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1. Introduction and Notation.

We present a new algorithm to factorize polynomials over an algebraic number field.
The algebraic number field is given as the field of rational numbers extended by a
root of a prescribed minimal polynomial. Unlike other algorithms the efficiency of
our method does not depend on the irreducibility of the minimal polynomial modulo
some prime.

A brief outline of our algorithm is as follows. First, we factorize the polyno~-
mial to be factored over a large enough ring determined by a prime power pk and an
irreducible factor of the minimal polynomial modulo pk. We then construct a lattice
such that the coefficients of the factors over the algebraic number field are congru-
ent, modulo this lattice, to the coefficients of the factors over the ring. Using a
theorem stating that these coefficients in the algebraic number field are the shortest-
length vectors with this property, we are able to compute them, if a sufficiently or-
thogonal basis of the lattice can be found.

That such a basis can be effectively constructed is a result of H.W. Lenstra [4],
which is presented in Section 2, together with a number of elementary remarks about
lattices. In Section 3 we prove a theorem giving a lower bound for the length of a
polynomial having modulo pk a non-trivial common divisor with an irreducible polyno-
mial. As an application of this theorem we describe the new algorithm for factorization
of polynomials over algebraic number fields in Section 4; we include some machine ex~
amples with timings. In Section 5 we make some final remarks on our new method, and
we show that the theorem from Section 3 can also be used to formulate a new algorithm
for factoring in Z [X].

Throughout this paper we make no distinction between vectors and polynomials;

)T corresponds to the polynomial v(X) =Z§Y v,Xi,

0" V-1 i=0 Vi
where dv denotes the degree of the polynomial v (here dv=-1 if vi‘=0 for i=0,...,n~1,

an m~dimensional vector v= (v

and dv =max { i ]vi #0} otherwise). Conversely a polynomial v(X) =Ef=o vixi corresponds
to an m-dimensional vector v==(v0,...,v£,0,...,0)T for all m> &, If v==(vo,...,vm_1)T

e R™, we denote by [v] the vector w==(w0,...,wm_1)TezZLm, such that Wy is the integer
nearest to \ for i=0,...,m~1, and where halves are rounded upwards, e.g. [0.5]=1.
Furthermore we put [lv | =(ZT;é vi)k, the length of v.
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2. Lattices.

Let bO""'bm-1 € sz be m linearly independent vectors. The lattice L with basis b

...b is defined as L = 211.1—1 Zb,. Putting M= (b ! |b ), the mxm matrix Wlth bs,
m-1 3=0 3 0 m-1 3]’

3=0,...,m1, as columns, we define the determinant of L as d(L) !det((b /b )l 3= 0)!

|det (M) ’; the value of d(L) is independent of the choice of the basis of L. By the
fundamental domain of boreweib o | 3c el-%,%), 3 ~O,...,m 1,
such that x=2§':é cjbj}. For all x¢ R" there exists a unique element x = x-M+[M ;]
in the fundamental domain, such that x and x are congruent modulo L.

we denote the set {x e

A measure of the orthogonallty of a basis bo,. ../b 1 is given by the orthogonality
defect OD: OD(b 0 ..,b ) = H Hb ||/d(L) From Hadamard's inequality we know tha‘t
OD 21, but there is no a prlorl upper bound for OD. In [4] an algorithm is given to
construct a basis for an arbitrary lattice such that the orthogonality defect of this

basis is bounded from above by a constant depending on the dimension of the lattice only.

Theorem 1. (Reduction Algorithm) For any choice of z ¢ (0,%73) we can reduce an arbitrary

basis of an m-dimensional lattice L to a basis bO,...,b " em™ of L satis-
4z2+1 me (m-l)/4
<
fying 1 OD(bO,...,bm_l) (-—Z—Z—Z—) 0

The running time of this algorithm is exponential in the dimension of the lattice; for
small dimensions (1 e. £10) this appears to be no serious drawback. In the sequel we
put C=C(z,m) = (iz_jz-_l‘)m (m—l)/4_ In practice the value for z doesn't matter too much;
all our applications of Theorem 1 resulted in bases satisfying OD <2 (which is however
certainly not always possible).

