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The method proposed by Mooney and Steg (1969) for obtaining the dilatational dependence of the 
Gr0neisen parameter from data on the pressure dependence of the thermal conductivity (or, equivalently, 
thermal diffusivity) is critically examined and applied to thermal diffusivity data for sodium chloride and 
quartz. The values obtained are ?o'(--(d?/dA)la_-o) = 3.0 for sodium chloride and 7o' = 2.0 for quartz. 
Corresponding values of the parameter q(--?o'/?o) are 1.9 and 2.8, in reasonable agreement with values 
obtained by other methods. It is suggested that this method be further investigated as a means of 
obtaining 7o' and q from thermal data. A model for the lattice thermal conductivity of the mantle to the 
core boundary is presented. The model suggests that increases in conductivity with pressure due to lattice 
conduction processes in the mantle are less than 2.0%/kbar or 0.7%/km. Under conditions of normal 
geothermal gradient in the crust and upper mantle the increase in lattice conductivity due to the pressure 
effect will be substantially less than the decrease due to the temperature effect. A minimum value of lattice 
conductivity is attained in the region of the olivine-spinel phase change, 400 km. The lattice conductivity 
may increase by a factor of 3 at the depth of the spinel-postspinel phase change owing to the high 
conductivity of the dense oxide phases. The lattice contribution to the thermal conductivity at the mantle- 
core boundary is 40.01 cal/cm s øK. 

INTRODUCTION 

in the preceding paper in this volume [Kieffer et al., 1976], 
experimental data for the pressure dependence of the thermal 
diffusivity of Teflon, sodium chloride, quartz, and silica were 
reported. The purpose of this paper is to call attention to a 
method by which such thermal diffusivity or conductivity data 
can be used to estimate the Volume dependence of the Grfinei- 
sen parameter T. The concepts developed are then used to 
calculate the lattice contribution to the conductivity of the 
earth to the core-mantle boundary. 

DILATATIONAL DERIVATIVE OF GRONEISEN'S PARAMETER 

Mooney and Steg [1969] have suggested that with certain 
simplifying assumptions it is possible to obtain the dilatational 
derivative of the Grfineisen parameter, To' = (dT/dA)[a--o, 
where A = (O/Oo) -- 1' from thermal conductivity data. For 
this calculation, one must know the pressure dependence of 
the thermal conductivity K or, equivalently, the diffusivity K, 
the Grfineisen parameter To at 1-bar pressure, and the pres- 
sure-volume equation of state of the material. For crystalline 
materials the relation between K, To, and To' depends on the 
submicroscopic nature of th e material--whether it is com- 
posed of perfect crystals or contains large defect concentra- 
tions. In this paper it is assumed that the perfect crystal model 
applies. To first order the results are similar for crystals which 
have strong point defect scattering [Mooney and $teg, 1969, p. 
238]. At the present time there is no theory for the thermal 
conductivity or its pressure dependence for amorphous solids, 
although attempts to relate the Grfineisen parameter to the 
thermal conductivity and its pressure derivative for polymers 
and glasses have been made by Barker [1967] and Barker and 
Chen [1970]. 

There are numerous definitions of the Grfineisen parameter 
[e.g., reviewed by Barron, 1955]. The mode Grfineisen parame- 
ters are defined as 

% = -d In vj/d In v (1) 
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where vj is the frequency of the jth normal mode of vibration. 
On the other hand, the thermal Grfineisen parameter is the 
quantity obtained from thermodynamic measurements: 

Tth = aKs/pce (2) 

where K8 is the adiabatic bulk modulus, co is the specific heat, p 
is the density, and a is the thermal expansion. The thermal 
Grtineisen parameter is related to the mode Grtineisen param- 
eters % only through averaging procedures. The most com- 
mon method of averaging is to require that the energy, pres- 
sure, and specific heat be thermodynamically consistent [Born 
and Huang, 1954; Barron, 1955' Anderson et al., 1968], which 
leads to 

5 = (•c•%)/(y'•cj) (3) 

where c• is the specific heat of the jth mode. If it is further 
assumed that all of the % are equal, that is, that all mode 
frequencies vary with volume in a similar manner, then • is the 
thermal Gr•neisen parameter of (2). 

