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LATTICES IN CONTACT LIE GROUPS AND

5-DIMENSIONAL CONTACT SOLVMANIFOLDS

André Diatta and Brendan Foreman

Abstract

We investigate the existence and properties of uniform lattices in Lie groups and

use these results to prove that, in dimension 5, there are exactly seven connected and

simply connected contact Lie groups with uniform lattices, all of which are solvable.

In particular, it is also shown that the special a‰ne group has no uniform lattice.

1. Introduction

This paper investigates the geometry of compact contact manifolds that are
uniformized by contact Lie groups, i.e., manifolds of the form GnG for some Lie
group G with a left invariant contact structure and uniform lattice GHG. In
particular, we restrict our attention to dimension five and describe which five-
dimensional contact Lie groups admit uniform lattices. We prove that there
are exactly seven connected and simply connected such Lie groups. Five of them
are central extensions; the other two are semi-direct products. Furthermore, all
seven are solvable. In contrast, there are only 4 connected and simply connected
Lie groups with a lattice, that have a left invariant symplectic form [19].

This paper is organized as follows. In Section 2, we give the preliminaries
for the work ahead. This includes both a review of several classical results and
some original results regarding contact Lie groups. Fundamental to this paper
are Theorem 2.10, which describes all five-dimensional contact Lie algebras, and
the list in Subsection 2.3.2, which delineates the Lie algebras of all the five-
dimensional unimodular contact Lie groups.

In Section 3, the main theorem of the paper (Theorem 3.1) is stated as well
as an immediate corollary. This theorem is proven in Section 4. A major yet
technical aspect of this proof is the list of certain structures on the Lie algebras

228

2000 Mathematics Subject Classification. 53D10, 53D35, 53C50, 53C25, 57R17.

Key words and phrases. lattice; uniform lattice; contact manifold; nilmanifold; solvmanifold;

special a‰ne group; Heisenberg group; invariant contact structure; boundary of contact type; Lie

group; Lie algebra.

A part of this work was done while the author was supported by the IST Programme of the

European Union (IST-2001-35443).

Received August 21, 2013; revised August 27, 2014.



of the Lie groups in Subsection 2.3.2. For ease of reading, this list has been
relegated to Appendix I (Section 5).

The authors thank the referee of this paper for the many essential hints and
suggestions. This paper would not have been possible without this help. The
second author also thanks Dr. Patrick Chen at John Carroll University for
several fruitful and clarifying conversations on the subject of this paper.

2. Preliminaries

2.1. Lattices on solvable Lie groups
A lattice of a Lie group G is a discrete subgroup G such that the manifold

GnG has a finite volume. If GnG is compact, then G is called a uniform lattice.
This is a well-studied field, and much of the following material has been derived
from Chapter 2 of Part I in [23], much of which is itself an exposition of classical
results by Mostow ([21]), Auslander ([1], [2]) and Raghunathan ([24]). More
details as well as more results on this topic can be found within these various
sources.

One of the most important results on lattices on general Lie groups was
proved by Milnor in [20].

Theorem 2.1. If G is a Lie group with a uniform lattice, then its Lie algebra
is unimodular.

For nilpotent Lie groups, more precise results are known. In particular, a lattice
on a nilpotent Lie group induces lattices on the central series of the Lie group.

Theorem 2.2. Let N be a simply connected nilpotent Lie group with lattice
G. Let � � �HN2 HN1 HN0 ¼ N be the decreasing central series of N. Then, for
each j ¼ 0; 1; 2; . . . ; GVNj is a lattice of Nj.

And, most importantly, there is a well-known necessary and su‰cient condition
for the existance of a lattice on a given nilpotent Lie group.

Theorem 2.3. Let N be a nilpotent Lie group. Then N has a lattice if and
only if its Lie algebra n has a Q-algebra nQ, that is, n has a basis whose Lie
structure constants are integers.

For solvable Lie groups, several general results are well known. In order
to describe these results, we first review some structure theory on solvable Lie
groups. Let G be a simply-connected solvable Lie group with Lie algebra g.
Let N be the nilradical of G with corresponding Lie algebra n, i.e., N is the
maximal nilpotent normal subgroup of G so that n is the maximal nilpotent ideal
of g. This induces a short exact sequence

1 ! N ! G ! T ! 1;
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where T is the Abelian group given by T ¼ NnG. G is called splittable, if this
sequence splits, that is, there is a right inverse homomorphism of the projec-
tion G ! T . This condition is equivalent to the existence of a homomorphism
b : T ! AutðNÞ such that G is isomorphic to the semi-direct product Nzb T .

The first known result regarding lattices of solvable groups indicates just how
much more specialized subgroups lattices are for solvable Lie groups than they
are for general Lie groups.

Theorem 2.4. A lattice on a solvable Lie group is a uniform lattice.

Furthermore, we have Mostow’s well-known result.

Theorem 2.5 (Mostow [21]). Let G be a lattice in a connected solvable Lie
group G with nilradical N. Then GVN is a lattice of N.

In [27], Wang proved the general structure of a lattice of a solvable Lie
group.

Theorem 2.6 (Wang [27]). A group G is isomorphic to a discrete subgroup
in a simply-connected Lie group if and only if there is a lattice D of a simply-
connected nilpotent Lie group and non-negative integer k such that

0 ! D ! G ! Zk ! 0

is a short, exact sequence.

In particular, this implies that, if G ¼ Nzb T is a simply-connected split-
table solvable Lie group with nilradical N and G is a lattice of G, then G is
isomorphic to Dzb TZ where D is a lattice of N and TZ a lattice of T such that
bðTZÞHAutðDÞ.

