UvA-DARE (Digital Academic Repository)

Lattices of intermediate and cylindric modal logics

Bezhanishvili, N

Publication date
 2006

Document Version
Final published version

Link to publication

Citation for published version (APA):

Bezhanishvili, N. (2006). Lattices of intermediate and cylindric modal logics. Institute for Logic, Language and Computation.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Lattices of intermediate and cylindric modal logics

Nick Bezhanishvili

Lattices of intermediate and cylindric modal logics

ILLC Dissertation Series DS-2006-02

 Institute for Logic, Language and Computation

For further information about ILLC-publications, please contact
Institute for Logic, Language and Computation
Universiteit van Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: illc@science.uva.nl
homepage: http://www.illc.uva.nl/

Lattices of intermediate and cylindric modal logics

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof.mr. P.F. van der Heijden
ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Aula der Universiteit op vrijdag 17 maart 2006, te 12.00 uur

door

Nikoloz Bezhanishvili
geboren te Tbilisi, Georgië.

Promotor: Prof.dr. D.H.J. de Jongh
Co-promotor: Dr. Y. Venema

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Copyright © 2006 by Nick Bezhanishvili
Printed and bound by PrintPartners Ipskamp ISBN: 90-5776-147-5

Contents

1 Introduction 1
I Lattices of intermediate logics 9
2 Algebraic semantics for intuitionistic logic 11
2.1 Intuitionistic logic and intermediate logics 11
2.1.1 Syntax and semantics 11
2.1.2 Basic properties of intermediate logics 17
2.2 Heyting algebras 19
2.2.1 Lattices, distributive lattices and Heyting algebras 19
2.2.2 Algebraic completeness of IPC and its extensions 23
2.2.3 Heyting algebras and Kripke frames 26
2.3 Duality for Heyting algebras 28
2.3.1 Descriptive frames 28
2.3.2 Subdirectly irreducible Heyting algebras 32
2.3.3 Order-topological duality 33
2.3.4 Duality of categories 36
2.3.5 Properties of logics and algebras 37
3 Universal models and frame-based formulas 39
3.1 Finitely generated Heyting algebras 39
3.2 Free Heyting algebras and n-universal models 46
3.2.1 n-universal models 46
3.2.2 Free Heyting algebras 49
3.3 The Jankov-de Jongh and subframe formulas 56
3.3.1 Formulas characterizing point generated subsets 56
3.3.2 The Jankov-de Jongh theorem 58
3.3.3 Subframes, subframe and cofinal subframe formulas 59
3.4 Frame-based formulas 65
4 The logic of the Rieger-Nishimura ladder 79
$4.1 n$-conservative extensions, linear and vertical sums 80
4.1.1 The Rieger-Nishimura lattice and ladder 80
4.1.2 n-conservative extensions and the n-scheme logics 83
4.1.3 Sums of Heyting algebras and descriptive frames 85
4.2 Finite frames of RN 88
4.3 The Kuznetsov-Gerciu logic 93
4.4 The finite model property in extensions of RN 98
4.5 The finite model property in extensions of KG 105
4.5.1 Extensions of KG without the finite model property 105
4.5.2 The pre-finite model property 111
4.5.3 The axiomatization of RN 114
4.6 Locally tabular extensions of $\mathbf{R N}$ and $\mathbf{K G}$ 117
II Lattices of cylindric modal logics 121
5 Cylindric modal logic and cylindric algebras 123
5.1 Modal Logic 124
5.1.1 Modal algebras 126
5.1.2 Jónsson-Tarski representation 127
5.2 Many-dimensional modal logics 130
5.2.1 Basic definitions 130
5.2.2 Products of modal logics 131
5.3 Cylindric modal logics 132
5.3.1 $\quad \mathbf{S 5} \times \mathbf{S} 5$ 133
5.3.2 Cylindric modal logic with the diagonal 135
5.3.3 Product cylindric modal logic 137
5.3.4 Connection with FOL 139
5.4 Cylindric algebras 139
5.4.1 $\quad \mathrm{Df}_{2}$-algebras 140
5.4.2 Topological representation 141
5.4.3 $\quad \mathbf{C A}_{2}$-algebras 143
5.4.4 Representable cylindric algebras 145
6 Normal extensions of S5 ${ }^{2}$ 149
6.1 The finite model property of $\mathbf{S} 5^{2}$ 149
6.2 Locally tabular extensions of $\mathbf{S 5}{ }^{2}$ 155
6.3 Classification of normal extensions of $\mathbf{S} 5^{2}$ 160
6.4 Tabular and pre tabular extension of $\mathbf{S} \mathbf{5}^{2}$ 161
7 Normal extensions of CML_{2} 167
7.1 Finite $\mathbf{C M L}_{2}$-frames 167
7.1.1 The finite model property 167
7.1.2 The Jankov-Fine formulas 170
7.1.3 The cardinality of $\Lambda\left(\mathbf{C M L}_{2}\right)$ 172
7.2 Locally tabular extensions of $\mathbf{C M L}_{2}$ 173
7.3 Tabular and pre-tabular extensions of $\mathbf{C M L}_{2}$ 178
8 Axiomatization and computational complexity 187
8.1 Finite axiomatization 188
8.2 The poly-size model property 195
8.3 Logics without the linear-size model property 199
8.4 NP-completeness 201
Bibliography 209
Index 219

Acknowledgments

First of all, I would like to thank my promotor Dick de Jongh for all the help and support he has given me throughout my time as a PhD student. Dick's door was always open for me, and he was always ready to share his knowledge and insights. I've learned a lot from Dick. Our long discussions would always result in clarifying things that looked vague to me beforehand. I very much enjoyed working with Dick, and his ideas always inspired me. I'd like to thank him for all his care during these four years and also for his help in writing this thesis.

Second, I'd like to thank my co-promotor Yde Venema who perfectly combined his roles as an excellent supervisor and a good friend. Yde was always there when I needed his help. His interesting ideas and remarkably clear way of expressing them were always encouraging. Yde's comments on drafts of this thesis were very helpful. I also have fond memories of all the trips organized by Yde to different parts of the Netherlands.

Next, I'd like to mention Leo Esakia. The long seminars that we had at Leo's place in Tbilisi are among my very fondest memories. I'd like to thank Leo for teaching me logic. His unique way of explaining complicated things in a simple way with a twist of humor was very inspiring. It is thanks to Leo that I ever got interested in logic. I'd also like to thank the other members of the logic group in Georgia, in particular, Dimitri Pataraya, Mamuka Jibladze, and, especially, Revaz Grigolia for many interesting conversations concerning various parts of this thesis. I also learned a lot from enlightening meetings that I had with Lazo Zambakhidze. Each of these meetings could be compared to a full course in topology. I thank David Gabelaia for his detailed comments on a draft of this thesis, as well as for the fun we had in London, Amsterdam, and New Mexico, including the cooking of Georgian dinners.

Discussions with Johan van Benthem were always very inspiring. Thanks to these conversations I approach many topics differently. The tennis match that my brother and I had with Lucas and Johan is among most enjoyable moments of my stay in Amsterdam. The very thorough comments of Ian Hodkinson significantly
improved this thesis. Ian's suggestions helped me to fill in gaps in many proofs. It was also a pleasure to work with Ian on a paper on which parts of Chapter 8 are based. Ian keeps impressing me with his original ideas and deep insights. I'd also like to thank Maarten Marx. Maarten's enthusiasm is really remarkable. It is always a pleasure to talk to Maarten about various issues and to hear his interesting ideas. It was also an exciting experience to work with Maarten on a paper on which other parts of Chapter 8 are based. I am also very appreciative of Albert Visser for sharing with me his thoughts on various aspects of logic.

I very much enjoyed sharing an office with Clemens Kupke. Clemens was an ideal officemate. When I needed his help in math, he would help me to prove theorems, and when I needed to relax, he would come up with a joke that would give me a good laugh. Time at ILLC would not have been as enjoyable as it was if I hadn't had such a good officemate and friend. I would also like to thank Balder ten Cate for many enjoyable and fruitful chats that we had and for the work that we did together. I also have pleasant memories of the time that I spent with Balder and Dana at the Batumi conference in Georgia. Thanks also to Benedikt Löwe for interesting discussions and for always being available to give good advice.

The staff members of the ILLC managed to create a very warm and friendly environment on the third floor of Euclides. Thanks to Ingrid van Loon, Marjan Veldhuisen, Tanja Kassenar and Jessica Pogorzelski, and also to René Goedman, whose friendly greeting was always a good start to the day.

Hanging out with my fellow PhD students and postdocs from Euclides is always fun and relaxing for which I should thank Merlijn Sevenster, Aline Honingh, Yoav Seginer, Reut Tsarfaty, Fenrong Liu, Ulle Endriss, Leigh Smith, Eric Pacuit, Brian Semmes, Olivia Ladinig, and Levan Uridia among others. Special thanks to Joost Joosten whose absence for the past year has been very noticeable. "Rondje Nieuwmarkt", organized by Joost, is another thing that I'll remember for a long time. I'll definitely miss our "gezellig" lunch breaks and Friday evenings in Kriterion. Special thanks also to Olivier Roy and Jelle Zuidema. The many dinners that I had together with Olivier and Jelle are among my most pleasant memories of this period. I'd also like to thank Olivier for helping me design the cover of this thesis.

Thanks to David Ahn for being such a good roommate and also for patiently proofreading and correcting my writing, including parts of this thesis. I also have fond memories of our philosophical discussions that would last till early morning. Be Birchall provided many helpful comments on parts of this thesis. Special thanks go to Gaëlle Fontaine for her careful reading of Part I and for helping me fix many gaps, and also for her famous mousse au chocolat.

I definitely benefited from the entertaining discussions and meetings that I had during various occasions with Lev Beklemishev, Rosalie Iemhoff, Lex Hendriks, Michael Zakharyaschev, Szabolcz Mikulás, Alexander Kurz, Larry Moss, Silvio Ghilardi, Tadeusz Litak, Felix Bou, John Harding and Mai Gehrke. I'd also like
to thank Mai and Hilary Priestley for their hospitality and for the interesting seminars that we had during my visit to Oxford.

Thanks to my brother Guram for all his help and support over the years. Starting from my days as an undergraduate he has spent lots of time clarifying to me various mathematical ideas. He has guided me throughout my first steps in research. Without his support and (sometimes critical) comments, I would probably never have managed to do research in logic. I'd also like to thank Guram for his comments on a draft of this thesis.

Finally, I'd like to thank my father Michael Bezhanishvili, who motivated my brother and me to become logicians. That we both decided to do research is a result of his spending time helping us with our high school math and also explaining to us ideas from philosophy, mathematics and logic. Last of all, I'd like to mention my mother Tata Tvaltchrelidze, who would have been extremely happy to see this thesis. Her life was always an example for me. I'd like to dedicate this book to my parents.

Nick Bezhanishvili
Amsterdam, January 26, 2006.

Chapter 1

Introduction

Brief history

In this thesis we investigate classes of intuitionistic and modal logics. The origins of intuitionistic logic and modal logic go back to the beginning of the 20th century. Intuitionistic logic was introduced by Heyting [61] as a formalization of Brouwer's ideas about intuitionism and constructive mathematics. Investigations into modal logics started with the work of Lewis [86], who introduced the modal systems $\mathbf{S 1 - S 5}$. Lewis' original goal was to axiomatize the so-called strict implication and thus provide alternatives to material implication. The first systematic semantics for intuitionistic and modal logics was provided by McKinsey and Tarski $[96,97,98,119]$. (The precursor to this semantics was the semantics based on the so-called Jaśkowski matrices [66].) McKinsey and Tarski interpreted the intuitionistic propositional calculus IPC and the modal logic S4 in topological spaces. Their work can also be seen as the beginning of an algebraic approach towards intuitionistic and modal logics. Moreover, McKinsey and Tarski were the first who treated intuitionistic and modal logics in a single framework. They showed that the modal logic $\mathbf{S} 4$ is complete with respect to the class of closure algebras (one might say: the algebras of topological spaces) and that the intuitionistic propositional calculus is complete with respect to the class of Heyting algebras ${ }^{1}$, which basically consists of the open elements of closure algebras. This topological semantics works nicely for intuitionistic logic and the modal logic S4. However, it becomes less transparent when applied to other logics. In contrast, closure algebras can be very naturally generalized to Boolean algebras with operators (BAOs, for short). There is a class (a variety) of BAOs that corresponds to every modal logic, and every modal logic is complete with respect to this class. Thus, before Kripke's discovery of relational semantics for intuitionistic and modal logics [76, 77, 78], algebraic semantics was the main tool

[^0]for investigating these logics.
After the introduction of relational semantics, interest shifted from the algebraic semantics of intuitionistic and modal logics to Kripke semantics. But researchers continued to investigate these logics using algebraic methods and the field remained active. We mention a few important contributions of this early period which are directly related to the subject of this thesis. Tarski and his students developed the theory of cylindric algebras [60], which provide an algebraic semantics for the classical first-order logic, Halmos studied monadic and polyadic algebras [58], Jankov introduced characteristic formulas for finite Heyting algebras and used them to prove that there are continuum many logics between the classical propositional calculus CPC and intuitionistic propositional calculus IPC [64, 65]. These logics are nowadays called "intermediate logics" or "superintuitionistic logics". Independently, de Jongh [69] introduced similar formulas and used them to characterize intuitionistic logic, applying a mix of algebraic and relational semantics. Rieger [106] described the one-generated free Heyting algebra and showed that it is infinite. Independently, Nishimura [102] obtained the same result using proof-theoretic methods. Kuznetsov [80, 81, 82] began a systematic study of intermediate logics using algebraic methods. It turned out that most logical notions can be translated into statements about varieties of algebras. Therefore, a whole range of techniques of universal algebra can be applied to problems of intermediate and modal logics. For example we consider the well-known property of interpolation, which is purely syntactical. It was shown by Maksimova [89, 91] that an intermediate or modal logic has the interpolation property if and only if the corresponding variety of algebras has the superamalgamation property. This directly links the interpolation property with a purely algebraic property concerning varieties of Heyting algebras and BAOs. The field of logic that studies logic via algebraic methods is nowadays called algebraic logic.

There were two observations that made algebraic logic even more attractive. First, in the '70s a number of Kripke-incomplete logics were discovered. Thomason [120] constructed a Kripke incomplete temporal logic. Fine [40] and van Benthem [5] found examples of Kripke incomplete modal logics. Shehtman [114] constructed an incomplete intermediate logic. Therefore, there are logics that cannot be investigated using only Kripke semantics. In contrast to this, every intermediate and modal logic is complete with respect to its algebraic semantics.

The second main observation is that algebraic and Kripke semantics are, in fact, very closely related. They are in a sense dual to each other. This connection goes through the Stone duality. There is a one-to-one correspondence between algebraic models of intuitionistic and modal logics and Kripke frames augmented with a special topology, the so-called Stone topology. This correspondence can be extended to a duality between varieties of algebras and categories of these topological Kripke frames. For Heyting algebras and closure algebras this duality was discovered by Esakia [38]. Goldblatt [51, 52] worked it out for BAOs and descriptive frames. However, the idea of a duality between Boolean algebras with
operators and Kripke frames equipped with a special structure can be traced all the way back to the important work of Jónsson and Tarski [71]. Note that the duality between Heyting algebras and intuitionistic descriptive frames, on the one hand, and the duality between BAOs and modal descriptive frames, on the other, imply that every intermediate and modal logic is complete with respect to a class of descriptive frames. This duality allows us to approach problems in intermediate and modal logics from different perspectives. As we already mentioned, properties of a logic can be translated into algebraic terms. Now, using the duality between algebras and descriptive frames these properties can be translated into terms of descriptive frames. The interpolation property again provides us with a good example. As we mentioned above, an intermediate or modal logic has the interpolation property if and only if the corresponding variety of algebras has the superamalgamation property. However, as is shown in [90], the easiest way to either prove or refute the superamalgamation property is to translate it into terms of descriptive frames and then use order-topological techniques. Thus, we have three powerful tools for studying intermediate and modal logics: purely logical (syntactical), algebraic, and order-topological. Our investigations throughout this thesis will be based on algebraic and order-topological techniques and on the correspondence between them.

We continue by mentioning some other important contributions to the field of algebraic logic. Rautenberg [105] and Blok [21] started a systematic investigation of the lattices of varieties of BAOs. They thoroughly studied the splitting varieties of BAOs. Blok [20] also defined and investigated the degree of incompleteness of modal logics. In [19] Blok constructed an embedding of the lattice of intermediate logics into the lattice of normal extensions of the modal logic $\mathbf{S} 4$. Blok's proof of this theorem used only algebraic methods. On the other hand, Esakia [34] independently arrived at the same embedding using the duality between Heyting algebras and topological Kripke frames.

The next important step was made by Zakharyaschev [132, 133, 134] who generalized the notion of Jankov's characteristic formula. Zakharyaschev defined canonical formulas for intermediate and transitive modal logics and showed that every such logic is axiomatizable by canonical formulas. The technique of Zakharyaschev was again based on a duality between descriptive frames and their corresponding Heyting algebras and BAOs. Wolter [129, 130] and Kracht [73, 74] studied tense logics, extensions of basic modal logic \mathbf{K} and various intermediate and modal logics using the splitting technique.

Finally, we mention yet another important line of research in algebraic logic. This is the theory of canonicity and canonical extensions. These topics will not be considered in this thesis at all, so we will only give a few important references: Sahlqvist [109], Ghilardi and Meloni [49], Goldblatt [53], Gehrke and Jónsson [47], Gehrke, Harding, Venema [45], Goldblatt, Hodkinson, Venema [54]. For a systematic overview of these results as well as other useful material on algebraic logic see Venema [126].

