up to 19 8 sites [332,334,335]. DMRG, being

most suitable for the investigation of one-dimensional (1d) systems, was applied with

periodic boundary conditions in the y direction, but open boundaries in the x

direction.

The initial calculations [334] showed stripe states for J/t¼ 0.35 and doping 1/8,

with periodicities in the charge and spin sectors of four and eight, respectively, i.e.

very similar to the experimental data on 214 compounds. Depending on details of the

boundary conditions, the stripes were either site centred or bond centred. In all cases,

the amplitude of the charge-density modulation was about � 40–50%. Such half-

filled stripes, i.e. with �l	 1/2 hole per unit length of stripe, were found to be present

for all dopings x
 1/8. In contrast, for dopings 0.175x50.3 stripes with �l	 1 were

found, and the region with 1/85x50.17 displayed phase separation between �l	 1/2

and �l	 1 stripes.

In [332], the calculations were extended to include a next-neighbour hopping t0

and to study pairing along with stripe formation.40 In general, t0/t40 was found to

enhance d-wave-like pairing while t0/t50 had the opposite effect. t0 with both signs

suppressed the tendency toward stripe formation, such that stable stripes only

occurred for jt0j9 0.2. A plausible interpretation is that stripes compete with

superconductivity, but the two may co-exist, with superconductivity here being two

dimensional rather than one dimensional [332,338]. Also, the dependence on
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boundary conditions was examined in more detail. For stripes along the x direction,

the open boundaries at the stripe ends induce a 2kF density wave in the stripe

direction.

Motivated by the observation of checkerboard-like structures in STM [135],

the authors also investigated the possible occurrence of checkerboard modulations,

i.e. co-existing vertical and horizontal CDWs. Somewhat surprisingly, true checker-

boards (i.e. with C4 symmetry intact) were not found as low-energy states. However,

approximate checkerboard patterns can arise from stripes with additional CDW

formation along the stripes [337].

The DMRG results have been criticized for their dependence on boundary

conditions. On the basis of exact-diagonalization results, Hellberg and Manousakis

[336] concluded that the ground state of the t–J model is not striped. Instead, stripe

states may appear as excited states, which then in turn could be favoured by suitable

boundary conditions or lattice anisotropies; the effect of the latter was explicitly

studied in DMRG in [56].

While this debate [332,336] has, to my knowledge, not been completely settled,

the results indicate that tendencies toward stripe formation are part of the t–J model

physics. Note that long-range Coulomb interaction was not included in the cited

calculations. Hence, the scenario of frustrated phase separation (see Section 4.5) does

not literally apply.

A disturbing feature of the DMRG results is that no robust pairing is obtained

for the physical parameter regime of t0/t¼�0.3. This may cast doubts on whether the

one-band t–J model contains the essential ingredients required to describe cuprate

superconductivity.

Subsequently, DMRG has been applied to study stripes in the Hubbard model.

A large-scale study of six-leg Hubbard ladders [339] investigated stripe states,

modulated along the leg direction, for a doping of x¼ 9.5% at U/t¼ 3 and 12. Finite-

size scaling indicated that stripes are stable in the infinite-length limit for U/t¼ 12,

whereas those at U/t¼ 3 are artefacts of DMRG boundary conditions. For U/t¼ 12,

this result suggests a small value of the Luttinger parameter K� and hence only weak

superconducting correlations.

4.3.2. DMFT and quantum cluster methods

While single-site DMFT is designed to treat homogeneous systems, it can be easily

generalized to inhomogeneous or modulated situations, by assuming a local, but site-

dependent, electronic self energy. Then, the lattice problem maps onto a set of single-

impurity problems supplemented by self-consistency conditions. The inhomogeneous

DMFT approach treats correlation effects only locally, and modulations are

captured in mean-field fashion. This implies that valence-bond physics is not part of

this method, and d-wave superconductivity cannot be described beyond mean field

(in contrast to cluster DMFT to be discussed below).

Fleck et al. [343] have applied an inhomogeneous DMFT method, using

supercells up to 36 8 sites, to the single-band Hubbard model in the absence of

superconductivity. They found metallic stripes for doping levels 0.035x50.2, with

a number of remarkable properties: the stripe orientation changed from diagonal to

horizontal/vertical around x¼ 0.05, and the stripe separation followed closely the
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Yamada plot. For x50.17, the stripes were site centred – this is not surprising given

the absence of bond singlet physics in the approach. Also, nodal quasiparticles were

gapped by the stripe order; while this was consistent with some early ARPES results

[242], it is inconsistent with more recent data [136,190,217,245,246].

The problem of missing non-local correlations is overcome in powerful cluster

extensions [340] of DMFT, with the dynamic cluster approximation (DCA) and the

cluster DMFT (CDMFT) being the most prominent variants. DCA is based on

coarse graining the momentum dependence of electronic self energy, and the lattice

problem is now mapped onto a correlated cluster embedded in a dynamic bath in the

single-particle sector. In CDMFT, the cluster is formed in real space instead of

momentum space. Solving the cluster impurity problems, typically using QMC or

exact diagonalization methods, is numerically much more demanding than treating

a single impurity, which limits the applicability of the method. Most practical

calculations use Nc¼ 4 cluster sites – the minimum required for d-wave supercon-

ductivity – but calculations up to Nc¼ 64 (albeit restricted to high temperatures)

have also been reported. Although the results should become increasingly reliable

with growing cluster size, the mean-field character of the method has to be kept in

mind, i.e. the self-consistency loop will converge to dynamic saddle points of the

problem.

DCA and CDMFT have been quite successfully applied in the study of cuprate

superconductivity [308]. Starting from the standard 2d Hubbard model, supple-

mented by a nearest-neighbour hopping t0, these methods have reproduced key

features of the cuprate phase diagram as a function of doping and temperature:

antiferromagnetism and superconductivity occur in the roughly correct doping and

temperature ranges [344], a pseudogap occurs in the underdoped regime [345–347],

and the normal state around optimal doping is characterized by ill-defined

quasiparticles and a large scattering rate [348,349]. The dichotomy between nodal

and antinodal quasiparticles in the underdoped regime, i.e. well-defined nodals and

broad incoherent antinodals, has been discussed in detail [350].

So far, states with broken lattice symmetries have not been unambiguously

identified in DCA or CDMFT. Clearly, the smallest cluster size of 2 2 is

insufficient for stripes, as non-magnetic stripes require at least a 4 4 cluster (and

low temperatures). What has been found are strong tendencies toward bond order in

the Hubbard model: the parent Mott insulator with additional magnetic frustration

displays a dimerized phase in CDMFT on a 2 2 cluster, but also the neighbouring

phases are characterized by soft singlet-to-singlet fluctuations [352]. Using DCA, the

doped Hubbard model has been shown to display a bond-order susceptibility which

diverges as T! 0 in the underdoped regime of doping x50.22 [347]. This has been

taken as evidence for a quantum critical point at optimal doping between a Fermi

liquid and a bond-ordered phase. While the precise interpretation of these numerical

results may be problematic due to finite-size and finite-temperature effects, they

support the notion that valence-bond physics is a relevant player in underdoped

cuprates.

The self-energy-functional theory of Potthoff [353] allows one to construct more

general dynamical cluster theories. Here, correlated clusters coupled to uncorrelated

bath sites, all with variationally determined parameters, are solved exactly. DMFT

and CDMFT arise in the limit of an infinite number of bath sites. In contrast,
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without bath sites one obtains the so-called variational cluster approach (VCA)

[354]. Compared to CDMFT, larger clusters can be used and access to low

temperatures is simplified. This method has been applied recently to the 2d Hubbard

model [354–356], and the general structure of the phase diagram has been obtained

in overall agreement with DCA and CDMFT. So far, stripe states have not been

systematically searched for. A recent extension allows for the calculation of two-

particle correlations beyond the bubble approximations [357], and results will be

discussed below.

Interestingly, the present results from quantum cluster approaches indicate that

the difference between electron and hole doping in the cuprates is not fully captured

by the single-band t–t0 Hubbard model: although antiferromagnetism is found to be

more stable for electron doping, in agreement with experiment, the low-temperature

amplitude of the superconducting d-wave order parameter is roughly equal for

electron and hole doping [308,356], in disagreement with experiment. An initial DCA

study of the three-band Hubbard model [351], with microscopic parameters extracted

from LDA band-structure calculations and limited to a small cluster of four Cu sites,

has indeed shown that the superconducting Tc depends sensitively on microscopic

parameters beyond those of the one-band model.

4.4. Weak-coupling approaches

For small band filling, or equivalently large doping, it is natural to expect weakly

correlated Fermi-liquid behaviour in the Hubbard and t–J models. Assuming that

this persists up to band fillings of �0.7, weak-coupling many-body techniques may

be used to access the physics of high-Tc cuprates from the overdoped side.

4.4.1. Random-phase approximation

The simplest way to capture collective instabilities of a Fermi liquid is the random-

phase approximation (RPA). This has been primarily employed to describe the spin

excitations in hole-doped cuprates and their interplay with superconductivity. RPA

is an infinite resummation of bubble diagrams for the susceptibility, leading to

�RPAð~q,!Þ ¼
�0ð~q,!Þ

1� gð~qÞ�0ð~q,!Þ
, ð14Þ

where �0 is the Lindhard susceptibility of the non-interacting systems and g is the

fermionic four-point vertex in the singlet (triplet) channel for the charge (spin)

susceptibility.

RPA can predict instabilities toward ordered phases: �RPAð~q,! ¼ 0Þ diverges

when gð~qÞ�0ð~q,! ¼ 0Þ reaches unity at some wavevector ~q ¼ ~Q. In addition, RPA is

able to describe collective modes: sharp modes are reflected in poles of �RPA at some

finite frequency, which then have to lie outside the particle–hole continuum of �0,
whereas damped modes can exist inside the continuum. In fact, RPA has been

initially used to model the emergence of the so-called spin-resonance mode in the

superconducting state of cuprates: this mode at (�,�) is overdamped in the normal
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state, but pulled below the particle–hole continuum by the onset of super-

conductivity; see Section 5.3.

For an interaction vertex g with little structure in momentum space, RPA

predicts the instability wavevector ~Q to be given by the maximum of �0ð~q,! ¼ 0Þ, i.e.
~Q is determined by Fermi-surface properties. From the measured Fermi surfaces of

underdoped cuprates, there are two candidate wavevectors ~Q where �0 displays

peaks: (i) a wavevector close to (�,�), connecting regions near the nodal points – this

has frequently been related to incommensurate SDW order, and (ii) a short

wavevector in the (1, 0) or (0, 1) direction which connects the often nearly straight

antinodal segments of the Fermi surface and which may be related to CDW order.

With increasing hole doping, the magnitude of both vectors decreases. For the SDW

nodal nesting wavevector this means that the distance to (�,�) increases, i.e. the

modulation period with respect to commensurate antiferromagnetism decreases,

which is in qualitative agreement with spin fluctuations observed in various cuprates.

In fact, RPA has been used quite successfully to describe features of the cuprate spin-

fluctuation spectrum, with a brief overview given in Section 5.3. In contrast, the

possible CDW period deduced from the antinodal nesting wavevector increases with

hole doping, in sharp contrast to ordered stripes in the 214 cuprates. As charge order

sets in at a higher temperature than spin order (see Section 3.1), this indicates the

failure of RPA in the underdoped regime, at least for the 214 compounds. (Note,

however, that a CDW wavevector decreasing with doping has been extracted from

STM measurements in BSCCO-2201 [207].) A failure of RPA has also been pointed

out for the dynamic spin excitations in optimally doped YBCO [170] and BSCCO

[165] as well as in electron-doped Pr0.88LaCe0.12CuO4 [408], based on strong

mismatch between RPA and experiment regarding the spin-fluctuation intensities

and the structure of the signal above Tc. A more detailed critical discussion of the

applicability of RPA is given in Section 5.8.

In applications to the Hubbard model a common choice is g¼U, whereas for the

square-lattice t–J model g¼ J(cos kxþ cos ky). In practical applications, the ampli-

tude of g is often treated as a fitting parameter to adjust the position of the

instability, diminishing the predictive power of RPA.

Although it is frequently assumed that RPA is a controlled approximation for

weakly interacting systems, this belief is incorrect: in situations with competing

instabilities, RPA is unreliable in principle even at weak coupling. This can be easily

seen for the half-filled Hubbard model with perfect nesting, where the U dependence

of the antiferromagnetic transition temperature is predicted incorrectly by RPA. As

one of the main features of cuprates is the presence of multiple instabilities,

approaches beyond RPA are required.

4.4.2. Functional renormalization group

A systematic and consistent treatment of competing weak-coupling instabilities is

provided by the functional renormalization group (fRG) treatment of the underlying

microscopic model. The practical applications of the fRG method to the Hubbard

model have been summarized in detail by Honerkamp [358].

The starting point is an exact formulation of the renormalization group in terms

of flow equations for N-particle irreducible vertex functions, which are truncated
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such that only the flow of the one-particle vertex functions is kept. To solve the flow

equations numerically, the frequency dependence of the vertex functions is neglected,

and the momentum dependence is discretized via suitable patches in momentum

space. Different flow schemes have been developed, with the momentum-space

cutoff, the temperature, or the interaction as flow parameter [358]. In the

temperature-flow scheme, one starts at high temperatures T and calculates

the temperature dependence of the momentum-resolved interaction vertices in the

particle–particle and particle–hole channels. Some of these vertices will grow upon

reduction of T, with a divergence indicating an instability toward an ordered state.

Usually, this stops the applicability of the fRG scheme.41

Importantly, the fRG method is able to deal with competing ordering

phenomena in an unbiased manner, in contrast to RPA. The perturbative character

of the fRG limits its applicability to small and moderate values of U; practically,

values of U/t up to four have been used. It furthermore implies that the physics of

the Mott insulator cannot be described, although precursors of Mott physics driven

by strong Umklapp scattering have been discussed [358].

The published fRG calculations for the 2d Hubbard model [360–364] consistently

show antiferromagnetism (at small doping) and d-wave pairing (at larger doping) for

both signs of the second-neighbour hopping t0, corresponding to electron and hole

doping, respectively. The hole-doped regime with t0/t50 is in addition characterized

by a so-called saddle-point regime where many instabilities compete and reinforce

each other; in addition to antiferromagnetism and d-wave pairing, these are a d-wave

Pomeranchuk (nematic) instability and, to a weaker extent, d-density wave order

[363]. In the overdoped regime for 0.15
 x
 0.30, a recent fRG calculation [365]

found strong angle-dependent scattering at U/t¼ 4. This leads to an apparent

violation of Fermi-liquid behaviour, consistent with transport experiments on

overdoped Tl2Ba2CuO6þx [366], but does not exclude that the underlying low-

temperature state is a Fermi liquid.

In the present fRG studies, instabilities toward charge order are found to be

subleading. Interestingly, a recent study [367] of a Hubbard-like model supplemented

by electron–phonon interactions found that phonons strengthen the tendency toward

a CDW with a d-wave form factor and a wavevector given by the nested antinodal

Fermi-surface pieces. However, this instability also appears to be magnetism driven.

In summary, genuine CDW instabilities do not seem to occur in the Hubbard model

at weak coupling.

4.5. Origin of stripe formation

After having reviewed results from microscopic calculations, We will try to be

summarize the current phenomenological ideas on the origin of stripes. This is

particularly important, as collected experimental and theoretical results described in

Sections 3 and 4 leave us with what looks like a conflict: On the one hand, stripes

have been unambiguously identified in experiment but, on the other hand, stripes

do not readily appear in theoretical treatments (beyond mean-field) of the popular

microscopic models. An incomplete list of possible explanations is (i) without the

LTT distortion of some 214 compounds, stripes are never the lowest-energy state of
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CuO2 planes. While this is certainly a possibility, tendencies toward stripes have

also been identified in cuprates with tetragonal CuO2 planes, and hence should be

detectable in numerics. (ii) The present limitations inherent to the numerical

methods, i.e. cluster size, temperature, etc., do not yet allow us to detect stripes.

(iii) The investigated single-band models do not contain all ingredients required for

stripe formation – this appears to be a likely explanation.

About the origin of stripes: phenomenologically, popular lines of thought – all

from a strong-coupling perspective and not being mutually exclusive – have been (A)

frustrated phase separation (or microphase separation), (B) spin–charge ‘topological’

properties, and (C) valence-bond solid formation, all of which have been invoked to

rationalize the formation of conducting stripes in cuprates. While (A) is general, (B)

and (C) refer to more microscopic aspects.

Frustrated phase separation [52,315,316] requires little explanation: a system of

particles on a lattice, moving under the influence of short-range attractions and long-

range repulsions, minimizes its energy by forming linear domains of enhanced and

reduced density.42 This argument invokes long-range Coulomb repulsion as crucial,

and leaves open the issue of what the short-range physics exactly looks like. Being

classical, it generically results in conducting instead of insulating stripes.

Microscopically, frustrated phase separation in cuprates is related to the fact that

an undoped Mott insulator (partially) expels holes.43,44 A resulting stripe state then

not only balances magnetic (i.e. short-range attractive) and Coulomb (i.e. long-range

repulsive) energies, but also the hole kinetic (i.e. quantum) energy: holes can gain

kinetic energy by moving along the hole-rich stripes, but at the same time leave the

hole-poor domains essentially unaffected. Due to the presence of quantum effects,

long-range Coulomb interaction may not be absolutely necessary for stripe

formation (although it is in some mean-field approaches which underestimate

quantum effects).

Inspired by the physics of one-dimensional systems, spin–charge ‘topological’

properties have been discussed as the driving force of stripe formation. Hole-rich

stripes form charged domain walls of the background antiferromagnetic order,

which may be interpreted as a two-dimensional generalization of holons [371].