2.2. Heisenberg groups
Besides Rm under addition, the most encountered Lie group in the work

below will be the Heisenberg groups in three and five dimensions. In general, the
ð2nþ 1Þ-dimensional Heisenberg group Heis2nþ1 is the subgroup of Slðnþ 2;RÞ
given by

Heis2nþ1 ¼ s ¼
1 y x

0 In zt

0 0 1

0
B@

1
CA : y; z A Rn; x A R

8><
>:

9>=
>;;

where the column vector zt is the transpose of the vector z ¼ ðz1; . . . ; znÞ and In is
the identity map of Rn. Equivalently, Heis2nþ1 can be considered as the central
extension of the symplectic Lie group R2n under addition with the standard
symplectic form o1.
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The Lie algebra of Heis2nþ1 is given by

h2nþ1 ¼ X ¼
0 b a

0 0 ct

0 0 0

0
B@

1
CA : b; c A Rn; a A R

8><
>:

9>=
>;:

For i; j A f1; . . . ; nþ 2g, let ei; j be the ðnþ 2Þ � ðnþ 2Þ matrix, all of whose
entries are zero except the ij-th entry which is equal to 1. We set e1 :¼ e1;nþ2,
ek :¼ e1;k and enþk :¼ ek;nþ2 for k ¼ 2; . . . ; nþ 1. Then fe1; . . . ; e2nþ1g is a basis
of h2nþ1 with exactly n nontrivial Lie brackets relations, namely, ½ek; enþk� ¼ e1
for all k ¼ 2; . . . ; nþ 1. If we let ðe�1 ; . . . ; e�2nþ1Þ stand for the dual basis of
ðe1; . . . ; e2nþ1Þ, then e�1 is a contact form on h2nþ1. In terms of the original

coordinates on Heis2nþ1, the left invariant vector fields are given by eþ1 ¼ q

qx
,

eþk ¼ q

qyk�1
, eþnþk ¼

q

qzk�1
þ yk�1

q

qy
for k ¼ 2; . . . ; nþ 1. The left invariant

contact form on Heis2nþ1 corresponding to e�1 is e
�;þ
1 ¼ dx�

Pn
i¼1 yi dzi.

The exponential map exp : h2nþ1 ! Heis2nþ1 is a di¤eomorphism, and we
denote its inverse by log. Specifically, these mappings are given by

exp

0 a c

0 0n bt

0 0 0

0
B@

1
CA ¼

1 a cþ 1
2 ab

t

0 In bt

0 0 1

0
B@

1
CA;

log

1 x z

0 In yt

0 0 1

0
B@

1
CA ¼

0 x z� 1
2 xy

t

0 0n yt

0 0 0

0
B@

1
CA:

We focus in on the case where n ¼ 1. Let N be the Lie group given by
N ¼ Heis3 � R. Its Lie algebra is given by n ¼ h3 lR. Furthermore N has
a left invariant nondegenerate closed 2-form, hence defining a left invariant
symplectic structure o ¼ dx5dzþ dw5dy, where w is the coordinate in R. It
corresponds to the symplectic form o2 ¼ e�15e�3 þ e�45e�2 , on h3 lR, where
h3 ¼ he1; e2; e3iR as above.

Since lattices of Heis3 exist (see, for example, [14]), lattices on N exist. In
fact, if G is a lattice of N, then

½G;G�H

x

0

0

0

0
BBB@

1
CCCA : x A R

8>>><
>>>:

9>>>=
>>>;
HN:

In particular, ½G;G� is a subgroup of G. So, there is x0 A Rþ such that
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½G;G�H

kx0

0

0

0

0
BBB@

1
CCCA : k A Z

8>>><
>>>:

9>>>=
>>>;
HN:

We will make extensive use of this fact when we are proving that certain Lie
groups do not have lattices.

2.3. Five-dimensional contact Lie groups
A contact Lie group is a ð2nþ 1Þ-dimensional Lie group G with a left-

invariant di¤erential form h such that h5dhn 0 0. Set H ¼ ker h. Then H is
a left-invariant 2n-dimensional subbundle of TG so that H induces a subspace of
the Lie algebra g of G, which we will also denote as H. An element X A g is
called horizontal, if X A H. A submanifold of G is called totally isotropic, if
its tangent space in G is horizontal everywhere. A totally isotropic submanifold
of (maximal) dimension n is called a Legendrian submanifold of G.

Let x be the unique left-invariant vector field in g defined by

hðxÞ ¼ 1;

dhðx; �Þ ¼ 0:

Then g ¼ hxiR lH, and x is called the Reeb vector field of h.

Lemma 2.7. Let ðG; hÞ be a solvable contact Lie group with nilradical N.
Let n be the Lie algebra of N. Then n is not contained in H.

Proof. ½g; g�H n. Thus, if nHH, ½X ;Y � A nHH for any X , Y . If this
were the case, then dhðX ;YÞ ¼ � 1

2 hð½X ;Y �Þ ¼ 0 for any X , Y . Thus, dh ¼ 0 on
G, a contradiction. r

A Lie algebra g is said to be decomposable if it is the direct sum g ¼ g1 l g2
of two ideals g1 and g2. Such a Lie algebra has a contact form if and only if g1
has a contact form and g2 an exact symplectic form, or vice versa.

Lemma 2.8. If a contact Lie algebra (resp. group) is unimodular, then it is
necessarily nondecomposable.

Proof. A decomposable Lie algebra g ¼ g1 l g2 is unimodular if and only
if both g1 and g2 are unimodular. But as noted above, if g had a contact form,
then g1 (or g2) would have an exact symplectic form. And due to the existence
of a left invariant radiant vector field for the associated left invariant a‰ne
connection, a Lie group with a left invariant exact symplectic form cannot be
unimodular (see [11]). This, applied to any Lie group with Lie algebra g1, would
lead to a contradiction. r
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Corollary 2.9. Let G ¼ Nzb T be a ð2nþ 1Þ-dimensional, simply-
connected splittable solvable Lie group with nilradical N and homomorphism
b : T ! AutðNÞ. Let h A g� be a left-invariant contact structure on G. Then

1. The subspace nVH has codimension 1 in n.
2. dim T a n and dim nb nþ 1.
3. For every X A T , there is an X 0 A nVH such that dhðX ;X 0Þ ¼ 1:

2.3.1. Five-dimensional solvable contact Lie algebras
In [9], the first author classified the five-dimensional simply connected contact

Lie groups (via their Lie algebras) with the following theorem.