Main results

Now that we have briefly discussed the main techniques of our investigations in this thesis, we turn to the type of questions that we are going to study. As we mentioned in our short historical overview, the investigation of intuitionistic logic and modal logics started with a study of particular systems. Later on this study was extended to the investigation of classes of intermediate and modal logics, often all extensions of a particular interesting logic. This approach provides us with a uniform perspective on the field. It usually gives a better understanding of why a logical system does or does not have a particular property. There are many such examples, of which we mention only a few here. Segerberg [112] showed that every transitive modal logic of finite depth has the finite model property, Fine [42] proved that every transitive logic of finite width is Kripke complete. Therefore, instead of proving the finite model property and Kripke completeness for every given logic of finite depth or width we simply apply these general results. Sahlqvist's theorem [109] (see also [18, §3.6], [24, §10.3]) provides us with a different general completeness result, which says that if a logic is axiomatized by the formulas of some particular shape, then it is Kripke complete. Again, this theorem gives us for free a Kripke completeness result for large classes of logics. Maksimova's characterization of all intermediate logics with the interpolation property can be seen as a general result of a similar nature. In this thesis we follow this "global" approach to intermediate and modal logics. The precursors of this approach were Scroggs [111], who studied all extensions of S5, Dummett and Lemmon [31], who investigated modal logics between $\mathbf{S} 4$ and $\mathbf{S 5}$, and Bull [22], Fine [39], and later Hemaspaandra [118], who showed that all extensions of S4.3 have the finite model property, are finitely axiomatizable, and are NP-complete, respectively. Segerberg [112] investigated various classes of modal logics, Blok [19] and Esakia [34] studied isomorphisms of lattices of modal and intermediate logics, and Fine [41, 42] and Zakharyaschev [132, 133, 134, 135] investigated the classes of subframe and cofinal subframe logics, to name only a few; see [131] for an overview of these results.

The results in this thesis should be seen as a continuation of this line of research. We also concentrate on the classes of extensions of some particular logics. In this thesis we investigate:

1. The intermediate logic $\mathbf{R N}$ of the Rieger-Nishimura ladder and its extensions.
2. Cylindric modal logics. In particular:
(a) The two-dimensional cylindric modal logic $\mathbf{S} 5^{2}$ (without the diagonal).
(b) The two-dimensional cylindric modal $\operatorname{logic} \mathbf{C M L} 2$ (with the diagonal).

We first discuss these two topics and then concentrate on the particular questions that we are going to address in this thesis.

The Rieger-Nishimura ladder is the dual frame of the one-generated free Heyting algebra described by Rieger [106] and Nishimura [102]. We study the intermediate logic RN of the Rieger-Nishimura ladder. This logic is the greatest 1-conservative extension of IPC. It was studied earlier by Kuznetsov and Gerciu [83], Gerciu [48] and Kracht [73]. We provide a systematic analysis of this system and its extensions. We also study an intermediate logic KG, introduced by Kuznetsov and Gerciu. It is closely related to $\mathbf{R N}$ and will play an important role in our investigations. The logic RN is a proper extension of KG. By studying extensions of KG and RN we introduce some general techniques. For example, we give a systematic method for constructing intermediate logics without the finite model property, we give a method for constructing infinite antichains of finite Kripke frames that implies the existence of a continuum of logics with and without the finite model property. We also introduce a gluing technique for proving the finite model property for large classes of logics.

Cylindric modal logics are the direct logical analogues of Tarski's cylindric algebras. The theory of cylindric algebras was originally introduced and developed by Tarski and his collaborators in an attempt to algebraize the classical first-order logic FOL [60]. Finite-dimensional cylindric algebras provide algebraic models for the finite variable fragments of FOL, and so finite-dimensional cylindric algebras give an "approximation" of FOL.

Cylindric modal logics were first formulated explicitly in [125]. They are closely related to n-dimensional products of the well-known modal logic S5. The lattice of extensions of $\mathbf{S 5}$, i.e., the lattice of extensions of the one-dimensional cylindric modal logic, is very simple: every extension of $\mathbf{S} 5$ is finitely axiomatizable and decidable. Moreover, every proper extension of $\mathbf{S} 5$ is complete with respect to a single finite frame. In contrast to this, the lattice of extensions of the three-dimensional cylindric modal logic is very complicated. The threedimensional cylindric modal logic is undecidable and has continuum many undecidable extensions. In this thesis we concentrate on two-dimensional cylindric modal logics. We consider two similarity types: two-dimensional cylindric modal logics with and without diagonal. Cylindric modal logic with the diagonal corresponds to the full two-variable fragment of FOL and the cylindric modal logic without the diagonal corresponds to the two-variable substitution-free fragment of FOL. We study the lattices of two-dimensional cylindric modal logics.

There is a two-fold connection between these two themes of the thesis. First, for all these systems, we investigate the same properties of axiomatization, finite model property, local tabularity, etc. Second, in both cases we use the same techniques. Our main tools are algebras and their dual frames. In the intuitionistic case we use the duality between Heyting algebras and intuitionistic descriptive frames (resp. ordered topological spaces). In the modal case we use the dual-
ity between Boolean algebras with operators and modal descriptive frames (resp. Stone spaces with point-closed and clopen relations). As we pointed out above, we approach the problems of intermediate and modal logics both from an algebraic and from frame-theoretic, (or rather order-topological) perspective and jump back and forth between these two frameworks at our convenience.

Our investigations mostly concern the following topics:

- Axiomatization. Our main tools for obtaining positive or negative results concerning axiomatization of intermediate and modal logics are the so-called frame-based formulas. In particular, the Jankov-de Jongh formulas for intermediate logics, the Jankov-Fine formulas for modal logics, and subframe and cofinal subframe formulas for intermediate and modal logics. In Chapter 3 we put all these formulas into a unified framework. We use these formulas for showing that $\mathbf{R N}$ is finitely axiomatizable. We also prove that every normal extension of $\mathbf{S} \mathbf{5}^{2}$ is finitely axiomatizable, and that there are non-finitely axiomatizable extensions of $\mathbf{C M L}_{2}$.
- The finite model property. Using the technique of gluing models we prove that every extension of the logic RN of the Rieger-Nishimura ladder has the finite model property. Using the Jankov-de Jongh formulas we develop a systematic method for constructing intermediate logics without the finite model property. We also prove that every normal extension of $\mathbf{S} \mathbf{5}^{2}$ has the finite model property. We leave it as an open problem whether every extension of $\mathbf{C M L}_{2}$ has the finite model property.
- Local tabularity. This property is especially useful since every locally tabular logic has the finite model property. We derive a criterion for recognizing when an extension of $\mathbf{R N}, \mathbf{K G}, \mathbf{S 5}{ }^{2}$, or $\mathbf{C M L}_{2}$ is locally tabular.
- Pre-P-properties. Let P be a property of logics. A logic L has a pre- $P-$ property if L lacks P but every proper extension of L has P. We characterize the only extension of KG that has the pre-finite model property. We also describe all pre-tabular and all pre-locally tabular extensions of $\mathbf{K G}, \mathbf{S 5}{ }^{2}$ and $\mathbf{C M L}_{2}$.
- Decidability/complexity. In Chapter 8 we prove that every proper normal extension of $\mathbf{S} \mathbf{5}^{2}$ is decidable and has an NP-complete satisfiability problem. This result together with the finite model property and finite axiomatization of normal extensions of $\mathbf{S} \mathbf{5}^{2}$ gives us the analogue of the Bull-FineHemaspaandra theorem for normal extensions of $\mathbf{S 5} \mathbf{5}^{2}$.

Contents

This thesis has two parts. First we describe the contents of Part I. It is a wellknown result of universal algebra that every variety of algebras is generated by its finitely generated members. Therefore, an understanding of the structure of finitely generated algebras of a given variety provides the key for understanding this variety. That is why we start our investigation of intermediate logics with an investigation of finitely generated Heyting algebras. Many facts about these algebras are known. However, these results are scattered in the literature. Our aim is to give a coherent exposition of finitely generated Heyting algebras. We show that their dual frames can be seen as "icebergs" consisting of the upper part (the tip of the iceberg) and the lower part. We give a full description of the upper part of these frames.

We also discuss the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas in a uniform framework of frame-based formulas. We define subframe formulas and cofinal subframe formulas in a new way which connects them with the NNIL formulas of [127]. We give a general criterion for an intermediate logic to be axiomatized by frame-based formulas and show that in general not every logic is axiomatized by frame-based formulas. This gives another explanation of why we need to enrich these formulas with an additional parameter as in Zakharyaschev's canonical formulas.

Next we use finitely generated Heyting algebras, the Jankov-de Jongh formulas and subframe formulas in the study of the lattice of extensions of one particular intermediate logic, the logic of the Rieger-Nishimura ladder. We will see that the complicated construction of finitely generated Heyting algebras becomes surprisingly simple in this case. We define the n-scheme logics of IPC and n-conservative extensions of IPC. We show that the logic of the Rieger-Nishimura ladder is the 1-scheme logic of IPC and, by virtue of that, the greatest 1-conservative extension of IPC. We show that every extension of $\mathbf{R N}$ has the finite model property. We also study the Kuznetsov-Gerciu logic KG. The logic RN is a proper extension of KG, but in contrast to RN, the logic KG has continuum many extensions without the finite model property. Finally, we give a criterion of local tabularity in extensions of RN and KG.

In Part II we investigate in detail lattices of the two-dimensional cylindric modal logics. Cylindric modal logic without the diagonal is the two-dimensional product of $\mathbf{S 5}$, which we denote by $\mathbf{S 5}{ }^{2}$. It is well-known that $\mathbf{S 5}{ }^{2}$ is finitely axiomatizable, has the finite model property, is decidable [60] and has a NEXPTIMEcomplete satisfiability problem [93]. We show that every proper normal extension of $\mathbf{S 5} \mathbf{5}^{2}$ is also finitely axiomatizable, has the finite model property, and is decidable. Moreover, we prove that in contrast to $\mathbf{S} 5^{2}$, every proper normal extensions of $\mathbf{S} 5^{2}$ has an NP-complete satisfiability problem. We also show that the situation for cylindric modal logics with the diagonal is different. There are continuum many non-finitely axiomatizable extensions of the cylindric modal $\operatorname{logic} \mathbf{C M L}_{2}$.

We leave it as an open problem whether all of them have the finite model property. We also give a criterion of local tabularity for two-dimensional cylindric modal logics with and without diagonal and characterize pre-tabular cylindric modal logics.

The thesis is organized as follows. In Chapter 2 we discuss the Kripke, algebraic and order-topological semantics of the intuitionistic propositional calculus. In Chapter 3 we give a systematic overview of finitely generated Heyting algebras, universal models for intuitionistic logic, and of frame-based formulas. Chapter 4 investigates in detail the lattice of extensions of the logic RN of the RiegerNishimura ladder, and the lattice of extensions of the Kuznetsov-Gerciu logic KG. In Chapter 5 we introduce the basic notions of cylindric modal logic and define cylindric algebras. Chapter 6 investigates the lattice of normal extensions of S5 ${ }^{2}$ - the two-dimensional cylindric modal logic without the diagonal. In Chapter 7 we study the lattice of normal extensions of $\mathbf{C M L}_{2}$ - the two-dimensional cylindric modal logic with the diagonal. Finally, in Chapter 8 we prove that every proper normal extension of $\mathbf{S 5}{ }^{2}$ is finitely axiomatizable, has the poly-size model property and has an NP-complete satisfiability problem.

We close the introduction by mentioning prior work on which some of the chapters are based. Chapter 3 is partially based on [13]. Chapter 4 is based on joint work with Dick de Jongh and Guram Bezhanishvili [8]. Chapters 5 and 6 are based on [12], Chapter 7 is based on [14], and Chapter 8 is based on joint work with Maarten Marx [17] and Ian Hodkinson [16].

Part I

Lattices of intermediate logics

Chapter 2

Algebraic semantics for intuitionistic logic

In this chapter we give an overview of the basic facts about intuitionistic logic and its extensions. In particular, we recall their Kripke, algebraic and general frame semantics, and the duality between Heyting algebras and descriptive frames.

2.1 Intuitionistic logic and intermediate logics

2.1.1 Syntax and semantics

Let \mathcal{L} denote a propositional language consisting of

- infinitely many propositional variables (letters) p_{0}, p_{1}, \ldots,
- propositional connectives $\wedge, \vee, \rightarrow$,
- a propositional constant \perp.

We denote by Prop the set of all propositional variables. Formulas in \mathcal{L} are defined as usual. Denote by $\operatorname{Form}(\mathcal{L})$ (or simply by Form) the set of all well-formed formulas in the language \mathcal{L}. We assume that p, q, r, \ldots range over propositional variables and ϕ, ψ, χ, \ldots range over arbitrary formulas. For every formula ϕ and ψ we let $\neg \phi$ abbreviate $\phi \rightarrow \perp$ and $\phi \leftrightarrow \psi$ abbreviate $(\phi \rightarrow \psi) \wedge(\psi \rightarrow \phi)$. We also let \top abbreviate $\neg \perp$. First we recall the definition of intuitionistic propositional calculus.
2.1.1. Definition. Intuitionistic propositional calculus IPC is the smallest set of formulas containing the axioms:

1. $p \rightarrow(q \rightarrow p)$,
2. $(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))$,
3. $p \wedge q \rightarrow p$,
4. $p \wedge q \rightarrow q$,
5. $p \rightarrow p \vee q$,
6. $q \rightarrow p \vee q$,
7. $(p \rightarrow r) \rightarrow((q \rightarrow r) \rightarrow((p \vee q) \rightarrow r)))$,
8. $\perp \rightarrow p$.
and closed under the inference rules:

Modus Ponens (MP) : from ϕ and $\phi \rightarrow \psi$ infer ψ,
Substitution (Subst) : from $\phi\left(p_{1}, \ldots, p_{n}\right)$ infer $\phi\left(\psi_{1}, \ldots, \psi_{n}\right)$.

For an introduction to intuitionism and the connection between intuitionistic logic and intuitionism we refer to [62], [28], [123] and [15].
2.1.2. Definition. Let CPC denote classical propositional calculus.

It is well known (see e.g., [24, §2.3]) that CPC properly contains IPC. Indeed, we have $p \vee \neg p, \neg \neg p \rightarrow p \in \mathbf{C P C}$, but $p \vee \neg p, \neg \neg p \rightarrow p \notin \mathbf{I P C}$. In fact, we have the following theorem; see e.g., $[24, \S 2.6]$.

2.1.3. Theorem.

1. $\mathbf{C P C}$ is the smallest set of formulas that contains $\mathbf{I P C}$, the formula $p \vee \neg p$, and is closed under (MP) and (Subst).
2. $\mathbf{C P C}$ is the smallest set of formulas that contains $\mathbf{I P C}$, the formula $\neg \neg p \rightarrow$ p, and is closed under (MP) and (Subst).
2.1.4. Definition. A set of formulas $L \subseteq$ Form closed under (MP) and (Subst) is called an intermediate logic if $\mathbf{I P C} \subseteq L \subseteq \mathbf{C P C}$.

Thus, the intermediate logics are "intermediate" between classical and intuitionistic propositional logics. Next we introduce a class containing all the intermediate logics.
2.1.5. Definition. A set of formulas $L \subseteq$ Form closed under (MP) and (Subst) is called a superintuitionistic logic if $L \supseteq$ IPC.

A superintuitionistic logic L is said to be consistent if $\perp \notin L$, and inconsistent if $\perp \in L$. By (8) and (MP), L is inconsistent iff $L=$ Form. We will use the notation $L \vdash \phi$ to denote $\phi \in L$. The next proposition tells us that not only every intermediate logic is superintuitionistic, but that for consistent logics, the converse obtains as well. For a proof see, e.g., [24, Theorem 4.1].
2.1.6. Proposition. For every consistent superintuitionistic logic $L \subsetneq$ Form we have $L \subseteq \mathbf{C P C}$. That is, L is intermediate.

Therefore, every consistent superintuitionistic logic is intermediate and vice versa. From now on we will use the term "intermediate logic" only. Let L_{1} and L_{2} be intermediate logics. We say that L_{2} is an extension of L_{1} if $L_{1} \subseteq L_{2}$.
2.1.7. Remark. In contrast to the propositional case, not every extension of the intuitionistic first-order logic is contained in the classical first-order logic. Indeed, it is known that the classical first-order logic has continuum many extensions. Every one of these is an extension of the intuitionistic first-order logic not contained in the classical first-order logic. Thus, the notions of superintuitionistic and intermediate logics do not coincide in the first-order case.

For every intermediate logic L and a formula ϕ, let $L+\phi$ denote the smallest intermediate logic containing $L \cup\{\phi\}$. Then we can reformulate Theorem 2.1.3 as:

$$
\mathbf{C P C}=\mathbf{I P C}+(p \vee \neg p)=\mathbf{I P C}+(\neg \neg p \rightarrow p)
$$

Now we recall the Kripke semantics for intuitionistic logic. Let R be a binary relation on a set W. For every $w, v \in W$ we write $w R v$ if $(w, v) \in R$ and we write $\neg(w R v)$ if $(w, v) \notin R$.