Within this picture, stripes form elastic strings on the lattice, which may be pinned

by disorder [21,372,373], and the destruction of stripe states is driven by transverse

stripe fluctuations or topological defects. The term ‘topological’ is somewhat

misleading here, as domain walls are topological defects of Ising antiferromagnets,

but not of ones with Heisenberg symmetry. Hence, there is no topological protection

for the strings. Microscopic considerations of the motion of holes along AF domain

walls within the t–J model show that motion both along the domain walls and into

the AF domains (which leads to some spin-polaron-like dressing) is required to

compensate for the cost of the domain wall [374]. A general problem with this set

of ideas is that it is intimately tied to magnetic order. Experimentally, charge stripes

exist without long-range magnetic order (Section 3), although some short-range

order is certainly present.

In contrast, valence-bond solid formation is a concept relying on physics in the

singlet sector. It starts from the observation that the destruction of antiferromagnetic

order in an undoped Heisenberg magnet on a square lattice is accompanied by lattice

symmetry breaking, most likely in the form of a columnar valence-bond solid [3,376].
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It has been argued that this type of symmetry breaking survives with hole doping

[318,375], leading to a VBS metal or a superconductor. Moreover, the resulting

system, effectively consisting of coupled two-leg ladders, may display a stripe (or

frustrated phase separation) instability, because weakly doped ladders have strong

rungs, whereas kinetic energy is better gained by motion along the legs. The STM

data of [37], showing bond-centred stripes with strong bond modulations, appear to

support this concept. It should be pointed out that valence-bond stripes, although

not relying on magnetic long-range order, are primarily driven by magnetic exchange

interactions, as those set the scale for VBS formation.

In both microscopic pictures, the doping dependence of the stripe-ordering

wavevector is explained by the hole-rich stripes having a filling close to half a hole

per unit length of stripe, which weakly depends on the overall doping x for small x.

As a result, ~Qc 	 ð4�x, 0Þ. For larger x and short stripe distances, stripes strongly

repel each other, resulting in a plateau in ~QcðxÞ, before stripes eventually disappear.

While stripes may in principle arise from weak-coupling Fermi-liquid instabil-

ities, many cuprate experiments point toward a strong-coupling picture being more

appropriate, as detailed in Section 5.8. However, it is well conceivable that nearly

nested antinodal Fermi surface pieces have a share in driving charge order. This

speculation is particularly appealing as an explanation of increased stability of

stripes at x¼ 1/8. This is commonly attributed to lattice commensuration effects

and may be further enforced by Fermi-surface nesting. In this scenario, x¼ 1/8 is

the doping concentration where the antinodal nesting wavevector and the strong-

coupling stripe wavevector coincide.

4.6. Spiral magnetism

Holes doped into a quantum antiferromagnet have been argued to induce an

instability toward a spiral state [117,299]. It has been proposed that the physics of

spin spirals dominates the insulating regime of cuprates at low doping [118]. In this

scenario, holes are pinned at random positions by the electrostatic potential of the

dopant atoms. The local spiral distortions of the classical spin background lead to

elastic peaks in neutron scattering around wavevectors ~Qs ¼ 2�ð0:5� �0s, 0:5� �0sÞ,
with a doping evolution of �0s as observed experimentally. Although a doped spiral

state is unstable with respect to phase separation, this may be circumvented here by

strong pinning. A distinct but related scenario was proposed in [119]: magnetic

anisotropies were argued to stabilize a canted Néel state at doping x9 2%,

whereas they lead to a helicoidal magnetic phase at larger doping (but still in the

insulating phase), with a small out-of-plane magnetization component. This

proposal appears more consistent with susceptibility measurements in weakly

doped LSCO [377].

In the superconducting state at higher doping, mobile holes and quantum effects

become more important and drastically change the underlying physics. Therefore,

the physics of spin spirals is commonly assumed to be irrelevant to cuprate

superconductivity. However, the smoking-gun polarized neutron scattering exper-

iment has not been performed to date; see Section 3.1.
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4.7. Nematic order

As with stripes, both weak-coupling and strong-coupling approaches have been

employed to search for nematic phases in correlated electron models. A common

feature of the studies described below, which make no reference to fluctuating stripes,

is that a nematic instability (equivalent to a spin-symmetric d-wave, l¼ 2,

Pomeranchuk instability) is driven by strong forward scattering.

Strong-coupling mean-field calculations in the standard RVB slave-boson

formalism find a nematic phase in the 2d t–J model, which competes with

homogeneous d-wave superconductivity [378,379]. For the 2d Hubbard model,

weak-coupling fRG has been applied [360,361,383], with qualitatively similar

conclusions: in particular, near the van Hove filling, there is a tendency toward

a d-wave Fermi-surface deformation. Subsequently, antiferromagnetism or d-wave

superconductivity may develop at low temperatures inside the nematic state. If,

however, antiferromagnetism or superconductivity set in before the nematic order,

then the forward-scattering interactions stop growing, and a nematic instability does

not develop. The overall picture of nematic order competing with d-wave pairing is

supported by exact diagonalization [380] and variational Monte Carlo [381] studies

of the t–J model. A nematic phase has also been shown to occur in a special strong-

coupling limit of the three-band Hubbard model [382].

In three-dimensional (3d) lattice models, the Pomeranchuk instability for even l is

generically of first order due to the presence of cubic terms in the Ginzburg–Landau

theory. It has been argued that even in d¼ 2 strong fluctuations may drive the

transition in first order [386,387]. Full quantum critical behaviour is restored in these

2d models if a sufficiently strong repulsive term is added to the forward-scattering

interaction [388].

Mean-field treatments of nematic ordering often employ effective models with a

quadrupole–quadrupole interaction explicitly designed to produce an l¼ 2 instability

[385–388]. Recently, it has been shown that generic central interactions in 2d can

produce Pomeranchuk instabilities as well [389].

Notably, nematic order in an isotropic Fermi liquid (i.e. without lattice) leads to

non-Fermi-liquid behaviour due to the overdamped Goldstone fluctuations of the

director order parameter [385].

A natural expectation is that the formation of stripes should be favoured in a

d-wave nematic phase due to the uni-axial anisotropy [21]. However, to my

knowledge, a comprehensive study of a microscopic model (using mean-field or more

elaborate techniques) with a sequence of disordered, nematic, and stripe phases is

not available.

5. Effective models: linking theory and experiment

In this section, we describe theoretical activities aimed at a detailed modelling of

experimental data which have been obtained in (or close to) phases with broken

lattice symmetries. Given the difficulties with the numerically exact treatment of

strongly correlated Hubbard or t–J models, most efforts are constrained to

simplified effective models representing spin or renormalized single-particle degrees
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of freedom. Most of the Section will again be devoted to stripe order, but nematic

and loop-current order will also be covered.

5.1. Weak modulations vs. coupled chains and ladders

Often, effective models assume the presence of static stripe-like modulations in both

the charge and spin sectors. Two seemingly distinct viewpoints can then be employed

for model building: Either (A) one starts from a two-dimensional system and adds

(weak) modulations or (B) one starts from one-dimensional chains or ladders and

adds a (weak) transverse coupling. The states which result from these two

approaches are usually equivalent regarding symmetries, but for a given experimen-

tal situation one of the two may be more appropriate. Intuitively, (A) leads to a

weakly modulated state, whereas (B) corresponds to strong modulations.

Experimentally, the amplitude of the modulations in the charge sector is not

precisely known, and extracting modulation amplitudes from actual data is model

dependent. From X-ray scattering, the variation in the oxygen hole concentration in

LBCO-1/8 has been estimated to be about a factor of four [132]; the STM tunnelling

asymmetry maps show a contrast of a factor of 1.5–2 [37]. This suggests that the

modulations are not weak, but also not close to the maximum limit.

However, this is not the full story: 1d building blocks often feature fractionalized

excitations described by a Luttinger liquid, whereas excitations in 2d are

conventional. Then, the elementary excitations of the starting points of (A) and

(B) are different. Nevertheless, upon including the perturbations, the low-energy

physics is the same in both cases, as inter-chain coupling is a relevant perturbation

of the Luttinger-liquid fixed point (except for certain frustrated cases), and even

weakly coupled metallic chains form a 2d Fermi liquid in the low-energy limit.

Consequently, the answer as to whether approach (A) or (B) leads to a better

description of experimental data may depend on the observable and the energy range

to be considered. In principle, 1d spinons and holons could be a good description of

the excitations at elevated energies provided that the modulations are strong – this

has been proposed [390] in interpreting certain photoemission data, but is

controversial.

For some observables, the situation is simpler: for instance, the spin-excitation

spectrum of bond-ordered stripes can be described both by coupled spin ladders and

by a combined theory of CDW and SDW order parameters in a 2d system, with

essentially identical results; see Section 5.3.1. One reason for this equivalence is that

the spin excitations of a two-leg ladder are conventional spin-one triplons.

5.2. Static, fluctuating, and disorder-pinned stripes

The picture of long-range fluctuationless stripe order in the charge sector is certainly

idealized: even at lowest temperatures (i.e. without thermal fluctuations), both

quantum fluctuations and quenched disorder (arising e.g. from dopant atoms) will

induce deviations from ideal order. Deep in the charge-ordered phase, such

deviations are often negligible (however, for example, photoemission spectra are

strongly influenced even by small amounts of stripe disorder).
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The most interesting regime is close to the charge-ordering transition, where – in

the absence of quenched disorder – collective degrees of freedom associated with the

CDW order are slowly fluctuating in space and time. Here, the CDW physics on

short scales is quantum critical, and a comprehensive theoretical treatment becomes

difficult.

In building approximations, the question arises which type of stripe fluctuations

dominates. In the language of the CDW order parameter �c, one can distinguish

amplitude and phase fluctuations. The latter imply that stripes remain well-defined

objects, but fluctuate in the transverse direction – here the picture of elastic strings on

a lattice [372,373] has been frequently used. However, this is not the full story: the

phase field can display topological defects, corresponding to stripe end points.

Moreover, in a tetragonal environment, there will be generalized phase fluctuations

between horizontal and vertical stripes. In high dimensions, it is known that

transitions are driven by amplitude fluctuations; in 2d the situation is less clear, and

the importance of certain fluctuations depends on whether the system is in the weak-

coupling or strong-coupling limit.

Including the effects of quenched disorder complicates matters, but may also

imply some simplification (Section 2.7). Most importantly, disorder is of random-

field type in the charge sector and tends to pin fluctuations. Then, on the one hand,

short-range-ordered CDW configurations are rendered static (and hence visible e.g.

in STM). Pinning will act on both horizontal and vertical stripes and thus tends to

smear the distinction between stripe and checkerboard order [65,66]. On the other

hand, the finite-frequency CDW dynamics becomes glassy, and the charge-ordering

transition is smeared.

In the literature, various routes have been followed to tackle the situation of

fluctuating stripes: (i) ignoring subtleties of critical physics and disorder, one may

treat the CDW modes perturbatively, e.g. by calculating the lowest-order diagrams

describing the interaction of electrons with CDW modes [391,392]. This approach is

suitable if amplitude fluctuations of the CDW order are dominant. (ii) Theories of

quantum strings on a lattice have been invoked to discuss the phase diagram and the

dynamics of fluctuating stripes in the presence of both disorder and lattice pinning

[21,372,373,393]. In particular, disorder pinning may lead to a Bragg-glass-type state

[21]. Based on a calculation of the ratio between spin and charge correlation lengths

in scenarios with and without topological string defects, it was argued that stripes in

the 214 cuprates are dominated by non-topological fluctuations [393]. (iii) Numerical

simulations of order-parameter theories can in principle account for all possible

fluctuations. As the full dynamical treatment of coupled modes is rather

complicated, a Born–Oppenheimer approach to the coupled SDW–CDW problem

was proposed in [151]: it is assumed that the collective charge modes are slow

compared to the spin modes. The CDW modes are approximated as static on the

time scale of the spin fluctuations, and the spin sector is solved for fixed charge

configurations. This approach neglects charge dynamics, i.e. inelastic processes

involving CDW modes, but is otherwise non-perturbative and allows one to access

the full spin dynamics, as discussed in [151,224]. The assumption of slow charge

dynamics appears particularly good in the presence of strong pinning by quenched

disorder. Then, the Born–Oppenheimer approximation may even be used down to

zero energy, e.g. to calculate photoemission spectra. (iv) A strongly simplified
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version of the Born–Oppenheimer approach consists of treating static parallel stripes

with random spacings, which only accounts for a very special type of CDW phase

fluctuations.

While these approaches provide some insight into different limits of the

fluctuating-stripe problem, a concise theoretical treatment of the random-field

glassy dynamics in the quantum regime is not available to date.

5.3. Spin excitations

Magnetic excitations in doped Mott insulators such as cuprates can either be

calculated numerically from one of the relevant microscopic models (with the

limitations discussed in Section 4.3) or can be obtained from simplified effective

descriptions: here, magnetism can be modelled in an ‘itinerant’ or in a ‘localized’

concept. In an itinerant description, one starts from band electrons and captures

interaction-generated collective dynamics via RPA or more sophisticated methods.

Alternatively, in a localized picture, the modelling is centred around collective

modes, typically obtained from Heisenberg models of localized spins, and the physics

of mobile carriers is added perturbatively or ignored entirely. While the latter option

implies a quite drastic simplification, it may be sufficient to describe collective modes

(seen as peaks in �0s) which reside on top of a broad continuum of particle–hole

excitations – this continuum is then simply not part of the model.

The itinerant description is obviously more appropriate at small band filling

or large doping, where correlation effects are expected to be weak, whereas local-

moment collective magnetism should prevail in the small-doping regime. In the

absence of symmetry breaking, the two situations may or may not be adiabatically

connected – theoretical scenarios for both cases are known: in a one-band Hubbard

model at half filling and close to nesting, the small-U itinerant antiferromagnet is

continuously connected to the large-U local-moment antiferromagnet [394]. On the

other hand, in two-band (Kondo-lattice) models of interacting electrons, metallic

paramagnetic phases with and without local moments can exist, which are not

continuously connected: while the latter is a conventional Fermi liquid, the former is

an exotic state dubbed a ‘fractionalized Fermi liquid’ [395]. For the cuprates, it is

not known whether the itinerant and localized descriptions of magnetism are

adiabatically connected. As detailed below, various experiments in doped

compounds can in principle be described within both concepts; however, the

standard RPA (or ‘fermiology’) models fail in some important cases.

5.3.1. Spin excitations of ordered stripes

Static stripe order in both the spin and charge sectors, which has to be accompanied

by linearly dispersing low-energy magnetic excitations due to Goldstone’s theorem,45

lends itself to relatively simple theoretical descriptions.

In particular, in a picture of spin moments localized in the hole-poor regions of

the square lattice, one can write down a Heisenberg model for coupled spin ladders:

H ¼ J
X

hiji

~Si � ~Sj þ J 0
X

hiki

~Si � ~Sk, ð15Þ
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with the sum
P

hiji running over intra-ladder bonds, while the sum
P

hiki connects

neighbouring sites from different ladders. The model may be supplemented by

longer-range couplings or ring-exchange terms. Microscopically, J is the usual

antiferromagnetic exchange between neighbouring Cu spins, whereas J 0 is an

effective exchange which is thought to be mediated via the hole-rich stripes; see

Figure 17. Note that the sign of J 0 determines whether ordered antiferromagnetism

will be in phase or antiphase. The hole-rich stripes themselves are not part of the

model; they are assumed to only contribute a broad continuum to the spin

excitations, and their damping effect is ignored.

For site-centred stripes with a period four in the charge sector, the canonical

choice are three-leg ladders [150,398]. ‘Antiphase’ magnetic order, with an ordering

wavevector of ~Qs ¼ ð3�=4,�Þ, is obtained from antiferromagnetic inter-ladder

coupling, J 040. For bond-centred period-four stripes, two-leg ladders appear

natural [147,148], but four-leg ladders have also been used [150]; antiphase

magnetism requires J 050 in both cases. For odd-leg ladders, an infinitesimal J 0 is
sufficient to drive the coupled system into a magnetically ordered ground state, while

a finite J 0 is required in the even-leg case in order to close the spin gap of the isolated

ladder. The resulting spin model can be treated by semiclassical spin-wave theory

(assuming a magnetically ordered state) or by more elaborate methods, to be

described below.

Most of the published calculations were triggered by the inelastic neutron

scattering experiments of Tranquada et al. [146] on La15/8Ba1/8CuO4, which showed

an upper dispersion branch well described by the spectrum of an isolated two-leg

Figure 17. Left: 2D square lattice split into two-leg S¼ 1/2 ladders (full dots) coupled by
bond-centred charge stripes (open dots). Jk¼ J?¼ J is the intra-ladder exchange; Jcyc is an
additional cyclic exchange. Magnetic properties are calculated from the two-leg ladders
coupled by J0. Right: excitation spectrum !h,k of coupled two-leg spin ladders as model for
period-four stripes as a function of the momenta perpendicular (h) and along (k) the ladders.
The inter-ladder coupling is ferromagnetic and chosen such that the excitation gap vanishes.
The spectrum displays low-energy ‘spin waves’ and high-energy ‘triplons’ which meet at
a ‘resonance peak’ at (�,�). (Reprinted with permission from [148]. Copyright 2004 by the
American Physical Society.)
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spin ladder in a situation with period-four charge order. Consequently, coupled two-

leg ladders were used in [147,148]. Vojta and Ulbricht [147] employed a linearized

bond-operator description for a situation inside the magnetically ordered phase close

to the QCP, i.e. where weak magnetic order co-exists with strong dimerization, and

the magnetism is far from the semiclassical limit. Uhrig et al. [148] used a more

sophisticated approach of continuous unitary transformations (which, however,

cannot be easily applied to the ordered phase) right at the QCP.

The two approaches [147,148] yield dispersions of effectively non-interacting

bosonic excitations, with rather similar results. They nicely show a dual character of

the excitations (Figure 17): at low energies, the excitations resemble spin-wave-like

Goldstone modes whereas, at higher energies, the character of the triplon dispersion

of the single ladder is reproduced. The low-energy and high-energy branches meet in

a saddle point at wavevector (�,�). If jJ 0j is not too large, the energy of this saddle

point is essentially given by the spin gap of an isolated ladder. In fact, the idea of

low-energy incommensurate excitations and the resonance peak being part of

a unified picture was proposed earlier by Batista et al. [397].