Theorem 2.10 (Diatta [9]). Let G be a five-dimensional Lie group with Lie
algebra g.

1. Suppose G is non-solvable. Then G is a contact Lie group if and only if g
is one of the following Lie algebras:
(a) a¤ ðRÞl slð2;RÞ, a¤ ðRÞl soð3;RÞ (decomposable cases) or
(b) slð2;RÞyR2 (non-decomposable case).

2. Suppose that G is solvable such that g is non-decomposable with trivial
center ZðgÞ. Then
(a) If the derived ideal ½g; g� has dimension three and is non-Abelian, then g

is a contact Lie algebra.
(b) If ½g; g� has dimension four, then g is contact if and only if

i. dimðZð½g; g�ÞÞ ¼ 1 or
ii. dimðZð½g; g�ÞÞ ¼ 2 and there is a v A g such that Zð½g; g�Þ is not an

eigenspace of adv.

The first statement of this result taken with Lemma 2.8 implies that the only

unimodular non-solvable five-dimensional contact Lie group is slð2;RÞyR2.
Furthermore, the second statement in conjunction with the list of five-dimensional
solvable Lie algebras in [4] yields the list of all five-dimensional solvable contact
Lie algebras, a total of 24 distinct nondecomposable Lie algebras and families of
Lie algebras. Among these, exactly 12 are unimodular. They are listed below
along with an example of a contact form h. The label for each Lie algebra refers
to that algebra’s position in the original list in [9] and will serve as the name of
that Lie algebra (or corresponding simply connectd Lie group) throughout this
paper.

2.3.2. Five-dimensional unimodular solvable contact Lie algebras
Below is the list of unimodular solvable contact Lie algebras of dimension 5.

Central extensions

D1 ½e2; e4� ¼ e1, ½e3; e5� ¼ e1, h :¼ e�1 . This is the Heisenberg Lie algebra
h5. See Section 2.2.

D2 ½e3; e4� ¼ e1, ½e2; e5� ¼ e1, ½e3; e5� ¼ e2, h :¼ e�1 . This is the central exten-
sion b�o Re1, where o ¼ e�35e�4 þ e�25e�5 and b ¼ h3 lRe4, as in 2.2.
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D3 ½e3; e4� ¼ e1, ½e2; e5� ¼ e1, ½e3; e5� ¼ e2, ½e4; e5� ¼ e3, h ¼ e�1 . This is
the central extension b�o Re1, where o ¼ e�35e�4 þ e�25e�5 and b ¼
spanðe2; e3; e4; e5Þ with Lie bracket ½e3; e5� ¼ e2, ½e4; e5� ¼ e3.

D5 ½e2; e3� ¼ e1, ½e2; e5� ¼ e2, ½e3; e5� ¼ �e3, ½e4; e5� ¼ e1, h ¼ e�1 . This is
b�o Re1, where o ¼ e�25e�3 þ e�45e�5 and b ¼ spanðe2; e3; e4; e5Þ with
Lie bracket ½e2; e5� ¼ e2, ½e3; e5� ¼ �e3.

D11 ½e2; e3� ¼ e1; ½e2; e5� ¼ e3; ½e3; e5� ¼ �e2; ½e4; e5� ¼ ee1; e ¼G1; h ¼ e�1 .
Here g ¼ b�o Re1, where o ¼ e�25e�3 þ e�45e�5 and b ¼ spanðe2; e3;
e4; e5Þ with Lie bracket ½e2; e5� ¼ e3; ½e3; e5� ¼ �e2.

Semi-direct products

D4 ½e2; e3� ¼ e1, ½e1; e5� ¼ ð1þ pÞe1, ½e2; e5� ¼ e2, ½e3; e5� ¼ pe3, ½e4; e5� ¼
�2ðpþ 1Þe4, p0�1, h ¼ e�1 þ e�4 . Here g is the semi-direct product
ðh3 lRe4ÞzRe5 where h3 lRe4 is as in Section 2.2.

D8 ½e2; e3� ¼ e1; ½e1; e5� ¼ 2e1; ½e2; e5� ¼ e2 þ e3; ½e3; e5� ¼ e3; ½e4; e5� ¼ �4e4;
h ¼ e�1 þ e�4 . This is the semi-direct product ðh3 lRe4ÞzRe5.

D10 ½e2; e3� ¼ e1; ½e1; e5� ¼ 2pe1; ½e2; e5� ¼ pe2 þ e3; ½e3; e5� ¼ �e2 þ pe3;
½e4; e5� ¼ �4pe4, p0 0; h ¼ e�1 þ e�4 . This is the semi-direct product
ðh3 lRe4ÞzRe5.

D13 ½e2; e3� ¼ e1; ½e1; e5� ¼ � 1
2 e1; ½e2; e5� ¼ � 3

2 e2; ½e3; e5� ¼ e3 þ e4; ½e4; e5� ¼ e4;
h ¼ e�1 þ e�4 ; p0 0. This is the semi-direct product ðh3 lRe4ÞzRe5.