2.1.8. Definition.

1. An intuitionistic Kripke frame is a pair $\mathfrak{F}=(W, R)$, where $W \neq \emptyset$ and R is a partial order; that is, a reflexive, transitive and anti-symmetric relation on W.
2. An intuitionistic Kripke model is a pair $\mathfrak{M}=(\mathfrak{F}, V)$ such that \mathfrak{F} is an intuitionistic Kripke frame and V is an intuitionistic valuation; that is, a map $V:$ Prop $\rightarrow \mathcal{P}(W),{ }^{1}$ satisfying the condition:

$$
w \in V(p) \text { and } w R v \text { implies } v \in V(p)
$$

[^1]All the Kripke frames and Kripke models that we consider in Part I of this thesis are intuitionistic. So, we will simply call them Kripke fames and Kripke models or just frames and models.

Let $\mathfrak{M}=(W, R, V)$ be an intuitionistic Kripke model, $w \in W$ and $\phi \in$ Form. The following provides an inductive definition of $\mathfrak{M}, w \models \phi$.

1. $\mathfrak{M}, w \models p$ iff $w \in V(p)$,
2. $\mathfrak{M}, w \models \phi \wedge \psi$ iff $\mathfrak{M}, w \models \phi$ and $\mathfrak{M}, w \models \psi$,
3. $\mathfrak{M}, w \models \phi \vee \psi$ iff $\mathfrak{M}, w \models \phi$ or $\mathfrak{M}, w \models \psi$,
4. $\mathfrak{M}, w \models \phi \rightarrow \psi$ iff for all v with $w R v$, if $\mathfrak{M}, v \models \phi$ then $\mathfrak{M}, v \models \psi$,
5. $\mathfrak{M}, w \not \vDash \perp$.

If $\mathfrak{M}, w \models \phi$, we say " ϕ is true at w " or " w satisfies the formula ϕ in \mathfrak{M} ". We write $w \models \phi$ instead of $\mathfrak{M}, w \models \phi$ if the model \mathfrak{M} is clear from the context. Since $\neg \phi$ abbreviates $\phi \rightarrow \perp$, we can spell out the truth definitions of formulas with negation as follows:

- $\mathfrak{M}, w \models \neg \phi$ iff $\mathfrak{M}, v \not \vDash \phi$ for all v with $w R v$,
- $\mathfrak{M}, w \models \neg \neg \phi$ iff for all v with $w R v$ there exists u such that $v R u$ and $\mathfrak{M}, u \models \phi$.
2.1.9. Definition. Let $\phi \in$ Form, \mathfrak{F} be a Kripke frame, \mathfrak{M} be a model on \mathfrak{F}, and K be a class of Kripke frames.

1. We say that ϕ is true in \mathfrak{M}, and write $\mathfrak{M} \models \phi$, if $\mathfrak{M}, w \models \phi$ for every $w \in W$.
2. We say that ϕ is valid in \mathfrak{F}, and write $\mathfrak{F} \models \phi$, if for every valuation V on \mathfrak{F} we have that $\mathfrak{M} \models \phi$, where $\mathfrak{M}=(\mathfrak{F}, V)$.
3. We say that ϕ is valid in K , and write $\mathrm{K} \models \phi$, if $\mathfrak{F} \models \phi$ for every $\mathfrak{F} \in \mathrm{K}$.

For every intermediate logic L let $\operatorname{Fr}(L)$ be the class of Kripke frames that validate all the formulas in L. We call $\operatorname{Fr}(L)$ the class defined by L.

2.1.10. Definition.

1. For every Kripke frame \mathfrak{F} let $\log (\mathfrak{F})$ denote the set of all formulas that are valid in \mathfrak{F}, i.e., $\log (\mathfrak{F})=\{\phi: \mathfrak{F} \models \phi\}$.
2. For a class K of Kripke frames, let $\log (\mathrm{K})=\bigcap\{\log (\mathfrak{F}): \mathfrak{F} \in \mathrm{K}\}$.
3. An intermediate logic L is called Kripke complete if there exists a class K of Kripke frames such that $L=\log (\mathrm{K})$. In such a case we say that L is complete with respect to K .

It is easy to check that for every frame \mathfrak{F} the set $\log (\mathfrak{F})$ is an intermediate logic. We call it the logic of \mathfrak{F}. Then $\log (\mathrm{K})$ is an intermediate logic which we call the logic of K . It is easy to see that if an intermediate logic L is Kripke complete, then $L=\log (\operatorname{Fr}(L))$.

It is well known that IPC and CPC are Kripke complete. The proof of the following theorem is standard and uses the so-called canonical model argument. See, e.g., [24, Theorems 1.16 and 5.12], [28], [15].
2.1.11. Theorem. The following holds.

1. IPC is complete with respect to the class of all partially ordered frames.
2. $\mathbf{C P C}$ is complete with respect to the frame consisting of one reflexive point.

Next we recall the main operations on Kripke frames and models.
Generated subframes and generated submodels. Let $\mathfrak{F}=(W, R)$ be a Kripke frame. A subset $U \subseteq W$ is called an upset of \mathfrak{F} if for every $w, v \in W$ we have that $w \in U$ and $w R v$ imply $v \in U$. A frame $\mathfrak{F}^{\prime}=\left(U, R^{\prime}\right)$ is called a generated subframe of \mathfrak{F} if $U \subseteq W, U$ is an upset of \mathfrak{F} and R^{\prime} is the restriction of R to U, i.e., $R^{\prime}=R \cap U^{2}$. Let $\mathfrak{M}=(\mathfrak{F}, V)$ be a Kripke model. A model $\mathfrak{M}^{\prime}=\left(\mathfrak{F}^{\prime}, V^{\prime}\right)$ is called a generated submodel of \mathfrak{M} if \mathfrak{F}^{\prime} is a generated subframe of \mathfrak{F} and V^{\prime} is the restriction of V to U, i.e., $V^{\prime}(p)=V(p) \cap U$. Let $\mathfrak{F}=(W, R)$ be a Kripke frame and let $w \in W$. Let the subframe of \mathfrak{F} generated by w be the frame $\mathfrak{F}_{w}:=\left(R(w), R^{\prime}\right)$, where $R(w)=\{v \in W: w R v\}$ and R^{\prime} is the restriction of R to $R(w)$. Let $\mathfrak{M}=(\mathfrak{F}, V)$ be a Kripke model and $w \in W$. The submodel of \mathfrak{M} generated by w is the model $\mathfrak{M}_{w}:=\left(\mathfrak{F}_{w}, V^{\prime}\right)$, where \mathfrak{F}_{w} is the subframe of \mathfrak{F} generated by w and V^{\prime} is the restriction of V to $R(w)$.
p-MORPHISMS. Let $\mathfrak{F}=(W, R)$ and $\mathfrak{F}^{\prime}=\left(W^{\prime}, R^{\prime}\right)$ be Kripke frames. A map $f: W \rightarrow W^{\prime}$ is called a p-morphism between \mathfrak{F} and \mathfrak{F}^{\prime} if for every $w, v \in W$ and $w^{\prime} \in W^{\prime}:$

1. $w R v$ implies $f(w) R^{\prime} f(v)$,
2. $f(w) R^{\prime} w^{\prime}$ implies that there exists $u \in W$ such that $w R u$ and $f(u)=w^{\prime}$.

Some authors call such maps bounded morphisms; see, e.g., [18]. We call the conditions (1) and (2) the "forth" and "back" conditions, respectively. We say that f is monotone if it satisfies the forth condition. If f is a surjective p-morphism from \mathfrak{F} onto \mathfrak{F}^{\prime}, then \mathfrak{F}^{\prime} is called a p-morphic image of \mathfrak{F}. Let $\mathfrak{M}=(\mathfrak{F}, V)$ and
$\mathfrak{M}^{\prime}=\left(\mathfrak{F}^{\prime}, V^{\prime}\right)$ be Kripke models. A map $f: W \rightarrow W^{\prime}$ is called a p-morphism between \mathfrak{M} and \mathfrak{M}^{\prime} if f is a p-morphism between \mathfrak{F} and \mathfrak{F}^{\prime} and for every $w \in W$ and $p \in \mathrm{Prop}$:

$$
\mathfrak{M}, w \models p \text { iff } \mathfrak{M}^{\prime}, f(w) \models p .
$$

If f is surjective, then \mathfrak{M} is called a p-morphic image of \mathfrak{M}^{\prime}. p-morphic images are also called reductions; see, e.g., [24].

Disjoint unions. Let $\left\{\mathfrak{F}_{i}\right\}_{i \in I}$ be a family of Kripke frames, where $\mathfrak{F}_{i}=$ (W_{i}, R_{i}), for every $i \in I$. The disjoint union of $\left\{\mathfrak{F}_{i}\right\}_{i \in I}$ is the frame $\biguplus_{i \in I} \mathfrak{F}_{i}:=$ $\left(\biguplus_{i \in I} W_{i}, R\right)$ such that $\biguplus_{i \in I} W_{i}$ is the disjoint union of W_{i} 's and R is defined by
$w R v$ iff there exists $i \in I$ such that $w, v \in W_{i}$ and $w R_{i} v$.
Let $\left\{\mathfrak{M}_{i}\right\}_{i \in I}$ be a family of Kripke models, where $\mathfrak{M}_{i}=\left(\mathfrak{F}_{i}, V_{i}\right)$, for every $i \in I$. The disjoint union of $\left\{\mathfrak{M}_{i}\right\}_{i \in I}$ is the model $\biguplus_{i \in I} \mathfrak{M}_{i}:=\left(\biguplus_{i \in I} \mathfrak{F}_{i}, V\right)$ such that $\biguplus_{i \in I} \mathfrak{F}_{i}$ is the disjoint union of \mathfrak{F}_{i} 's and $V(p)=\bigcup_{i \in I} V_{i}(p)$.

Now we formulate the truth-preserving properties of these operations. For a proof we refer to $[24, \S 2.3]$.

2.1.12. Theorem.

1. If a model $\mathfrak{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ is a generated submodel of a model $\mathfrak{M}=$ (W, R, V), then for every $\phi \in$ Form and $v \in W^{\prime}$ we have

$$
\mathfrak{M}, v \models \phi \text { iff } \mathfrak{M}^{\prime}, v \models \phi .
$$

2. If a model $\mathfrak{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ is a p-morphic image of a model $\mathfrak{M}=$ (W, R, V) via f, then for every $\phi \in$ FORM and $w \in W$ we have

$$
\mathfrak{M}, w \models \phi \text { iff } \mathfrak{M}^{\prime}, f(w) \models \phi .
$$

3. Let $\left\{\mathfrak{M}_{i}\right\}_{i \in I}$ be a family of Kripke models, where $\mathfrak{M}_{i}=\left(W_{i}, R_{i}, V_{i}\right)$, for every $i \in I$. Let $\phi \in$ FORM and $w \in W_{i}$ for some $i \in I$. Then

$$
\biguplus_{i \in I} \mathfrak{M}_{i}, w \models \phi \text { iff } \mathfrak{M}_{i}, w \models \phi .
$$

Now we formulate the truth-preserving properties for frames.

2.1.13. Theorem.

1. If a frame \mathfrak{F}^{\prime} is a generated subframe of a frame \mathfrak{F}, then for every $\phi \in$ FORM we have

$$
\mathfrak{F} \models \phi \text { implies } \mathfrak{F}^{\prime} \models \phi .
$$

2. If a frame \mathfrak{F}^{\prime} is a p-morphic image of a frame \mathfrak{F} via f, then for every $\phi \in$ Form we have

$$
\mathfrak{F} \models \phi \text { implies } \mathfrak{F}^{\prime} \models \phi .
$$

3. Let $\left\{\mathfrak{F}_{i}\right\}_{i \in I}$ be a family of Kripke frames and let $\phi \in$ Form. Then

$$
\biguplus_{i \in I} \mathfrak{F}_{i} \models \phi \text { iff } \mathfrak{F}_{i} \models \phi \text { for all } i \in I
$$

2.1.14. Definition. Let $\mathfrak{F}=(W, R)$ be a Kripke frame. \mathfrak{F} is called rooted if there exists $w \in W$ such that for every $v \in W$ we have $w R v$.

Then Theorem 2.1.13 entails the following useful corollary; see, e.g., [24, Theorem 8.58].
2.1.15. Corollary. If an intermediate logic L is Kripke complete, then L is Kripke complete with respect to the class of its rooted frames.

This means that we can restrict ourselves to rooted Kripke frames.

2.1.2 Basic properties of intermediate logics

Next we look at the important properties of intermediate logics that we will be concerned with in this thesis.

The fmp. First we recall the definition of the finite model property.
2.1.16. Definition. An intermediate logic L is said to have the finite model property, the fmp for short, if there exists a class K of finite Kripke frames such that $L=\log (\mathrm{K}) .{ }^{2}$

Recall that a Kripke frame $\mathfrak{F}=(W, R)$ is a chain if for every $w, v \in W$ we have $w R v$ or $v R w$. Also recall that a finite tree is a finite rooted Kripke frame \mathfrak{F} such that the predecessors of every point of \mathfrak{F} form a chain [24, p.32]. A standard argument using the techniques of filtration and unraveling shows that the following theorem holds. For the proof see, e.g., [24, Corollary 2.33].
2.1.17. Theorem. IPC has the finite model property with respect to rooted partial orders. Moreover, IPC is complete with respect to the class of finite trees. ${ }^{3}$

[^2]Clearly every logic that has the finite model property is complete. The converse, in general, does not hold. In the next chapter we will see examples of complete logics that lack the fmp.

Tabularity. Let L be an intermediate logic. If L has the fmp, then it is complete with respect to a class K of finite frames. Clearly K can be very big. Now we define a very restricted notion of the fmp.
2.1.18. Definition. A logic L is called tabular if there exists a finite (not necessarily rooted) frame \mathfrak{F} such that $L=\log (\mathfrak{F})$.
Obviously, if L is tabular, then L has the fmp. However, there are logics with the fmp that are not tabular. In particular, IPC enjoys the fmp but is not tabular [24, Theorem 2.56]. The best known example of a tabular logic is the classical propositional calculus CPC, which is the logic of a frame consisting of a single reflexive point.

Local tabularity. We say that two formulas ϕ and ψ are L-equivalent if $L \vdash \phi \leftrightarrow \psi$.
2.1.19. Definition. A logic L is called locally tabular if for every $n \in \omega$ there are only finitely many pairwise non- L-equivalent formulas in n variables.

Every tabular logic is locally tabular. Therefore, CPC is locally tabular. However, there are locally tabular logics that are not tabular.
2.1.20. Definition. Let $\mathbf{L C}=\mathbf{I P C}+(p \rightarrow q) \vee(q \rightarrow p)$. LC is called the linear calculus or Dummett's logic.

For the proof of the next theorem consult, e.g., [24, Theorems 5.33 and 12.15 and §12.4, p.428].
2.1.21. Theorem. The following holds.

1. $\mathbf{L C}$ is complete with respect to the class of all finite chains.
2. LC is not tabular.
3. LC is locally tabular.

The fact that LC is locally tabular and has the fmp is not a pure coincidence. The following theorem explains this connection; see, e.g., [23, Theorem 10.15].
2.1.22. Theorem. If a logic L is locally tabular, then L enjoys the finite model property.

The intuitionistic propositional calculus IPC provides a counter-example to the converse of Theorem 2.1.22. As we mentioned above, IPC has the finite model property, but as we will see in Chapter 3, it is not locally tabular.

Finite axiomatization. Now we recall the notion of finite axiomatization.
2.1.23. Definition. An intermediate logic L is called finitely axiomatizable or finitely axiomatized if there exist finitely many formulas $\phi_{1}, \ldots, \phi_{n}$ such that $L=$ $\mathrm{IPC}+\phi_{1}+\ldots+\phi_{n} .{ }^{4}$

Even though most of the well-known logics are finitely axiomatizable, there are also non-finitely axiomatizable logics. In Chapter 4 we will construct non-finitely axiomatizable intermediate logics.
Decidability. One of the most crucial properties of logics is decidability.
2.1.24. Definition. A logic L is called decidable if for every given formula ϕ there exists an algorithm deciding whether $\phi \in L$.

It is well known that every finitely axiomatizable logic that has the fmp is decidable. This result is due to Harrop; see, e.g., [24, Theorem 16.13]. Therefore, CPC, IPC and LC are decidable. There are also undecidable intermediate logics [24, §16.5].

Finally, notice that we can define lattice-theoretic operations on the class of intermediate logics. Suppose $\left\{L_{i}\right\}_{i \in I}$ is a set of intermediate logics. Let $\bigwedge_{i \in I} L_{i}:=$ $\bigcap_{i \in I} L_{i}$ and $\bigvee_{i \in I} L_{i}$ be the smallest intermediate logic containing $\bigcup_{i \in I} L_{i}$. For every intermediate logic L, let $\Lambda(L)$ be the set of all intermediate logics containing L. Then $(\Lambda(L), \bigvee, \Lambda, L, \mathbf{C P C})$ is a complete lattice. In fact, as we will see below, it is a Heyting algebra. ${ }^{5}$, The greatest element of $(\Lambda(L), \bigvee, \Lambda, L, \mathbf{C P C})$ is CPC and the least element is L. If we do not restrict ourselves to consistent logics then the greatest element of $\Lambda(L)$ is the inconsistent logic Form. For every intermediate logic L, we call $(\Lambda(L), \bigvee, \bigwedge, L, \mathbf{C P C})$ the lattice of extensions of L. From now on we will use the shorthand $\Lambda(L)$ for $(\Lambda(L), \bigvee, \Lambda, \mathbf{C P C}, L)$.