The excitation spectra of the coupled-ladder model compare favourably to the

experimental data of [146], after taking an average of horizontal and vertical stripes

(assuming stripes running orthogonal to each other in adjacent planes); see Figure 8

in Section 3.2. Once matrix elements are properly taken into account, the low-energy

signal essentially consists of four spots near the ordering wavevectors, forming

a square with corners along the (1, 0) and (0, 1) directions. Upon increasing the

energy, the four spots meet at (�,�) at what one might call a ‘resonance peak’. Above

this energy the response moves away from (�,�) and forms a square which is now

rotated by 45 degrees. Within this description, J is taken to be 130–160meV [148]

(which is the canonical value for 214 compounds). J 0 is a fitting parameter chosen to

place the system near criticality; within the ordered phase, the spectrum is only

weakly sensitive to the value of J 0.
Subsequently, [150] applied spin-wave theory to systems of coupled three-leg and

four-leg ladders. For both situations, reasonable agreement with the experimental

data of [146] could be obtained for suitable values of J and J 0. (For three-leg ladders,

the results are qualitatively similar to [398].) The remarkable fact that semiclassical

spin-wave theory and strongly quantum-mechanical bond-operator theory produce

rather similar results can be related to the fact that the anomalous dimension  of

the magnetic order parameter, characterizing the magnetic QCP, is small (¼ 0.07

for the 2d O(3) model).

Coupled-ladder models can be employed as well to model the magnetism of

stripes at smaller doping. Taking the doping dependence of the real-space stripe

period as input, CDW periods of 2M sites are naturally described using coupled

even-leg ladders with 2M� 2 legs; other periods can be mimicked by an alternating

arrangement of even-leg ladders of different widths. Such models reproduce essential

features of the experimental spectra, for instance the relation Ecross/ x, where Ecross

is the saddle-point energy at (�,�) [399].
Calculations of stripe magnetism beyond localized spin models have also been

performed. Mean-field plus RPA calculations of spin- and charge-ordered stripes

(i.e. with broken symmetries) can be found in [400,401]. The obtained spin

excitations reasonably describe the low-energy part of the experimental data.
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However, as seen in [401], the upper branch does not emerge from the resonance

peak and is moreover heavily damped, which is not in agreement with experiment.

The problem of not correctly describing the upper branch of the hour-glass

excitation spectrum is shared by essentially all RPA calculations; see next subsection.

A more elaborate time-dependent Gutzwiller approach to the Hubbard model

was put forward by Seibold and Lorenzana [149], which places the system

somewhere in between the itinerant and localized regimes. Good agreement with

the data of [146] was found for bond-centred period-four stripes.

Finally, the collective magnetism of static stripes can also be described in a lattice

order-parameter theory: starting from a �4 theory for 2d commensurate magnetism,

stripe physics can be implemented via uni-directional modulations in mass and

gradient terms [396]. The resulting spin-fluctuation spectrum is essentially identical

to that of the coupled-ladder two-leg model [147,148], with the advantage that the

order-parameter theory can be generalized to fluctuating or disordered stripes [151];

see next subsection.

What can be learned from these theory excursions? (i) For ordered stripes, local-

moment approaches work, whereas the simplest RPA fails. (ii) While bond-centred

stripes work marginally better in comparison to experiment, site-centred stripes

cannot be ruled out (on the basis of the neutron-scattering data). Note that the STM

result of [37] on BSCCO and CCOC gives very clear evidence for bond-centred

charge order. (iii) Scenarios of checkerboard (instead of stripe) charge order can be

ruled out (at least for LBCO): a spin-wave calculation for checkerboard order [402]

gives results in disagreement with the data, and this conclusion is consistent with the

calculations in [151] on fluctuating charge order.

5.3.2. Gapped incommensurate spin excitations: RPA vs. fluctuating stripes

The modelling of gapped spin excitations in superconducting cuprates goes back to

the so-called ‘resonance mode’, seen in neutron scattering at wavevector (�,�) and
energies 30–50meV [152–156]. RPA and related Fermi-liquid-based methods, like

slave bosons plus RPA [403] or the so-called fluctuation-exchange approximation

[404], have been very successful in capturing the essential features of the early

experimental observations: the resonance mode only appears as a sharp mode in the

superconducting state, where it is pulled below the particle–hole continuum (i.e.

exists below 2D), whereas only overdamped response exists in the normal state.

The energy of the resonance roughly scales with the superconducting Tc. RPA also

describes the development of incommensurate excitations below the resonance

energy, albeit with a small intensity [403,404].

The neutron-scattering experiments of [157,158,161–163] changed the overall

picture. In addition to the resonance, both upward- and downward-dispersing

excitation branches (the so-called ‘hour glass’) were detected in underdoped YBCO.

Moreover, sharp features in �00s were also detected above Tc. Subsequently,

modifications and refinements of RPA were proposed, mainly consisting in adjusting

the interaction function gð~qÞ in equation (14), including its momentum dependence.

As a result, weak excitations above the resonance energy could be described [405]; see

Figure 18. RPA was also used to describe the anisotropic low-energy excitations in

de-twinned YBCO [406,407]; see Section 5.9. However, a common feature of all RPA

770 M. Vojta

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
6
:
4
8
 
2
1
 
D
e
c
e
m
b
e
r
 
2
0
0
9



calculations is that a full excitation branch above the resonance energy is never

obtained, and the intensity in this energy range is always weak.

While Fermi-liquid-based methods like RPA are not expected to be applicable for

underdoped cuprates, the failure of RPA is already apparent in optimally doped

YBCO-6.95, as discussed in detail in [170]: neutron scattering observes dispersing

collective modes above the resonance energy, both below and above Tc (the latter

fact is different from the early experimental results, possibly due to better

resolution and crystal quality). In contrast, there is little structure in the RPA spin

excitations. A similar inapplicability of RPA was recently reported for optimally

doped BSCCO [165].

Consequently, strong-coupling theories are called for – those should account for

both collective spin and charge modes. An explicit proposal for a phenomenological

order-parameter theory of coupled spin and charge fluctuations was made in [396],

with two crucial ingredients: (i) both spin and charge sectors are defined on the

microscopic lattice; hence, the theory accounts for short-wavelength effects and

lattice pinning. (ii) The bare spin fluctuations live at wavevector (�,�), and any

incommensurabilities in the spin sector are driven by modulations in the charge

sector, via couplings of the type Re½expði ~Qc � ~xÞ�cðxÞ�j�s�ðxÞj2: microscopically, this

reflects that both the spin density and the magnetic couplings become modulated

along with the charge. Importantly, the magnetic couplings can even change sign,

switching the spin-ordering wavevector from (�,�) to one dictated by the charge

Figure 18. RPA result for �00s of a d-wave superconductor (reprinted with permission from
[405], copyright 2005 by the American Physical Society), as a function of frequency and
momentum along ~q ¼ ð�,�Þ (note that this is not the direction in which the incommensurate
low-energy peaks are commonly observed). The RPA interaction function was chosen as
gð~qÞ ¼ g0½1� 0:1ðcos qx þ cos qyÞ�, with g0¼ 0.573 eV. The arrows show the resonance mode
around (�,�) and the weak excitation above the resonance.
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order – this renders the effect of the coupling non-perturbative. For perfect charge

order, the results of this approach are essentially identical to that of a microscopic

theory of coupled spin ladders [396].

Vojta et al. [151] proposed an adiabatic approximation for the coupled order-

parameter theory of [396], being appropriate for slowly fluctuating or disorder-

pinned stripes. By combining lattice Monte Carlo simulations for the charge sector

with exact diagonalization of the spin sector, it was possible to determine the spin

excitations of fluctuating stripes. The full numerical treatment of the charge sector

ensures that positional stripe fluctuations as well as fluctuations between horizontal

and vertical stripes including proper domain walls are correctly described. Also, the

crossover from stripe to checkerboard order is part of the theory. Remarkably, the

results display an hour-glass excitation spectrum over a wide range of parameters;

see Figure 19. For strongly repulsive horizontal and vertical stripes, Figure 19(a), the

constant-energy cuts display distinct high-intensity spots as in the ordered-stripe

calculation, whereas a situation with weakly repulsive stripes including checkerboard

domain walls, Figure 19(b), results in a rather isotropic intensity distribution in ~Q
space, despite the underlying stripe physics. The lower branch of the hour glass

becomes smeared with decreasing charge-correlation length �ch; for �ch510, only

Figure 19. Dynamic spin susceptibility �00s ð~q,!Þ for bond-centred fluctuating/disordered
stripes (reprinted with permission from [151], copyright 2006 by the American Physical
Society). Left/middle: cuts at a constant energy, at roughly 60% and 150% of the resonance
energy, Eres, as a function of momentum. Right: cuts along (qx, �) as a function of qx and
energy, showing the universal ‘hour-glass’ spectrum. (a) Strong repulsion between  x and  y,
correlation length �	 30. (b) Weak repulsion, �	 20. (c) Weak attraction, �	 20. (d) As in
panel (b), but in the presence of an in-plane anisotropy preferring horizontal stripes. The ratio
of the charge gradients in S is 1.005. While the anisotropy is significant at low energies,
!	 60%Eres (lower panel), it is much less pronounced at 200%Eres (upper panel).
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a broad vertical feature in !–~q space is left at low energies (i.e. a ‘Y’-shaped

dispersion). Including a small in-plane anisotropy in the charge sector has a strong

effect on the magnetic excitations at low energies, whereas those at high energies are

changed rather little; see Figure 19(d). This energy dependence of the anisotropy is

very similar to what is experimentally observed in YBCO [157,169]. Theoretically,

this behaviour can be rationalized by considering that the charge sector is close to

symmetry breaking, and hence is very sensitive to anisotropies. However, only the

lower branch of the spin excitations is determined by the properties of the charge

sector, whereas the upper branch essentially reflects the excitations of

a commensurate gapped antiferromagnet. Note that the adiabatic approximation

for the CDW modes neglects inelastic processes. As discussed in Section 5.2, this

might be particularly appropriate for stripes pinned by quenched disorder, which

then are static, but only short-range ordered, as also seen in STM [37]. While the

results of [151] are encouraging, linking them to microscopic control parameters,

like doping or temperature, is difficult.

A remark on fermionic damping of collective modes is in order: here the RPA

and the purely collective-mode description constitute two extreme cases. In the

former, little signal is left when the resonance moves into the continuum, whereas

damping is absent e.g. in the calculation of [151] (but could in principle be included).

The experiments give evidence for collective modes also at elevated energies and

above Tc, albeit with weaker intensity, implying that the truth is in the middle.

In this context, we mention that a recent extension of the variational cluster

approach (Section 4.3) allows one to calculate two-particle quantities of the one-

band Hubbard model. This strong-coupling approach has been shown to reproduce

an hour-glass-shaped excitation spectrum [357]. However, a more detailed compar-

ison with experiments has not yet been performed.

Finally, we note that the failure of RPA appears even more drastic in electron-

doped cuprates. For Pr0.88LaCe0.12CuO4, the intensity of the resonance peak as

calculated by RPA is a factor of 10 too small as compared to experiment.

Furthermore, RPA predicts downward-dispersing ‘wings’ of the resonance, which

are not seen in experiment [408].

5.4. Photoemission spectra of stripe phases

As with neutron scattering, angle-resolved photoemission spectroscopy (ARPES)

experiments are performed routinely on cuprates. Theoretical calculations of ARPES

spectra of stripe phases have appeared in a vast number of papers over the last

decade. Consequently, we will only mention a few important results, and their

possible connection to experiments.

On general grounds, translational symmetry breaking induces Bragg scattering

and band backfolding. As a result, the Fermi surface breaks up into an arrangement

of pockets of both electron and hole types as well as some open pieces; see [449].

However, such a structure is not observable in ARPES due to matrix-element effects,

as concrete model calculations show.

Mean-field approaches readily provide access to the single-particle spectrum. As

sketched in Section 4.2, charge order may be implemented by modulated site or bond

Advances in Physics 773

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
6
:
4
8
 
2
1
 
D
e
c
e
m
b
e
r
 
2
0
0
9



variables, which are either calculated self consistently within a Hubbard or t–Jmodel

or imposed ad hoc onto a single-particle Hamiltonian. Explicit results for ARPES

spectra were reported e.g. in [410–416]. Common properties of the results are:

(i) ARPES appears little sensitive to details of the spatial structure of stripe order,

like site vs. bond modulations and site vs. bond centring. (ii) Bragg scattering opens

gaps in quasiparticle branches separated by wavevectors ~Qc or ~Qs. (iii) Shadow

features, e.g. Fermi-surface pieces shifted by ~Qc or ~Qs, are present, but suppressed

by matrix-element effects. (iv) Stripes induce almost straight Fermi-surface segments

near the antinodal points located in the ~Qc direction, i.e. near (�, 0) for vertical

stripes. (v) For small to intermediate stripe amplitudes, the Fermi-surface crossings

along the momentum-space diagonals are preserved, which also implies that a state

with co-existing stripes and d-wave-like pairing possesses zero-energy nodal

quasiparticles. For small stripe amplitudes, this follows from the ordering

wavevector ~Q not connecting the nodal points of the pure d-wave superconductor

[47,222,223]. In contrast, for large stripe amplitudes, the results resemble those

expected from quasi-1d systems, and additional pairing eliminates low-energy

quasiparticles.

In fact, the early photoemission experiments of Zhou et al. [242] on LNSCO-0.12,

displaying a cross-shaped low-energy intensity distribution and no evidence for

nodal quasiparticles, were interpreted in terms of 1d behaviour. The concept of

effectively weakly coupled chains/ladders was followed in the cluster-perturbation

theory treatment of the Hubbard model [417]: here, ladders were treated by exact

diagonalization, whereas the inter-ladder coupling was included on the one-particle

level in a RPA-like fashion. For half-filled stripes with maximal charge modulation,

good agreement with the data of [242] was obtained. However, as those ARPES

results were not confirmed by later experiments, see Section 3.4.2, the concept of

strong 1d behaviour of [417] appears too drastic.

Other theoretical approaches to stripe ARPES spectra beyond mean field have

also been put forward, namely supercell DMFT of the Hubbard model [343], a

spin-polaron approach to the t–J model [419], and exact diagonalization of a t–J

Hamiltonian in the presence of a stripe potential [420,421]. The results are broadly

consistent with those from mean-field studies; the latter calculations, however,

suffered from a poor momentum resolution.

While many theoretical works only account for perfect charge order, static spatial

disorder of the stripe pattern can be treated at least in simple mean-field theories.

The physical picture here is that of impurity-pinned static charge order. A simple

approach is using a random spacing of uni-directional stripes [410–412,414];

alternatively, short-range-ordered charge configurations can be generated from

a full Monte Carlo simulation of a stripe order-parameter theory [224,416]. From

the results, it is apparent that stripe signatures in ARPES are quickly smeared by

a combination of spatial disorder and superposition of horizontal and vertical

stripes. For instance, at stripe-correlation lengths smaller than 20 lattice spacings,

clear-cut stripe signatures become essentially invisible [416]. This implies that short-

range-ordered stripes, while nicely visible in STM, are difficult to detect using probes

without spatial resolution. The influence of purely dynamic CDW fluctuations on

ARPES line shapes has also been discussed in a few papers. In particular, it has been

invoked as an explanation for broad line shapes and dispersion kinks [418].
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Interestingly, none of the ARPES experiments on stripe-ordered 214 cuprates

(after [242]) displayed clear-cut stripe signatures, perhaps with the exception of

recent data from LESCO-1/8 [217]. Here, various features of the data have been

argued to be consistent with stripes of moderate amplitude. However, the behaviour

near the antinodal points is not understood, and the limited experimental resolution

renders a detailed comparison to theory difficult.

5.5. STM spectra

Measurements of the local density of states (LDOS) using scanning tunnelling

spectroscopy in a number of cuprates have triggered enormous theoretical activities.

While calculating the LDOS of a homogeneous BCS d-wave superconductor is

a textbook exercise, the most important complications arise from intrinsic

inhomogeneities and from Mott physics. In the following, we shall only discuss

theoretical work on periodic (or quasiperiodic) modulations in the STM signal,

possibly related to symmetry-broken states. In contrast, spatially irregular

inhomogeneities, reflected e.g. in a broad distribution of local gaps in the

superconducting state and possibly related to the influence of oxygen dopants

[27,59,425], are outside the scope of this review.

A standard assumption in modelling STM data is that the measured signal at

low energies locally reflects properties of the topmost CuO2 layer. This is not trivial:

commonly used crystals of BSCCO cleave such that insulating BiO layers are

exposed on the surface. This has the advantage of charge neutrality, but implies that

electrons may follow a non-trivial tunnelling path between the STM tip and the

topmost CuO2 layer, with the result of a momentum-dependent tunnelling matrix

element (which could also differ between the various cuprate families). Theoretical

work on this issue has proposed such a ‘filter effect’, with the matrix element being of

d-wave type for BSCCO [422,423]. However, experimental results are most consistent

with direct, i.e. momentum-independent, tunnelling – this conclusion can be drawn

from the general energy dependence of the LDOS, the spatial shape of impurity

resonances, and the fact that STM results of BSCCO and CCOC are grossly similar,

despite the different surface layers. Recent LDA calculations for impurity states [424]

also argued against a general filter effect, but instead proposed impurity-specific

features of the wavefunctions to explain details of the impurity resonances.