D15 ½e2; e4� ¼ e1, ½e3; e4� ¼ e2, ½e1; e5� ¼ 2
3 e1, ½e2; e5� ¼ � 1

3 e2, ½e3; e5� ¼ � 4
3 e3,

½e4; e5� ¼ e4, h ¼ e�1 þ e�3 . This is the semi-direct product bzRe5
where b is the nilpotent Lie algebra b ¼ spanðe1; e2; e3; e4Þ (Note that
this is the 15th entry of the list in [9] with p ¼ � 4

3 :)
D18 ½e1; e4� ¼ e1, ½e3; e4� ¼ �e3, ½e2; e5� ¼ e2, ½e3; e5� ¼ �e3; h ¼ e�1 þ e�2 þ e�3 .
D20 ½e1; e4� ¼ �2e1; ½e2; e4� ¼ e2; ½e3; e4� ¼ e3; ½e2; e5� ¼ �e3; ½e3; e5� ¼ e2.

The last two Lie algebras above are the 2-step solvable Lie algebra
R3 zR2 where the Abelian subalgebra R3 ¼ spanðe1; e2; e3Þ is the
derived ideal and R2 ¼ spanðe4; e5Þ is also Abelian.

Inspection of the list above yields the following corollary.

Corollary 2.11. Let G be a five-dimensional simply-connected solvable
contact Lie group. Then G is splittable.

See Appendix I for a list of descriptions of the nilradicals for each of these
Lie groups.

3. Five-dimensional contact Lie groups with uniform lattices

The following theorem indicates which of the simply-connected contact Lie
groups in Theorem 2.10 have uniform lattices.

Theorem 3.1. Let G be a five-dimensional connected and simply connected con-
tact Lie group with a uniform lattice. Then one of the following statements is true.
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1. G is the central extension of a solvable symplectic Lie group with a lattice
that extends to G. In particular, G is one of the following groups:
(a) Heis5 ¼ R4 �o1

R, where o1 is the standard symplectic form on R4,
(b) ðHeis3 � RÞ �o2

R, where o2 is the symplectic form on Heis3 � R,
or

(c) Bj �oj
R ( j ¼ 3; 4; 5), where oj is the symplectic form on Bj ¼ R3 zFj

R
with Fj : R ! Glð3;RÞ defined by the matrices

i. F3ðtÞ ¼
1 �t 1

2 t
2

0 1 �t

0 0 1

0
B@

1
CA,

ii. F4ðtÞ ¼
e�t 0 0

0 et 0

0 0 1

0
B@

1
CA,

iii. F5ðtÞ ¼
cosðtÞ �sinðtÞ 0

sinðtÞ cosðtÞ 0

0 0 1

0
B@

1
CA.

2. G is a solvable semi-direct product and is one of the following groups:
(a) R3 zb1 R

2, where b1 : R
2 ! Glð3;RÞ is given by b1ðs; tÞ ¼

e�s 0 0

0 e�t 0

0 0 esþt

0
B@

1
CA.

(b) R3 zb2 R
2, where b2 : R

2 ! Glð3;RÞ is given by b2ðs; tÞ ¼
e2s 0 0

0 e�s cosðtÞ �e�s sinðtÞ
0 e�s sinðtÞ e�s cosðtÞ

0
B@

1
CA.

Corollary 3.2. Let X be a compact five-dimensional contact manifold
uniformized by a five-dimensional contact Lie group G. Then G is solvable.

4. Proof of Theorem 3.1

We will prove Theorem 3.1 by showing (1) that the Lie groups stated in the
Theorem have lattices and (2) that the rest of the five-dimensional contact Lie
groups given by Theorem 2.10 and the list in Subsection 2.3.2 do not. As stated
before, each solvable Lie group (or Lie algebra) will be referred to by its label in
the list, e.g. D2, D13. For ease of reading, we have relegated several technical
results to appendices at the end of the paper. In Appendix I (Section 5), the
reader will find a description of the nilradical of each solvable Lie algebra in
the list in Subsection 2.3.2 as well as matrix representations of db and b for the
splitting nzb T .
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4.1. Positive cases
The groups listed in Theorem 3.1 are the simply connected Lie groups with

Lie algebras D1, D2, D3, D5, D11, D18, and D20, respectively. Due to the
variety of specific procedures used, we prove the existence of lattices in several
individual propositions. The overall methodology for the non-nilpotent cases is
that utilized by Sawai in [25] and by Sawai and Yamada in [26], in which the
existence of specific lattices is proven.

Proposition 4.1. The Lie groups with Lie algebras D1, D2 and D3 have
lattices.

Proof. The Lie algebras D1, D2 and D3 are all nilpotent. Recall that a
nilpotent Lie group has a lattice if and only if its Lie algebra also has a Q-
algebra, i.e., there is a basis on which all the coe‰cients of all of the bracket
relations are in Q (See pp. 46–47 of [22]). The bases of the Lie algebras for
these Lie groups as given in Appendix I (Section 2.3.2) all satisfy this property.
Thus, groups with Lie algebras D1, D2 and D3 have lattices. r

Proposition 4.2. The Lie group with Lie algebra D5 has a lattice.

Proof. Let G be the simply-connected, connected Lie group with Lie algebra
D5. Then G ¼ ðHeis3 � RÞzb R. For this proposition, we use a representation
of the multiplication on Heis3 di¤erent from that described in the previous section.

Namely, for

x 0

y 0

z 0

0
B@

1
CA;

x

y

z

0
B@

1
CA A Heis3, let

x 0

y 0

z 0

0
B@

1
CA �

x

y

z

0
B@

1
CA¼

x 0 þ 1
2 ðy 0z� yz 0Þ þ x

y 0 þ y

z 0 þ z

0
B@

1
CA:

That is, the x-coordinate of the product is the sum of the two x-coordinates
plus one half of the signed area of the parallelogram in the plane defined by the

origin,
y 0

z 0

� �
and

y

z

� �
. Set A

y 0

z 0

� �
;

y

z

� �� �
¼ 1

2 ðy 0z� yz 0Þ. With this version

of the Heisenberg group, multiplication on G is given by

x 0

y 0

z 0

w 0

t 0

0
BBBBBB@

1
CCCCCCA �

x

y

z

w

t

0
BBBBBB@

1
CCCCCCA¼

x 0 � 1
2 ðet

0
z 0y� e�t 0y 0zÞ � t 0wþ x

y 0 þ e�t 0y

z 0 þ et
0
z

w 0 þ w

t 0 þ t

0
BBBBBB@

1
CCCCCCA
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Let n be a positive integer greater than 2. Let t0 be a positive real number

such that ðet0Þ2 � net0 þ 1 ¼ 0. Set v1 ¼
1

1

� �
, v2 ¼

e�t0

et0

� �
A R2 and x0 ¼

Aðv1; v2Þ. Note that the lattice of R2 generated by the vectors v1 and v2 is

preserved by the linear transformation
e�t0 0

0 et0

� �
.