2.2 Heyting algebras

In this section we define Heyting algebras, formulate algebraic completeness of intermediate logics, and spell out the connection between Heyting algebras and Kripke frames.

2.2.1 Lattices, distributive lattices and Heyting algebras

Kripke semantics, discussed in the previous section, provides a very intuitive semantics for intermediate logics. However, there are intermediate logics that are

[^3]not Kripke complete $[24, \S 6]$. So we cannot restrict the study of intermediate logics to the study of their Kripke semantics. In this section we recall an algebraic semantics of IPC. As we will see below, an attractive feature of algebraic semantics is that every intermediate logic is complete with respect to its algebraic models.

We begin by introducing some basic notions. A partially ordered set (A, \leq) is called a lattice if every two element subset of A has a least upper bound and a greatest lower bound. Let (A, \leq) be a lattice. For $a, b \in A$ let $a \vee b:=\sup \{a, b\}$ and $a \wedge b:=\inf \{a, b\}$. We assume that every lattice is bounded, i.e., it has a least and greatest element denoted by 0 and 1 , respectively. The next proposition shows that lattices can also be defined axiomatically, see, e.g., [2, Theorem 1, p.44] and $[23, \mathrm{p} .8]$.
2.2.1. Proposition. A structure $(A, \vee, \wedge, 0,1)$, where $A \neq \emptyset, \vee$ and \wedge are binary operations and 0 and 1 are elements of A, is a bounded lattice iff for every $a, b, c \in A$ the following holds:

$$
\begin{array}{ll}
\text { 1. } & a \vee a=a, \\
\text { 2. } & a \vee b=b \vee a, \\
\text { 3. } & a \vee(b \vee c)=(a \vee b) \vee c, \\
\text { 4. } & a \vee 0=a, \\
\text { 5. } & a \vee(b \wedge a)=a, \\
& a \wedge(b \wedge c)=(a \wedge b) \wedge c, \\
& a \wedge(b \vee a, \\
& a \wedge(b)=a .
\end{array}
$$

Proof. It is a matter of routine checking that every lattice satisfies the axioms $1-5$. Now suppose $(A, \vee, \wedge, 0,1)$ satisfies the axioms $1-5$. We say that $a \leq b$ if $a \vee b=b$ or equivalently if $a \wedge b=a$. Checking that (A, \leq) is a lattice with least and greatest elements 0 and 1 , respectively, is routine.

From now on we let $(A, \vee, \wedge, 0,1)$ denote a bounded lattice. We say that a lattice $(A, \vee, \wedge, 0,1)$ is complete if for every subset $X \subseteq A$ there exist $\bigvee X=\sup (X)$ and $\wedge X=\inf (X)$.
2.2.2. Definition. A bounded lattice $(A, \vee, \wedge, 0,1)$ is called distributive if it satisfies the distributivity laws ${ }^{6}$:

- $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$,
- $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.

Note that the lattices shown in Figure 2.1 are not distributive. The next theorem, due to Birkhoff, shows that, in fact, these are typical examples of non-distributive lattices. For the proof the reader is referred to [2, Theorem 9, p.51] and [23, Theorem 3.6].

[^4]

Figure 2.1: Non-distributive lattices M_{5} and N_{5}
2.2.3. Theorem. A lattice $(A, \vee, \wedge, 0,1)$ is distributive iff M_{5} and N_{5} are not sublattices of $(A, \vee, \wedge, 0,1)$.

We are ready to define the main notion of this section.
2.2.4. Definition. A distributive lattice $(A, \vee, \wedge, 0,1)$ is said to be a Heyting algebra if for every $a, b \in A$ there exists an element $a \rightarrow b$ such that for every $c \in A$ we have:

$$
c \leq a \rightarrow b \text { iff } a \wedge c \leq b
$$

We call \rightarrow a Heyting implication or simply an implication. For every element a of a Heyting algebra, let $\neg a:=a \rightarrow 0$.
2.2.5. Remark. It is easy to see that if \mathfrak{A} is a Heyting algebra, then \rightarrow is a binary operation on \mathfrak{A}, as follows from Proposition 2.2.7(1). Therefore, we should add \rightarrow to the signature of Heyting algebras. Note also that $0 \rightarrow 0=1$. Hence, we can exclude 1 from the signature of Heyting algebras. From now on we will let $(A, \vee, \wedge, \rightarrow, 0)$ denote a Heyting algebra.

Similarly to the case of lattices, Heyting algebras can be defined in a purely axiomatic way; see, e.g., [68, Lemma 1.10].
2.2.6. Theorem. A distributive lattice ${ }^{7} \mathfrak{A}=(A, \vee, \wedge, 0,1)$ is a Heyting algebra iff there is a binary operation \rightarrow on A such that for every $a, b, c \in A$:

1. $a \rightarrow a=1$,
2. $a \wedge(a \rightarrow b)=a \wedge b$,
3. $b \wedge(a \rightarrow b)=b$,

[^5]$$
\text { 4. } a \rightarrow(b \wedge c)=(a \rightarrow b) \wedge(a \rightarrow c) \text {. }
$$

Proof. Suppose \mathfrak{A} satisfies the conditions 1-4. Assume $c \leq a \rightarrow b$. Then by (2), $c \wedge a \leq(a \rightarrow b) \wedge a=a \wedge b \leq b$. For the other direction we first show that for every $a \in A$ the map $(a \rightarrow \cdot)$ is monotone, i.e., if $b_{1} \leq b_{2}$ then $a \rightarrow b_{1} \leq a \rightarrow b_{2}$. Indeed, since $b_{1} \leq b_{2}$ we have $b_{1} \wedge b_{2}=b_{1}$. Hence, by (4), $\left(a \rightarrow b_{1}\right) \wedge\left(a \rightarrow b_{2}\right)=a \rightarrow\left(b_{1} \wedge b_{2}\right)=a \rightarrow b_{1}$. Thus, $a \rightarrow b_{1} \leq a \rightarrow b_{2}$. Now suppose $c \wedge a \leq b$. By (3), $c=c \wedge(a \rightarrow c) \leq 1 \wedge(a \rightarrow c)$. By (1) and (4), $1 \wedge(a \rightarrow c)=(a \rightarrow a) \wedge(a \rightarrow c)=a \rightarrow(a \wedge c)$. Finally, since $(a \rightarrow \cdot)$ is monotone, we obtain that $a \rightarrow(a \wedge c) \leq a \rightarrow b$ and therefore $c \leq a \rightarrow b$.

It is easy to check that \rightarrow from Definition 2.2.4 satisfies the conditions $1-4$. We skip the proof.

For the next proposition consult [68, Theorem 4.2] and [35].
2.2.7. Proposition.

1. In every Heyting algebra $\mathfrak{A}=(A, \vee, \wedge, \rightarrow, 0)$ we have that for every $a, b \in A$:

$$
a \rightarrow b=\bigvee\{c \in A: a \wedge c \leq b\}
$$

2. A complete distributive lattice $(A, \wedge, \vee, 0,1)$ is a Heyting algebra iff it satisfies the infinite distributive law

$$
a \wedge \bigvee_{i \in I} b_{i}=\bigvee_{i \in I}\left(a \wedge b_{i}\right)
$$

for every $a, b_{i} \in A, i \in I$.
Proof. (1) Clearly $a \rightarrow b \leq a \rightarrow b$. Hence, $a \wedge(a \rightarrow b) \leq b$. So, $a \rightarrow b \leq \bigvee\{c \in$ $A: a \wedge c \leq b\}$. On the other hand, if c is such that $c \wedge a \leq b$, then $c \leq a \rightarrow b$. Therefore, $\bigvee\{c \in A: a \wedge c \leq b\} \leq a \rightarrow b$.
(2) Suppose \mathfrak{A} is a Heyting algebra. For every $i \in I$ we have that $a \wedge b_{i} \leq$ $a \wedge \bigvee_{i \in I} b_{i}$. Hence, $\bigvee_{i \in I}\left(a \wedge b_{i}\right) \leq a \wedge \bigvee_{i \in I} b_{i}$. Now let $c \in A$ be such that $\bigvee_{i \in I}\left(a \wedge b_{i}\right) \leq c$. Then $a \wedge b_{i} \leq c$ for every $i \in I$. Therefore, $b_{i} \leq a \rightarrow c$ for every $i \in I$. This implies that $\bigvee_{i \in I} b_{i} \leq a \rightarrow c$, which gives us that $a \wedge \bigvee_{i \in I} b_{i} \leq c$. Thus, taking $\bigvee_{i \in I}\left(a \wedge b_{i}\right)$ as c we obtain $a \wedge \bigvee_{i \in I} b_{i} \leq \bigvee_{i \in I}\left(a \wedge b_{i}\right)$.

Conversely, suppose that a complete distributive lattice satisfies the infinite distributive law. Then we put $a \rightarrow b=\bigvee\{c \in A: a \wedge c \leq b\}$. It is now easy to see that \rightarrow is a Heyting implication.

Next we will give a few examples of Heyting algebras.

2.2.8. Example.

1. Every finite distributive lattice is a Heyting algebra. This immediately follows from Proposition 2.2.7(2), since every finite distributive lattice is complete and satisfies the infinite distributive law.
2. Every chain \mathfrak{C} with a least and greatest element is a Heyting algebra and for every $a, b \in \mathfrak{C}$ we have

$$
a \rightarrow b= \begin{cases}1 & \text { if } a \leq b, \\ b & \text { if } a>b .\end{cases}
$$

3. Every Boolean algebra \mathfrak{B} is a Heyting algebra, where for every $a, b \in \mathfrak{B}$ we have

$$
a \rightarrow b=\neg a \vee b
$$

The next proposition characterizes those Heyting algebras that are Boolean algebras. For the proof see, e.g., [68, Lemma 1.11(ii)].
2.2.9. Proposition. Let $\mathfrak{A}=(A, \vee, \wedge, \rightarrow, 0)$ be a Heyting algebra. Then the following three conditions are equivalent:

1. \mathfrak{A} is a Boolean algebra,
2. $a \vee \neg a=1$ for every $a \in A$,
3. $\neg \neg a=a$ for every $a \in A$.

2.2.2 Algebraic completeness of IPC and its extensions

In this section we discuss the connection between intuitionistic logic and Heyting algebras. We first recall the definition of basic algebraic operations.
2.2.10. Definition. Let $\mathfrak{A}=(A, \vee, \wedge, \rightarrow, 0)$ and $\mathfrak{A}^{\prime}=\left(A^{\prime}, \vee^{\prime}, \wedge^{\prime}, \rightarrow^{\prime}, 0^{\prime}\right)$ be Heyting algebras. A map $h: A \rightarrow A^{\prime}$ is called a Heyting homomorphism or simply a homomorphism if

- $h(a \vee b)=h(a) \vee^{\prime} h(b)$,
- $h(a \wedge b)=h(a) \wedge^{\prime} h(b)$,
- $h(a \rightarrow b)=h(a) \rightarrow^{\prime} h(b)$,
- $h(0)=0^{\prime}$.

A Heyting algebra \mathfrak{A}^{\prime} is called a homomorphic image of \mathfrak{A} if there exists a Heyting homomorphism from \mathfrak{A} onto \mathfrak{A}^{\prime}.
2.2.11. Definition. Let \mathfrak{A} and \mathfrak{A}^{\prime} be two Heyting algebras. We say that an algebra $\mathfrak{A}^{\prime}=\left(A^{\prime}, \vee^{\prime}, \wedge^{\prime}, \rightarrow^{\prime}, 0^{\prime}\right)$ is a subalgebra of $\mathfrak{A}=(A, \vee, \wedge, \rightarrow, 0)$ if $A^{\prime} \subseteq A$, the operations $\vee^{\prime}, \wedge^{\prime}, \rightarrow^{\prime}$ are the restrictions of $\vee, \wedge, \rightarrow$ to A^{\prime} and $0^{\prime}=0$.

It is easy to see that if \mathfrak{A}^{\prime} is a subalgebra of \mathfrak{A}, then for every $a, b \in A^{\prime}$ we have $a \vee b, a \wedge b, a \rightarrow b, 0 \in A^{\prime}$. Next we define products of Heyting algebras.

2.2.12. Definition.

1. Let $\mathfrak{A}_{1}=\left(A_{1}, \vee_{1}, \wedge_{1}, \rightarrow_{1}, 0_{1}\right)$ and $\mathfrak{A}_{2}=\left(A_{2}, \vee_{2}, \wedge_{2}, \rightarrow_{2}, 0_{2}\right)$ be Heyting algebras. The product of \mathfrak{A}_{1} and \mathfrak{A}_{2} is the algebra $\mathfrak{A}_{1} \times \mathfrak{A}_{2}:=\left(A_{1} \times A_{2}, \vee, \wedge\right.$, $\rightarrow, 0$), where

- $\left(a_{1}, a_{2}\right) \vee\left(b_{1}, b_{2}\right):=\left(a_{1} \vee_{1} b_{1}, a_{2} \vee_{2} b_{2}\right)$,
- $\left(a_{1}, a_{2}\right) \wedge\left(b_{1}, b_{2}\right):=\left(a_{1} \wedge_{1} b_{1}, a_{2} \wedge_{2} b_{2}\right)$,
- $\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right):=\left(a_{1} \rightarrow_{1} b_{1}, a_{2} \rightarrow_{2} b_{2}\right)$,
- $0:=\left(0_{1}, 0_{2}\right)$.

2. More generally, let $\left\{\mathfrak{A}_{i}\right\}_{i \in I}$ be a family of Heyting algebras, where $\mathfrak{A}_{i}=$ $\left(A_{i}, \vee_{i}, \wedge_{i}, \rightarrow_{i}, 0_{i}\right)$. The product of $\left\{\mathfrak{A}_{i}\right\}_{i \in I}$ is the Heyting algebra $\prod_{i \in I} \mathfrak{A}_{i}:=$ $\left(\prod_{i \in I} A_{i}, \vee, \wedge, \rightarrow, 0\right)$, where for every $f_{1}, f_{2} \in \prod_{i \in I} A_{i}$, i.e., maps $f_{1}, f_{2}: I \rightarrow$ $\bigcup_{i \in I} A_{i}$ such that $f_{1}(i), f_{2}(i) \in A_{i}$, we have:

- $\left(f_{1} \vee f_{2}\right)(i):=f_{1}(i) \vee_{i} f_{2}(i)$,
- $\left(f_{1} \wedge f_{2}\right)(i):=f_{1}(i) \wedge_{i} f_{2}(i)$,
- $\left(f_{1} \rightarrow f_{2}\right)(i):=f_{1}(i) \rightarrow_{i} f_{2}(i)$,
- $0(i):=0_{i}$.

Let K be a class of algebras of the same signature. We say that K is a variety if K is closed under homomorphic images, subalgebras and products. It can be shown that K is a variety iff $\mathrm{K}=\mathbf{H S P}(\mathrm{K})$, where \mathbf{H}, \mathbf{S} and \mathbf{P} are the operations of taking homomorphic images, subalgebras and products, respectively. The next theorem, due to Birkhoff, gives another characterization of varieties. For the proof we refer to any textbook in universal algebra, e.g., Burris and Sankappanavar [23, Theorem 11.9] or Grätzer [56, Theorem 3, p.171].
2.2.13. Theorem. A class of algebras forms a variety iff it is equationally definable.

Let $\mathcal{H} \mathcal{A}$ denote the class of all Heyting algebras.
2.2.14. Corollary. $\mathcal{H} \mathcal{A}$ is a variety.

Proof. The result follows immediately from Theorems 2.2.1, 2.2.6 and 2.2.13.
We are now ready to spell out the connection between Heyting algebras and intuitionistic logic and state an algebraic completeness result for IPC.
2.2.15. Definition. Let $\mathfrak{A}=(A, \vee, \wedge, \rightarrow, 0)$ be a Heyting algebra. A function $v:$ Prop $\rightarrow A$ is called a valuation into the Heyting algebra \mathfrak{A}. We extend the valuation from Prop to the whole of Form via the recursive definition:

- $v(\phi \vee \psi)=v(\phi) \vee v(\psi)$,
- $v(\phi \wedge \psi)=v(\phi) \wedge v(\psi)$,
- $v(\phi \rightarrow \psi)=v(\phi) \rightarrow v(\psi)$,
- $v(\perp)=0$.

A formula ϕ is true in \mathfrak{A} under v if $v(\phi)=1 ; \phi$ is valid into \mathfrak{A} if ϕ is true for every valuation in \mathfrak{A}. Using the well-known Lindenbaum-Tarski construction (which is very similar to the canonical model construction) we obtain algebraic completeness of IPC, see, e.g., [24, Theorem 7.21].
2.2.16. Theorem. IPC $\vdash \phi$ iff ϕ is valid in every Heyting algebra.

We also recall algebraic completeness of classical propositional calculus; see e.g., [24, Theorem 7.22].

2.2.17. Theorem. CPC $\vdash \phi$ iff ϕ is valid in every Boolean algebra.

We can extend the algebraic semantics of IPC to all intermediate logics. With every intermediate logic $L \supseteq$ IPC we associate the class \mathbf{V}_{L} of Heyting algebras in which all the theorems of L are valid. It follows from Theorem 2.2.13 that \mathbf{V}_{L} is a variety. For example $\mathbf{V}_{\mathbf{I P C}}=\mathcal{H} \mathcal{A}$ and $\mathbf{V}_{\mathbf{C P C}}=\mathcal{B} \mathcal{A}$, where $\mathcal{B} \mathcal{A}$ denotes the variety of all Boolean algebras. For every variety $\mathbf{V} \subseteq \mathcal{H} \mathcal{A}$ let $L_{\mathbf{V}}$ be the logic of all formulas valid in V. Note that $L_{\mathcal{H} \mathcal{A}}=\mathrm{IPC}$ and $L_{\mathcal{B A}}=\mathbf{C P C}$. The Lindenbaum-Tarski construction shows that every intermediate logic is complete with respect to its algebraic semantics, see, e.g., [24, Theorem 7.73(iv)].
2.2.18. Theorem. Every extension L of IPC is sound and complete with respect to \mathbf{V}_{L}.