5.5.1. Quasiparticle interference

Isolated elastic scatterers in an otherwise homogeneous metallic system are known

to cause Friedel oscillations in the local density. An energy-resolved version of this

effect, dubbed ‘generalized Friedel oscillations’ or ‘quasiparticle interference’ (QPI),

can possibly be observed in the LDOS. Then, energy-dependent spatial oscillations

in �ð~r,E Þ will show up in the Fourier-transformed LDOS (FT-LDOS) �ð ~k,E Þ (or its
power spectrum). These features typically take the shape of arcs or ridges in

momentum space [191]. The existence, intensity, and dispersion of such structures

depend strongly on the shape of the Fermi surface, the presence and shape of

a superconducting gap, and the nature of the scatterers. Understanding QPI is
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important in order to be able to distinguish it from genuine charge order, which also

leads to real-space oscillations in the LDOS.

Remarkably, the initial experiments revealing QPI in BSCCO [192] showed

relatively clear peaks in momentum space. Those were interpreted using the ‘joint

quasiparticle density of states’ of a BCS d-wave superconductor: peaks in �ð ~k,E Þwere
assumed to occur at wavevectors ~k separating those points on iso-energy contours of

energy E which have a minimal velocity – for a d-wave superconductor with a typical

cuprate Fermi surface, these are eight points at the tips of the ‘banana-shaped’

iso-energy contours. This idea leads to the so-called ‘octet model’: the eight points

define a set of seven wavevectors ~q1, . . . , ~q7 (Figure 20), whose positions appear to

match the experimental locations of QPI peaks, and agreement with Fermi surfaces as

measured by ARPES has been pointed out [193,195].

In subsequent theoretical work, the problem of scattering from impurities in BCS

d-wave superconductors was studied in detail [426–429]. For a single point-like

impurity at site ~r0, the formal result for the impurity-induced change in the LDOS is

��ð~r,E Þ ¼ � 1

�
Im

�

Gð~r� ~r0,E ÞTðE ÞGð~r0 � ~r,E Þ
�

, ð16Þ

where Gð~r,E Þ is the single-particle Green’s function of the clean translational-

invariant system and T(E ) is the T matrix of the scatterer. In the superconducting

state, both quantities are matrices in Nambu space. This formula clarifies an

Figure 20. Contours of constant quasiparticle energy for a d-wave superconductor with
D¼ 0.6t at energies !/t¼ 0.0, 0.075, 0.225, 0.375, 0.5, and 0.57. Also shown are the underlying
normal-state Fermi surface, the AF zone boundary, and the seven distinct wavevectors ~qi of
the octet model which connect the banana tips. (From [431].)
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important point: �� is not only determined by the quasiparticle DOS, ImG, but also

by real parts of Green’s functions. Therefore, the octet model is certainly

oversimplified.

Numerical calculations for a single impurity in a d-wave BCS state found

structures in the FT-LDOS reminiscent of what was seen experimentally. However,

the theoretical FT-LDOS landscape contained both arcs and peaks, whereas the

experimental data show mainly peaks, and also the intensity distribution and precise

peak locations did not agree [426,427]. Interference phenomena between multiple

impurities were taken into account in [428,429], without a significant improvement.

It became clear that the momentum-space intensity distribution in �ð ~k,E Þ depends
strongly on the momentum-space structure of the scatterers. An extensive theoretical

study [430] of QPI caused by various possible scattering sources revealed that smooth

scatterers in both the particle–hole and the particle–particle channels, possibly

arising from out-of-plane defects, are crucial in modelling the experimental data.

Combined with the effect of a small concentration of point-like unitary scatterers,

[430] was able to reproduce the gross intensity distribution in the experimental

�ð ~k,E Þ. Nevertheless, a complete understanding of the observed FT-LDOS patterns

is lacking, although the experimental existence of dispersing peaks can be associated

with QPI phenomena with reasonable certainty.

A few remarks are in order: (i) the octet model describes the data remarkably well,

with a few caveats: the energy dispersion of the experimentally observed ~q1 peaks is
significantly weaker, and both ~q1 and ~q5 have a higher intensity, than predicted by

the octet model when using the ARPES dispersions as input. (ii) Why does the octet

model work so well? This is unclear at present. One ingredient is the strong velocity

anisotropy in the superconducting state, vF� vD, which renders the ‘banana tips’ very

sharp, but this is not sufficient. (iii) Essentially all existing theoretical work is based on

non-interacting Bogoliubov quasiparticles of a BCS superconductor. The influence of

strong correlation effects on QPI has not been investigated. Among other things, the

quasiparticle weights of partially incoherent quasiparticles should enter the strength

of the QPI signatures. This also implies a strong temperature dependence of QPI

phenomena. Experimentally, no QPI has been detected in the pseudogap regime [200].

(iv) The experimentally observed partial disappearance of QPI signatures upon

approaching the Mott insulator [202] is not understood. It is worth pointing out

that the absence of QPI peaks does not imply the absence of quasiparticles, but

may simply be related to a change in the structure of iso-energy contours. It has

been proposed that magnetic ordering tendencies could play a role here [431], but

other phases with pocket-like Fermi surfaces can lead to a similar effect.

An exception to (iii) is a recent consideration of QPI near a nematic quantum

critical point [432]: using a one-loop self-energy, it was shown that both the velocity

anisotropy and the dominance of the ‘banana tips’ for the QPI signal are enhanced

due to scattering off nematic critical fluctuations. However, a more detailed study is

needed to see whether this proposal solves the problems noted above.

5.5.2. Stripes and checkerboards

Atomically resolved STM spectra from charge-ordered states contain a wealth of

information on the nature of the charge order. The direct real-space picture reveals
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the spatial symmetries (e.g. site centring vs. bond centring), and the quantitative

information can be used to determine the nature of the modulation (e.g. primarily on

sites or bonds).

Within mean-field treatments for both charge order and superconductivity, the

LDOS spectra of stripe states can be easily calculated. A comprehensive analysis for

weak charge order on top of a BCS d-wave superconductor has been presented by

Podolsky et al. [286]. In particular, these authors calculated the energy dependence of

the Fourier component of �ð ~k,E Þ at the charge-ordering wavevector ~k ¼ ~Qc, which

was measured in [197,198]. Based on their comparison of the spectra of different

modulation types, the authors concluded that an on-site modulation alone cannot

explain the STM data, but a sizeable modulation of the bonds, of either kinetic

energy or pairing strength, is required. Subsequently, the LDOS has been calculated

for a variety of mean-field theories of charge-ordered states, both for stripes

[319,415,433] and for checkerboards [35,319,333].

The clear-cut observation of stripe order on the surface of both BSCCO and

CCOC [37] showed that the static order is only short ranged, likely due to strong

impurity pinning, is moreover dominated by bond (instead of site) modulations, and

apparently co-exists with well-defined low-energy quasiparticles [190,202]. The STM

signatures of short-range valence-bond stripe order, together with the interplay with

impurity scattering, were theoretically investigated in [224]. Here, an electronic

mean-field theory was combined with an order-parameter description of short-range

charge order, which was used before to model the spin excitations of disordered

stripes [151]. The results show that stripe order is strongly visible in the LDOS and Z

map at elevated energies, in particular near the superconducting gap energy, whereas

QPI signatures dominate at low energies, Figure 21, in good agreement with

experiment. As pointed out in Section 2.1, this dichotomy is related to the fact that

valence-bond stripes have an approximate d-wave form factor and hence display

little coupling to nodal quasiparticles.

We now come to field-induced order as seen in STM. The initially observed

checkerboard patterns around vortices in BSCCO [196] triggered a variety of

theoretical works. One class of explanations assumed that static collinear SDW order

is induced in or near the vortex cores by the applied field [434–437]. Then, a static

charge-density modulation is automatically induced. Another class of theories is

based on pinning of otherwise fluctuating order by a vortex core (or another type of

impurity) [438,439]. While pinning of a CDW trivially induces a charge modulation,

the pinning effect on a collinear SDW will also lead to a static charge modulation;

however, static spin order is not required [439]. The reason is that the pinning

potential at position ~x0 couples as ��cð~x0Þ or ��2s ð~x0Þ to CDW and SDW order

parameters, respectively. In the case of pinning of SDW fluctuations, the resulting

peaks in the FT-LDOS are not energy independent: the collective modes entering e.g.

a one-loop self energy are fully dispersive, which causes a dispersion in the FT-LDOS

as well. This implies a subtle interplay of induced charge order and QPI [285].

It should be noted that a distinct explanation of the vortex checkerboard in terms

of field-enhanced quasiparticle interference has been proposed [210,440], without

reference to collective effects. Indeed, a calculation assuming the existence of QPI

peaks at the octet-model spots in the FT-LDOS shows that both q1 and q5 are field

enhanced [440]. This effect is related to the coherence factors of the superconducting
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state and may indeed enhance a checkerboard-like signal in the LDOS. While it is

at present not unambiguously established which of the interpretations of the vortex

checkerboard is correct, the collected experimental evidence for field-induced

ordering tendencies in cuprates is overwhelming; see Section 3.5.3. Therefore, it

seems very likely that the vortex STM signal involves an intrinsic ordering

phenomenon as well, in particular because stripe-like ordering is known [37] to

occur at the surface of BSCCO and CCOC, the materials where the vortex

checkerboard has been studied.

Finally, let me point out that essentially all model calculations for cuprate STM

spectra are done for one-band models of the CuO2 plane. Considering that the stripe-

like modulation observed in [37] is strongest on the oxygen orbitals, this may not be

justified: a separate treatment of Cu and O orbitals within a three-band model could

be required to fully understand the physics of bond order in cuprates.46

5.6. Stripes and superconductivity

Considering that superconductivity and stripes are two prominent ordering

phenomena in the cuprates, obvious questions are: (i) do stripes and superconduc-

tivity co-exist? (ii) Do stripes and superconductivity compete or co-operate? (iii) Can

external tuning parameters be employed to tune this interplay?

Some relevant experiments are described in Section 3 above, in particular

Section 3.5. The answer to (i) is yes, most clearly seen in LBCO for 0.1
 x
 0.15,

Figure 21. Theoretical results for the LDOS �ð~r,E Þ at negative (left) and positive (middle)
biases, together with Zð~r,E Þ (right), for pinned short-range-ordered stripes with additional
impurities on a 642 lattice, at energies of 50, 24, and 8meV (from top to bottom). While stripe
signatures dominate at elevated energies, the low-energy data, in particular Zð~r,E Þ, display
QPI features. (Reprinted with permission from [224]. Copyright 2008 by the American
Physical Society.)
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where scattering experiments have established stripe order and thermodynamic

measurements show bulk superconductivity (albeit with a strongly suppressed Tc).

As for (ii), the suppression of the superconducting Tc is usually taken as evidence for

a competition of static stripes and superconductivity. This is consistent with the

possibility (iii) of magnetic field tuning of incommensurate spin order, and the fact

that (static) stripe signatures have not been detected in the multilayer cuprates with

the highest Tc.

We note that a few other observations in the 214 compounds have prompted

speculations about a co-operative interplay of stripes and superconductivity. For

LSCO, the incommensurate low-energy spin excitations have been found to survive

into the overdoped regime and to disappear concomitantly with superconductivity

[174]. However, whether the incommensurate fluctuations are the cause or the result

of pairing cannot be deduced from the data. For LBCO-1/8, the experimental data

include an unusual gap in the in-plane optical conductivity appearing together with

charge order [215], the apparent d-wave gap in the charge-ordered state above Tc

[136,247], and the resistivity drop at the spin-ordering temperature [43,73,266].

The latter finding has been interpreted in terms of ‘antiphase superconductivity’,

to be described in more detail in Section 5.6.2 below, but alternative explanations

have been proposed as well [444]. At present, a concise theoretical picture has not

emerged, which certainly is related to the challenge in understanding the pseudogap

regime.

5.6.1. Competing order parameters

The competition of antiferromagnetism and superconductivity has played a central

role in the cuprate phenomenology early on. It appeared in various theoretical

flavours, including the SO(5) theory of Zhang [28,409,445]. Also, without appealing

to a higher underlying symmetry, the interplay of stripes and superconductivity can

be modelled using a coupled order-parameter field theory – such an approach

assumes the presence of the two ordering phenomena without making reference to

their microscopic origin.

A concrete theory for the competition of SDW order and superconductivity in

the presence of an external magnetic field has been worked out by Demler et al.

[441,442], with the focus on the SDW transition inside the superconducting state.

The ingredients are a classical Ginzburg–Landau free energy for the superconducting

condensate  ð~xÞ in the presence of an external field H and a quantum �4 theory for

the SDW order parameter �s�ð~x, �Þ, with a density–density coupling vj j2j�s�j2. The
primary effect of a small applied field is to induce vortices in the superconducting

order parameter. Vortices are accompanied by a suppression of  in a region around

the vortex core, such that the balance between superconductivity (SC) and SDWs

is locally changed. Importantly, the periodic ‘potential’ for the � order parameter,

resulting from an Abrikosov vortex lattice, enhances the magnetic fluctuations not

only in the vortex cores, but over the entire sample – this effect eventually causes

a field-induced transition from a SC to a SCþ SDW state.

The schematic phase diagram from this consideration is given in Figure 22; it has

been verified by a full numerical analysis of the coupled field theory. Among the
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important results is the behaviour of the phase boundary H(s), where s is the tuning

parameter of the SDW order, near the zero-field quantum phase transition at sc:

H=H0
c2 ¼ 2ðs� scÞ=½v lnð1=ðs� scÞÞ�: ð17Þ

Remarkably, the phase boundary cannot be obtained from an analytic expansion

in H, the reason being the infinite diamagnetic susceptibility of the superconductor.

A related result is the behaviour of the staggered moment, experimentally measured

as Bragg-peak intensity, as a function of the applied field:

hj�s�ji2 / sc � sðH Þ,
sðH Þ � s� ðvH=ð2H0

c2ÞÞ lnð#H0
c2=H Þ,

ð18Þ

with s(H ) the renormalized �s mass, H0
c2 the upper critical field of the bare

superconductor, and # a number of order unity. Both results (17) and (18) have been

found to be quantitatively obeyed in the neutron-scattering experiments of Lake

et al. [273,276] and of Chang et al. [274]; see Figure 14 in Section 3.5.3. In particular,

the field-induced intensity hj�s�ji2 increases almost linearly with field near the zero-

field SDW transition [273]. The results of Haug et al. on YBCO-6.45 [284] also

appear consistent with equation (18).

The theory of Demler et al. [441,442], originally restricted to T¼ 0 and two space

dimensions, was subsequently refined and extended to include inter-layer coupling

[443]. For low order-parameter symmetry (Ising or XY), the 3d situation admits

an interesting quasi-1d ordered phase, where ordering occurs within each vortex

s
c

s

H

SC

M

AB

D

C

SC+ 

SDW

SDW

"Normal" 

(Charge order)

P
2

P
1

Figure 22. Zero-temperature phase diagram for the field tuning of SDW order in the
superconducting state. H is the external field and s is the SDW tuning parameter, with zero-
field order for s5sc. The line A–M is the field-tuned SDW transition, whereas superconduc-
tivity disappears above the line B–M–D. P1 and P2 denote paths taken by experiments which
start outside [172,274,276–278] or inside [113,171,271,273–275] the SDW phase, respectively.
(Reprinted with permission from [442]. Copyright 2002 by the American Physical Society.)
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line individually. Then, the B! 0 limit of the order–disorder phase boundary does

not match the B¼ 0 critical point [443].

A few remarks on the theoretical analysis and its consequences are in order:

(i) the Zeeman effect of the applied field has been neglected. Its effect only appears at

order H2 and is small for H� J, with J being a typical magnetic exchange energy.

(ii) The theory implies that the field-enhanced magnetism does not arise primarily

from the vortex cores, but – via the superflow surrounding each vortex – from the

entire sample. In fact, if the magnetism would only come from the vortex-core

region, then the observed neutron-scattering intensity would imply large local

moments of size 0.6 �B, as in undoped cuprates, which appears unlikely. However,

other theories have proposed vortices with antiferromagnetic cores [445]. (Note that

the nature of the vortex cores in cuprates is still not understood, but the continuum

theory of [441,442] gives a reliable description of the physics outside the vortex

cores.) (iii) Although the theory focuses on the SDW order parameter competing

with superconductivity, a similar approach could be applied to other field-induced

orders as well.

Indeed, an open issue is whether the field directly enhances the SDW component

of the stripe order or whether the field enhances the CDW component. If the CDW is

primarily enhanced, one may expect separate transitions associated with the CDW

and SDW orders, with an intermediate SCþCDW phase. However, due to pinning

of the CDW fluctuations by the vortex cores the CDW transition will be smeared.

Nevertheless, a simultaneous study of field-induced SDW and CDW intensities in

one sample might be able to distinguish between the two scenarios.

Under the assumption that stripes and superconductivity compete, the 1/8

anomaly in Tc finds a natural explanation in terms of the enhanced stripe stability

at doping x¼ 1/8 (which in turn is commonly attributed to lattice commensura-

tion effects, but may be enhanced by Fermi-surface nesting). We note that, in

addition, the 2kF CDW instability of one-dimensional stripes may contribute to

the Tc suppression: for nearly half-filled stripes, 2kF corresponds to a CDW

period of four lattice spacings along the stripes, which coincides with the

modulation period perpendicular to the stripes near x¼ 1/8. Hence, coupling

between the planes could be efficient in stabilizing the 2kF CDW, which would

then suppress pairing [334].

Last but not least, it is worth mentioning that the observation of Tc	Tsp, as

observed e.g. in La2CuO4þ�, is not necessarily inconsistent with a concept of

competing SDW and superconducting orders. Within a phenomenological Landau

theory, which admits a region of phase co-existence of the two competing orders at

low T, there is a regime of parameters with simultaneous onset of superconductivity

and magnetism [106].

5.6.2. Fluctuating pairing and antiphase superconductivity

A remarkable hierarchy of temperature scales was found in stripe-ordered LBCO-1/8

[73,266], with a sharp resistivity drop around 42K, but no corresponding signature

in �c and no bulk Meissner effect. This has triggered an interpretation in terms of

2d fluctuating superconductivity without 3d phase coherence [43,266]. While the

resistivity drop seems to coincide with the spin-ordering temperature in zero field,
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a magnetic field separates the two. The data raise a number of questions: (i) what is

the nature of the fluctuating pairing state and its relation to magnetism? (ii) Why is

bulk superconductivity, i.e. a Meissner signal, only established around 5K?