It is intuitively ¢lear that the radius of the largest sphere contained in the

fundamental domain is proportional to 1/0D. The following lemma makes this more precise.

Lemma 1., Let O <B <min

, . The fundamental domain of b_,...,b contains an
0<j<m 0 m-1
m-dimensional sphere about the origin with radius > B/(2+0D), and all vectors

# 0 in L have length > B/OD. []

It follows that if all vectors # O in an arbitrary lattice have length > B, we can
construct a basis such that the fundamental domain of this basis contains a sphere

about the origin with radius at least B/ (2+C).

3. A lower bound theorem.

Let F e Z [T] be an irreducible polynomial of degree m, and let H e (z /pk22 )ET] be a

monic factor of degree &, 1<% <m, of F modulo pk, for some prime power pk. We define
k

the m-dimensional lattice Lk generated by Hk and p° as the lattice with the following

basis: i=pk-T r 1=0,...,02-1,

b, =Hk"I‘i_l, i=2,...,m1.
Here the polynomials bi are regarded as m-dimensional vectors. Clearly bo,. .. 'bm—l are
linearly independent and d(Lk) npk’l. Remark that Lk equals the set of polynomials of

degree < m having Hk as a factor modulo pk
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we prove that for all B >0 we can find an index kO :kO(B), such that the fundamental

domain of the reduced basis of L contains a sphere with radius > B, for all k zk

k 0"
we do this by proving that the lengths of the vectors # 0 in Lk can be bounded from

below by a monotone increasing function of k.

Theorem 2. Let Vk#O be an arbitrary vector in Lk' regarded as polynomial in Z [T] of
k2
degree n <m, then p. ~ <|[F|® v, | N <ie ™ Ilv "
Proof. Since F is irreducible over Z and n <m, we have that gcd(F, V } =1 over %, and

=0, where G,, G eZZ['I‘] and _f_]_Gl n, 4G, <m.

therefore G, +F+G_ -V, =0 if and only if G1 = 2 1 5 5

1 2 'k
This implies that the collection

gi=F'Tl, i=0,...,n-1,

b, =v %, i=n,...,nm-1,

. . 3 . n+m-1
constitutes a basis of an (n+m)-dimensional lattice L contained in {Z +ZT+..+%Z T }
with d(L) SIIE‘}In-IIVka (Hadamard's inequality). The polynomials F and V, both have the
X as a factor modulce pk, and therefore the lattice L is a sublattice

k |‘

of the (n+m)-dimensional lattice L}'( generated by Hk and p , so that

aty) ="t caw <lE v ™.

monic polynomial H

-(m-1)/m _(k*2)/m
Remark that up to the constant factor, the lower bound ||F|| / -p for elements

in Lk is the best possible. This follows from Theorem 1, namely there exists a basis
}oo,...,bm_1 of Lk such that H Hb |I <C(z m) *p .2. Therefore there is a basisvector
b, satisfying ]Ibill SC(z,m)l/m (k.l
: It follows from Theorem 2, and from the results of the previous section, that in
order to obtain a sphere with radius B, we should take k such that

IR 2clzm om™ < p R ()

We are now able to solve the following problem. Given a value B >0 and a polyno-
mial weZ [T]/Hk where k satisfies (x), determine if possible a polyzomial weZ [T])/F
such that ||w]] £ B and such that w and w are congruent modulo Hk and p . Clearly, if w

exists then w is unique and w:v':—-M-[M_l-VNJ], where M is the matrix of the reduced basis

of Lk' Remark that if we have a number of polynomials w, we only have to compute M and

(the first g columns of) le once.

4. PFactorization in (@(a))[X].

We are ready to present our new algorithm for factoring polynomials over algebraic num-
ber fields. Let {{a) be an algebraic number field, where o denotes a zero of a monic (]

irreducible polynomial F of degree m over Z .

A
Lattice algorithm (LA). [

Given a square-free monic polynomial f ¢ (@(a))[X] of degree n, this algorithm computes

the irreducible factors of f over @(a). |
. 1

1} Determine D e N, such that f and the factors of f are in (EE Ta)[X].