Let G A G be the discrete subset given by

G ¼ Z

x0

0

0

0

0

0
BBBBBB@

1
CCCCCCAþ Z

0

v1

0

0

0
BBB@

1
CCCAþ Z

0

v2

0

0

0
BBB@

1
CCCAþ Z

0

0

0
x0

t0

0

0
BBBBBBB@

1
CCCCCCCA

þ Z

0

0

0

0

t0

0
BBBBBB@

1
CCCCCCA:

By definition of the quantities and vectors involved, we can see that G is actually
a subgroup of G (c.f. Sawai [25] and Sawai and Yamada [26]). Thus, G has a
lattice. r

Proposition 4.3. The Lie group with Lie algebra D11 has a lattice.

Proof. Let G be the simply-connected, connected Lie group with Lie
algebra D11. The group structure of G is given by

x1

y1

z1

w1

y1

0
BBBBBB@

1
CCCCCCA �

x2

y2

z2

w2

y1

0
BBBBBB@

1
CCCCCCA¼

x1 þ x2 G y1w2 þ y1ððsin y1Þy2 þ ðcos y1Þz2Þ
y1 þ ðcos y1Þy2 � ðsin y1Þz2
z1 þ ðsin y1Þy2 þ ðcos y1Þz2

w1 þ w2

y1 þ y2

0
BBBBBB@

1
CCCCCCA:

Then the subgroup of G generated by the elements

p

0

0

0

0

0
BBBBBB@

1
CCCCCCA;

0ffiffiffi
p

p

0

0

0

0
BBBBBB@

1
CCCCCCA;

0

0ffiffiffi
p

p

0

0

0
BBBBBB@

1
CCCCCCA;

0

0

0

1

0

0
BBBBBB@

1
CCCCCCA;

0

0

0

0

p

0
BBBBBB@

1
CCCCCCA

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

is discrete in G and hence a lattice. r

Proposition 4.4. The Lie group with Lie algebra D18 has a lattice.

Proof. Let G ¼ R3 zb1 R
2 be the Lie group corresponding to Lie algebra

D18. In order to show that G has a lattice, we need to produce a basis of R3,
fv1; v2; v3g, and a basis of R2, fp1; p2g such that

G ¼ hv1; v2; v3iZ zb1 hp1; p2iZ
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is a subgroup of G. We do this by setting

T1 ¼
0 0 1

1 0 �5

0 1 6

0
B@

1
CA; T2 ¼

�4 �4 �3

21 16 11

�4 �3 �2

0
B@

1
CA:

It is easily verified that T1 � T2 ¼ T2 � T1.
Furthermore, the characteristic polynomials of T1 and T2 are given respec-

tively as

f1ðX Þ ¼ X 3 � 6X 2 þ 5X � 1;

f2ðX Þ ¼ X 3 � 10X 2 þ 17X � 1;

each of which have three distinct roots. The roots of f1 are

a1 ¼ 0:30797853 . . .

b1 ¼ 0:64310413 . . .

g1 ¼ 5:0489173 . . . ;

and the roots of f2 are

a2 ¼ 2:088146 . . .

b2 ¼ 7:8508551 . . .

g2 ¼ 0:06099892 . . . ;

Thus, T1 and T2 are simultaneously diagonalizable. In fact, there is a
F A Glð3;RÞ such that, for j ¼ 1; 2,

FTjF
�1 ¼

aj 0 0

0 bj 0

0 0 gj

0
B@

1
CA:

Set

p1 ¼
ln a1

ln b1

 !
¼ �1:7772 . . .

�0:441449 . . .

 !
; p2 ¼

ln a2

ln b2

 !
¼ 2:06062 . . .

0:736277 . . .

 !
;

Note that the slope of p1 as a vector is approximately 2:66786 and that of p2 is
approximately 2:79871. Thus, p1 and p2 are linearly independent vectors in R2.
By definition of p1 and p2, we have

bðpjÞ ¼
aj 0 0

0 bj 0

0 0 gj

0
B@

1
CA
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for each j ¼ 1; 2 so that bðpjÞ �F ¼ F � Tj for each j. In particular, if we set
vk ¼ F ekð Þ for k ¼ 1; 2; 3, where fe1; e2; e3g is the standard basis of R3, then
bðpjÞðvkÞ A hv1; v2; v3iZ for each j ¼ 1; 2 and k ¼ 1; 2; 3. Thus, G ¼ hv1; v2; v3iZ
zb1 hp1; p2iZ is a discrete, uniform subgroup of G. This proves the claim.

Proposition 4.5. The Lie group with Lie algebra D20 has a lattice.

Proof. Let G ¼ R3 zb1 R
2 be the Lie group corresponding to Lie algebra

D20. As with the previous claim, we need to produce a basis of R3, fv1; v2; v3g,
and a basis of R2, fp1; p2g such that

G ¼ hv1; v2; v3iZ zb2 hp1; p2iZ

is a subgroup of G.
Here, we do this by setting

U1 ¼
0 0 1

1 0 �2

0 1 3

0
B@

1
CA; U2 ¼

0 1 1

�2 �2 �1

1 1 1

0
B@

1
CA:

Then U1U2 ¼ U2U1. Also, the characteristic polynomials of U1 and U2 are
given respectively as

f1ðXÞ ¼ X 3 � 3X 2 þ 2X � 1;

f2ðXÞ ¼ X 3 þ X 2 � 1;

each of which have exactly one real root— f1ð2:3247 . . .Þ ¼ 0 ¼ f2ð0:7549 . . .Þ—
and two complex roots.