A particular scenario, proposed in [43,53], is that of ‘antiphase’ superconduc-

tivity in a stripe state, also dubbed a ‘pair density wave’. Here, the super-

conducting condensate is modulated, i.e. it is d-wave-like within each stripe, but

undergoes a � phase shift between neighbouring stripes. If adjacent planes have

alternating stripe directions, then it is easy to show that the leading-order

Josephson coupling between neighbouring planes vanishes by symmetry, and bulk

superconductivity will be strongly suppressed. (Higher-order couplings, however,

will be finite.)

In the order-parameter language, antiphase superconductivity is very similar

to a FFLO state, i.e. it is characterized by a finite-momentum condensate,

hc ~kþ ~Qp"
c� ~k#i 6¼ 0, with ~Qp being the pairing modulation wavevector. In the context

of stripe phases, such a state was first proposed by Himeda et al. [42] and then

independently by Berg et al. [43]. A condensate at wavevector ~Qp naturally couples to

the charge density at wavevector 2 ~Qp, see Section 2.5; hence, the pairing modulation

in a period-four charge stripe state is of period eight. Spectral properties of

antiphase-condensate states have been discussed in [415]. In contrast to super-

conductors with zero-momentum condensate, the state has a full Fermi surface,

which is visible mainly as arcs near the nodal direction after matrix elements have

been taken into account.

While the idea of vanishing Josephson coupling by symmetry is appealing, a few

issues are open: (i) the antiphase-condensate state alone does not explain the full

hierarchy of temperature scales seen experimentally. For instance, in the simplest

model of weakly coupled planes there is still a single ordering temperature (which

approaches the Kosterlitz–Thouless temperature in the limit of vanishing inter-plane

coupling). A plausible assumption, also consistent with the global cuprate phase

diagram, would be that bulk superconductivity at low T emerges from a zero-

momentum condensate, i.e. the transition into the Meissner state involves a different

condensate. If this co-exists with the condensate at finite ~Qp, then charge order at

wavevector ~Qp is induced, which is not a higher harmonic of the charge order at 2 ~Qp.

This is testable experimentally. In addition, defects in the stripe order and glass-like

behaviour are likely required to explain the complicated hierarchy of scales in LBCO

[53]. (ii) The full Fermi surface of the antiphase-condensate state [415] is not easily

compatible with the d-wave-like gap observed in ARPES and STM experiments

on LBCO-1/8 [136,247]. (iii) It is not obvious that the antiphase-condensate state

is favoured over a more conventional superconducting state [53]. Whereas

variational Monte Carlo calculations for the t–J model [42] found an interval of

t0/t where the antiphase-condensate state is slightly favoured, results from

renormalized mean-field theory [328–330] indicate that the antiphase-condensate

state, although competitive, is always higher in energy than a stripe state with zero-

momentum condensate.

An alternative model for the resistivity drop in LBCO invokes spin-liquid physics

emerging from nearly straight Fermi-surface segments near the antinodal points

[444], but its relation to the established stripe order in LBCO is open.
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5.7. Stripes in other experiments

In this section, we turn to other experimental findings in cuprates, which have been

interpreted as to provide indirect evidence for translational symmetry breaking.

5.7.1. Quantum oscillations and Fermi-surface reconstruction

Recently, quantum oscillations have been observed for the first time in underdoped

cuprates, both in de Haas–van Alphen and Shubnikov–de Haas measurements.

The compounds used for these experiments are YBCO-6.5 [446,448] and YBCO-124

[447], both having exceptionally low disorder due to ordered oxygen dopants.

The findings came as a surprise, as some theoretical scenarios assumed the complete

absence of coherent electronic quasiparticles in the underdoped regime.

The observed quantum oscillations are instead interpreted as evidence for the

presence of a Fermi surface of quasiparticles, at least in the regime of the large

magnetic fields of order 50 T applied in the experiment.

A follow-up question is concerned with the momentum-space area of the

oscillation orbit, which is a direct measure of the enclosed Fermi volume in two

dimensions. A standard analysis of the oscillation frequencies gives a Fermi volume

somewhat smaller than the nominal hole doping: the oscillation with frequency

(530 T)�1 in YBCO-6.5 translates into a Fermi pocket of size 0.075 per Cu, while the

doping level is about 10%. A similar mismatch is found for YBCO-124. (Note that

oscillations with a frequency corresponding to the electron concentration, i.e. to

a large Fermi surface, are not observed.) Parallel magnetotransport measurements

revealed a negative Hall resistance in both materials, which was then used to argue

in favour of electron (instead of hole) pockets [234]. A later de Haas–van Alphen

experiment on YBCO-6.5 [448] identified a second oscillation period of (1650 T)�1,

associated with an additional smaller pocket.

One line of interpretation is in terms of a conventional metallic state where

(perhaps field-induced) translational symmetry breaking and associated Fermi-

surface reconstruction (via band backfolding) induce small Fermi-surface pockets. A

detailed analysis of such pockets in various candidate ordered states shows that (�,�)
antiferromagnetism is insufficient, but incommensurate (or long-period commensu-

rate) SDW and/or CDW orders could in principle lead to hole and electron pockets

that would cause oscillations consistent with the experimental observations [448,449].

While this interpretation may support the notion that static stripe-like order is

crucial for the phenomenology of underdoped high-Tc cuprates, care is required. One

complication is that the experiments are performed in the mixed state. This situation

was analysed by Stephen [450] in a regime where quasiparticle scattering on vortex

lines can be treated perturbatively. Considering that the effective Fermi energy

for the relevant orbits may be small (i.e. of the same order of magnitude as

the superconducting gap), it is unclear at present whether Stephen’s analysis is

applicable [451].

5.7.2. Stripes and Raman scattering

Inelastic light scattering has revealed rich information on various correlated electron

systems; for a review, see [452]. Being a ~q ¼ 0 probe, it couples to both SDW and
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CDW modes at finite ~Q only via two-particle processes. Nevertheless, Raman

scattering was used to reveal both charge ordering at low temperature and collective

CDW motion at high temperature in the ladder system Sr12Cu24O41 [453].

For the cuprates, a number of Raman-scattering studies have been published on

the 214 materials [454,455]. In LSCO the difference between B1g and B2g spectra has

been used to argue in favour of tendencies toward stripe formation [455]: at low

temperature an anomalous low-energy peak shows up in the B2g channel for x¼ 0.02

and in the B1g channel for x¼ 0.10 – note that the selection rules of the two

geometries are equivalent up to a 45� in-plane rotation. This interpretation is

supported by a theoretical calculation of the Raman response in the presence of soft

CDW collective modes [456]. One should, however, note that details of the Raman

response are not understood [452].

5.7.3. Doping evolution of the chemical potential

Core-level photoemission experiments have been utilized to determine the doping

dependence of the chemical potential � in cuprates. Particularly interesting is the

behaviour in the 214 materials: while electron-doped Nd2�xCexCuO4 displays

a roughly constant chemical-potential slope d�/dx, � is very weakly doping

dependent in hole-doped LSCO for x50.15, while the slope for larger x is similar to

the one on the electron-doped side [457,458]. The anomalous small-doping behaviour

has been attributed to stripe physics: in a picture with doping-independent stripe

filling �l (which also results in a stripe incommensurability �/ x), the chemical

potential �(x) will be constant, whereas a deviation from �/ x will induce a slope

in �(x). Hence, the behaviour of the stripe incommensurability as shown in the

Yamada plot, Figure 5, naturally ties in with the behaviour of �(x). Of course, this

picture is too simplistic, as a constant �(x) implies phase separation, and a fixed �l(x)
(which could only arise from locking due to an incompressibility of the underlying

state) implies insulating stripes. Nevertheless, a weakly doping-dependent �l for
x
 1/8 appears consistent with the experimental observations. This is also borne out

from mean-field studies of metallic stripes; see e.g. [133].

A few caveats of this interpretation should be noted: (i) no static charge stripes

have been reported in LSCO (without Nd or Eu co-doping). Whether fluctuating

stripes would be consistent with the experimental data is unclear. (ii) The chemical

potential in CCOC has been found to display a much larger slope over the entire

doping range as compared to LSCO [459]. This has been attributed to the periodicity

of the charge order in CCOC being weakly doping dependent.

Numerical studies of t–J models found a rather strong influence of the longer-

range hopping terms, t0 and t00, on the slope of �(x) [460]. This might explain the

experimentally detected differences in d�/dx between the cuprate families [459].

Obviously, a more detailed study of the chemical potential in other cuprates,

including those with static charge order, would be desirable.

5.7.4. Possible signatures of fluctuating stripes

If the tendency to stripe order is common to many underdoped cuprates, but

static long-range order is restricted to certain 214 compounds, then an obvious
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question is: ‘How to detect fluctuating stripes?’47 A rough estimate of a relevant

fluctuation frequency, using the STM charge-correlation length �c	 10–20 a0 and

a characteristic UV cutoff scale of 100meV, results in mode frequencies !f of the

order of a few meV or, equivalently, 1 THz.

The observation strategies for fluctuating orders are different for the spin and

charge sectors, due to the limitations in experimental probes and due to the different

effects of quenched disorder on both sectors. In the following, we only discuss the

charge sector; in the spin sector, the low-energy incommensurate fluctuations seen by

inelastic neutron scattering are a well-established precursor of order.

A direct observation of stripe fluctuations would be via low-energy collective

modes in the charge sector, by measuring the dynamic charge susceptibility �0cð~q,!Þ,
or the dielectric function �ð~q,!Þ, at wavevectors ~q � ~Qc and !�!f. Alternatively, it

was proposed that a superconductor with fluctuating stripes should display a shear

photon mode [461]. This mode shows up in the dielectric response as well, now at

q� 1/�c and !�!f. In both cases, no present-day experimental technique has the

required energy resolution, as electron energy-loss spectroscopy (EELS) is currently

limited to resolutions40.1 eV.

Less direct signatures of fluctuating charge order may be found in the phonon-

and spin-excitation spectra, in the optical and Raman responses, as well as in single-

particle spectra. However, the interpretation of these probes is rarely unambiguous,

with examples given throughout this article.

If an experimental parameter (like pressure or magnetic field) is available to

continuously tune the system through a quantum phase transition associated with

stripe order, then the system close to quantum criticality can be expected to display

fluctuating stripes. However, given the large intrinsic energy scales of cuprates, such

tuning is only possible if the material at zero pressure/field is already close to

criticality. With the exception of field-induced SDW order in LSCO and underdoped

YBCO (Section 3.5.3), no conclusive experiments in this direction have been

reported.

Taking into account impurity pinning, ‘fluctuating’ stripes no longer fluctuate.

This simplifies matters, i.e. allows for a detection using static probes, but at the same

time complicates matters, because the distinction between ordering tendencies and

impurity effects becomes subtle; see Sections 2.7 and 3.3.

5.8. Weak-coupling vs. strong-coupling description of incommensurate order

As became clear from the theoretical approaches sketched in Section 4, symmetry-

breaking order can emerge in conceptually different ways. In metals, weak

interactions of low-energy quasiparticles can lead to Fermi-surface instabilities. In

the presence of strong interactions, the possibilities are richer and dominated by

collective effects instead of Fermi-surface properties.

From a symmetry point of view, weak-coupling and strong-coupling limits of

density wave order may be continuously connected; exceptions are insulating or non-

Fermi-liquid ordered states which cannot be obtained from weak coupling.48 An

obvious requirement for a meaningful weak-coupling treatment is the existence of

well-defined fermionic quasiparticles in the relevant temperature range. A feature of
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weak-coupling approaches to cuprate models is that ordering is generically spin

driven, and charge order is parasitic to a collinear SDW state.

A number of quantitative, but possibly significant, differences between weak-

coupling and strong-coupling approaches can be identified from the available

theories [11]. The energy dependence of the dynamic spin susceptibility �0s provides
one criterion: in weak coupling, the intensity will be broadly distributed over a wide

energy range up to the Fermi energy EF, whereas �0s of the local-moment

antiferromagnet is dominated by energies of the order of or less than the exchange

energy J. Furthermore, the strong-coupling �0s is typically much more structured in

momentum space. This is also reflected in the size of the ordered moment in a SDW

state, which is of order unity and of order Tsp/EF (in units of �B) in the strong- and

weak-coupling limits, respectively. The physics in the vicinity of the ordering

transition may provide a second criterion: in weak coupling, the order is carried by

low-energy quasiparticles, implying spectral weight transfer over small energy scales

only. Moreover, the fluctuation regime of a weak-coupling transition is usually very

narrow. In both respects, the opposite is true for strong coupling. A third criterion is

provided by the response to quenched disorder in a nearly ordered situation: in the

weak-coupling limit, disorder will primarily scatter quasiparticles and thus broaden

Fermi-surface-related features, whereas pinning of low-energy collective modes is

dominant in the strong-coupling case. Thus, the low-energy parts of both �0s and �
0
c

will be suppressed (enhanced) by quenched disorder in weak (strong) coupling.

Before coming to experimental data, it should be emphasized that experiments

may well be in an intermediate-coupling regime, where both approaches describe at

least part of the data. Moreover, falsifying a weak-coupling RPA calculation is much

simpler than falsifying the statement that ‘strong-coupling physics is involved’: RPA

can provide numbers, for example, for spin-fluctuation weights which can be directly

compared to experiments, whereas strong-coupling approaches are diverse and often

more phenomenological.

Having said this, the collected experimental data for stripe order in the 214

cuprates speak in favour of a strong-coupling description: (i) the ordering

temperatures obey Tch4Tsp, i.e. magnetic order is not a prerequisite for charge

order. (ii) The doping dependence of the CDW wavevector is opposite to what is

expected from a nesting scenario. (iii) The ordered moments in the SDW phases are

not small. The energy scale of magnetic excitations appears to be set by J. A large

fraction of the spectral weight is found at energies below J and near wavevector

(�,�). (iv) The fluctuation regime of magnetism is generically wide. (v) Substituting

Zn for Cu pins stripes in LSCO. (vi) Although cuprate stripes are not insulating,

a well-defined full Fermi surface is not a property of stripe compounds: stripe order

emerges from the pseudogap regime, not from a well-developed Fermi liquid. We

note that the existence of low-energy (nodal) quasiparticles near the momentum-

space diagonals is not necessarily in contradiction with a strong-coupling

perspective: for instance, valence-bond stripes display nodal quasiparticles even for

sizeable modulation amplitudes because of the approximate d-wave form factor of

the charge order [36].

The STM observations in BSCCO-2212, BSCCO-2201, and CCOC are less clear

cut: low-energy LDOS modulations have been reported which display a doping

dependence of the CDW wavevector compatible with a nesting scenario. As these
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materials are good superconductors (with the exception of underdoped CCOC), this

may not be surprising: it is known that the onset of superconductivity in the cuprates

renders quasiparticles much more coherent as compared to the normal state, opening

an avenue for Fermi-surface-driven ordering. However, the tunnel-asymmetry maps

show a rather robust period-four signal, which is particularly strong a elevated

energies.

At present, it is unclear whether the data constitute a true contradiction. A

possibility is that strong-coupling and nesting effects co-operate in producing

ordered phases.

5.9. Consequences of nematic order

Static nematic order of dx2�y2 type may arise, for example, from a Pomeranchuk

instability of the Fermi surface or as a precursor to stripe order; see Sections 2.3 and

4.7. Nematic order breaks the rotation symmetry in the CuO2 plane from C4 down to

C2. This has a number of consequences, among them (i) locally anisotropic single-

particle properties, visible in STM, (ii) globally anisotropic single-particle properties,

e.g. a distorted Fermi surface, visible in ARPES, (iii) anisotropic spin-fluctuation

spectra, and (iv) anisotropic transport. With the exception of (i), these signatures

require an experimental system in a single-domain nematic state, as expected in

de-twinned YBCO.

About anisotropic STM spectra: it has been proposed [11] to employ spatial

derivatives of LDOS maps to detect nematic order. The simplest quantities are

Qxxð~r,E Þ ¼ ð@2x � @2yÞ�ð~r,E Þ and Qxyð~r,E Þ ¼ 2@x@y�ð~r,E Þ, which then should be

integrated over some energy interval to remove noise and QPI features to only retain

long-wavelength information. A practical problem might be that gap modulations

inherent to BSCCO [27] hamper the procedure. To my knowledge, a detailed analysis

along these lines has not been performed. However, the STM data of Kohsaka et al.

[37] show stripe-like patterns in the tunnel-asymmetry map, which obviously break

the C4 rotation symmetry locally.

We now turn to features of single-domain broken rotation symmetry. Assuming

a Pomeranchuk instability without underlying charge order, issues (ii) and (iii) have

been investigated theoretically on the basis of a RVB-type slave-boson approach

[379,462], with an eye toward the experiments on underdoped YBCO. The starting

point is a t–J model with a small built-in hopping anisotropy of (�t/t)0¼ 5%.

The mean-field solution then leads to an effective, i.e. correlation-enhanced, hopping

anisotropy of up to (�t/t)eff� 20% at low temperature and doping. The renormalized

band structure is then used to calculate the spin-fluctuation spectrum using standard

RPA, with a downward-renormalized interaction adjusted such that the system at

doping 0.07 is close to the magnetic QCP.