The connection between varieties of Heyting algebras and intermediate logics which we described above is one-to-one. That is, $L_{\mathbf{V}_{L}}=L$ and $\mathbf{V}_{L_{\mathrm{V}}}=\mathbf{V}$. For every family $\left\{\mathbf{V}_{i}\right\}_{i \in I}$ of subvarieties of \mathbf{V} we have $\bigwedge_{i \in I} \mathbf{V}_{i}:=\bigcap_{i \in I} \mathbf{V}_{i}$ and $\bigvee_{i \in I} \mathbf{V}_{i}:=\mathbf{H S P}\left(\bigcup_{i \in I} \mathbf{V}_{i}\right)$, i.e., the smallest variety containing all \mathbf{V}_{i} 's. For every variety \mathbf{V} of algebras the set of its subvarieties forms a complete lattice which
we denote by $(\Lambda(\mathbf{V}), \bigvee, \Lambda, \mathcal{B A}, \mathbf{V})$. The variety $\mathcal{B A}$ of all Boolean algebras is the least element of this lattice and \mathbf{V} is the greatest element. Moreover, it can be shown that $(\Lambda(\mathbf{V}), \bigvee, \wedge, \mathcal{B A}, \mathbf{V})$ satisfies the infinite distributive law and hence by Proposition 2.2.7, $(\Lambda(\mathbf{V}), \bigvee, \wedge, \mathcal{B} \mathcal{A}, \mathbf{V})$ is a Heyting algebra. However, if we also consider the trivial variety Triv generated by the one element Heyting algebra, then Triv will be the least element of $\Lambda(\mathbf{V})$. From now on we will use the shorthand $\Lambda(\mathbf{V})$ for $(\Lambda(\mathbf{V}), \bigvee, \Lambda, \mathcal{B A}, \mathbf{V})$.

We have that for every L_{1}, L_{2}, $\supseteq \mathbf{I P C}, L_{1} \subseteq L_{2}$ iff $\mathbf{V}_{L_{1}} \supseteq \mathbf{V}_{L_{2}}$ and moreover this correspondence is a lattice anti-isomorphism; see, e.g., [24, Theorem 7.56(ii)].
2.2.19. ThEOREM. The lattice of extensions of IPC is anti-isomorphic to the lattice of subvarieties of $\mathcal{H} \mathcal{A}$.

2.2.3 Heyting algebras and Kripke frames

Next we spell out in detail a connection between Kripke frames and Heyting algebras. Let $\mathfrak{F}=(W, R)$ be a partially ordered set (i.e., an intuitionistic Kripke frame). For every $w \in W$ and $U \subseteq W$ let

$$
\begin{aligned}
& R(w)=\{v \in W: w R v\}, \\
& R^{-1}(w)=\{v \in W: v R w\}, \\
& R(U)=\bigcup_{w \in U} R(w), \\
& R^{-1}(U)=\bigcup_{w \in U} R^{-1}(w) .
\end{aligned}
$$

Recall that a subset $U \subseteq W$ is an upset if $w \in U$ and $w R v$ imply $v \in U$. Let $U p(\mathfrak{F})$ be the set of all upsets of \mathfrak{F}. Then $(U p(\mathfrak{F}), \cup, \cap, \rightarrow, \emptyset)$ forms a Heyting algebra, where

$$
U_{1} \rightarrow U_{2}:=\left\{w \in W: \forall v\left(w R v \wedge v \in U_{1} \rightarrow v \in U_{2}\right)\right\}=W \backslash R^{-1}\left(U_{1} \backslash U_{2}\right)
$$

For example the Heyting algebra shown in Figure 2.2(b) corresponds to the 2-fork frame shown in Figure 2.2(a). Now we show how to construct a Kripke frame from a Heyting algebra.
2.2.20. Definition. Let $\mathfrak{A}=(A, \vee, \wedge, \rightarrow, 0)$ be a Heyting algebra. A proper subset F of A is called a filter if

- $a, b \in F$ imply $a \wedge b \in F$
- $a \in F$ and $a \leq b$ imply $b \in F$

A filter F is called prime if

Figure 2.2: A Kripke frame and the corresponding Heyting algebra

- $a \vee b \in F$ implies $a \in F$ or $b \in F$

In a Boolean algebra every prime filter is maximal. However, this is not the case for Heyting algebras. For instance, the unit filter $\{1\}$ of the Heyting algebra shown in Figure 2.2(b) is a prime filter but is not maximal.

Now let

$$
W_{\mathfrak{A}}:=\{F: F \text { is a prime filter of } \mathfrak{A}\} .
$$

For $F, F^{\prime} \in W_{\mathfrak{A}}$ we put

$$
F R_{\mathfrak{A}} F^{\prime} \text { if } F \subseteq F^{\prime}
$$

It is clear that $R_{\mathfrak{A}}$ is a partial order and hence $\left(W_{\mathfrak{A}}, R_{\mathfrak{A}}\right)$ is an intuitionistic Kripke frame.

This correspondence is one-to-one for finite Heyting algebras and Kripke frames. For the proof see, e.g., [24, Theorem 7.30].
2.2.21. Theorem. For every finite Heyting algebra \mathfrak{A} there exists a Kripke frame \mathfrak{F} such that \mathfrak{A} is isomorphic to $U p(\mathfrak{F})$.

However, in the infinite case the situation is more complicated. Not every Heyting algebra arises from a Kripke frame and vice versa, not every Kripke frame can be obtained from a Heyting algebra. We will give a simple argument why not every Heyting algebra can be obtained from a Kripke frame. Let $\mathfrak{F}=(W, R)$ be a Kripke frame. Then the lattice $U p(\mathfrak{F})$ is complete. To see this, first observe that arbitrary unions and intersections of upsets are upsets again. Now it is routine to check that for every $\left\{U_{i}\right\}_{i \in I} \subseteq U p(\mathfrak{F})$, we have that $\bigwedge_{i \in I} U_{i}=\bigcap_{i \in I} U_{i}$ and $\bigvee_{i \in I} U_{i}=\bigcup_{i \in I} U_{i}$. Hence, a non-complete Heyting algebra (for instance any Heyting algebra based on a non-complete linear order with a least and greatest elements) cannot be obtained from a Kripke frame. For a purely algebraic characterization of the Heyting algebras that arise from Kripke frames see [29], [46] or [6]. As we will see in Theorem 2.3.24, the Kripke frames that arise from Heyting algebras have maximal elements. Therefore, every Kripke frame without maximal elements (for example, the set of natural numbers with the standard ordering) is an example of a Kripke frame that cannot be obtained from a Heyting algebra.

2.3 Duality for Heyting algebras

Next we generalize the notion of a Kripke frame to that of a descriptive frame (resp. Esakia space) and illustrate the duality between descriptive frames (resp. Esakia spaces) and Heyting algebras.

2.3.1 Descriptive frames

In this section we discuss the duality between Heyting algebras and descriptive frames. We first recall from [24, §8.1 and 8.4] the definitions of general frames and descriptive frames.
2.3.1. Definition. An intuitionistic general frame or simply a general frame is a triple $\mathfrak{F}=(W, R, \mathcal{P})$, where (W, R) is an intuitionistic Kripke frame and \mathcal{P} is a set of upsets, i.e., $\mathcal{P} \subseteq U p(\mathfrak{F})$ such that \emptyset and W belong to \mathcal{P}, and \mathcal{P} is closed under \cup, \cap and \rightarrow defined by

$$
U_{1} \rightarrow U_{2}:=\left\{w \in W: \forall v\left(w R v \wedge v \in U_{1} \rightarrow v \in U_{2}\right)\right\}=W \backslash R^{-1}\left(U_{1} \backslash U_{2}\right)
$$

Every Kripke frame can be seen as a general frame where \mathcal{P} is the set of all upsets of \mathfrak{F}.
2.3.2. Definition. Let $\mathfrak{F}=(W, R, \mathcal{P})$ be a general frame.

1. We call \mathfrak{F} refined if for every $w, v \in W: \neg(w R v)$ implies that there is $U \in \mathcal{P}$ such that $w \in U$ and $v \notin U$.
2. We call \mathfrak{F} compact if for every $\mathcal{X} \subseteq \mathcal{P}$ and $\mathcal{Y} \subseteq\{W \backslash U: U \in \mathcal{P}\}$, if $\mathcal{X} \cup \mathcal{Y}$ has the finite intersection property (that is, every intersection of finitely many elements of $\mathcal{X} \cup \mathcal{Y}$ is nonempty) then $\bigcap(\mathcal{X} \cup \mathcal{Y}) \neq \emptyset$.
3. We call \mathfrak{F} descriptive if it is refined and compact.

We call the elements of \mathcal{P} admissible sets.
Note that if $\mathfrak{F}=(W, R, \mathcal{P})$ is a descriptive frame, then $(\mathcal{P}, \cup, \cap, \rightarrow, \emptyset)$ is a Heyting subalgebra of $(U p(\mathfrak{F}), \cup \cap, \rightarrow, \emptyset)$. Moreover, as follows from the next theorem, every Heyting algebra can be obtained in such a way. For the proof see, e.g., [24, Theorem 8.18].
2.3.3. Theorem. For every Heyting algebra \mathfrak{A} there exists an intuitionistic descriptive frame $\mathfrak{F}=(W, R, \mathcal{P})$ such that \mathfrak{A} is isomorphic to $(\mathcal{P}, \cup, \cap, \rightarrow, \emptyset)$.

Proof. (Sketch) The construction of \mathfrak{F} is similar to the one defined in the previous section. We take the frame $\left(W_{\mathfrak{A}}, R_{\mathfrak{A}}\right)$ of all prime filters of \mathfrak{A} ordered by inclusion and put $\mathcal{P}_{\mathfrak{A}}=\{\widehat{a}: a \in A\}$, where $\widehat{a}=\left\{w \in W_{\mathfrak{A}}: a \in w\right\}$. Then $\left(W_{\mathfrak{A}}, R_{\mathfrak{A}}, \mathcal{P}_{\mathfrak{A}}\right)$ is a descriptive frame and \mathfrak{A} is isomorphic to ($\left.\mathcal{P}_{\mathfrak{A}}, \cup, \cap, \rightarrow, \emptyset\right)$.

For every Heyting algebra \mathfrak{A}, let \mathfrak{A}_{*} denote the descriptive frame of all prime filters of \mathfrak{A}. For every descriptive frame \mathfrak{F}, let \mathfrak{F}^{*} denote the Heyting algebra of all admissible sets of \mathfrak{F}. Then we have the following duality [24, §8.4].
2.3.4. Theorem. Let \mathfrak{A} be a Heyting algebra and \mathfrak{F} be a descriptive frame. Then

1. $\mathfrak{A} \simeq\left(\mathfrak{A}_{*}\right)^{*}$.
2. $\mathfrak{F} \simeq\left(\mathfrak{F}^{*}\right)_{*}$

For every Heyting algebra \mathfrak{A}, we call \mathfrak{A}_{*} the dual of \mathfrak{A} or the descriptive frame corresponding to \mathfrak{A}; and for every descriptive frame \mathfrak{F}, we call \mathfrak{F}^{*} the dual of \mathfrak{F} or the Heyting algebra corresponding to \mathfrak{F}.
2.3.5. Definition. Let $\mathfrak{F}=(W, R, \mathcal{P})$ be a descriptive frame. A descriptive valuation is a map $V: \operatorname{Prop} \rightarrow \mathcal{P}$. A pair (\mathfrak{F}, V) where V is a descriptive valuation is called a descriptive model.

Validity of formulas in a descriptive frame (model) is defined in exactly the same way as for Kripke frames (models).

Note that in the same way descriptive frames correspond to Heyting algebras, descriptive models correspond to Heyting algebras with valuations, where a Heyting algebra with a valuation is a pair (\boldsymbol{A}, v) such that $v: \operatorname{Prop} \rightarrow A$.

Next we recall the definitions of generated subframes, p-morphisms, and disjoint unions of descriptive frames.

2.3.6. Definition.

1. A descriptive frame $\mathfrak{F}^{\prime}=\left(W^{\prime}, R^{\prime}, \mathcal{P}^{\prime}\right)$ is called a generated subframe of a descriptive frame $\mathfrak{F}=(W, R, \mathcal{P})$ if $\left(W^{\prime}, R^{\prime}\right)$ is a generated subframe of (W, R) and $\mathcal{P}^{\prime}=\left\{U \cap W^{\prime}: U \in \mathcal{P}\right\}$.
2. A map $f: W \rightarrow W^{\prime}$ is called a p-morphism between $\mathfrak{F}=(W, R, \mathcal{P})$ and $\mathfrak{F}^{\prime}=\left(W^{\prime}, R^{\prime}, \mathcal{P}^{\prime}\right)$ if f is a p-morphism between (W, R) and $\left(W^{\prime}, R^{\prime}\right)$ and for every $U^{\prime} \in \mathcal{P}^{\prime}$ we have $f^{-1}\left(U^{\prime}\right) \in \mathcal{P}$ and $W \backslash f^{-1}\left(W \backslash U^{\prime}\right) \in \mathcal{P} .{ }^{8}$
3. Let $\left\{\mathfrak{F}_{i}\right\}_{i=1}^{n}$ be a finite set of descriptive frames. ${ }^{9}$ The disjoint union of $\left\{\mathfrak{F}_{i}\right\}_{i=1}^{n}$ is a descriptive frame $\biguplus_{i=1}^{n} \mathfrak{F}_{i}=\left(\biguplus W_{i}, R, \mathcal{P}\right)$, where $\left(\biguplus_{i=1}^{n} W_{i}, R\right)$ is a disjoint union of $\left\{\left(W_{i}, R_{i}\right)\right\}_{i=1}^{n}$ and $\mathcal{P}=\bigcup_{i=1}^{n} \mathcal{P}_{i}$.
[^6]Generated submodels, p-morphisms between descriptive models, and finite disjoint unions of descriptive models are defined as in the case of Kripke semantics. The analogues of Theorems 2.1.13 and 2.1.12 also hold for descriptive frames and models. We will not formulate them here. All one needs to do is simply to replace everywhere "Kripke frames" with "descriptive frames".

The next theorem spells out the connection between homomorphisms, subalgebras and products with generated subframes, p-morphisms and disjoint unions. For the proof the reader is referred to [24, §8.5]. Theorem 2.3.7 for finite Heyting algebras and finite Kripke frames was first established by de Jongh and Troelstra [70].
2.3.7. Theorem. Let \mathfrak{A} and \mathfrak{B} be Heyting algebras and \mathfrak{F} and \mathfrak{G} be descriptive frames. Let also $\left\{\mathfrak{A}_{i}\right\}_{i=1}^{n}$ and $\left\{\mathfrak{F}_{i}\right\}_{i=1}^{n}$ be the sets of Heyting algebras and descriptive frames, respectively. Then

1. (a) \mathfrak{A} is a homomorphic image of \mathfrak{B} iff \mathfrak{A}_{*} is isomorphic to a generated subframe of \mathfrak{B}_{*}.
(b) \mathfrak{A} is a subalgebra of \mathfrak{B} iff \mathfrak{A}_{*} is isomorphic to a p-morphic image of \mathfrak{B}_{*}.
(c) $\left(\prod_{i=1}^{n} \mathfrak{A}_{i}\right)_{*}$ is isomorphic to the disjoint union $\biguplus_{i=1}^{n}\left(\mathfrak{A}_{i}\right)_{*}$, for any $n \in \omega$.
2. (a) \mathfrak{F} is isomorphic to a generated subframe of \mathfrak{G} iff \mathfrak{F}^{*} is a homomorphic image of \mathfrak{G}^{*}.
(b) \mathfrak{F} is a p-morphic image of \mathfrak{G} iff \mathfrak{F}^{*} is isomorphic to a subalgebra of \mathfrak{G}^{*}.
(c) $\left(\biguplus_{i=1}^{n} \mathfrak{F}_{i}\right)^{*}$ is isomorphic to $\prod_{i=1}^{n} \mathfrak{F}_{i}^{*}$, for any $n \in \omega$.