2) Choose a prime p such that

-p/t b,
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- F remains square-free modulo p,

- F has a non-trivial monic irreducible factor H1 of degree & modulo p,

- f remains square-free modulo H, and p.

1
3) Choose B such that B/D is an upper bound for the length of the cocefficients (in

%?Z[a]) of the factors of f over @(a).

4) Take k ¢eN minimal such that (%) holds, and determine the monic irreducible factor
Hk of degree £ of F modulo pk, such that Hk EH1 modulo p.k

5) Determine the complete factorization of f modulo Hk and p :

(0! moa pk) «(D+f) EH‘IZ h, modulo (Hk,pk).

1
6) If r=1 then f is irreducible. Otherwise compute M, the matrix of the reduced basis
of the m-dimensional lattice Ly generated by Hk and pk. Compute the polynomial
G k ak
hN (-1, & hy) modulo (H ,p")) =IT 4

dh <|n/2], and test whether

=L@ G T ) e
ho=ge (B g (v-M-[M “ev, DX € Gz [a]) [x]

;ixl for all subsets Sc{i,...,r} such that

is a factor of f over E?Z[a].

The values of D and B in Steps 1) and 3) can be determined using methods from [9). The
theoretical value for B is often much too large; it is in general advisable to use a
heuristic bound [3,7]. The factorization of f modulo Hk and pk is computed in the usual
way; first factorize f modulo H1 and p using for instance the Cantor-Zassenhaus algorithm
[1] for factorization over finite fields (after Step 2), exit if r=1), next apply
Zassenhaus' quadratic lift-algorithm [10,11] to obtain the factors modulo Hk and pk.
It follows from Section 3 that the fundamental domain of the reduced basis of Lk con-
tains the coefficients of the factors of f over @(a) (multiplied by D). These factors
can therefore be determined as described in Step 6). Remark that all integers occurring
in the LA are in absolute value < p2k

In practice we replace C(z,m) in (%) by 2, thus obtaining a smaller value for k.
If the orthogonality defect of the reduced basis of L  turns out to be too large (i.e.

k

m Hbj”/(2-0D(bO,...,bm_1)) <B) we try again with a larger k, but in most cases

105 <m
OD will be small enough.

As an example we factorize a polynomial from Weinberger and Rothschild [9] using
the LA. Let F(T) = T6+3T5+6T4+T3—3T2+12T+16 (m=6), and let f=X3—3 € (P(a))[x] (n=3),
where o denotes a zero of F.

1) Like Weinberger and Rothschild we use D= 12 as the denominator of the factors of
f over @(o).
2) The prime p=7 satisfies the conditions; we find H1 =T3+T2—2T+3 and = 3.
3) We know from Weinberger and Rothschild that 40/12 is an upper bound for the length
of the coefficients of the factors of f, so we take B =40.

4) We replace C(z,6) in (%) by 2 and we take k minimal such that

(V456)5'(2'2°40)6 <7k'3, so we find k=8, and H8:=T3-1399O4OT2—1399043T—4.
5) £ = (X-23879470-2387948) « (X+2387948a+1) » (X-0+2387947) modulo (a3—1399040a2—1399043a
8
-4, 77).
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6) Application of Theorem 1 to L8 yields the following matrix:

1265 ~1265 -1059 -1265 0 -103
479 -273 =547 683 2530 34
547 547 ~137 ~-34 752 1641

=752 -2017 2359 -752 0 -171

-957 -205 -957 -1231 1265 205

-1299 -1299 -376 2051 =752 376

8-3 .
The orthogonality defect of this basis is (Hizoﬂbiﬂ)/7 =1.4<2, so k is large
enough. Remark that according to Lemma 1 the radius of the sphere contained in the

fundamental domain of this basis is at least [minin o HbiH/(Z-OD)J > 600.
.7

0,..
The highest power of a Iin the above factorization of f is one, so we have to

compute only the first two columns of the inverse of M:

2.5500 1073 1.3045 1074 % « x «
~2.8466 10, -0.7112 10 , * % * *
-1.8977 107, 0.2966 10, * * * *| _ -1
~0.9489 107, 1.8977 107, * * * :
~0.9489 107, 3.2022 10§ * % + *