In [379], the authors presented a detailed study of the RPA spin-fluctuation

spectrum, as a function of temperature, both above and below the pairing

temperature (denoted TRVB in [379]). The theory reproduces a number of features

found in neutron scattering on de-twinned YBCO [157,169], i.e. a ‘resonance peak’

and anisotropic incommensurate correlations developing below the pairing

temperature. A number of differences should also be noted: the anisotropy of the
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intensity distribution obtained from RPA is somewhat smaller than obtained

experimentally in YBCO-6.6, the RPA energy dependence of the anisotropy is too

weak, and the RPA resonance peak is somewhat too sharp. The subsequent [462]

studied a non-superconducting state at low doping. The obtained momentum-space

profile of the low-energy spin fluctuations shows some agreement with the neutron-

scattering data from YBCO-6.45 of Hinkov et al. [91]. However, the spin correlations

from RPA are not incommensurate, in contrast to the experimental data, which may

be due to the neglect of pairing. (Pairing, however, leads to a distinct resonance peak

in RPA, which is not observed experimentally.)

The neutron-scattering data on less underdoped YBCO-6.85 [157] have also been

modelled using RPA for a fixed anisotropic hopping with �t/t¼ 6% [406,407].

Although the calculations differ in details of the band structure and RPA interaction

functions, reasonable agreement with experiment was found in both cases. In

addition, [407] also accounted for a subdominant s-wave pairing component which is

generically present in YBCO – this was found to lead to a 90� rotation of the

anisotropy pattern as a function of energy.

Possible consequences of a Pomeranchuk scenario have also been investigated for

214 compounds [463,464]. Slave-boson plus RPA calculations reproduce an

approximate hour-glass spin-excitation spectrum. However, the experimentally

observed doping evolution of the incommensurability is not easily recovered in

this approach.

A distinct viewpoint onto nematic phases, e.g. in YBCO, is based on underlying

fluctuating stripes. Then, spin incommensurabilities are primarily driven by

fluctuating charge modulations instead of Fermi-surface distortions. As shown in

Section 5.3.2, such calculations, albeit based on phenomenological input, can

describe salient features of the experimental data on YBCO as well.

An important property of all nematic models based on Fermi-surface distortions

only is that the effective Fermi-surface anisotropies, which are required to fit the

neutron data, are large, with the Fermi-surface topology changed compared to the

undistorted case; see Figure 4 of [379]. This should be easily detectable in ARPES

experiments and hence provides a clear-cut distinction to a scenario of a nematic

phase originating from fluctuating stripes, where the Fermi-surface distortion for

plausible parameters is much smaller [416].

5.10. Consequences of loop-current order

Two types of loop-current order have been proposed to occur in the pseudogap

regime of the cuprates, namely the Cu–O loop currents within a unit cell with ~Q ¼ 0

of Varma [31,32] and the d-density wave state with ~Q ¼ ð�,�Þ of Chakravarty et al.

[30]. In both cases, the resultant orbital antiferromagnetic order should be visible in

elastic neutron scattering, and the relevant experiments were summarized in

Section 3.1. Interestingly, the phase transitions can be related to those of vertex

models in classical statistical mechanics [465,466]. We shall discuss a few theoretical

aspects and additional properties of these states in the following.

The Cu–O loop-current order of Varma has been originally derived from a mean-

field theory of the three-band Hubbard model. It has a number of interesting
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properties, which have been reviewed in [466]. For instance, the fermionic spectrum

(at the mean-field level) displays a d-wave-like gap tied to the Fermi level, with the

quasiparticle energies given by

E
?

~k
¼ � ~k �Dð ~kÞ for E ~k

?�, ð19Þ

where � ~k is the bare dispersion, Dð ~kÞ / cos2ð2�Þ=½1þ ð� ~k=�cÞ
2� is the mean-field order

parameter including form factor, � is the angle of ~k, and �c is a band cutoff energy.

Thus, the T¼ 0 spectrum consists of four Fermi points along the Brillouin-zone

diagonals, which have been shown to broaden into arcs at finite temperatures [467].

The orbital moments of the loop-current state should be oriented perpendicular to

the CuO2 planes. However, the experimentally detected magnetic order at ~Q ¼ 0 is

characterized by moment directions canted by roughly 45� [137]. Spin–orbit coupling
in the low-symmetry YBCO structure has been proposed as a source of canting [468].

However, the fact that moment directions are very similar in HgBa2CuO4þ�, with

this type of spin–orbit coupling being absent due to the tetragonal symmetry,

suggests that currents involve oxygen orbitals outside the CuO2 planes [139].

The transition into the Varma loop-current state is believed49 to be described by

a variant of the Ashkin–Teller model [466,471], with weak thermodynamic signatures

at the finite-temperature transition [472]. The quantum critical fluctuations

associated with the break up of the loop-current order have been shown [466] to

be of the scale-invariant form hypothesized to lead to a marginal Fermi liquid

[473,474]. In particular, the fluctuations have been proposed to mediate d-wave

pairing [470] as well as to cause a linear-in-T resistivity [466] and a linear-in-T single-

particle lifetime [469].

Currently, the microscopic conditions for the appearance of the Varma loop-

current state (e.g. its doping dependence) are not well investigated. The reliability of

the original mean-field approach is unclear, considering that numerical investiga-

tions [475,476] of three-band models did not provide evidence for loop-current order

of sufficient strength to explain the pseudogap physics (unless strong hybridizations

with apical oxygen atoms are included [476]).

Let me now come to d-density wave order [30]. This type of order appears

frequently in RVB-type mean-field theories of Hubbard and t–J models [50],

although the proposal in [30] was of phenomenological nature and did not rely on

RVB physics. Within a one-band model, d-density wave order can be characterized

by an order parameter of the type
P

k id ~khc
y
~kþ ~Q	

c ~k	i with wavevector ~Q ¼ ð�,�Þ and
form factor d ~k ¼ cos kx � cos ky. (Also, incommensurate variants of d-density wave

order have been discussed [478] in connection with quantum oscillation experiments

[448].) For ~Q ¼ ð�,�Þ, the fermionic spectrum displays again a d-wave gap,

E�
~k
¼
� ~k þ � ~kþ ~Q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð� ~k � � ~kþ ~Q
Þ2 þ 4W2

~k

q

2
,

ð20Þ

with W ~k
/ d ~k being the order parameter. Here, the resultant gap between the two

quasiparticle bands is not tied to the Fermi level, i.e. in the presence of doping and

particle–hole asymmetry the state displays Fermi pockets (of both electron and hole

types) and a dip in the density of states at some finite energy away from the
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Fermi level. This gap behaviour has been one reason for criticism toward the

d-density wave state being an explanation for the pseudogap regime: the gap

reported in STM measurements also appears to be centred at the Fermi level above

Tc [136,200,204]. Also, ARPES experiments did not detect clear-cut evidence for

electron pockets near (�, 0), expected in a d-density wave state. It has been proposed

[477] that long-range correlated disorder in a d-density-wave state may lead to

ARPES spectra with Fermi arcs, but no pockets near (�, 0).
The transition into the d-density wave state has been argued to be the same as

that of the six-vertex model [465]. As above, the thermodynamic singularity at the

finite-temperature transition is weak. To my knowledge, the quantum critical

properties have not been worked out in detail.

6. Implications for the cuprate phase diagram

Understanding the physics of cuprates is still a major challenge in condensed matter

physics. Although the superconducting state appears reasonably well described by

BCS-type d-wave pairing, issues of ongoing debate are the nature of the pairing

mechanism, the non-Fermi-liquid normal-state properties, and the pseudogap regime

at small doping above Tc [479]. Ordering phenomena beyond superconductivity and

associated quantum phase transitions play a central role in this debate.

This final section is therefore devoted to a critical discussion of broader aspects

of lattice symmetry breaking in the cuprates. Among other things, it was proposed

(i) that stripes or stripe fluctuations are a central ingredient to the cuprate pairing

mechanism, (ii) that stripe quantum criticality is responsible for the non-Fermi-liquid

behaviour around optimal doping, and (iii) that stripe order is the cause of the

pseudogap in underdoped samples. Similar proposals have also been made in the

context of other ordering phenomena.

6.1. Lattice symmetry breaking: universality?

Given the experimental evidence for lattice symmetry breaking in a variety of

cuprates, a crucial question is that of universality: which of the described features are

special to a particular family of compounds, and which may be common to all high-

Tc cuprates? A problem is that not all probes are available for all cuprate families

(e.g. due to surface problems or the lack of large single crystals), making a direct

comparison difficult.

Static stripe order with large spatial correlation length is only present in the

single-layer 214 cuprates. The STM data of [37], showing a period-four valence-bond

glass in underdoped BSCCO and CCOC, suggest that these materials have

a tendency toward stripe order as well – this moderate conclusion remains true

even if the static order seen in STM is a surface effect only. The idea of universal

stripe physics is indirectly supported by the hour-glass magnetic excitation spectrum,

observed in the 214 compounds as well as in YBCO and BSCCO, which is consistent

with a concept of fluctuating or spatially disordered stripes; see Section 5.3.2.

However, in some cuprates with particularly high Tc, e.g. multilayer Bi and Hg

compounds, no stripe signatures have been detected to my knowledge.

Advances in Physics 791

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
6
:
4
8
 
2
1
 
D
e
c
e
m
b
e
r
 
2
0
0
9



The experimental data may be summarized in the following hypothesis: the

tendency toward bond/stripe order appears common to doped cuprates, but

competes with d-wave superconductivity. Two trends are suggested by the data:

(i) the LTT phase of 214 compounds is most effective in hosting stripes. (ii) An

increasing number of CuO2 layers per unit cell shifts the balance between stripes and

superconductivity toward homogeneous superconductivity.

Trend (i) is straightforward to explain: the LTT distortion pattern induces an

electronic in-plane anisotropy which is favourable for stripe order. Hence, stripes are

stabilized by electron–phonon coupling.

About trend (ii): why would multilayer cuprates be less stripy? The phase

diagram of multilayer Hg compounds [480] indicates that, with increasing number of

CuO2 layers, superconductivity is stabilized together with commensurate antiferro-

magnetism. While the presence of different hole-doping levels in the different layers

certainly plays a role here, the data prompts a speculation: an increasing number of

CuO2 layers shifts the spin-sector competition between commensurate antiferro-

magnetism and valence-bond order toward antiferromagnetism,50 possibly due to an

increasing effective inter-layer coupling. Assuming that valence-bond order is the

driving force for stripe formation, then stripes are suppressed together with valence

bonds.

Notably, no signatures of stripe or nematic physics have been identified in any of

the electron-doped compounds. All neutron-scattering experiments show that

magnetic order or magnetic fluctuations are peaked at the antiferromagnetic

wavevector ~QAF, rather than away from it; see e.g. [408,481–483]. Similarly, no

evidence for charge inhomogeneities has been reported, but here little experimental

data is available. In line with the above speculation, the increased stability of

commensurate antiferromagnetism for electron doping may be connected to the

absence of stripes.

Signatures of loop-current order with ~Q ¼ 0 have been detected by now in YBCO

and HgBa2CuO4þ�, but not elsewhere. Therefore, it is too early for a judgement

regarding universality here.

6.2. Phase transitions and quantum criticality

All ordered phases discussed in this article admit zero-temperature phase transitions

[484], which could be associated with interesting quantum critical behaviour. In the

cuprates, quantum criticality has been discussed widely, on both the experimental

and theoretical sides.

In the normal state, the most puzzling piece of data is the linear temperature

dependence of the normal-state resistivity around optimal doping [485,486]. This and

other experimental results appear well described in the framework of the marginal

Fermi liquid phenomenology [473,474], which is based on the assumed behaviour of

the electronic self energy

�ðkF,!Þ ’ � ! ln
!c

!
þ ij!j

� �

, ð21Þ
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where !c is a ultraviolet cutoff energy. The linear-in-T resistivity has been attributed

to quantum criticality early on, although reliable transport calculations are scarce.

Other normal-state observations also point toward a quantum critical point near

optimal doping, associated with the disappearance of local-moment magnetism [294],

a change in the Fermi surface [232,235,487], and a distinct crossover behaviour in the

resistivity [488]. In contrast, signatures of quantum criticality inside the super-

conducting phase have not been conclusively identified.

The next two subsections contain a summary of what is known theoretically

about quantum phase transitions (QPT) into states with broken lattice symmetry.

The quantum critical behaviour depends on whether or not a transition takes place in

the presence of background superconductivity. Hence, we shall distinguish critical

theories in the d-wave superconducting state and in the metallic normal state, with

the former (latter) being appropriate for temperatures below (above) the super-

conducting Tc. We shall focus our discussion on criticality in two space dimensions.

6.2.1. Nematic transition

The first transition to be considered is between a disordered state, without broken

lattice symmetries, and a nematic state, with focus on the d-wave nematic.

The continuum and lattice situations need to be distinguished. The continuum

case, with the order parameter being a director field, has been studied in [385,489].

In the following, we concentrate on the square-lattice case, where the order

parameter is a real scalar, i.e. of Ising type.

Importantly, in the presence of a full Fermi surface, there is Landau damping of

the order parameter, resulting in a dynamic exponent of z¼ 3. Hence, the normal-

state phase transition is above its upper-critical dimension. Critical behaviour can be

calculated by a perturbative expansion about the Gaussian fixed point, as is standard

in the Landau–Ginzburg–Wilson (LGW) (or Hertz–Millis) approach to metallic

criticality [490–492]. However, the effect of critical fluctuations on the fermions is

strong due to ~Q ¼ 0. Physically, the Fermi surface becomes soft at the transition

[384]. The dynamical Fermi-surface fluctuations at criticality in d¼ 2 have been

analysed recently [493]: the electronic self energy scales as !2/3, thus destroying the

Fermi liquid at all wavevectors except for the momentum-space diagonals (i.e. at

‘cold spots’).51 The quantum critical transport scattering rate was found to be linear

in T except at the cold spots, leading to a resistivity varying as �(T )/T3/2 in the

clean limit. In contrast, in an impurity-dominated regime, �(T )� �0/T [494].

Within higher-dimensional bosonization it has been demonstrated that the

fermionic correlation functions display ‘local’ behaviour in the non-Fermi-liquid

quantum critical regime, i.e. spatial correlations remain short ranged [489]. Note that

this result has been derived in the continuum limit. While it has been suggested that

the quantum critical properties of continuum and lattice cases are similar, this is

not entirely correct in d¼ 2: in the continuum situation, a second type of critical

mode with z¼ 2 appears due to the combination of rotational invariance, d-wave

nature of the order parameter, and Landau damping. This leads to a complicated

interplay of two time scales near the transition, resulting in non-trivial logarithmic

corrections [495].
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In the d-wave superconducting state, fermionic excitations only exist at the nodal

points along the momentum-space diagonals. In the present ~Q ¼ 0 case, the order-

parameter fluctuations acquire a relevant coupling to the nodal fermions. The critical

theory has been the focus of recent work and turns out to be subtle. In [47,496], an

expansion in �¼ 3� d was employed, with the result that no stable critical fixed point

was found (for cases D and E in [47,496]). This suggested a fluctuation-induced first-

order transition. However, a recent approach based on a 1/Nf expansion, where Nf is

the number of fermion flavours, uncovered that a continuous transition is possible in

d¼ 2 [497,498]. Interestingly, the velocity anisotropy of the nodal quasiparticles

becomes large near criticality, in contrast to the theories of QPT applied to dþ is or

dþ id states, where the ordered state preserves the C4 lattice symmetry and the

quantum critical theory takes a Lorentz-invariant form [47,496]. The strong velocity

anisotropy may be important for understanding ARPES experiments and

quasiparticle interference as measured by STM [432].

6.2.2. CDW and SDW transitions

Next we turn to transitions into a state with broken translational symmetry, which

could either display a charge modulation only, or both CDWs and SDWs.

The transition into a uni-directional density-wave state can occur as a direct

transition from a disordered state, or from a state with nematic order; the latter can

then can be understood as a precursor of density wave order.

The order parameter � of the density wave is a complex scalar (CDW) or vector

(SDW) and carries a lattice momentum ~Q 6¼ 0. Commensurate lattice pinning

reduces the U(1) symmetry of the complex phase of � to ZN. Multiple copies of �
are needed for the inequivalent directions of ~Q, e.g. a cuprate CDW or SDW

transition in a tetragonal environment requires two fields for horizontal and vertical

modulations.

As above, the presence of a full Fermi surface leads to Landau damping, here

with z¼ 2, i.e. the damping arises from hot spots (lines) on the Fermi surface

connected by ~Q in 2d (3d). In 2d, the normal-state phase transitions are at their

upper-critical dimension. This can be treated by the standard LGW approach, but

requires a resummation of perturbation theory, with the result of mean-field

behaviour supplemented by logarithmic corrections.52 A calculation of the electronic

self energy shows that the quasiparticle picture breaks down in d53, but only along

the hot lines. A reliable transport theory becomes difficult even for the simplest

antiferromagnetic transition: in contrast to d¼ 3, where a Boltzmann description is

possible [500], in d¼ 2 more elaborate methods are required. Kontani et al. [501]

studied transport near a 2d antiferromagnetic critical point, taking into account

vertex corrections, but neglecting impurity effects. The result for the resistivity shows

approximately T-linear behaviour over an intermediate range of temperatures.

However, from the 3d results [500] a complex interplay of magnetic and impurity

scattering can be expected also in 2d, which has not been studied to date.

Concrete applications to cuprates of criticality associated with an incommensu-

rate metallic CDW have been worked out by the Rome group [391,392,502–504].

In particular, singular scattering near CDW-induced hot spots of the Fermi surface

has been invoked to explain the non-Fermi-liquid characteristics in both the
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single-particle and transport properties. However, a full transport calculation was

not presented. From an experimental perspective, a strain-controlled CDW QCP has

been suggested, based on EXAFS measurements of the bond-length distributions in

various cuprates [509].

A non-trivial interplay of nematic and density-wave fluctuations occurs for

a transition from a nematic to a CDW (or ‘smectic’) state in the continuum (i.e.

without underlying lattice) in d¼ 2 [507]. The reason is the Goldstone (director)

mode of the nematic phase, which causes non-Fermi-liquid behaviour inside the

nematic phase [385] and strongly influences the critical properties of the CDW

transition [507].