Thus, there is a C A Glð3;RÞ such that, for j ¼ 1; 2,

CUjC
�1 ¼

a2j 0 0

0 a�1
j cosðbjÞ �a�1

j sinðbjÞ
0 a�1

j sinðbjÞ a�1
j cosðbjÞ

0
BB@

1
CCA;

where a1A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:3247

p
, b1A1:0300, a2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:7549

p
and b2A2:4378.

Set

p1 ¼
ln a1

b1

� �
¼ 0:4217 . . .

1:0300 . . .

� �
; p2 ¼

ln a2

b2

� �
¼ �0:1405 . . .

2:4378 . . .

� �
;

Thus, p1 and p2 are linearly independent vectors in R2. By definition of p1 and
p2, we have

bðpjÞ ¼
a2j 0 0

0 a�1
j cosðbjÞ �a�1

j sinðbjÞ
0 a�1

j sinðbjÞ a�1
j cosðbjÞ

0
BB@

1
CCA
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for each j ¼ 1; 2 so that bðpjÞ �C ¼ C �Uj for each j. In particular, if we set
vk ¼ C ekð Þ for k ¼ 1; 2; 3, where fe1; e2; e3g is the standard basis of R3, then
bðpjÞðvkÞ A hv1; v2; v3iZ for each j ¼ 1; 2 and k ¼ 1; 2; 3. Thus, G ¼ hv1; v2; v3iZ
zb1 hp1; p2iZ is a discrete, uniform subgroup of G. This proves the claim.

4.2. Negative cases

4.2.1. Solvable
We now show that the rest of the solvable contact Lie groups of five

dimensions do not have lattices. Appendix I lists the corresponding homo-
morphism b : T ! derðnÞ and db : T ! AutðnÞ of each group. There are only
two classes of such Lie groups remaining from the list in Subsection 2.3.2,
namely, those whose nilradical is Heis3 � R (D4, D5, D8, D10, D11, D13) and
one whose nilradical is a semidirect product R3 zf R (D15).

Proposition 4.6. None of the Lie groups corresponding to the Lie algebras
D4, D8, D10, D13 have lattices.

Proof. Let g be one of the Lie algebras D4, D8, D10, D13. Let G be the
simply-connected Lie group with Lie algebra g. Then we have the short exact
sequence

0 ! N ! G ! R ! 0;

where N ¼ Heis3 � R and the sequence splits (G ¼ Nzb R).
Suppose G has a lattice G. By Theorem 2.5, N VG is a lattice of N; and, by

Theorem 2.6, G is isomorphic to a group of the form ðN VGÞzb ht0iZ for some
t0 A Rþ. Recall also that a lattice of N necessarily contains a subgroup given as

the span over Z of g0 ¼

x0

0

0

0

0
BBB@

1
CCCA for some positive x0 A R. Thus, g1 ¼ bðt0Þðg0Þ

and g�1
1 ¼ bð�t0Þðg0Þ are both elements of N VG.

We now show the non-existence of lattices in G by looking at each of the
possible cases.

A. If g is D4, then

g1 ¼

e�ðpþ1Þt0x0
0

0

0

0
BBBB@

1
CCCCA and g2 ¼

eðpþ1Þt0x0
0

0

0

0
BBBB@

1
CCCCA:

Since g1 and g2 are integer multiples of g0, we have either p ¼ �1 or
t0 ¼ 0. Both of these possible cases are contradictions.
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B. If g is D8, then

g1 ¼

e�2t0x0

0

0

0

0
BBB@

1
CCCA and g2 ¼

e2t0x0

0

0

0

0
BBB@

1
CCCA:

Since g1 and g2 are integer multiples of g0, we have t0 ¼ 0. This is a
contradiction.

C. If g is D10, then

g1 ¼

e�2pt0x0

0

0

0

0
BBB@

1
CCCA and g2 ¼

e2pt0x0

0

0

0

0
BBB@

1
CCCA:

Since g1 and g2 are integer multiples of g0, we have either p ¼ 0 or
t0 ¼ 0. Both of these possible cases are contradictions.

D. Finally, if g is D13, then

g1 ¼

eð1=2Þt0x0
0

0

0

0
BBBB@

1
CCCCA and g2 ¼

e�ð1=2Þt0x0
0

0

0

0
BBBB@

1
CCCCA:

Since g1 and g2 are integer multiples of g0, we have t0 ¼ 0. This is a
contradiction.

This proves the proposition. r

Proposition 4.7. A Lie group with Lie algebra D15 does not have a lattice.

Proof. The simply connected Lie group with Lie algebra D15 is given by
G ¼ ðR3 zf RÞzb R, where f : R ! R3 is given by

f ðwÞ ¼
1 �w 1

2w
2

1 �w

1

0
B@

1
CA

and b : R ! R3 zf R is given by

bðtÞ ¼

e�ð2=3Þt

eð1=3Þt

eð4=3Þt

e�t

0
BBBB@

1
CCCCA:
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The nilradical of group D15 is of the subgroup N ¼ ðR3 zf RÞzb ð0Þ with
multiplication given by

x

y

z

w

0
BBB@

1
CCCA �

x 0

y 0

z 0

w 0

0
BBB@

1
CCCA¼

xþ x 0 � wy 0 þ 1
2w

2z 0

yþ y 0 þ wz 0

zþ z 0

wþ w 0

0
BBB@

1
CCCA:

so that

x

y

z

w

0
BBB@

1
CCCA

�1

¼

�x� yw� 1
2 zw

2

�y� zw

�z

�w

0
BBB@

1
CCCA:

And, for gj ¼

xj

yj

zj

wj

0
BBB@

1
CCCA A N, j ¼ 1; 2,

g1g2g
�1
1 g�1

2 ¼

y1w2 � y2w1 � 1
2 z1w

2
2 þ 1

2 z2w
2
1

z1w2 � z2w1

0

0

0
BBB@

1
CCCA:

Let N1 ¼ ½N;N� and N2 ¼ ½½N;N�;N�. Then N2 ¼ R� ð0; 0; 0Þ, and ½N2;N� ¼
ð0Þ, that is, N is 3-step nilpotent.