Note that every surjective p-morphism f from $\mathfrak{F}=(W, R, \mathcal{P})$ onto $\mathfrak{F}^{\prime}=$ $\left(W^{\prime}, R^{\prime}, \mathcal{P}^{\prime}\right)$ gives rise to an equivalence relation E_{f} on \mathfrak{F} defined by

$$
w E_{f} v \text { iff } f(w)=f(v)
$$

Then for every $w \in W$ we have that $E_{f} R(w) \subseteq R E_{f}(w)$ and non- E_{f}-equivalent points can be separated by an element of \mathcal{P}. On the other hand, with any equivalence relation E on \mathfrak{F} we can associate a quotient frame $\mathfrak{F} / E=\left(W / E, R^{\prime}, \mathcal{P}_{E}\right)$ such that

$$
\begin{aligned}
& W_{E}:=\{E(w): w \in W\}, \text { where } E(w)=\{v \in W: w E v\}, \\
& E(w) R^{\prime} E(v) \text { iff } w^{\prime} R v^{\prime} \text { for some } w^{\prime} \in E(w) \text { and } v^{\prime} \in E(v),
\end{aligned}
$$

and

$$
\mathcal{P}_{E}:=\{U \in \mathcal{P}: E(U)=U\} .
$$

We define a map $f_{E}: W \rightarrow W / E$ by

$$
f_{E}(w)=E(w) .
$$

Then if $E R(w) \subseteq R E(w)$ and non- E-equivalent points can be separated by an element of \mathcal{P}, then f_{E} is a p-morphism. We now look at the connection between p-morphisms and these equivalence relations in more detail.
2.3.8. Definition. Let $\mathfrak{F}=(W, R, \mathcal{P})$ be a descriptive frame. An equivalence relation E on W is called a bisimulation equivalence ${ }^{10}$ on \mathfrak{F} if the following two conditions are satisfied:

1. For every $w, v, u \in W, w E v$ and $v R u$ imply that there is $z \in W$ such that $w R z$ and $z E u$. In other words, $R E(w) \subseteq E R(w)$ for every $w \in W$.
2. For every $w, v \in W$ If $\neg(w E v)$ then w and v are separated by an E-saturated admissible upset. That is, there exists $U \in \mathcal{P}$ such that $E(U)=U$ and either $w \in U$ and $v \notin U$ or $w \notin U$ and $v \in U$.

For a full proof of the next theorem we refer to [35] and [6].
2.3.9. Theorem. Let $\mathfrak{F}=(W, R, \mathcal{P})$ be a descriptive frame. Then there is a one-to-one correspondence between bisimulation equivalences on \mathfrak{F} and p-morphic images of \mathfrak{F}.

Proof. Suppose $f: W \rightarrow W^{\prime}$ is a p-morphism from \mathfrak{F} onto \mathfrak{F}^{\prime}, where $\mathfrak{F}^{\prime}=$ $\left(W^{\prime}, R^{\prime}, \mathcal{P}^{\prime}\right)$. Define E_{f} on W by

$$
w E_{f} v \operatorname{iff} f(w)=f(v)
$$

Let $w E_{f} v$ and $v R u$. Then $f(w)=f(v)$ and therefore $f(w) R f(u)$. Since f is a p-morphism there exists $z \in W$ such that $w R z$ and $f(z)=f(u)$, which means that $z E_{f} u$. Now suppose that $\neg\left(w E_{f} v\right)$. Then $f(w) \neq f(v)$. This means that $\neg(f(w) R f(v))$ or $\neg(f(v) R f(w))$. Without loss of generality we may assume that $\neg(f(w) R f(v))$. Since \mathfrak{F}^{\prime} is a descriptive frame, there exists $U \in \mathcal{P}^{\prime}$ such that $f(w) \in U$ and $f(v) \notin U$. As f is a p-morphism, we have $f^{-1}(U) \in \mathcal{P}$ and clearly $w \in f^{-1}(U)$ and $v \notin f^{-1}(U)$.

For the converse we need to check that if E is a bisimulation equivalence, then $f_{E}: W \rightarrow W / E$ defined by $f_{E}(w)=E(w)$ is a p-morphism. We will sketch the proof. That f_{E} is monotone follows from the definition of R^{\prime}. That f_{E} satisfies the "back" condition is implied by Definition 2.3.8(1). Therefore, f_{E} is a p-morphism between the Kripke frames. Finally, f_{E} is a p-morphism between descriptive frames since E satisfies Condition (2) of Definition 2.3.8.

The next theorem was first established by Esakia [38] (see also [6]).

[^7]2.3.10. Corollary. Let \mathfrak{A} be a Heyting algebra. There is a one-to-one correspondence between the subalgebras of \mathfrak{A} and the bisimulation equivalences of $\mathfrak{A}_{*} .{ }^{11}$

Proof. The result follows immediately from Theorems 2.3.7 and 2.3.9. Nevertheless, since we will use this theorem in subsequent sections, we briefly sketch the main idea of a direct proof.

With any subalgebra \mathfrak{A}^{\prime} of \mathfrak{A} we associate an equivalence relation $E_{\mathfrak{A}^{\prime}}$ on $\mathfrak{A}_{*}=(W, R, \mathcal{P})$ defined by

$$
w E_{\mathfrak{A}^{\prime}} v \text { iff } w \cap A^{\prime}=v \cap A^{\prime} .
$$

It is routine to check that $E_{\mathfrak{A}^{\prime}}$ is a bisimulation equivalence.
Conversely, with every bisimulation equivalence E of \mathfrak{A}_{*} we associate the algebra \mathcal{P}_{E} of all E-saturated elements of \mathcal{P}, i.e., those $U \in \mathcal{P}$ that satisfy $E(U)=U$. It is again easy to show that \mathcal{P}_{E} is a Heyting subalgebra of \mathcal{P} and that this correspondence is one-to-one.

2.3.2 Subdirectly irreducible Heyting algebras

As in the case of Boolean algebras, for Heyting algebras there exists a one-to-one correspondence between congruences (that is, equivalence relations preserving the operations $\vee, \wedge, \rightarrow$ and 0) and filters. ${ }^{12}$ For the proof of the next theorem see, e.g., [2, Lemma 4, p. 178] and [24, Theorem 8.57].
2.3.11. Theorem. Let \mathfrak{A} be a Heyting algebra. There exists a one-to-one correspondence between:

1. congruences of \mathfrak{A},
2. filters of \mathfrak{A},
3. generated subframes of \mathfrak{A}_{*}.
2.3.12. Definition. An algebra \mathfrak{A} is said to be subdirectly irreducible, s.i. for short, if among its non-trivial congruence relations there exists the least one.

Subdirectly irreducible algebras play a crucial role in investigating varieties because of the next theorem due to Birkhoff. For the proof see, e.g., [23, Theorem 8.6 and Corollary 9.7] and [56, Theorem 3, p.124]. For every class of algebras K, let $\mathrm{SI}(\mathrm{K})$ denote the class of all s.i. members of K .

[^8]2.3.13. Theorem. Let \mathbf{V} be a variety of algebras. Then $\mathbf{V}=\operatorname{HSP}(\operatorname{SI}(\mathbf{V}))$.

Therefore, every variety is generated by its subdirectly irreducible algebras. The following characterization of s.i. Heyting algebras was first established by Jankov [65]. For the proof see, e.g., [2, Theorem 5, p.179].
2.3.14. Theorem. Let \mathfrak{A} be a Heyting algebra. Then the following conditions are equivalent.

1. \mathfrak{A} is subdirectly irreducible,
2. \mathfrak{A} contains a least prime filter (least with respect to the inclusion relation),
3. \mathfrak{A} has a second greatest element.

To obtain the dual characterization of subdirectly irreducible Heyting algebras we need to extend the definition of rooted Kripke frames to descriptive frames.
2.3.15. Definition. A descriptive frame $\mathfrak{F}=(W, R, \mathcal{P})$ is called rooted if (W, R) is a rooted Kripke frame and $W \backslash\{r\} \in \mathcal{P}$, where r is the root of \mathfrak{F}.

The following theorem is due to Esakia [35] (see also [6]).
2.3.16. Theorem. Let \mathfrak{A} be a Heyting algebra. \mathfrak{A} is subdirectly irreducible iff \mathfrak{A}_{*} is a rooted descriptive frame.

We will use this characterization of s.i. Heyting algebras throughout this thesis.

2.3.3 Order-topological duality

Here we will sketch the so-called Priestley-Esakia duality between Heyting algebras and descriptive frames in terms of order and topology. First we recall some basic definitions from general topology.
2.3.17. Definition. A pair $\mathcal{X}=(X, \mathcal{O})$ is called a topological space if $X \neq \emptyset$ and \mathcal{O} is a set of subsets of X such that

1. $X, \emptyset \in \mathcal{O}$,
2. If $U, V \in \mathcal{O}$, then $U \cap V \in \mathcal{O}$,
3. If $U_{i} \in \mathcal{O}$ for every $i \in I$, then $\bigcup_{i \in I} U_{i} \in \mathcal{O}$.

Elements of \mathcal{O} are called open sets and their complements are called closed sets. Let $\mathcal{X}=(X, \mathcal{O})$ be a topological space.

- \mathcal{X} is called Hausdorff if for every $x, y \in X, x \neq y$ implies there are $U_{1}, U_{2} \in$ \mathcal{O} such that $x \in U_{1}, y \in U_{2}$ and $U_{1} \cap U_{2}=\emptyset$.
- \mathcal{X} is called compact if for every family \mathcal{F} of closed sets with the finite intersection property (see Definition 2.3.2(2)) we have $\bigcap \mathcal{F} \neq \emptyset$.
- \mathcal{X} is called 0 -dimensional if every $U \in \mathcal{O}$ is the union of clopens, i.e., sets that are simultaneously closed and open.

2.3.18. Definition.

- A topological space $\mathcal{X}=(X, \mathcal{O})$ is called a Stone space if it is 0 -dimensional, compact and Hausdorff.
- For every Stone space $\mathcal{X}=(X, \mathcal{O})$ let $\mathcal{C P}(X)$ denote the Boolean algebra of all clopens of \mathcal{X}.

Then the celebrated Stone representation theorem states that:
2.3.19. Theorem. For every Boolean algebra \mathfrak{B} there exists a Stone space $\mathcal{X}=$ (X, \mathcal{O}) such that \mathfrak{B} is isomorphic to $\mathcal{C} \mathcal{P}(X)$.
2.3.20. Definition. Let $\mathcal{X}=(X, \mathcal{O}, R)$ be such that $\mathcal{X}=(X, \mathcal{O})$ is a Stone space and R is a partial order on X.

1. R satisfies the Priestley separation axiom if for every $x, y \in X$:
$\neg(x R y)$ implies there is a clopen upset U such that $x \in U$ and $y \notin U$.
2. R is called point-closed if $R(x)$ is closed for every $x \in X$.
3. R is called clopen if $R^{-1}(U)$ is clopen for every clopen set U.
4. $\mathcal{X}=(X, \mathcal{O}, R)$ is said to be a Priestley space if X is a Stone space and R satisfies the Priestley separation axiom.
5. \mathcal{X} is called an Esakia space if (X, \mathcal{O}, R) is a Priestley space and R is a clopen relation.

Esakia spaces can be characterized by avoiding the Priestley separation axiom. For item (1) of the next proposition consult Esakia [35] and for (2) see Priestley [103].

2.3.21. Proposition.

1. $\mathcal{X}=(X, \mathcal{O}, R)$ is an Esakia space iff (X, \mathcal{O}) is a Stone space and R is a point-closed and clopen partial order.
2. For every Priestley space $\mathcal{X}=(X, \mathcal{O}, R)$, the relation R is point-closed and for every $x \in X$ the set $R^{-1}(x)$ is closed.

Next we spell out the connection between descriptive frames and Esakia spaces. Let $\mathcal{X}=(X, \mathcal{O}, R)$ be an Esakia space and $\mathcal{P}_{\mathcal{X}}=\{U \subseteq X: U$ is a clopen upset $\}$. Then $\left(X, R, \mathcal{P}_{\mathcal{X}}\right)$ is a descriptive frame.

Conversely, let $\mathfrak{F}=(W, R, \mathcal{P})$ be a descriptive frame. Let $-\mathcal{P}$ denote the set $\{W \backslash U: U \in \mathcal{P}\}$. Define a topology on W by declaring $\mathcal{P}^{\prime}=\mathcal{P} \cup-\mathcal{P}$ as a sub-basis. That is, we define the topology $\mathcal{O}_{\mathcal{P}}$ such that $U \in \mathcal{O}_{\mathcal{P}}$ iff U is a union of finite intersections of elements of \mathcal{P}^{\prime}. (In the literature $\mathcal{O}_{\mathcal{P}}$ is called the patch topology; see, e.g., [68].) Then one can show that $\mathfrak{F}=\left(W, \mathcal{O}_{\mathcal{P}}, R\right)$ is an Esakia space. Moreover, every clopen of \mathfrak{F} is a finite union of finite intersections of elements of \mathcal{P}^{\prime}. Therefore, we can formulate the representation theorem of Heyting algebras in terms of Esakia spaces. ${ }^{13}$

2.3.22. Theorem. For every Heyting algebra \mathfrak{A} there exists an Esakia space \mathcal{X}

 such that \mathfrak{A} is isomorphic to the Heyting algebra of all clopen upsets of \mathcal{X}.Now we reformulate the notions of generated subframes, p-morphisms and disjoint unions of descriptive frames in topological terms.

Let $\mathcal{X}=(X, \mathcal{O}, R)$ and $\mathcal{X}^{\prime}=\left(X^{\prime}, \mathcal{O}^{\prime}, R^{\prime}\right)$ be Esakia spaces.

- \mathcal{X}^{\prime} is a generated subframe of \mathcal{X} iff $\left(X^{\prime}, R^{\prime}\right)$ is a generated subframe of (X, R) and $\left(X^{\prime}, \mathcal{O}^{\prime}\right)$ is a (topologically) closed subspace of (X, \mathcal{O}).
- A map $f: X \rightarrow X^{\prime}$ is a p-morphism iff it is a p-morphism between (X, R) and $\left(X^{\prime}, R^{\prime}\right)$ and is continuous, i.e., $f^{-1}(U)$ is an open set of $\mathcal{X}\left(f^{-1}(U) \in \mathcal{O}\right)$ for every open set U of $\mathcal{X}^{\prime}\left(U \in \mathcal{O}^{\prime}\right)$.
- Let $\left\{\mathcal{X}_{i}\right\}_{i=1}^{n}$ be a finite set of Esakia spaces, where $\mathcal{X}_{i}=\left(X_{i}, \mathcal{O}_{i}, R_{i}\right)$ for every $i=1, \ldots, n$. The disjoint union of $\left\{\mathcal{X}_{i}\right\}_{i=1}^{n}$ is the Esakia space $\biguplus_{i=1}^{n} \mathcal{X}_{i}=$ (X, \mathcal{O}, R), where (X, R) is the disjoint union $\biguplus_{i=1}^{n}\left(X_{i}, R_{i}\right)$ of the $\left(X_{i}, R_{i}\right)$, and (X, \mathcal{O}) is the topological sum of the $\left(X_{i}, \mathcal{O}_{i}\right)$.

From now on we will move "back and forth" between descriptive frames and Esakia spaces at our convenience.

We illustrate the usefulness of the topological approach by showing that every Esakia space (descriptive frame) has a nonempty maximum. In fact, we will show more: that for every point x there is a maximal point y such that $x R y$.

[^9]2.3.23. Definition. Let $\mathfrak{F}=(W, R)$ be a (descriptive or Kripke) frame.

- Call a point w of \mathfrak{F} maximal (minimal) if for every $v \in W$ we have that $w R v(v R w)$ implies $w=v$.
- For every frame \mathfrak{F} let $\max (\mathfrak{F})$ and $\min (\mathfrak{F})$ denote the sets of all maximal and minimal points of \mathfrak{F}, respectively.

The next theorem is due to Esakia [35].
2.3.24. Theorem. Let $\mathcal{X}=(X, \mathcal{O}, R)$ be an Esakia space.

1. For every $x \in X$ there exists $y \in \max (\mathcal{X})$ such that $x R y$.
2. For every $x \in X$ there exists $z \in \min (\mathcal{X})$ such that $z R x$.

Proof. (1) Let C be an arbitrary R-chain of X. Consider the family $\mathcal{F}=$ $\{R(x): x \in C\}$. The fact that C is a chain implies that \mathcal{F} has the finite intersection property. Since R is point-closed, the elements of \mathcal{F} are closed. Hence, by compactness, $\bigcap \mathcal{F} \neq \emptyset$ and every element $x \in \bigcap \mathcal{F}$ is greater than every element in C. Therefore, every chain in \mathcal{X} has an upper bound. By Zorn's lemma, ${ }^{14} \mathcal{X}$ has a maximal element. Now if we do the same for a generated subframe of \mathcal{X} based on the set $R(x)$ we obtain that for every point $x \in X$ there is $y \in \max (\mathcal{X})$ such that $x R y$.
(2) The proof is analogous to that of (1) and uses the fact, stated in Proposition 2.3.21(2), that $R^{-1}(x)$ is a closed set for every $x \in X$.

Note that in this proof we only used compactness of \mathcal{X} and the fact that R is point-closed. Hence, it also holds in every Priestley space. However, as follows from [35], in every Esakia space \mathcal{X} the set $\max (\mathcal{X})$ is always topologically closed, which need not be the case for Priestley spaces.

2.3.4 Duality of categories

In this section we extend the correspondence between Heyting algebras and descriptive frames (resp. Esakia spaces) to the duality of the corresponding categories. ${ }^{15}$ These results will not be used subsequently, but we include this material for the sake of completeness.

Let $\mathcal{H} \mathcal{A}$ be the category of Heyting algebras and Heyting homomorphisms, DF be the category of descriptive frames and descriptive p-morphisms, and let ES be the category of Esakia spaces and continuous p-morphisms. The next fact was first established by Esakia [38].

[^10]
2.3.25. Theorem.

1. $\mathcal{H} \mathcal{A}$ is dually equivalent to $\mathbf{D F}$.
2. $\mathcal{H} \mathcal{A}$ is dually equivalent to $\mathbf{E S}$.