0.3556 107" -1.6011 1077  x x *

~ 8
First we take S={1}: h= (12«(X-23879470-2387948)) modulo (H8, 77) = 12X+168641a

+168629 =;1X+;0. Now reduce these coefficients modulo the reduced basis of L8:

}1=I%~Zi_o (;i—M-[M_l-;i])Xl =X—(a5+3a4+6a3+5u2~3a+12)/12, and indeed h is a factor
- 2
of £ over Q(a). For S={2} we find the factor x+(a5+2a4+4a3—a +4a+14) /6, so that the

5 .4 2
complete factorization of f over @(a) becomes f = (X-(a +3a +6a3+5a ~30+12) /12) « (X+

(a5+2a4+403—a2+4u+14)/6)~(X-(a5+a4+2a3-7a2+11a+16)/12).
We implemented the LA and the algorithm as described by Weinberger and Rothschild [9]
(WRA) in Algol 68 on a CDC-Cyber 170-750 computer (we didn't implement the methods
described in [5,6,7]). Below we give a number of machine examples; we denote by "new
time" and "old time" the time taken by the LA and the time taken by the WRA respectively
(in milliseconds).

6 5 4 3

2
1) f-zl7—(47x +21X7+598X +1561X +1198x2+261x+47), a"-a+3 =0,

a-1 =0 modulo 3: new time 143 msec,
irreducible modulo 7: old time 676 msec.
factorization over Q(a):

55%5447X3~(121u—71)xz-(1210+7O)X—47)'(47X3+(121&-50)X2+(121u—191)X—47).
5

1 6 _
2) -R(16X -1), a™+2=0.
a +2a-1 =0 modulo 5: new time 431 msec,
irreducible modulo 7: old time 511 msec.
factorization over Q(a):

2

E%«4x +2aX+0%) + (AX°-2ax+a’) « (2X-q) « (2X+a) .

3) £ =x8‘x7-x6+x4—x2+x+1 5 a4—a+1 =0.
a3-a2+a+1 20 modulo 3: new time 1347 msec,
a+l £ 0 modulo 3: new time 235 msec,

irreducible modulo 7: ol1d time 2038 msec.

e
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factorization over Q(a):

k
to an irreducible factor F of degree m of G (i.e. H [F modulo p  and F|G over Z) by !

(X6-(a3+a2+a)x5+(2a3+a2-3)X4+(a3+2a2+20l)x3—(20‘3+0‘2‘3)X2‘(0‘3*'0‘2*0‘))(’1)'(X2+(°‘3+a2 é looking at the (m+1)-dimensional lattice L generatid by Hk and pk. A basis of this

LIRSS é ' lattice is given by: b, =pk-xi, i=0,...,2-1, b, =Hk-Xi_g, i=¢,...,m. If F exists I
4) f==X3—3, a6+3as+6a4+a3—3a2+12a+16:=O. é then clearly F eLk, but also F is the shortest-length vector in Lk if k is chosen suf-

a2—2a~1 =0 modulo 5: new time 564 msec, § ficiently large. This follows from a generalized version of Theorem 2, stating that if !

two factors modulo 7: old time 814 msec. i Vk eLk such that gcd(F,Vk) =1 over Z, then pk.l sHFH§Vk.Hkam. We know that there ex- i

factorization over @(a): ? ists an effectively computable bound B >0 such that [|Fl] <B, so if we take k minimal [

Eé?(12x-a5—3u4—6a3-5a2+3a-12) - (6x+a’+2at 4032024 40414) - (12%-0%-a%-2034 702 110-16) . such that 8° " <p*'?, then 82" MRS v 1™ < 871w I This implies Iv,Jl > B, which

5 proves that indeed F is the shortest-length vector in Lk. Using for instance the