Suppose G has lattice G. By Theorem 2.5, G0 ¼ GVN is a lattice of N.
By Theorem 2.2, G1 ¼ GVN1 is a lattice of N1, and G2 ¼ GVN2 is a lattice of
N2 GR. Let x0 be the unique positive real number such that

G2 ¼

nx0

0

0

0

0
BBB@

1
CCCA : n A Z

8>>><
>>>:

9>>>=
>>>;
:

Furthermore, by Theorem 2.6, G is isomorphic to a group ~GG satisfying the
short, exact sequence

0 ! G0 ! ~GG ! G0n~GG ! 0

induced from the short exact sequence

0 ! N ! G ! NnG ! 0:
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Since NnGGR, there is a t0 A Rþ such that bðGt0ÞðG0ÞHG0. Since bðt0Þ and
bð�t0Þ are non-trivial group homomorphisms from G0 to itself, they must preserve
the central series of G0, that is,

bðGt0ÞðG1ÞHG1 and bðGt0ÞðG2ÞHG2:

Thus, both

bðt0Þ

x0

0

0

0

0
BBB@

1
CCCA¼

e�ð2=3Þt0x0
0

0

0

0
BBBB@

1
CCCCA; bð�t0Þ

x0

0

0

0

0
BBB@

1
CCCA¼

eð2=3Þt0x0
0

0

0

0
BBBB@

1
CCCCA A

nx0

0

0

0

0
BBB@

1
CCCA: n A Z

8>>><
>>>:

9>>>=
>>>;
;

implying that eGð2=3Þt0 A Z. So, t0 ¼ 0, which is a contradiction, and thus no
lattice exists on G. r

4.2.2. Non-solvable: the general case of Rn zSlðn;RÞ.
According to Theorem 2.10, the only unimodular non-solvable contact Lie

group of dimension five is the group R2 zSlð2;RÞ of special a‰ne transfor-
mations of the plane. We obtain the following more general result stating the
nonexistence of uniform lattices in Rn zSlðn;RÞ, for every nb 2. See Theorem
4.8. Let us recall that Rn zSlðn;RÞ is a contact Lie group [9]. We can exhibit
a contact form h on the Lie algebra Rn z slðn;RÞ of Rn zSlðn;RÞ by looking at

it as the subalgebra Rn z slðn;RÞ ¼ A v

0 0

� �
; where A A slðn;RÞ and v A Rn

� �
of the Lie algebra Glðnþ 1;RÞ of ðnþ 1Þ � ðnþ 1Þ real matrices. The ðnþ 1Þ�
ðnþ 1Þ matrices ei; j all of whose entries are zero except the ij-th one which is
equal to 1, form a basis of Glðnþ 1;RÞ. Let us denote by (e�i; j) the corre-

sponding dual basis. Then, h :¼
Pn

i¼1 e
�
i; iþ1 is a contact form on Rn z slðn;RÞ,

with Reeb vector x :¼ 1

n

Pn
i¼1 ei; iþ1. Now, we have the following.

Theorem 4.8. The group Rn zSlðn;RÞ, of special a‰ne transformations of
Rn, has no uniform lattice, for every nb 2.

Proof. Let G :¼ Rn zSlðn;RÞ and suppose G is a lattice in G. The radical
of G is the subgroup Rn � fIg. Then G 0 ¼ GVRn � fIg is a lattice of Rn � fIg
(Corollary 1.8 on p. 107 of [23]). Let v1; . . . ; vn A Rn be such that ðv1; IÞ � � � ðvn; IÞ
generate G 0. Let A A Slðn;RÞ and w A Rn such that ðw;AÞ A G. Then, for j ¼
1; . . . ; n,

ðw;AÞðvj ; IÞðw;AÞ�1 ¼ ðAvj þ w;AÞð�A�1w;A�1Þ ¼ ðAvj; IÞ A G:
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Hence the set MG given by

MG ¼ fA A Slðn;RÞ : ðw;AÞ A G for some w A Rng

preserves the lattice G 0 on Rn. In particular, by the change of basis vj 7! ej for
j ¼ 1; . . . ; n, we can assume that MG HSlðn;ZÞ. Now, it is known that Slðn;ZÞ
is a lattice of Slðn;RÞ but not a uniform lattice (e.g., see pp. 229–231 of [5] for
the case where n ¼ 2). In other words, there is a sequence fgjgHSlðn;RÞ such
that its projection Slðn;ZÞnSlðn;RÞ has no convergent subsequences. Thus, its
projection in MGnSlðn;RÞ also has no convergent subsequences, which means
that the sequence f½0; gj�gHGnRn zSlðn;RÞ has no convergent subsequences.
Therefore, GnRn zSlðn;RÞ is not compact. Since G was assumed to be an
arbitrary lattice of Rn zSlðn;RÞ, Rn zSlðn;RÞ has no uniform lattices. r

5. Appendix I: List of nilradicals of the unimodular contact Lie algebras
of dimension 5

The following is a list of all of the unimodular Lie algebras among those in
the first author’s list of solvable contact Lie groups in five dimensions from [9].
Their Lie brackets, in a basis ðe1; e2; e3; e4; e5Þ, are given in Section 2.3.2. Each
of the corresponding Lie groups will be of the form Nzb T , where N is the
nilradical, T is an Abelian group and b : T ! AutðNÞ a homomorphism. For
each of these, the Lie algebra n of the nilradical N of the simply-connected Lie
group corresponding to each Lie algebra is provided as well as the Abelian group
T . The transformations b and db are matrix representations (with respect to
the given basis of n) of the corresponding homomorphisms b : T ! derðnÞ and
dbðxÞ ¼ expðbðxÞÞ : T ! AutðnÞ (for x A T) induced from the semidirect product
Nzb T .