Proof. (1) (Sketch) We will define contravariant functors $\Phi: \mathcal{H} \mathcal{A} \rightarrow \mathbf{D F}$ and Ψ : $\mathbf{D F} \rightarrow \mathcal{H} \mathcal{A}$. For every Heyting algebra \mathfrak{A} let $\Phi(\mathfrak{A})$ be \mathfrak{A}_{*}. For a homomorphism $h: \mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ define $\Phi(h): \Phi\left(\mathfrak{A}^{\prime}\right) \rightarrow \Phi(\mathfrak{A})$ by $\Phi(h)=h^{-1}$; that is, for every element $F \in \Phi\left(\mathfrak{A}^{\prime}\right)$ (a prime filter of \mathfrak{A}^{\prime}) we let $\Phi(h)(F)=h^{-1}(F)$. Then $\Phi(h)$ is a well-defined descriptive p-morphism and Φ is a contravariant functor.

We now define a functor $\Psi: \mathbf{D F} \rightarrow \mathcal{H} \mathcal{A}$. For every descriptive frame \mathfrak{F} let $\Psi(\mathfrak{F})=\mathfrak{F}^{*}$. If $f: \mathfrak{F} \rightarrow \mathfrak{F}^{\prime}$ is a descriptive p-morphism, then define $\Psi(f): \Psi\left(\mathfrak{F}^{\prime}\right) \rightarrow$ $\Psi(\mathfrak{F})$ by $\Psi(f)=f^{-1}$; that is, for every element of $U \in \Psi\left(\mathfrak{F}^{\prime}\right)$ (an upset of \mathfrak{F}^{\prime}) we let $\Psi(f)(U)=f^{-1}(U)$.

Then $\Psi(f)$ is a well-defined Heyting homomorphism and Ψ is a contravariant functor. Then it can be shown that the functors Φ and Ψ establish a duality between $\mathcal{H} \mathcal{A}$ and DF.
(2) The proof is similar to (1).

2.3.5 Properties of logics and algebras

In this section we discuss the algebraic counterparts of the logical properties that we introduced in Section 2.1.2. We say that a class K generates a variety V if $\mathbf{V}=\mathbf{H S P}(\mathrm{K})$. Now we recall the basic definitions from universal algebra; see, e.g., [23, Definitions 9.4, 10.14] and [56, §60].
2.3.26. Definition. Let V be a variety of algebras.

1. \mathbf{V} is finitely approximable if is generated by its finite members,
2. \mathbf{V} is finitely generated if it is generated by a single finite algebra, i.e., if there is a finite algebra \mathfrak{A} such that $\mathbf{V}=\mathbf{H S P}(\mathfrak{A})$,
3. \mathbf{V} is locally finite if every finitely generated algebra in \mathbf{V} is finite,
4. \mathbf{V} is finitely axiomatizable ${ }^{16}$ if \mathbf{V} is defined by finitely many equations.

Then we have the following correspondence between the logical and algebraic notions, which we will use throughout this thesis. It was first observed by Kuznetsov [81].
2.3.27. Theorem. Let L be an intermediate logic and \mathbf{V}_{L} be the corresponding variety of Heyting algebras.

[^11]1. L has the finite model property iff \mathbf{V}_{L} is finitely approximable.
2. L is tabular iff \mathbf{V}_{L} is finitely generated.
3. L is locally tabular iff \mathbf{V}_{L} is locally finite.
4. L is finitely axiomatizable iff \mathbf{V}_{L} is finitely axiomatizable.
5. L is decidable iff the equational theory of \mathbf{V}_{L} is decidable.

Throughout this thesis we will jump back and forth between algebraic and logical notions at our convenience.

This finishes the introductory chapter. In the next chapters we will apply this framework in studying some intermediate and modal logics.

Chapter 3

Universal models and frame-based formulas

In this chapter we provide a unified treatment of finitely generated Heyting algebras, their dual descriptive frames, and the frame-based formulas. Many results and constructions related to these topics are scattered throughout the literature. Here, we give a coherent overview of these topics. We discuss in detail the structure of Henkin models and universal models of IPC and their connection with free Heyting algebras. We introduce the Jankov-de Jongh formulas, subframe formulas, and cofinal subframe formulas. The subframe formulas and cofinal subframe formulas are defined in a new way which connects them with the NNIL formulas of [127]. We apply Jankov-de Jongh formulas and (cofinal) subframe formulas to axiomatize large classes of intermediate logics. We also show how to place these formulas in a unified framework of frame-based formulas. The results presented in this chapter are formulated for intermediate logics, but they can be generalized to transitive modal logics.

The chapter is organized as follows. In the first section we discuss finitely generated Heyting algebras. In Section 3.2 we define n-universal models for IPC and prove that these form the upper parts of the n-Henkin models of IPC. Section 3.3 introduces the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas. In the final section we show how to axiomatize some intermediate logics using these formulas, define the precise notion of frame-based formulas and show how this notion unifies the previously defined formulas.

3.1 Finitely generated Heyting algebras

We start by recalling the definition of finitely generated algebras; see, e.g., [23, Definition 3.4].
3.1.1. Definition. Let \mathfrak{A} be an algebra and let X be a set of elements of \mathfrak{A}. We say that X generates \mathfrak{A} if there is no proper subalgebra of \mathfrak{A} that contains
X. The elements of X are called the generators of \mathfrak{A}. We say that \mathfrak{A} is finitely generated if it has a finite set of generators. \mathfrak{A} is called α-generated, for some cardinal α, if \mathfrak{A} is generated by X and $|X|=\alpha$.

In other words, \mathfrak{A} is finitely generated if there are elements g_{1}, \ldots, g_{n} of \mathfrak{A} such that for every element a of \mathfrak{A}, we have $a=P\left(g_{1}, \ldots, g_{n}\right)$, where P is a polynomial over \mathfrak{A}. Finitely generated algebras play a crucial role in investigating varieties of universal algebras because of the following theorem; see, e.g., [56, Lemma 3, p.130, Theorem 4, p.137] and [23, Corollary 11.5].
3.1.2. Theorem. Every variety of algebras is generated by its finitely generated members.

Below we will study the structure of finitely generated Heyting algebras and their dual descriptive frames.
3.1.3. Definition. Let \mathfrak{A} be a Heyting algebra and \mathfrak{F} be its corresponding descriptive frame. \mathfrak{F} is said to be finitely generated if \mathfrak{A} is a finitely generated Heyting algebra. We call $\mathfrak{F} \alpha$-generated if \mathfrak{A} is an α-generated Heyting algebra.

For each $n \in \omega$ let PROP_{n} denote the set $\left\{p_{1}, \ldots, p_{n}\right\}$ of propositional variables. Let \mathfrak{A} be a Heyting algebra, and \mathfrak{F} be its dual descriptive frame. Fix g_{1}, \ldots, g_{n} in \mathfrak{A}. Then we can think of \mathfrak{A} together with these fixed elements as a Heyting algebra with a valuation $v: \mathrm{PROP}_{n} \rightarrow \mathfrak{A}$ such that $v\left(p_{i}\right)=g_{i}$, for $i=1, \ldots, n$. From now on we will not distinguish between a Heyting algebra \mathfrak{A} with fixed elements g_{1}, \ldots, g_{n} and \mathfrak{A} with the valuation defined above. Let $\mathfrak{M}=(\mathfrak{F}, V)$ be the descriptive model corresponding to (\mathfrak{A}, v).
3.1.4. Definition. With every point w of \mathfrak{M}, we associate a sequence $i_{1} \ldots i_{n}$ such that for $k=1, \ldots, n$:

$$
i_{k}= \begin{cases}1 & \text { if } w \models p_{k}, \\ 0 & \text { if } w \not \vDash p_{k} .\end{cases}
$$

We call the sequence $i_{1} \ldots i_{n}$ associated with w the color of w and denote it by $\operatorname{col}(w)$.

Let W be a non-empty set and E, an equivalence relation on W. E is called proper if there are distinct points $w, v \in W$ such that $w E v$. A subset U of W is called E-saturated or simply saturated if $E(U)=U$. A map $f: W \rightarrow W^{\prime}$ is called proper if there exist distinct $w, v \in W$ such that $f(w)=f(v)$.

Now we are ready to give a criterion for recognizing whether \mathfrak{A} is generated by g_{1}, \ldots, g_{n}. This criterion was first established in [37].
3.1.5. Theorem. (Coloring Theorem) Let \mathfrak{A} be a Heyting algebra, g_{1}, \ldots, g_{n} be fixed elements of \mathfrak{A}, and (\mathfrak{F}, V) be the corresponding descriptive model. Then the following conditions are equivalent:

1. \mathfrak{A} is generated by g_{1}, \ldots, g_{n}.
2. For every proper onto p-morphism $f: \mathfrak{F} \rightarrow \mathfrak{F}^{\prime}$, there exist points u and v in \mathfrak{F} such that $f(u)=f(v)$ and $\operatorname{col}(u) \neq \operatorname{col}(v)$.
3. For every proper bisimulation equivalence E of \mathfrak{F}, there exists an E-equivalence class containing points of different colors.

Proof. $(2) \Leftrightarrow(3)$ follows from Theorem 2.3.9. We show that (1) $\Leftrightarrow(3)$. Suppose \mathfrak{A} is generated by g_{1}, \ldots, g_{n}, and E be a proper bisimulation equivalence on \mathfrak{F}. Let \mathfrak{A}_{E} be the Heyting algebra corresponding to E, i.e., the algebra of all E-saturated admissible subsets of \mathfrak{F}. Since E is proper, \mathfrak{A}_{E} is a proper subalgebra of \mathfrak{A}. As \mathfrak{A} is generated by g_{1}, \ldots, g_{n}, there is $i \leq n$ such that g_{i} does not belong to \mathfrak{A}_{E}. This means that $V\left(p_{i}\right)$ (where p_{i} is such that $v\left(p_{i}\right)=g_{i}$) is not E-saturated, i.e., $E\left(V\left(p_{i}\right)\right) \nsubseteq V\left(p_{i}\right)$. Therefore, there are two elements u, v in \mathfrak{F} such that $u E v$, $u \in V\left(p_{i}\right)$ and $v \notin V\left(p_{i}\right)$, which implies that $\operatorname{col}(u) \neq \operatorname{col}(v)$.

Conversely, suppose \mathfrak{A} is not generated by g_{1}, \ldots, g_{n}. Denote by \mathfrak{A}^{\prime} the subalgebra generated by g_{1}, \ldots, g_{n}. Obviously, \mathfrak{A}^{\prime} is a proper subalgebra of \mathfrak{A}. Let $E_{\mathfrak{A}^{\prime}}$ be the proper bisimulation equivalence of \mathfrak{F} corresponding to \mathfrak{A}^{\prime}. Since every g_{i} belongs to \mathfrak{A}^{\prime}, we have that every $V\left(p_{i}\right)$ is $E_{\mathfrak{A}^{\prime}}$-saturated. Therefore, every $E_{\mathfrak{Q}^{\prime}}$-equivalence class contains points of the same color.

Next we will recall from [70] two lemmas about p-morphisms that will enable us to decide quickly whether there exists a p-morphism between two finite rooted frames.

For a frame $\mathfrak{F}=(W, R)$ and $w, v \in W$, we say that a point w is an immediate successor of a point v if $v R w, w \neq v$, and there are no intervening points, i.e., for every $u \in W$ such that $v R u$ and $u R w$ we have $u=v$ or $u=w$. We call v an immediate predecessor of w if w is an immediate successor of v.
3.1.6. Lemma. Let $\mathfrak{F}=(W, R, \mathcal{P})$ be a descriptive frame and $w, v \in W$.

1. Suppose $R(w) \backslash\{w\}=R(v)$ (i.e., v is the only immediate successor of w). Let E be the smallest equivalence relation that identifies w and v, i.e., $E=$ $\{(u, u): u \in W\} \cup\{(w, v),(v, w)\}$. Then E is a bisimulation equivalence. We call the corresponding map $f_{E}: W \rightarrow W / E$ an α-reduction.
2. Suppose $R(w) \backslash\{v\}=R(v) \backslash\{w\}$ (i.e., the set of immediate successors of w and v coincide). Let E be the smallest equivalence relation that identifies w and v. Then E is a bisimulation equivalence. We call the corresponding map $f_{E}: W \rightarrow W / E$ a β-reduction.

Proof. The proof is a routine check.
3.1.7. Lemma. Let $\mathfrak{F}=(W, R)$ and $\mathfrak{G}=\left(W^{\prime}, R^{\prime}\right)$ be finite frames. Suppose $f: W \rightarrow W^{\prime}$ is a proper p-morphism. Then there exists a sequence f_{1}, \cdots, f_{n} of α - and β-reductions such that $f=f_{1} \circ \cdots \circ f_{n}$.

Proof. Let f be a proper p-morphism from \mathfrak{F} onto \mathfrak{G}. Let w be a maximal point of \mathfrak{G} that is the image under f of at least two distinct points of \mathfrak{F}. Let $u, v \in \max \left(f^{-1}(w)\right)$. Then, by the conditions on a p-morphism, the sets of successors of u and v in \mathfrak{F}, disregarding u and v themselves, are the same. There are two possibilities:

Case 1. u and v are incomparable in \mathfrak{F}. Let E be the smallest equivalence relation that identifies u and v. Then there exists a β-reduction $f_{E}: W \rightarrow$ W / E from \mathfrak{F} onto $\mathfrak{F} / E=\left(W / E, R_{E}\right)$. It suffices to construct a p-morphism g from \mathfrak{F} / E onto \mathfrak{G} such that $g \circ f_{E}=f$ (and apply induction on the number of points that are identified by f). We define $g: W / E \rightarrow W^{\prime}$ by

$$
g(E(x))=f(x)
$$

for every $E(x) \in W / E$. Checking that g satisfies the definition of p morphism is trivial.

Case 2. u is the unique immediate successor of v or v is the unique immediate successor of u. We do exactly the same as in Case 1 (i.e., we consider the smallest equivalence relation E that identifies the points u and v), except that the map $f_{E}: W \rightarrow W / E$ is now an α-reduction.

We now begin our investigation of the structure of finitely generated descriptive frames.
3.1.8. Theorem. Let \mathfrak{A} be a Heyting algebra generated by g_{1}, \ldots, g_{n} and let $\mathfrak{F}=(W, R, \mathcal{P})$ be the corresponding descriptive frame. Then $\max (\mathfrak{F})$ is a finite admissible subset of \mathfrak{F} of size at most 2^{n}.

Proof. Let $v: \operatorname{Prop}_{n} \rightarrow \mathfrak{A}$ be such that $v\left(p_{i}\right)=g_{i}$, for every $i=1, \ldots, n$. Therefore, we can assume that we have a coloring of \mathfrak{F}. First we show that for every $w, v \in \max (\mathfrak{F})$, if $u \neq v$, then $\operatorname{col}(u) \neq \operatorname{col}(v)$. Suppose there exist distinct points $u, v \in \max (\mathfrak{F})$ such that $\operatorname{col}(u)=\operatorname{col}(v)$. We consider the smallest equivalence relation E on W that identifies the points u and v. By Lemma 3.1.6(2), E is a bisimulation equivalence. By the Coloring Theorem, this implies that \mathfrak{A} is
not generated by g_{1}, \ldots, g_{n}, which is a contradiction. Therefore, distinct maximal points have different colors. There are 2^{n} different colors. Thus, there are at most 2^{n} points in $\max (\mathfrak{F})$.

Now consider the formula

$$
\tau:=\bigwedge_{i=1}^{n}\left(p_{i} \vee \neg p_{i}\right)
$$

We will prove that $V(\tau)=\{w \in W: w \models \tau\}$ is equal to $\max (\mathfrak{F})$. It is easy to check that if $w \in \max (\mathfrak{F})$, then $w \models p_{i} \vee \neg p_{i}$, for each $i=1, \ldots, n$. Hence, $w \models \tau$. For the other direction suppose a point w is such that $w \models \tau$. We show that $w \in \max (\mathfrak{F})$. Let $J=\left\{p_{i}: w \models p_{i}\right\}$ and $J^{\prime}=\left\{\neg p_{i}: w \not \vDash p_{i}\right\}$, where $i=1, \ldots, n$. Let also $\xi:=\bigwedge J \wedge \bigwedge J^{\prime}$ and $V(\xi)=\{u \in W: u \models \xi\}$. Obviously, $V(\xi)$ is an admissible upset, and by definition of ξ every point of $V(\xi)$ has the same color as w. We show that $w \in V(\xi)$. It is clear that $w \models \bigwedge J$. On the other hand, $w \not \models p_{i}$ and $w \models \tau$ imply that $w \models \neg p_{i}$. It follows that $w \models \bigwedge J^{\prime}$ and therefore $w \models \xi$. Now consider the smallest equivalence relation E that identifies points in $V(\xi)$. In other words let

$$
E=\{(z, z): z \in W\} \cup\{(u, v): u, v \in V(\xi)\}
$$

We show that E is a bisimulation equivalence. That E satisfies Definition 2.3.8(1) follows from the fact that $V(\xi)$ is an upset. Indeed, if $z E v$ and $z \neq v$, then $z, v \in V(\xi)$. Now suppose $v R u$. Then as $V(\xi)$ is an upset and $v \in V(\xi)$, we have $u \in V(\xi)$, and so $z E u$. To show that E satisfies Definition 2.3.8(2) assume that $\neg(z E v)$. If $z \in V(\xi)$ and $v \notin V(\xi)$, then $V(\xi)$ is an E-saturated admissible upset that separates z and v. In case $z, v \notin V(\xi)$, we have $\neg(z R v)$ or $\neg(v R z)$. Therefore, by the definition of a descriptive frame, there exists an admissible upset U that separates z and v. If $U \cap V(\xi)=\emptyset$, then U is E-saturated. If $U \cap V(\xi) \neq \emptyset$, then $U \cup V(\xi)=V(\xi) \cup(U \backslash V(\xi))$. By the definition of E, both $U \backslash V(\xi)$ and $V(\xi)$ are E-saturated. Therefore, $U \cup V(\xi)$ is an E-saturated admissible upset that separates z and v. Note that, by the definition of E, if there are at least two distinct points in $V(\xi)$, then E is proper. Since $V(\xi)$ is an upset, $V(\xi)$ is a singleton set iff $V(\xi)$ consists of one maximal point of \mathfrak{F}. Therefore we have:
E is not proper iff $V(\xi)=\{w\}$ and $w \in \max (\mathfrak{F})$.
If E is proper, then by the Coloring Theorem, \mathfrak{A} is not generated by g_{1}, \ldots, g_{n}, which is a contradiction. Therefore, E is not proper and $w \in \max (\mathfrak{F})$. Hence, $V(\tau)=\max (\mathfrak{F})$, which implies that $\max (\mathfrak{F}) \in \mathcal{P}$. Thus, $\max (\mathfrak{F})$ is admissible and $|\max (\mathfrak{F})| \leq 2^{n}$.