Ample experimental data, however, demonstrate that the % 
are not equal. For example, in an isotropic Debye solid there 
are two distinct values of % which correspond to longitudinal 
(T •) and'•transverse (%) waves [Biff and Pullan, 1954]. These 
two T's will be equal only if Poisson's ratio does not vary with 
volume. However, at high temperatures, all of the longitudinal 
and transverse modes are excited, and the Gr•neisen parame- 
ter may be taken to be an average of the two mode T'S [Barron, 
1955]. 

T Hr = (2% + Tt)/3 (4) 

This T is referred to as the high-temperature Gr0neisen param- 
eter. The definition (4) applies to monatomic isotropic sub- 
stances; for anisotropic materials, appropriate spatial averages 
must be used. 

The development of the Mooney and Steg [1969] theory 
depends on the assumption that for the purpose of thermal 
conductivity calculations the vibrational modes of a substance 
may be represented by a Debye spectrum. It has been demon- 
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strated that the vibrational spectra of real materials do not, in 
fact, resemble Debye spectra [Kieffer, 1971; Kieffer and Kamb, 
1971], but it is possible to apply Debye theory to minerals for 
the purpose of thermal conductivity calculations if the appro- 
priate Debye temperature is used. Owing to the complex crys- 
tal * .... ' ..... c.•: .... • .t...:. lattice vibrauo.m spectra '- 
both acoustic and optic branches. Typically the acoustic, 
Debyelike branches contain only a few percent of the total 
modes. The specific heat depends on contributions from all 
branches; hence a Debye model for lattice vibrational spectra 
is inadequate for calculation of the specific heat of minerals. 
However, to a good approximation only the acoustic branches 
contribute to the thermal conductivity, since the optic 
branches have a low group velocity [goufosse and Klemens, 
1974; Klemens, 1958]. To the degree that the acoustic branches 
may be approximated by a Debye spectrum the thermal con- 
ductivity may be described in terms of the acoustic branches 
alone, with an effective or acoustic Debye temperature propor- 
tionally reduced from the usual Debye temperature by the 
fraction of oscillators in the acoustic branches' 

OD • = (3/3n)•/•OD (5) 

where n is the number of atoms in a unit cell of the mineral and 

OD is the Debye temperature based on the assumption that all 
degrees of freedom are contained in the acoustic branches. For 
example, for quartz (n = 9, OD = 528øK) the acoustic Debye 
temperature appropriate for thermal conductivity calculations 
is 253øK, and for sodium chloride the acoustic Debye temper- 
ature, 264øK, is similarly low. For most minerals the acoustic 
Debye temperature is lower than room temperature, so that 
high temperature limits may be used for thermal conductivity 
calculations. 

Mooney and Steg [1969] derived a simple relation between 
K, 3`o, and 3`o', applicable at temperatures greater than the 
acoustic Debye temperature. This theory, with a mathematical 
correction brought to the author's attention by T. Shankland, 
is briefly reviewed here. 

In a crystal free from defects the thermal conductivity is 
[Klemens, 1958, p. 46; Mooney and Steg, 1969] 

g 0• const (1/3,•').a.(O•*/r) (6) 

where a is the interatomic spacing. The constant term involves 
Planck's and Boltzmann's constants and the mean atomic 
mass. This equation applies to single crystals or to nonporous 
polycrystalline aggregates in which the grain size exceeds the 
average phonon mean free path, which is typically less than 1 
txm. If there is no dispersion in the acoustic branches and if 
they have a mean sound speed, c, then the Debye temperature 
O D • is simply related to the lattice dimension: 

OD • = (3/3n) TM (k/h)(3No/4rAv)'/•c (7) 

where h and k are Planck's and Boltzmann's constants, respec- 
tively, No is Avogadro's number, and .4 is the mean atomic 
weight. Thus at a given temperature: 

K = const.d/3`•'a •' (8) 

The variables c, 3`, and a are all functions of the dilatation A. 
A characteristic velocity of sound is 

c - Cot1 -- (3` -- •) a] (9) 

(instead of c = cot1 - 3`(A)A] used by Mooney and Steg [1969, 
p. 237]). The average lattice spacing a is simply related to the 
volume v: 