In the d-wave superconducting state, the fate of the critical theory depends on

whether or not the ordering wavevector ~Q connects two nodal points. This is not the

case without fine tuning, and such fine tuning seems to be absent experimentally.

Then, the critical theory is that of an insulator, with dynamical exponent z¼ 1. While

non-trivial exponents will occur in order-parameter correlations, the fermions are

bystanders only. However, this is not the full truth: as discussed in [506] for the case

of a SDW transition in a d-wave superconductor on a square lattice, the coupling

between the nodal fermions and an Ising nematic field, constructed from the two

SDW fields, is irrelevant, but with a tiny scaling dimension. Hence, although

fermions and order-parameter fluctuations formally decouple at the QCP, there will

be strong damping of the nodal quasiparticles, with a nearly T-linear scattering rate,

from nematic fluctuations. If, instead, ~Q is fine tuned to connect nodal points, then

non-trivial critical behaviour of the coupled system of the order parameter and

fermions can be expected, in analogy to [497,498].

Finally, we mention an interesting route to exotic phases arising from the

tendency toward SDW order. As discussed in [442], the order parameter for

a collinear SDW can be written as �s�¼ ei�n�. This description involves a Z2

degeneracy associated with a simultaneous change �!�þ� and n�!�n�, which

may be implemented into a field theory via a Z2 gauge field. Consequently, it is

conceivable to have a deconfined phase with ‘excitation fractionalization’: this is

a phase without broken symmetries, but with topological order, where the � and

n� degrees of freedom form separate excitations [442]. Similar ideas of ‘stripe

fractionalization’ were put forward in the context of fluctuating stripes in [508].

Experimental signatures of such fractionalized phases (which are very different from

spin–charge-separated states in RVB-like theories) have not been identified to date.

6.2.3. Cuprate quantum criticality?

Various cuprate experiments suggest the existence of a quantum critical point near

optimal doping, with quantum critical signatures above Tc, i.e. in the so-called

strange-metal regime. The theoretically most challenging observation is the linear-

in-T resistivity which extends up to high temperatures, namely 600K in YBCO and

almost 1000K in LSCO [485,486]. In the following, we try to summarize the

theoretical status of this issue.

In general, quantum critical points can be interacting or mean-field-like,

depending on whether the theory is below or above its upper-critical dimensions.

Interacting critical fixed points display single-parameter scaling in thermodynamics
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and strong hyperscaling properties [484]. The hypothesis of single-parameter scaling

in the cuprates was explored in [510], where a number of scaling laws for

thermodynamic data were proposed. Tests require detailed measurements of the

doping dependence of the chemical potential and the electronic compressibility,

which are not available to date.

Proposals which relate cuprate quantum criticality to transitions into states with

lattice symmetry breaking face a number of objections: (i) order-parameter theories

of Hertz–Millis type [490–492] have a dynamical exponent z¼ 2 or 3, and are not

below their upper-critical dimension in d¼ 2. Consequently, hyperscaling is violated,

and it is unclear whether a robust linear �(T ) can be expected. This applies e.g. to the

charge-density-wave criticality of [504]. (ii) An order parameter carrying a finite

momentum ~Q (like stripes) will primarily affect low-energy fermions, which can be

connected by ~Q in momentum space. However, ARPES experiments appear to be

characterized by the absence of quasiparticles at all wavevectors in the strange-metal

regime. (iii) Quantum criticality associated with a conventional order parameter is

unlikely to yield quantum critical behaviour up to 600K.

Let me discuss the last objection in somewhat more detail: usually, quantum

critical behaviour with well-defined power laws requires that the order-parameter

correlation length is large compared to microscopic scales, and that no other energy

scales intervene. For simple quantum magnets, characterized by an exchange scale J,

it has been shown that the quantum critical regime can extend up to J/2 [511].

However, it appears unlikely that long-range correlations exist in optimally doped

cuprates at temperatures of several hundred Kelvin. On the one hand, such

correlations, if existing in the spin or charge channels, should have been detected

experimentally, but e.g. neutron scattering has found the magnetic correlation length

at optimal doping to be around two lattice constants at low T. On the other hand,

numerical investigations of relevant microscopic models using, for example,

quantum Monte Carlo techniques, have not found appreciable correlations at

optimal doping and elevated temperatures. These arguments could be invalid if the

order parameter is difficult to detect, like nematic order (under the influence of

quenched disorder) or the circulating current patterns proposed by Varma [31,32];

here also objections (i) and (ii) may not apply. It remains to explain why phonons,

existing in the temperature range up to 600K, do not affect the resistivity.

It is fair to say that, at present, the robustness of the linear-in-T resistivity is

a puzzle. Even under the hypothesis of an interacting critical fixed point, a linear

�(T ) in the quantum critical regime does not automatically follow. In fact, explicit

candidates for a linear �(T ) are scarce. Perhaps with the exceptions of early gauge-

theory descriptions of Mott physics [512] and a scenario of a doped disordered spin-

liquid Mott insulator [513], no robust theoretical explanation seems available. This

leaves open the options of (A) some unknown form of strong quantum criticality or

(B) the resistivity not being truly linear, in which case the search for a quantum

critical mechanism could be pointless.

Interestingly, recent numerical studies of the 2d Hubbard [348] and t–J models

[349], using cluster extensions of DMFT, have provided some hints toward criticality

around optimal doping. However, the results of [348,349] are at best indicative and

provide little phenomenological understanding of the physics of the critical point;
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moreover, they disagree with respect to the nature of the phase below optimal

doping. Clearly, more investigations in this direction are required.

6.3. Pseudogap

The suppression of low-energy fluctuations in underdoped cuprates significantly

above Tc, dubbed the ‘pseudogap’, is central to the cuprate phenomenology [5].

The pseudogap temperature, T*, monotonically decreases with doping, in striking

difference to the superconducting Tc. T* has been suggested to extrapolate to the

scale J of the magnetic exchange in the limit of zero doping, and to vanish either

around optimal doping or at the overdoped end of the superconducting dome.

To my knowledge, pseudogap signatures have been unambiguously identified in all

hole-doped cuprates, while in electron-doped materials the issue is controversial.

The list of proposed explanations for the pseudogap is long and ranges from

genuine Mott-gap physics over preformed, phase-fluctuating Cooper pairs to

ordered states competing with superconductivity. While an extensive discussion of

pseudogap physics is beyond the scope of this review, we will briefly summarize a few

important aspects.

Genuine Mott physics is difficult to describe on a phenomenological level. In

single-site DMFT [342], a Mott gap occurs in the large-U insulating phase of the

single-band Hubbard model; however, this phase suffers from an artificial spin

degeneracy. With spatial correlations included, short-range singlet formation may be

responsible for a partial gap formation [345–347]. In the framework of Hubbard-

model field theories, attempts have been made to identify the Mott gap with the

dynamics of a charge-2e boson which connects the low-energy sector to the upper

Hubbard band [514]. The verification of theoretical ideas in this direction is open.

Signatures of preformed pairs above Tc [515] have been identified in a number of

experiments, most notably Nernst-effect measurements [516,517], photoemission

[248,518], and STM studies [519]. Theoretical calculations, relating the Nernst signal

to phase-fluctuating superconductivity [520], give a plausible description of most of

the data. This interpretation is supported by the observation of fluctuating

diamagnetism, which often varies in proportion to the Nernst coefficient [521].

In general, however, care is required, as there are three sources of a sizeable Nernst

signal [517]: quasiparticles with a small Fermi energy, vortices (i.e. phase

fluctuations), and short-lived Cooper pairs (i.e. amplitude fluctuations), and it

remains to be seen which is most important.53 In any case, the characteristic onset

temperature of pairing fluctuations, as determined from the Nernst effect or STM, is

significantly below the established pseudogap temperature in underdoped cuprates.

This casts doubts on the assumption of preformed pairs being the exclusive source

of the pseudogap.

A third class of proposals links the pseudogap to an ordering phenomenon in the

particle–hole channel, which is assumed to compete with superconductivity. This

would also offer a natural explanation for the suppression of Tc in the underdoped

regime. Among the concrete proposals for competing phases are spin- and charge-

density waves, e.g. stripes, and various forms of circulating-current orders. A

common objection against these proposals is that the pseudogap line at T* does not
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appear to be associated with a thermodynamic phase transition. However, this can

be circumvented either by invoking quenched disorder which tends to smear the

transition (see Section 2.7) or by postulating a special form of phase transition with

weak thermodynamic singularities, e.g. of Kosterlitz–Thouless or Ashkin–Teller type

[472]. In fact, a weak, but rather sharp, signature in the uniform susceptibility has

recently been detected in YBCO samples of different dopings, tracking the

pseudogap temperature [145]. This may represent a distinct thermodynamic phase

transition, and is possibly connected to the broken time reversal as detected in polar

Kerr effect measurements [141].

In the context of the present article’s topic, we will briefly discuss the hypothesis

that stripes are the cause of the pseudogap, which has been voiced on the basis of

both phenomenological theory [504,505] and experimental data [207]. In my view,

this hypothesis is problematic on several grounds: (i) order in the particle–hole

channel with a finite wavevector ~Q will cause distinct signatures in the quasiparticle

band structure, in particular gaps at momenta separated by ~Q. Those have not been

observed. (ii) The pseudogap appears to be a universal phenomenon in hole-doped

cuprates, with very similar properties in the different families. This suggests that the

pseudogap has a common origin in all hole-doped cuprates. In contrast, stripes are

strongest in single-layer compounds of the 214 family, but are weak or absent e.g. in

materials with more than two CuO2 layers per unit cell.

On the theory side, microscopic calculations using cluster extensions of DMFT

have established the existence of a pseudogap in the 2d Hubbard model at small

doping above the superconducting instability [345–347]. Unfortunately, the numer-

ical data provide limited insight into the origin of gap formation: the pseudogap

occurs in the absence of long-range order and is apparently related to strong short-

range correlations (which may eventually become long ranged at low temperatures).

Whether this pseudogap should be attributed to genuine Mott physics is unclear;

alternatively, both antiferromagnetic [345] and bond-order [347] correlations have

been made responsible for the pseudogap.

In summary, experimental and theoretical results consistently show that forms

of non-superconducting order are enhanced at small doping, i.e. in the pseudogap

regime. This includes spin- and charge-density waves, nematic order, and possibly

loop-current order. Then, such order can either be (A) the cause of the pseudogap, in

which case the phenomenon should be common to all cuprates, or (B) a secondary

effect of some other phenomenon causing the pseudogap. For stripes, experimental

evidence points toward scenario (B). For other forms of order, more experiments are

required to check or verify their universal occurrence.

6.4. Pairing mechanism

While it appears well established that the superconducting state in the cuprates is

characterized by Cooper pairs of d-wave symmetry [38], the pairing mechanism is

controversial. Weak-coupling calculations in the Hubbard-model framework, using

RPA [522,523] or the more sophisticated functional renormalization group (fRG, see

Section 4.4.2) [358], show that d-wave pairing can in principle be mediated by

antiferromagnetic fluctuations. Electron–phonon coupling, various experimental

798 M. Vojta

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
6
:
4
8
 
2
1
 
D
e
c
e
m
b
e
r
 
2
0
0
9



signatures for which have been identified, has also been suggested as the pairing

force – this, however, is not easily compatible with d-wave symmetry. The distinct

maximum in Tc as a function of doping has triggered alternative proposals, with

strong pairing driven by the presence of a quantum critical point near optimal

doping.

Stripe physics as a source of pairing was suggested by different groups, via

quantum critical CDW fluctuations [502,503], via topological stripe fluctuations

[508], or via the interplay of co-existing Luttinger-liquid and hole-pair excitations

[524]. At present, it is fair to say that none of these suggestions has been worked out

into a testable theory of d-wave superconductivity.

A different but related proposal is that of Kivelson and co-workers [525–527],

who argued that the presence of stripes in a superconducting system enhances the

transition temperature Tc. This idea starts from the assumption of a pairing scenario

where the superconducting gap and stiffness are anticorrelated as a function of

doping, as is the case in cuprates below optimal doping. Then, one can show that

an inhomogeneous structure, combining regions of large gap with those of large

stiffness, leads to an increased Tc as compared to the homogeneous system, at the

expense of having a smaller superfluid stiffness. This concept of ‘optimal

inhomogeneity’ was proposed to be relevant for understanding the high transition

temperature in cuprates.

While at present it is difficult to judge these proposals, they meet the same

problem as was noted above: the empirical anticorrelation between ‘stripyness’ and

high Tc points toward stripes being a competitor to superconductivity.54 The

possibility that stripe fluctuations at elevated energies mediate pairing cannot be

ruled out, however.

7. Conclusions

Ordered phases in strongly correlated electronic systems offer a fascinating variety of

phenomena. In this article, we aimed to give a balanced and critical account of

a particularly intensively studied class of ordered phases, namely those associated

with lattice symmetry breaking in cuprate high-temperature superconductors. We

tried to cover exciting experimental developments, which include the observation of

charge order via resonant soft X-ray scattering and scanning tunnelling microscopy

and the identification of a seemingly universal spin-excitation spectrum. We also

discussed theoretical works, in particular those dealing with the microscopic origins

of symmetry breaking as well as those providing a more phenomenological

modelling of experimental data. Considering the wealth of published papers and

the existence of previous review articles, the main emphasis was on recent works

which appeared during the last five years.

A quick physics summary may be given as follows: the tendency toward states

with modulated spin and charge densities (stripes) appears to be common to hole-

doped cuprates – a view which has only been established recently – although the

strength of the phenomenon varies from family to family. While general scenarios

of stripe formation have been developed, the underlying microscopic physics is not

completely understood. In particular, oxygen orbitals appear to play an important
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role, implying that the three-band Hubbard model has to be considered to gain

a quantitative picture. Although tendencies to stripes are strongest in the pseudogap

regime, stripes may well be a result rather than a cause of the pseudogap. The same

applies to other experimentally identified symmetry-broken states, e.g. nematic and

loop-current orders. Indications for these ordering phenomena being crucial

ingredients to the cuprate pairing mechanism are weak at present.

Independent of their actual role for cuprate superconductivity, stripes and

nematics appear to be common to a variety of correlated oxides, ranging from

cuprates to nickelates [22,23], manganites [24], and perhaps also ruthenates [46].

While this suggests a common driving mechanism, differences are apparent: while

ruthenates are good metals, stripe phases in nickelates and manganites are insulating

and display rather robust charge order, rendering them more ‘classical’. Thus,

cuprates are indeed special, as they offer a unique combination of the proximity to

a Mott insulator and very strong quantum effects. Understanding their puzzles

remains a challenge.
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Notes

1. More precisely, in terms of a three-band model of Cu 3dx2�y2 and O 2px,y orbitals, the
CuO2 planes at half filling are charge-transfer, rather than Mott, insulators.

2. For most of the article, only ordering phenomena within the CuO2 planes will be
discussed. Ordering perpendicular to the planes is often short ranged, with exceptions
to be noted below.

3. An introduction to weak-coupling and strong-coupling approaches of stripe formation is
given in Section 4. A discussion of the question as to which of the two is better suited
to describe actual cuprate experiments appears in Section 5.8.

4. Occasionally, we will also refer to an order-parameter description on the lattice scale,
where the order parameter simply represents a Hubbard–Stratonovich field.

5. Throughout this article, Einstein’s summation convention will be employed, such that
indices occurring twice are summed over, e.g. (��)

2¼�����
P

�����.
6. Higher harmonics may always be present in the modulation pattern, but depend on

microscopic details.
7. The lattice spacing a0 (of the Cu square lattice) is set to unity unless otherwise noted.
8. In low-symmetry crystals, a single- ~Q modulation may not break the point group

symmetry. This applies to stripes in planes with orthorhombic symmetry, relevant for
LNSCO, LESCO, LBCO, and YBCO; see Section 2.7 below.

9. Modulated nematic order is equivalent to density wave order. Spin-antisymmetric
nematic order and ‘spin nematic’ order, corresponding to spontaneously broken spin
rotation symmetry, will not be of interest in this article.
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10. In the physics of liquid crystals, phases are termed ‘liquid’, ‘nematic’, ‘smectic’, and
‘crystalline’, according to their broken spatial symmetries. Here, a smectic breaks
translation symmetry in one direction, whereas a crystal breaks it in all directions. Some
workers have applied this terminology to cuprates, identifying a conducting stripe with
a ‘smectic’ and an insulating Wigner crystal with a ‘crystal’. To avoid terminology
problems with e.g. multiple- ~Q modulated states, this article will employ the terms ‘CDW’
and ‘SDW’ instead, as described above.

11. Experimentally establishing the existence of a nematic instead of a smectic (in the liquid-
crystal terminology) would require disproving the existence of translation symmetry
breaking, which is rather difficult.

12. The critical exponent  characterizes the propagator of order-parameter correlations
G(k,!) at criticality. At a quantum critical point with dynamical exponent z¼ 1, G
takes the form G(k, !)/ [k2�!2](�2þ)/2.

13. The static structure factor is given by Sð ~kÞ ¼
R

d!Sð ~k,!Þ=ð2�Þ, and the dynamic structure

factor Sð ~k,!Þ is related to �00ð ~k,!Þ via the fluctuation–dissipation theorem, �00ð ~k,!Þ ¼
ð1� e��!ÞSð ~k,!Þ=2, where �¼ 1/T is the inverse temperature.

14. While such an anisotropy can be the result of an interaction-driven symmetry breaking of
the correlated electron system, we are here concerned with anisotropies of structural origin.

15. BSCCO displays a structural supermodulation along the (1, 1) direction of the Cu lattice,
with a wavelength of 4.8 unit cells, whose origin and properties are not completely
understood [54].

16. Consequently, electronic stripe ordering in the LTT phase of LBCO, LESCO, and
LNSCO is only accompanied by spontaneous breaking of translation symmetry, i.e. those
stripes do not possess electronic nematic order.

17. The relevant dopants are typically located away from the CuO2 planes; therefore, the
disorder potential is often assumed to be smooth.