D1 n ¼ he1; . . . ; e5i ¼ H5, T ¼ ð0Þ,
D2 n ¼ ðhe1; e3; e4ilhe2iÞ þdf he5i ¼ ðH3 lRÞ þdf R, T ¼ ð0Þ where

adðe5Þ ¼

0 0 0 �1

0 0 0 0

0 0 0 0

0 �1 0 0

0
BBB@

1
CCCA; df ðte5Þ ¼

1 1
2 t

2 0 �t

0 1 0 0

0 0 1 0

0 �t 0 1

0
BBB@

1
CCCA:

D3 n ¼ ðhe1; e3; e4ilhe2iÞ þdf he5i ¼ ðH3 lRÞ þdf R, T ¼ ð0Þ where

adðe5Þ ¼

0 0 0 �1

0 0 �1 0

0 0 0 0

0 �1 0 0

0
BBB@

1
CCCA; df ðte5Þ ¼

1 1
2 t

2 � 1
6 t

3 �t

0 1 �t 0

0 0 1 0

0 �t 0 1

0
BBB@

1
CCCA:

D4 n ¼ he1; e2; e3ilhe4i ¼ H3 lR, T ¼ Re5,
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bðe5Þ ¼

�ðpþ 1Þ 0 0 0

0 �1 0 0

0 0 �p 0

0 0 0 2ðpþ 1Þ

0
BBB@

1
CCCA;

dbðte5Þ ¼

e�ðpþ1Þt 0 0 0

0 e�t 0 0

0 0 e�pt 0

0 0 0 e2ðpþ1Þt

0
BBBB@

1
CCCCA:

D5 n ¼ he1; e2; e3ilhe4i ¼ H3 lR, T ¼ Re5,

bðe5Þ ¼

0 0 0 �1

0 �1 0 0

0 0 1 0

0 0 0 0

0
BBB@

1
CCCA; dbðte5Þ ¼

1 0 0 �t

0 e�t 0 0

0 0 et 0

0 0 0 1

0
BBB@

1
CCCA:

D8 n ¼ he1; e2; e3ilhe4i ¼ H3 lR, T ¼ Re5,

bðe5Þ ¼

�2 0 0 0

0 �1 0 0

0 �1 �1 0

0 0 0 4

0
BBB@

1
CCCA; dbðte5Þ ¼

e�2t 0 0 0

0 e�t 0 0

0 �te�t e�t 0

0 0 0 e4t

0
BBB@

1
CCCA:

D10 n ¼ he1; e2; e3ilhe4i ¼ H3 lR, T ¼ Re5,

bðe5Þ ¼

�2p 0 0 0

0 �p 1 0

0 �1 �p 0

0 0 0 4p

0
BBB@

1
CCCA;

dbðte5Þ ¼

e�2pt 0 0 0

0 e�pt cosð�tÞ �e�pt sinð�tÞ 0

0 e�pt sinð�tÞ e�pt cosð�tÞ 0

0 0 0 e4pt

0
BBB@

1
CCCA:

D11 n ¼ he1; e2; e3ilhe4i ¼ H3 lR, T ¼ Re5,

bðe5Þ ¼

0 0 0 G1

0 0 1 0

0 �1 0 0

0 0 0 0

0
BBB@

1
CCCA; dbðte5Þ ¼

1 0 0 Gt

0 cosðtÞ �sinðtÞ 0

0 sinðtÞ cosðtÞ 0

0 0 0 1

0
BBB@

1
CCCA:
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D13 n ¼ he1; e2; e3ilhe4i ¼ H3 lR, T ¼ Re5,

bðe5Þ ¼

1
2 0 0 0

0 3
2 0 0

0 0 �1 0

0 0 �1 �1

0
BBB@

1
CCCA; dbðte5Þ ¼

eð1=2Þt 0 0 0

0 eð3=2Þt 0 0

0 0 e�t 0

0 0 �te�t e�t

0
BBBB@

1
CCCCA:

D15 n ¼ he1; . . . ; e4i ¼ he1; e2; e3iþf� he4i, with f�ðe4Þ ¼
0 �1 0

0 0 �1

0 0 0

0
B@

1
CA,

T ¼ Re5,

bðe5Þ ¼

� 2
3 0 0 0

0 1
3 0 0

0 0 4
3 0

0 0 0 �1

0
BBBB@

1
CCCCA; dbðte5Þ ¼

e�ð2=3Þt 0 0 0

0 eð1=3Þt 0 0

0 0 eð4=3Þt 0

0 0 0 e�t

0
BBBB@

1
CCCCA:

D18 n ¼ he1; e2; e3i, with

bðse4 þ te5Þ ¼
�s 0 0

0 �t 0

0 0 sþ t

0
B@

1
CA; dbðse4 þ te5Þ ¼

e�s 0 0

0 e�t 0

0 0 esþt

0
B@

1
CA:

D20 n ¼ he1; e2; e3i, with

bðse4 þ te5Þ ¼
2s 0 0

0 �s �t

0 t �s

0
B@

1
CA;

dbðse4 þ te5Þ ¼
e2s 0 0

0 e�s cosðtÞ �e�s sinðtÞ
0 e�s sinðtÞ e�s cosðtÞ

0
B@

1
CA
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