(a/ao) a = V/Vo (10) 

K may be expressed in a power series expansion: 

1 d •' K I A•. dK A + • •[a--o (11) K• Ko + • a=o . 
and when (8) is differentiated with respect to A and the deriva- 
tives of (9) and (10) are substituted, the following expression is 
obtained for a perfect crystal: 

K -• Ko{1 - [370- « + 2(7o'/7)]-A + ß ß .} (12) 
where 

d? (13) ?øt -- •'• 
This expression differs from that of Mooney and Steg [1969, p. 
238] by having a (-«) in the parentheses in place of a (+•). 
Equation (12) may be rewritten as a relation between thermal 
diffusivity t• and 3`o, 7o' as 

t• • %(A + 1){1 -- [33'0 -- t + 2(3'o'/3'o)] A} (14) 

For simplicity, a first-order expression for ,5 is assumed: 

A = -P/K, (15) 

Then, to first order in pressure, 

t• = %{1 + [33'0 - i• + 2(3'o'/3'o)]P/K,} (16) 

If the pressure dependence of t• is expressed as 

t• = t•o + •P (17) 

a comparison of the coefficients of P in these equations gives 

3'o '= (3'o/2)[(•Ks/Ko)- 33'0 + i}] (18) 

(perfect crystal). 
This equation gives 3'o' = 3.04 for sodium chloride (with Ko 

= 0.031 cm" s -•, • = 9.5 X 10 -4 cm" s -• kbar -•, Ks = 238 kbar, 
and 3'o -- 1.6 [Mooney and $teg, 1969]) and 3'o' = 1.96 for 
quartz (with % = 0.031 cm" s-•,• = 5.3 X 10 -4 cm" s -• kbar -•, 
Ks = 377 kbar, and 3'o = 0.703 [Anderson et al., 1968]). In the 
evaluation of (18), thermal Grtineisen parameters are used. 

A question might arise here regarding the proper value of 3' 
to use in evaluation of (18). The initial postulates of the model 
that (1) the nonacoustic modes have low group velocities, so 
that only the Debyelike acoustic branches contribute to the 
thermal conductivity, and that (2) temperatures are high in 
relation to the acoustic Debye temperature, suggest that the 
appropriate 3' to use might be 3'nr defined by (4). This 3' is 
clearly defined, however, only for monatomic substances. Its 
extension to polyatomic substances relies upon the further 
assumption that (3) for optic modes the individual mode 3'j's 
have the same values as for the corresponding acoustic modes 
[$chuele and Smith, 1964, p. 809]. This assumption is unreal- 
istic for polyatomic solids [Anderson et al., 1968, p. 499], 
although it is commonly used. I have therefore chosen to use 
the empirical macroscopic thermal 3'tn, evaluated at the tem- 
perature at which the thermal conductivity measurements were 
made. $chuele and Smith [1964] have demonstrated that to a 
very good approximation, 3`nr(= 1.51 ) = 3`th(= 1.55) for NaCI, 
which is in many ways nearly 'monatomic' in its vibrational 
properties because of similarities of mass and atomic environ- 
ments of the Na and CI atoms. For quartz a larger difference 
between 3'nr(=0.4) and 3'th(--0.7) is found [Anderson et al., 
1968, p. 494], presumably because of the dissimilarity of 
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atomic environments around the Si +4 and O-" ions. Use of 3, Hr 
instead of 3't•, in (19) changes the calculated value of q for 
quartz from 2.8 to 3.2, a small change in view of the many 
assumptions of the model. 

The dilatational derivative 3,0'(A) is closely related to the 
parameter q[--(• In 3'/• In v)]r, which is of importance in 
geophysical problems. The relationship between the two pa- 
rameters is 

q = 3,0'(/x)/3,0 (19) 

From this relationship and the previously calculated values of 
3'0', q = 1.9 for sodium chloride and q = 2.8 for quartz. 