18. The crucial difference between random-mass and random-field cases is that a random
field breaks the order-parameter symmetry whereas the random mass does not.

19. ZN is the cyclic group of N elements, formed e.g. by rotations about a single axis with N-
fold rotation symmetry.

20. It has been demonstrated that stripes arising from frustrated interactions may display
glass-like behaviour even in the absence of quenched disorder [64].

21. A detailed analysis of the impurity-induced patterns in a magnet with a tendency toward
valence-bond order is given in [67].

22. In a picture of charge stripe order, the doping dependence of the incommensurability,
�s(x), can be translated into the doping dependence of both stripe distance and stripe
filling. This allows an interesting connection to the doping dependence of the chemical
potential; see Section 5.7.3.

23. With an eye toward La2CuO4þ�, Kivelson et al. [106] discussed a scenario of competing
magnetism and superconductivity, where – in the case of phase co-existence at low
temperatures – both orders may set in at the same temperature.

24. See Section 2.5 for the Landau theory argument regarding the relative orientation of spin
and charge peaks.

25. In both LSCO-0.12 and La2CuO4þ�, the quasi-elastic magnetic peaks do not exactly lie
along the high-symmetry directions of the crystal, but are rotated by approximately 3�

[86,107]. This is consistent with the crystal symmetry being LTO instead of LTT [66].
26. The actual measurement is done at finite wavevectors (2�, 0) or (4�, 0).
27. Magnetic anisotropies will induce a small gap for lattice-pinned commensurate order.
28. The analysis of the FT-LDOS is usually restricted to its power spectrum j�ð ~k,E Þj2.
29. Early STM data taken on CCOC at a bias voltage of 200meV have been interpreted in

terms of nanoscale inhomogeneities [205]. The more recent high-quality data of [37] show
that those inhomogeneities correspond to uni-directional bond-centred modulation
patterns.

30. It should be noted that a precise relation between the observed modulations in the
tunnelling asymmetry and those in the LDOS has not been established experimentally.
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31. An approximate particle–hole symmetry was also inferred from thermopower measure-
ments in the antiferromagnetic low-doping state of YBCO [231]. Its relation to stripe
physics is unclear. A distinctly doping-dependent behaviour of the thermopower was
measured in stripe-ordered LNSCO, which was interpreted as evidence for a Fermi-
surface change near optimal doping [232].

32. Complications arising from non-trivial final states and from a dispersion perpendicular to
the CuO2 planes will be ignored here.

33. The conclusions in [242] were mainly drawn from ARPES data which had been
integrated over an energy window of 0.5 eV around the Fermi level. A theoretical
consideration of energy-integration effects in ARPES in the presence of fluctuating
charge order is given in [243].

34. Further differences in Tsp may originate from the different behaviour of polycrystals and
single crystals; compare e.g. [75] and [76].

35. For LNSCO and LESCO, it has been debated whether the superconductivity co-existing
with stripes is of true bulk nature [265].

36. Note that Tsp depends on the employed probe, suggesting a wide regime of slow
fluctuations.

37. Emery and Reiter [301] have shown that an exact mapping from the three-band model to
a one-band Hubbard or t–J model is not possible even in suitable parameter limits. This
result, however, does not imply that the low-energy physics of three-band and one-band
models is necessarily different.

38. Based on variational Monte Carlo studies showing superconductivity in the Hubbard
model, Eichenberger and Baeriswyl [310] suggested that the absence of superconductivity
in the simulations in [309] is in fact related to the neglect of second-neighbour hopping
t0 and the large doping values of x� 0.18 studied in [309]: in [310], superconductivity
disappears for x� 0.18 for t0 ¼ 0, whereas it survives up to x¼ 0.25 for t0/t¼�0.3 relevant
for cuprates.

39. The importance of three-band physics has also been emphasized in the context of more
phenomenological approaches; see e.g. [31,311].

40. The experimentally measured Fermi-surface shapes of hole-doped cuprates are
reproduced if one assumes that t0/t50, with t0/t¼�0.3 being a typical value.

41. A proposal to circumvent this problem is the application of a small symmetry-breaking
field which is kept as additional flow parameter [359].

42. Pryadko et al. [368] have argued, based on a Ginzburg–Landau analysis, that long-range
physics alone is insufficient to produce the experimentally observed antiphase mag-
netic stripe order. A more formal reasoning on frustrated phase separation can be found
in [369].

43. This is most easily seen by the fact that hole motion in an antiferromagnetic background
is frustrated due to the creation of spin defects.

44. In the phenomenological SO(5) theory, a tendency toward phase separation is found as
well [370], here with superconducting and antiferromagnetic domains.

45. Magnetic anisotropies will open a gap in the spin-wave spectrum, but are often
ignored.

46. While bond order can in principle be described in a one-band model, the physics of the
three-band model is certainly richer.

47. Incidentally, this was the title of the 2003 review article by Kivelson et al. [11].
48. There are a few interesting cases where insulating or non-Fermi-liquid behaviour can

be obtained from weak interactions: perfect Fermi-surface nesting, Luttinger liquids in
strictly one-dimensional systems, or the nematic Fermi fluid in a continuum system
described in [385].

49. Not all symmetries of the Ashkin–Teller model are shared by the original loop-current
model (at the microscopic level).

50. The competition between antiferromagnetism and VBS order is well known and studied
in undoped Mott insulators on a square lattice [3].

51. The Landau damping of the nematic order parameter is not qualitatively changed by
the !2/3 self energy as compared to the Fermi-liquid case [493].
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52. It has been argued that the LGW approach breaks down for the 2d metallic
antiferromagnet, as the low-energy modes of the Fermi liquid induce an infinite
number of marginal operators. As a result, a continuous transition with non-trivial
exponents emerges [499].

53. Nernst-effect measurements in LESCO and LNSCO have observed a distinct enhance-
ment of the Nernst signal far above Tc, which was interpreted in terms of a stripe-induced
reconstruction of the Fermi surface [235].

54. The resistivity drop in LBCO-1/8, occurring at Tsp and interpreted as fluctuating
superconductivity [73,266], together with the fact that pairing sets in at a lower T for all
other doping levels of LBCO, has been invoked as evidence for a positive correlation
between stripes and pairing. However, a concise picture for the data of [73,266] has not
yet emerged; see Section 5.6.2.
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M. Hücker, and B. Büchner, Phys. Rev. Lett. 85 (2000), p. 4590.

[56] A.P. Kampf, D.J. Scalapino, and S.R. White, Phys. Rev. B 64 (2001), p. 052509.

[57] O.K. Andersen and T. Saha-Dasgupta, unpublished.

[58] N. Takeshita, T. Sasagawa, T. Sugioka, Y. Tokura, and H. Takagi, J. Phys. Soc. Jpn. 73

(2004), p. 1123.

[59] H. Alloul, J. Bobroff, M. Gabay, and P.J. Hirschfeld, Rev. Mod. Phys. 81 (2009), p. 45.

[60] A.B. Harris, J. Phys. C 7 (1974), p. 1671.

[61] Y. Imry and S.-K. Ma, Phys. Rev. Lett. 35 (1975), p. 1399.

[62] T. Nattermann, in Spin Glasses and Random Fields, A.P. Young, ed., World Scientific,

Singapore, 1998, p. 277.

804 M. Vojta

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
6
:
4
8
 
2
1
 
D
e
c
e
m
b
e
r
 
2
0
0
9



[63] T. Vojta, J. Phys. A 39 (2006), p. R143.

[64] J. Schmalian and P.G. Wolynes, Phys. Rev. Lett. 85 (2000), p. 836.

[65] A. Del Maestro, B. Rosenow, and S. Sachdev, Phys. Rev. B 74 (2006), p. 024520.

[66] J.A. Robertson, S.A. Kivelson, E. Fradkin, A.C. Fang, and A. Kapitulnik, Phys. Rev. B

74 (2006), p. 134507.

[67] R.K. Kaul, R.G. Melko, M.A. Metlitski, and S. Sachdev, Phys. Rev. Lett. 101 (2008),

p. 187206.

[68] Suryadijaya, T. Sasagawa, and H. Takagi, Physica C 426 (2005), p. 402.

[69] J. Fink, E. Schierle, E. Weschke, J. Geck, D. Hawthorn, H. Wadati, H.-H. Hu,
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M. Braden, and B. Büchner, Physica C 460 (2007), p. 170.

[71] A.R. Moodenbaugh, Y. Xu, M. Suenaga, T.J. Folkerts, and R.N. Shelton, Phys. Rev. B

38 (1988), p. 4596.
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and M. Greven, Nature 455 (2008), p. 372.

[140] A. Kaminski, S. Rosenkranz, H.M. Fretwell, J.C. Campuzano, Z. Li, H. Raffy,

W.G. Cullen, H. You, C.G. Olson, C.M. Varma, and H. Höchst, Nature 416 (2002),
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[240] S. Hüfner, M.A. Hossain, A. Damascelli, and G.A. Sawatzky, Rep. Prog. Phys. 71

(2008), p. 062501.

[241] U. Chatterjee, M. Shi, A. Kaminski, A. Kanigel, H.M. Fretwell, K. Terashima,

T. Takahashi, S. Rosenkranz, Z.Z. Li, H. Raffy, A. Santander-Syro, K. Kadowaki,

M.R. Norman, M. Randeria, and J.C. Campuzano, Phys. Rev. Lett. 96 (2006),

p. 107006.

[242] X.J. Zhou, P. Bogdanov, S.A. Kellar, T. Noda, H. Eisaki, S. Uchida, Z. Hussain, and

Z.X. Shen, Science 286 (1999), p. 268.

[243] M. Grilli, G. Seibold, A. Di Ciolo and J. Lorenzana, Phys. Rev. B79 (2009), p. 125111.

[244] X.J. Zhou, T. Yoshida, S.A. Kellar, P.V. Bogdanov, E.D. Lu, A. Lanzara,

M. Nakamura, T. Noda, T. Kakeshita, H. Eisaki, S. Uchida, A. Fujimori,

Z. Hussain, and Z.-X. Shen, Phys. Rev. Lett. 86 (2001), p. 5578.

Advances in Physics 811

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
6
:
4
8
 
2
1
 
D
e
c
e
m
b
e
r
 
2
0
0
9
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68 (2003), p. 012415.

[256] P.M. Singer, A.W. Hunt, and T. Imai, Phys. Rev. Lett. 88 (2002), p. 047602.

[257] J. Haase, O.P. Sushkov, P. Horsch, and G.V.M. Williams, Phys. Rev. B 69 (2004),

p. 094504.

[258] S. Sanna, G. Allodi, G. Concas, A.D. Hillier, and R. De Renzi, Phys. Rev. Lett. 93

(2004), p. 207001.

[259] R. Ofer, S. Levy, A. Kanigel, and A. Keren, Phys. Rev. B 73 (2006), p. 012503.

[260] N.J. Curro, C. Milling, J. Haase, and C.P. Slichter, Phys. Rev. B 62 (2000),

p. 3473.
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(2001), p. 1759.

[277] B. Khaykovich, S. Wakimoto, R.J. Birgeneau, M.A. Kastner, Y.S. Lee, P. Smeibidl,

P. Vorderwisch, and K. Yamada, Phys. Rev. B 71 (2005), p. 220508(R).

[278] J. Chang, N.B. Christensen, Ch. Niedermayer, K. Lefmann, H.M. Rønnow,

D.F. McMorrow, A. Schneidewind, P. Link, A. Hiess, M. Boehm, R. Mottl,

S. Pailhès, N. Momono, M. Oda, M. Ido, and J. Mesot, Phys. Rev. Lett. 102 (2009),

p. 177006.

[279] J. Wen, Z. Xu, G. Xu, J.M. Tranquada, G. Gu, S. Chang, and H.J. Kang, Phys. Rev. B

78 (2008), p. 212506.

[280] S. Wakimoto, R.J. Birgeneau, Y. Fujimaki, N. Ichikawa, T. Kasuga, Y.J. Kim,

K.M. Kojima, S.-H. Lee, H. Niko, J.M. Tranquada, S. Uchida, and M.v. Zimmermann,

Phys. Rev. B 67 (2003), p. 184419.

[281] J. Kim, A. Kagedan, G.D. Gu, C.S. Nelson, and Y.-J. Kim, Phys. Rev. B 77 (2008),

p. 180513(R).

[282] T. Adachi, N. Kitajima, T. Manabe, Y. Koike, K. Kudo, T. Sasaki, and N. Kobayashi,

Phys. Rev. B 71 (2005), p. 104516.

[283] T. Adachi, K. Omori, T. Kawamata, K. Kudo, T. Sasaki, N. Kobayashi, and Y. Koike,

J. Phys.: Conf. Ser. 51 (2006), p. 259.

[284] D. Haug, V. Hinkov, A. Suchaneck, D.S. Inosov, N.B. Christensen, Ch. Niedermayer,

P. Bourges, Y. Sidis, J.T. Park, A. Ivanov, C.T. Lin, J. Mesot, and B. Keimer, Phys. Rev.

Lett. 103 (2009), p. 017001.

[285] A. Polkovnikov, S. Sachdev, and M. Vojta, Physica C 388–389 (2003), p. 19.

[286] D. Podolsky, E. Demler, K. Damle, and B.I. Halperin, Phys. Rev. B 67 (2003),

p. 094514.

[287] H.J. Kang, P. Dai, J.W. Lynn, M. Matsuura, J.R. Thompson, S.-C. Zhang,

D.N. Argyriou, Y. Onose, and Y. Tokura, Nature 423 (2003), p. 522.

[288] J.E. Sonier, K.F. Poon, G.M. Luke, P. Kyriakou, R.I. Miller, R. Liang, C.R. Wiebe,

P. Fournier, and R.L. Greene, Phys. Rev. Lett. 91 (2003), p. 147002.

[289] M. Matsuda, S. Katano, T. Uefuji, M. Fujita, and K. Yamada, Phys. Rev. B 66 (2002),

p. 172509.

[290] J.H. Cho, F. Borsa, D.C. Johnston, and D.R. Torgeson, Phys. Rev. B 46 (1992), p. 3179.

[291] F.C. Chou, N.R. Belk, M.A. Kastner, R.J. Birgeneau, and A. Aharony, Phys. Rev. Lett.

75 (1995), p. 2204.

Advances in Physics 813

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
6
:
4
8
 
2
1
 
D
e
c
e
m
b
e
r
 
2
0
0
9



[292] S. Wakimoto, S. Ueki, Y. Endoh, and K. Yamada, Phys. Rev. B 62 (2000), p. 3547.

[293] V.F. Mitrovic, M.-H. Julien, C. de Vaulx, M. Horvatic, C. Berthier, T. Suzuki, and

K. Yamada, Phys. Rev. B 78 (2008), p. 014504.

[294] C. Panagopoulos, J.L. Tallon, B.D. Rainford, T. Xiang, J.R. Cooper, and C.A. Scott,

Phys. Rev. B 66 (2002), p. 064501.

[295] C. Panagopoulos and V. Dobrosavljevic, Phys. Rev. B 72 (2005), p. 014536.

[296] I. Raicevic, J. Jaroszynski, D. Popovic, C. Panagopoulos, and T. Sasagawa, Phys. Rev.

Lett. 101 (2008), p. 177004.

[297] G.R. Jelbert, T. Sasagawa, J.D. Fletcher, T. Park, J.D. Thompson, and

C. Panagopoulos, Phys. Rev. B 78 (2008), p. 132513.

[298] M. Tarzia and G. Biroli, Europhys. Lett. 82 (2008), p. 67008.

[299] S. Sachdev, Phys. Rev. B 49 (1994), p. 6770.

[300] V.J. Emery, Phys. Rev. Lett. 58 (1987), p. 2794.

[301] V.J. Emery and G. Reiter, Phys. Rev. B 38 (1988), p. 11938.

[302] J. Hubbard, Proc. R. Soc. Lond. A 276 (1963), p. 238; M.C. Gutzwiller, Phys. Rev. Lett.

10 (1963), p. 159; J. Kanamori, Prog. Theor. Phys. 30 (1963), p. 275.

[303] P.W. Anderson, Science 235 (1987), p. 1196.

[304] F.C. Zhang and T.M. Rice, Phys. Rev. B 37 (1988), p. 3759.

[305] A.L. Chernyshev, D. Galanakis, P. Phillips, A.V. Rozhkov, and A.-M.S. Tremblay,

Phys. Rev. B 70 (2004), p. 235111.

[306] A. Reischl, E. Müller-Hartmann, and G.S. Uhrig, Phys. Rev. B 70 (2004), p. 245124.

[307] E. Müller-Hartmann and A. Reischl, Eur. Phys. J. B 28 (2002), p. 173.

[308] T.A. Maier, M.S. Jarrell, and D.J. Scalapino, Physica C 460–462 (2007), p. 13.

[309] T. Aimi and M. Imada, J. Phys. Soc. Jpn. 76 (2007), p. 113708.

[310] D. Eichenberger and D. Baeriswyl, Phys. Rev. B 79 (2009), p. 100510(R).

[311] D.M. Newns and C.C. Tsuei, Nature Phys. 3 (2007), p. 184.

[312] M. Kato, K. Machida, H. Nakanishi, and M. Fujita, J. Phys. Soc. Jpn. 59 (1990),

p. 1047.

[313] V.J. Emery, S.A. Kivelson, and H.Q. Lin, Phys. Rev. Lett. 64 (1990), p. 475; Phys. Rev.

B 42 (1990), p. 6523.

[314] W.H. Stephan, W. von der Linden, and P. Horsch, Phys. Rev. B 39 (1989), p. 2924.

[315] S.A. Kivelson and V.J. Emery, in Strongly Correlated Electronic Materials: The Los

Alamos Symposium 1993, K.S. Bedell, Z. Wang, D.E. Meltzer, A.V. Balatsky, and

E. Abrahams, eds., Addison-Wesley, Reading, MA, 1994, p. 619.
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