5) f:=x9+9x8+36x7+69x6+36x —99X4—303X3a450X2—342X—226, a9-15u6—87a3-1254=0. . . : es
3 shortest-vector algorithm of Dieter [2] we can determine F. It is not difficult to see
a"=-a+2 £ 0 modulo 7: new time 2816 msec, 2+'m m
that Theorem 1 can also be used to calculate F, if we take k such that B “Clz,m+1)
three factors modulo 7: old time 59183 msec. k4
< -
factorization over Q(a): . P .
5 4 3 3 3 2 3 6 3 2 2 E A similar algorithm, using the computation of a shortest vector in a lattice, can )
FISX + (aT+5) X7+ (32 7=30) X+ (3a7-39) X+a ~14a”~101) « (X + (a+2) X+a +a+l) « (X~a+1). § L

be applied to factorize in (@(a))[X]. Determination of a monic factor of degree n leads

(x6+6x

to a lattice of dimension n-m+l, where m is the degree of the minimal polynomial. As
5. Remarks.

the shortest-vector algorithms are only efficient for small-dimensional lattices this

From the examples in the previous section we conclude that, as we expected, the use of is in general not a very practical method. |

the LA can be recommended, as long as the degree of the minimal polynomial is not too In Section 4 we have restricted ourselves to univariate polynomials; remark that i

large. Even in the case that the minimal polynomial remains irreducible modulo some the LA equally well applies to the multivariate case. L

small prime the LA is considerably faster than the WRA.
A drawback of the LA is the rather large theoretical lower bound for pk. This References.

causes no difficulties in an implementation using arbitrary length integers, but in

é 1. D.G. Cantor & H. Zassenhaus, A New Algorithm for Factoring Polynomials Over Finite
the case that fixed length integers are used (as in our implementation, where we used

Fields, Math. Comp. 36 (1981), pp 587-592.
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pp 827-833. t

3. A.K. Lenstra, Lattices and Factorization of Polynomials, Mathematisch Centrum, {

the value for pk if the theoretical bound on pk appears to be too large.

1) Don't care about the theoretical bound, take pk as large as the implementation al-
lows. If the reduced basis b_,...,b satisfies min__. b {l/(2+6D(b._,...,b .)>B

0’ -1 0sj<m =73 0’ o1 I Amsterdam, Report IW 190/81.
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4. H.W. Lenstra Jr., Integer programming with a fixed number of variables, University il
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of Amsterdam, Department of Mathematics, Report 81-03. A
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5. B.M. Trager, Algebraic Factoring and Rational Function Integration, Proc. SYMSAC
3) Use a combination of the WRA and the LA, i.e. combine the factorizations of f modulo

k 76, pp 219-226.
a number of irreducible factors of the minimal polynomial modulo p~ (WRA), and apply

6. B.L. van der Waerden, Moderne Algebra, Springer, Berlin, 1931. i
the LA to these combinations. Here the lattice is generated by the product of this
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number of factors of the minimal polynomial and P . The running time of thig algorithm

Comp. 30 (1976), pp 324-336.

grows exponentially with the number of factors of the minimal polynomial used, but - .

8. P.S. Wang, An Improved Multivariate Polynomial Factoring Algorithm, Math. Comp. 32
(1978), pp 1215-1231.

9. P.J. Weinberger & L.P. Rothschild, Factoring Polynomials over Algebraic Number

unlike the WRA we do not have to use the complete factorization of the minimal polyno—
mial; just take a number of factors such that the sum of the degrees is large enough
to lower pk sufficiently.

Fields, ACM Transactions on Math. Software 2 (1976), pp 335-350.
4) Any combination of 1), 2) and 3). -

10. H. Zassenhaus, On Hensel Factorization, I, J. of Number Theory 1 (1969), pp 291-311.
Theorem 2 can also be used while factoring in 2 [X] [8]. Let G ¢z [X], and let

11. H. Zassenhaus, A Remark on the Hensel Factorization Method, Math. Comp. 32 (1978),
pp 287-292.

Hk be a monic irreducible factor of degree % of G modulo pk. We test whether Hk leads
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Addendum.

Recently L. Lovdsz invented a polynomial time reduction algorithm. Among others, this
new reduction algorithm leads to a polynomial time algorithm for factoring polynomials
with rational coefficients (see Section 5). A report describing the new polynomial
factorization algorithm in detail is available from the Mathematisch Centrum, Amster-

dam.

A.X. Lenstra, H.W. Lenstra & L. Lovédsz, Factoring Polynomials with Rational Coeffi-

cients, Mathematisch Centrum, Amsterdam.