The value of q obtained from the model presented in this 
paper may be compared with q obtained from other types of 
thermodynamic data, by the thermodynamic definition: 

q = 1 + (1 + Ta3')•s- Ks' + 3' + T(8 In 3,/Sr)v (20) 

[Roberts and Ruppin, 1971]. In this equation, a is the thermal 
expansion, bs is the Anderson-GrQneisen parameter, and Ks' is 
the temperature derivative of the bulk modulus. The value of q 
obtained from (20) for NaCI is 1.4-1.46 [Roberts and Ruppin, 
1971], lower than the value of 1.9 obtained by the Mooney- 
Steg model. With the Mie-GrQneisen assumptions that Ta'r 
<< 1 and that (8 In 3,/ST)v is a function of volume only, (20) 
gives a value of q = 2.6 for quartz [Anderson, 1974]. This value 
is in good agreement with the value q = 2.8 obtained here from 
the thermal diffusivity data. 

Several approximations to the general thermodynamic 
equation for q are common in the geophysical literature: (1) 
that q = 1, i.e., that 3'o/v is constant [e.g., Ahrens et al., 1969]; 
(2) that q = 1 + 3'0, i.e., that 3' and the bulk modulus are 
functions of the volume only [e.g., Rice, 1965]. Although the 
agreement between the q from thermal diffusivity measure- 
ments and the q from the general thermodynamic definition 
(20) for sodium chloride and quartz is not exact, it appears 
sufficiently good to say that the approximations q - 1 or q = 1 
+ 3'0 are inadequate for minerals and that only the full defini- 
tion (or perhaps Anderson's approximation to it) should be 
used. 

The thermal diffusivity and the GrQneisen parameter are 
both measures of the anharmonicity of the lattice vibrations' it 
is therefore not surprising that one variable is related to the 
other. However, in view of the complexity of theories required 
to predict accurately a relation between the thermal diffusivity 
and the GrQneisen parameter it i s perhaps surprising that their 
pressure and volume derivatives can be related to each other 
through a relatively simple thermodynamic argument. Al- 
though many assumptions and simplifications are involved in 
this method of obtaining the volume dependence of the 
GrQneisen parameter from thermal diffusivity data, the appar- 
ent success of the model in predicting 3'0' for quartz and 
sodium chloride suggests that it should be further investigated 
as a method of obtaining 3'0' and q. 

In order to estimate the variation of 3' within the earth it is 
assumed that 

3' = 3'0 + (8y/SA)dA (21) 

The variation of 3' according to this assumption is shown in 
Figure 1 (which includes the variation of 3' proposed by others 
for olivine, periclose, and stishovite; these data are used in the 
discussion in the next section). The range of volumes over 
which 3' may be represented by a linear function such as (21) is 
not known, but the curves almost certainly do not extend past 
the high-pressure polymorphic transitions: quartz to coesite, 

halite N aCl structure to CsCl structure, and olivine to spinel. 
The curves have been truncated at the compressions at which 
these polymorphic changes occur. (Note that in the range of 
compressions appropriate for periclase and stishovite in the 
mantle (- A • 0.3), 'r of periclase decreases by only 40%, but 3' 
of stishovite (according to the linear model) approaches zero 
at - A = 0.17-0.33, depending on the value chosen for 8 In 
3'/8 In v. Many forms of the 3' - iX relation other than this 
simple linear relation are possible, [e.g., Knopoffand Shapiro, 
1969], but measured data of Ahrens et al. [1970] also suggest 
that 3' does tend toward a small value--less than 0.6 for -iX 
greater than 0.15. Thus it is possible that the thermal 3' of 
stishovite becomes very small or zero in the lower mantle.) 

MODEL FOR LATTICE CONDUCTIVITY WITHIN THE EARTH 

The results from the thermal diffusivity experiments have 
been extrapolated to construct a model of the lattice thermal 
conductivity to the mantle-core boundary. (Conductivity is 
specified rather than diffusivity because of its more frequent 
use in the literature.) In general, the lattice conductivity within 
the earth depends on the composition (x), pressure (P), and 
temperature (T), that is, K = K(x, P, T). Thus, to construct a 
model of conductivity of the earth it is necessary to specify the 
composition, density, and temperature within the earth and 
the temperature and pressure dependences of the thermal con- 
ductivity. The parameters required in the model are shown in 
Tables I and 2. The following assumptions are made in order 
to specify these quantities in the model: 

1. The mantle is assumed to be Mg,.SiO4 in the olivine 
structure to a depth of 400 km, in the spinel structure from 400 
to 750 km, and in the form of dense oxides, periclase and 
stishovite, below that depth. This assumption places an upper 
limit on the lattice conductivity of the mantle, assumed to be a 
forsterite-fayalite mixture, FoFa, because (1) the addition of 
Fe,.SiO• in this solid solution series lowers the lattice con- 
ductivity [Horai, 1971, p. 1299] and (2) other likely mantle 
components such as pyroxenes have, on the average, lower 
conductivities than the orthosilicates. Best estimate con- 

,.4 ••.• o /=/o + -•- . • /x 
I.:• '{.•• livine (I.3, 1.7) (n,m) = (•, •) . 

ß :.. Periclose (I.5, 1.7) 

,.o - :•:•:. 
Y 'x x 

o.6 Sodium chloride (I.6, 5.0) 

0.4 •:••Quortz (0.7, 2.0) 

0 
0 O.E 0 4 0.6 0.8 1.0 

v 

Fig. 1. Variation of the Grfineisen parameter with compression. 
The curves for sodium chloride and quartz are based on the theory 
presented. in this paper and the linear extrapolation equation (21). The 
extrapolations for the other minerals are from data listed in Table 1 
and (21). 
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TABLE 1. Thermal Parameters for Model Mantle 

Mineral 

Mg2SiO4 (olivine) 89 a 0.20 a 3.21 1.30 1.70 
Mg2SiO4 (spinel) 55 c 0.20 a 3.55 1.30 2.70 
MgO 7.7 e 0.08 e 3.58 r 1.50 1.70 
SiO• (stishovite) 19 g • 0.08 h 4.28 r 1.5' 4.5-9' 

• Horai and Simmons [1970, p. 980]. 
• Anderson [1974]. 
• Schatz [1971], estimated from Fujisawa et al. [1968]. 
a Assumed to be same as for olivine. 

e From data in work by Clark [1966, p. 474]. 
r I assume that the volume fraction of stishovite is 0.4 and that the weighted average zero-pressure 

density of the lower mantle oxides is 3.84 g/cmL 
• Soga et al. [1972]. 
h Assumed to be same as for MgO. 
' Davies [1972]. 

ductivities are obtained by reducing the values of lattice con- 
ductivity calculated for pure forsterite by the reduction ob- 
served in room temperature values when the composition is 
varied from pure Fo•00 to the likely mantle composition of 
Fo85Fa•5. This reduction factor is 0.85. 

2. A model of density and temperature within the earth 
must be assumed; it is shown in Table 2. For the upper mantle, 
temperatures are from Schatz and Simmons [1972, p. 6979]; for 
the lower mantle, temperatures are extrapolated linearly to a 
core-mantle boundary temperature of 4400øK. Densities are 
from Verhoogen et al. [1970, p. 620]. Temperature variations 
of several hundred degrees would not appreciably influence the 
results, and choice of a lower thermal gradient would increase 
the magnitude of the pressure effect in relation to the temper- 
ature effect. 

3. It is assumed that the temperature and pressure correc- 
tions to K can be made separately; that is, that c9K/tgT is 
independent of pressure and tgK/tgP is independent of temper- 
ature. (The Mg•.SiO4 thermal diffusivity data of Fujisawa et al. 
[1968, p. 4731] suggest that c9•/tgP in fact decreases slightly 
with increasing temperature, so it is possible that c9K/tgP is 
also somewhat temperature dependent.) 

4. The temperature dependence of the lattice thermal con- 
ductivity at 1-bar pressure (P0) is assumed to be given by 
[Schatz and Simmons, 1972]: 

1/K(T, Po) = • + 7(T- 300) (22) 

where T is in degrees Kelvin and the parameters •/and r/are 
given in Table 1. 

5. The pressure dependence of K is assumed to be given by 
(12). In the use of this equation for the earth model it is 
assumed that A = (poo/p) - 1 appropriate to mantle conditions 
as given in Table 2; p00 is the zero-pressure density of the 
polymorph under consideration, given in Table 1. It should be 
noted that (12) was obtained for perfect crystals, and although 
it may be applicable to pure Mg•.SiO4, it would probably not 
be applicable to a Fo85Fa•s solid solution. For such a solution 
the Mooney and Steg calculations for a solid with strong point 
defect scattering may be more appropriate. However, in this 
paper the equation for a perfect crystal is used, with the 
empirical correction described in assumption 1 to obtain an 
estimate of the value of conductivity for the solid solution. As- 
sumed values of 3/o and 3/0' are given in Table 1; the behavior of 
3/is shown in Figure 1. 

6. In the postspinel region the thermal conductivity is as- 
sumed to be that of a mixture of periclase and stishovite. The 
conductivity of the mixture can be estimated from the con- 
ductivity of the components by the use of Hashin and Shtrik- 
man's [1962] formulas which give the upper and lower bounds, 
Ks* and KL* of the conductivity of two-phase mixtures in 
terms of the phase conductivities and the volume fractions 
present: 

1 Kv* = Kst + (1 -- v) KMgO -- Kst v) -1 + 

. 1 q_ 1--v -• /Co+o 
(23) 

TABLE 2. Physical Parameters for Model Mantle 

Depth, km P, kbar Phase T, øK p, g/cm a A ((p00/t>) - I ) 

0 0 crust 300 2.6 0 

100 30 olivine 1400 3.3 -0.03 
200 70 2000 3.5 -0.09 
300 100 2400 3.7 -0.13 
400 170 2600 3.8 -0.15 

500 180 spinel 2800 4.0 -0.11 
600 240 3000 4.2 -0.15 
700 280 3250 4.4 -0.19 

800 320 2MgO-SiO• 3300 4.5 -0.15' 
1000 400 3500 4.6 -0.17 
1500 580 3800 4.8 -0.20 
2000 930 4000 5.1 -0.25 
2500 1160 4200 5.4 -0.29 
2865 1350 4400 5.6 -0.31 

*Refers to a weighted average density for the oxide mixture, p00 = 3.84 g/cm •. 
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where v is the volume fraction of stishovite. It is assumed that 

the arithmetic mean of Ku* and KL* gives the mean value of 
conductivity for the mixture: 

g = •(Kv* + KL*) (24) 

Horai [1971] has discussed the validity of this approach for 
mineral-water mixtures. It is assumed that the volume fraction 

of stishovite is 0.4 thrQughout the lower mantle. 
The results of the calculations are shown in Figure 2. The 

general form of the mantle lattice conductivity curve is in 
agreement with the curve predicted by Lubimova [1967] and 
agrees generally quite well with the lattice conductivity curve 
calculated by Schatz [1971, p. 32], shown in Figure 2 for 
comparison. The differences which occur arise mainly from 
different assumptions about the pressure and temperature de- 
pendences. The model leads to the following conclusions: 

1. Increases in conductivity with pressure due to lattice 
conduction processes in the mantle are less than 2%/kbar or 
0.7%/km. Under conditions of normal geothermal gradient in 
the crust and upper mantle (above 700 km) the increase in 
lattice conductivity due to the pressure effect is substantially 
less than the decrease due to the temperature effect. 

2. In the earth's crust the pressure effect is important only 
under optimal circumstances, e.g., in a downgoing lithospheric 
plate, in which the temperature at 100-km depth (35-kbar 
pressure) might be as low as 500øC [Griggs, 1972]. Under such 
conditions the increase in conductivity due to pressure may be 
of the order of 50-70%. The conductivity may decrease by a 
factor of 2 or 3 owing to the temperature dependence [Clark, 
1966, p. 459]. Therefore in geological situations where material 
is at high pressures and is relatively cold (so that radiative heat 
transfer is negligible), the increase in thermal conductivity due 
to pressure may be significant but will not dominate the de- 
crease due to the temperature effect. 

3. A minimum value of lattice conductivity is attained in 
the region of the olivine-spinel phase change. 

4. The lattice conductivity may increase by a factor of 3 at 
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Fig. 2. Thermal conductivity for model mantle. 

the depth of the spinel-postspinel phase change owing to the 
high conductivity of the dense oxide phases, 

5. The lattice contribution to the therma! conductivity at 
the mantle-core boundary is •0.01 cal/cm s øK. 
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