Next we give a rough description of the structure of finitely generated descriptive frames.
3.1.9. Definition. Let \mathfrak{F} be a (descriptive or Kripke) frame.

1. We say that \mathfrak{F} is of depth $n<\omega$, denoted $d(\mathfrak{F})=n$, if there is a chain of n points in \mathfrak{F} and no other chain in \mathfrak{F} contains more than n points. The frame \mathfrak{F} is of finite depth if $d(\mathfrak{F})<\omega$.
2. We say that \mathfrak{F} is of an infinite depth, denoted $d(\mathfrak{F})=\omega$, if for every $n \in \omega$, \mathfrak{F} contains a chain consisting of n points.
3. The depth of a point $w \in W$ is the depth of \mathfrak{F}_{w}, i.e., the depth of the subframe of \mathfrak{F} generated by w. We denote the depth of w by $d(w)$.

For a descriptive frame $\mathfrak{F}=(W, R, \mathcal{P})$, let $\operatorname{Upper}(\mathfrak{F})=\{w \in W: d(w)<\omega\}$, and $\operatorname{Lower}(\mathfrak{F})=\{w \in W: d(w)=\omega\}$. Clearly, $W=\operatorname{Upper}(\mathfrak{F}) \cup \operatorname{Lower}(\mathfrak{F})$ and $\operatorname{Upper}(\mathfrak{F}) \cap \operatorname{Lower}(\mathfrak{F})=\emptyset$. If \mathfrak{F} has finite depth, then $\operatorname{Lower}(\mathfrak{F})=\emptyset$. Note that because of Theorem 2.3.24, we have that $\operatorname{Upper}(\mathfrak{F}) \neq \emptyset$. For every $m \in \omega$, let $D_{m}=\{w \in W: d(w)=m\}$ and $D_{\leq m}=\{w \in W: d(w) \leq m\}$. We call D_{m} the m-th layer of \mathfrak{F}. The next theorem gives an intuitive description of the structure of finitely generated descriptive frames. They are built layer by layer from the points of finite depth. Moreover, every point of an infinite depth is related to infinitely many points of finite depth.
3.1.10. Theorem. Let $\mathfrak{F}=(W, R, \mathcal{P})$ be a finitely generated infinite descriptive frame. Then

1. For every $m \in \omega$, the set D_{m} is finite.
2. For every $m \in \omega$, the set $D_{\leq m}$ is admissible.
3. $U \operatorname{pper}(\mathfrak{F})=\bigcup_{m \in \omega} D_{m}$, and $D_{m} \cap D_{k}=\emptyset$ for $m \neq k$.
4. For every $x \in \operatorname{Lower}(\mathfrak{F})$ and $m \in \omega$, there is a point $y \in D_{m}$ such that $x R y$.

Proof. Let \mathfrak{A} be the Heyting algebra corresponding to \mathfrak{F} and let g_{1}, \ldots, g_{n} be the generators of \mathfrak{A}. We define $v: \mathrm{Prop}_{n} \rightarrow \mathfrak{A}$ by $v\left(p_{i}\right)=g_{i}$ for every $i=1, \ldots, n$. This defines a coloring of \mathfrak{F}. We first prove (1) and (2) by an induction on $m \geq 1$. The case when $m=1$ is given by Theorem 3.1.8. Now we assume that (1) and (2) hold for some $m>1$ and show that they also hold for $m+1$.

Let $W_{m}=W \backslash D_{\leq m}$ and let $\mathfrak{F}_{m}=\left(W_{m}, R_{m}, \mathcal{P}_{m}\right)$ where R_{m} is the restriction of R to W_{m} and $\mathcal{P}_{m}=\left\{U \cap W_{m}: U \in \mathcal{P}\right)$. In other words, \mathfrak{F}_{m} is the frame obtained from \mathfrak{F} by cutting out the first m layers of \mathfrak{F}. Then \mathfrak{F}_{m} is also a descriptive frame. ${ }^{1}$

[^12]Since $D_{\leq m}$, is admissible there is a formula τ_{m} that defines $D_{\leq m}$. Moreover, since $D_{\leq m}$ is finite, we have that every upset U of \mathfrak{F} that is contained in $D_{\leq m}$, is also admissible. Let $\phi_{1}, \ldots, \phi_{k}$ be the formulas that define these upsets. (These formulas are called the de Jongh formulas. In Section 3.3.2 we will define them explicitly.)

3.1.11. Claim. \mathfrak{F}_{m} is finitely generated. ${ }^{2}$

Proof. Consider the following elements of \mathfrak{A} :

$$
\begin{aligned}
& g_{1}^{\prime}=v\left(\tau_{m} \vee p_{1}\right), \ldots, g_{n}^{\prime}=v\left(\tau_{m} \vee p_{n}\right), \\
& g_{n+1}^{\prime}=v\left(\tau_{m} \vee\left(\tau_{m} \rightarrow \phi_{1}\right)\right), \ldots, g_{n+k}^{\prime}=v\left(\tau_{m} \vee\left(\tau_{m} \rightarrow \phi_{k}\right)\right) .
\end{aligned}
$$

The elements $g_{1}^{\prime}, \ldots, g_{n+k}^{\prime}$ provide a new coloring of \mathfrak{F}, and hence of \mathfrak{F}_{m}. Let $g_{1}^{\prime \prime}, \ldots, g_{n+k}^{\prime \prime}$ be the elements of \mathfrak{A}_{m} corresponding to this new coloring. We show that \mathfrak{A}_{m} is generated by $g_{1}^{\prime \prime}, \ldots, g_{n+k}^{\prime \prime}$. For every $w \in W$ let $\operatorname{col}(w)$ denote the color of w according to the old coloring, and let $\operatorname{col}_{N}(w)$ denote the color of w according to the new coloring. It is easy to see that for every $w, v \in W_{m}$, if $\operatorname{col}_{N}(w)=\operatorname{col}_{N}(v)$, then $\operatorname{col}(w)=\operatorname{col}(v)$.

Now suppose \mathfrak{A}_{m} is not generated by $g_{1}^{\prime \prime}, \ldots, g_{n+k}^{\prime \prime}$. By the Coloring Theorem, there exists a proper bisimulation equivalence E of \mathfrak{F}_{m} such that for every $x, y \in$ W_{m}, if $E(x)=E(y)$, then $\operatorname{col}_{N}(x)=\operatorname{col}_{N}(y)$. Define Q on W by

$$
Q=E \cup\left\{(w, w): w \in D_{\leq m}\right\} .
$$

As E is proper, Q is also proper. We show that Q is a bisimulation equivalence of \mathfrak{F}. Let $\neg(x Q y)$. Then there are two cases:

Case 1.1. $x \in D_{\leq m}$ or $y \in D_{\leq m}$. Then $\neg(x Q y)$ implies $x \neq y$. Without loss of generality we may assume that $\neg(x R y)$ and also that $x \in D_{\leq m}$. Then $R(x) \subseteq D_{\leq m}$ is a finite upset. Therefore, it is admissible. Moreover, $R(x)$ is Q-saturated since, by the definition of Q, every subset of $D_{\leq m}$ is Q saturated. Thus, we found an admissible upset of \mathfrak{F} that separates x and y.

Case 1.2. $x, y \in W_{m}$. Then we have $\neg(x E y)$. Therefore, as E is a bisimulation equivalence of \mathfrak{F}_{m}, there exists an E-saturated admissible upset U of \mathfrak{F}_{m} that separates x and y. Then it is easy to see that $U \cup D_{\leq m}$ is a Q-saturated admissible upset of \mathfrak{F} that separates x and y.

Thus, Q satisfies Definition 2.3.8(2). Next we prove that Q satisfies Definition 2.3.8(1). Suppose $x, y, z \in W$ are such that $x Q y$ and $y R z$. If $x, y \in D_{\leq m}$, then $x Q y$ implies $x=y$, and so $x R z$. Thus, we may assume $x, y \in W_{m}$ and $x \bar{E} y$. Then two cases are possible:

[^13]Case 2.1. $R(x) \cap D_{\leq m} \neq R(y) \cap D_{\leq m}$. Without loss of generality we may assume that $R(x) \cap D_{\leq m} \nsubseteq R(y) \cap D_{\leq m}$. Then there is $t \in R(x) \cap D_{\leq m}$ and a formula ϕ_{i}, for some $i=1, \ldots, k$, such that for every $u \in R(y) \cap D_{\leq m}$ we have $u \models \phi_{i}$ and $t \not \models \phi_{i}$. Then $x \not \models \tau_{m} \rightarrow \phi_{i}$ and $y \models \tau_{m} \rightarrow \phi_{i}$. This means that $\operatorname{col}_{N}(x) \neq \operatorname{col}_{N}(y)$, which is a contradiction.

Case 2.2. $R(x) \cap D_{\leq m}=R(y) \cap D_{\leq m}$. If $z \in D_{\leq m}$, then $x R z$. And if $z \in W_{m}$, as E is a bisimulation equivalence of \mathfrak{F}_{m}, there is a point $u \in W_{m}$ such that $x R u$ and $u E z$. Thus, there exists u such that $x R u$ and $u Q z$.

Consequently, Definition 2.3.8(1) is satisfied and Q is a bisimulation equivalence of \mathfrak{F}. Now since $\operatorname{col}_{N}(x)=\operatorname{col}_{N}(y)$, implies $\operatorname{col}(x)=\operatorname{col}(y)$ we obtain that Q is a proper bisimulation equivalence of \mathfrak{F} such that every Q-equivalence class has the same (old) color. By the Coloring Theorem, \mathfrak{A} is not generated by g_{1}, \ldots, g_{n}. This contradiction finishes the proof of the claim.

Continuing the proof of Theorem 3.1.10, by Theorem 3.1.8, $\max \left(\mathfrak{F}_{m}\right)=D_{m+1}$, is a finite admissible subset of \mathfrak{F}_{m}. In topological terms this means that D_{m+1} is a clopen upset of \mathfrak{F}_{m}, and so D_{m+1} is a clopen subset of \mathfrak{F}. By the induction hypothesis, $D_{\leq m}$ is also clopen in \mathfrak{F}. Thus, $D_{\leq m+1}=D_{\leq m} \cup D_{m+1}$ is a clopen upset of \mathfrak{F}, which means that $D_{\leq m+1}$ is admissible.
(3) follows immediately from the definition of $\operatorname{Upper}(\mathfrak{F})$.
(4) follows from Claim 3.1.11 and Theorem 2.3.24.

3.2 Free Heyting algebras and n-universal models

In this section we define the n-universal models of IPC and spell out in detail the connection between n-universal models and finitely generated free Heyting algebras. In particular, we show that universal models are the upper parts of n Henkin models - the dual descriptive frames of n-generated free Heyting algebras.

3.2.1 n-universal models

For $n \in \omega$ let \mathcal{L}_{n} be the propositional language built on a finite set of propositional letters $\mathrm{PROP}_{n}=\left\{p_{1}, \ldots, p_{n}\right\}$. Let FORM_{n} denote the set of all formulas of \mathcal{L}_{n}. Let \mathfrak{M} be an intuitionistic Kripke model. As we mentioned in the previous section, with every point w of \mathfrak{M}, we associate the $\operatorname{color} \operatorname{col}(w)$.
3.2.1. Definition. Let $i_{1} \ldots i_{n}$ and $j_{1} \ldots j_{n}$ be two colors. We write

$$
i_{1} \ldots i_{n} \leq j_{1} \ldots j_{n} \text { iff } i_{k} \leq j_{k} \text { for each } k=1, \ldots, n
$$

We also write $i_{1} \ldots i_{n}<j_{1} \ldots j_{n}$ if $i_{1} \ldots i_{n} \leq j_{1} \ldots j_{n}$ and $i_{1} \ldots i_{n} \neq j_{1} \ldots j_{n}$.

Thus, the set of colors of length n ordered by \leq forms a 2^{n}-element Boolean algebra. Let $\mathfrak{F}=(W, R)$ be a Kripke frame. We say that a set $A \subseteq W$ totally covers a point v and write $v \prec A$ if A is the set of all immediate successors of v. Note that \prec is a relation relating points and sets. We will use the shorthand $v \prec w$ for $v \prec\{w\}$. Thus, $v \prec w$ means not only that w is an immediate successor of v, but that w is the only immediate successor of w. It is easy to see that if every point of W has only finitely many successors, then R is the reflexive and transitive closure of the immediate successor relation. Therefore, if (W, R) is such that every point of W has only finitely many successors, then R is uniquely defined by the immediate successor relation and vice versa. Thus, to define such a frame (W, R), it is sufficient to define the relation \prec. A set $A \subseteq W$ is called an anti-chain if $|A|>1$ and for each $w, v \in A, w \neq v$ implies $\neg(w R v)$ and $\neg(v R w)$.

Now we are ready to construct the n-universal model of IPC for each $n \in \omega$. As we mentioned above, to define $\mathcal{U}(n)=(U(n), R, V)$, it is sufficient to define the set $U(n)$, the relation \prec relating points and sets, and the valuation V on $U(n)$. Let P be a property of Kripke models. We say that a model \mathfrak{M} is the minimal model with property P if \mathfrak{M} satisfies P and no proper submodel of \mathfrak{M} satisfies P.

3.2.2. Theorem.

1. For every $n \in \omega$ there exists a minimal model $\mathcal{U}(n)$ satisfying the following three conditions.
(a) $\max (\mathcal{U}(n))$ consists of 2^{n} points of distinct colors.
(b) For every $w \in U(n)$ and every color $i_{1} \ldots i_{n}<\operatorname{col}(w)$, there exists a unique $v \in U(n)$ such that $v \prec w$ and $\operatorname{col}(v)=i_{1} \ldots i_{n}$.
(c) For every finite anti-chain A in $U(n)$ and every color $i_{1} \ldots i_{n}$ with $i_{1} \ldots i_{n} \leq \operatorname{col}(u)$ for all $u \in A$, there exists a unique $v \in U(n)$ such that $v \prec A$ and $\operatorname{col}(v)=i_{1} \ldots i_{n}$.
2. For every $n \in \omega$ a minimal model satisfying conditions $(a),(b),(c)$ is unique up to isomorphism.

Proof. (1) For every $n \in \omega$ we construct $\mathcal{U}(n)$ by induction on layers. We start with 2^{n} points $x_{1}, \ldots, x_{2^{n}}$ of different color such that $R\left(x_{i}\right)=\left\{x_{i}\right\}$. For every point w of depth m and each color $i_{1} \ldots i_{n}<\operatorname{col}(w)$ we add to the model a unique point v such that $R(v)=R(w) \cup\{v\}$ and $\operatorname{col}(v)=i_{1} \ldots i_{n}$. For every finite antichain A of points of depth $\leq m$ with at least one point of depth m, and each color $i_{1} \ldots i_{n}$ with $i_{1} \ldots i_{n} \leq \operatorname{col}(u)$ for all $u \in A$ we add to the model a unique point v such that $R(v)=R(A) \cup\{v\}$ and $\operatorname{col}(v)=i_{1} \ldots i_{n}$. It is now easy to see that the model constructed in such a way is a minimal model satisfying Conditions (a)-(c).

Figure 3.1: The 1-universal model
(2) Let $\mathcal{W}(n)$ be a minimal model satisfying Conditions (a)-(c). Then every point of $\mathcal{W}(n)$ has finite depth. We prove by induction on the number of layers of $\mathcal{W}(n)$ that $\mathcal{U}(n)$ and $\mathcal{W}(n)$ are isomorphic. By Condition (a), $\max (\mathcal{U}(n))$ and $\max (\mathcal{W}(n))$ are isomorphic Kripke models. Now assume that first m layers of $\mathcal{U}(n)$ and $\mathcal{W}(n)$ are isomorphic. Then by the minimality of $\mathcal{W}(n)$ and Conditions (b) and (c), it follows that the first $m+1$ layers of $\mathcal{U}(n)$ and $\mathcal{W}(n)$ are also isomorphic, which finishes the proof of the proposition.
3.2.3. Definition. The n-universal model $\mathcal{U}(n)$ is the minimal model satisfying the following three conditions.

1. $\max (\mathcal{U}(n))$ consists of 2^{n} points of distinct colors.
2. For every $w \in U(n)$ and every color $i_{1} \ldots i_{n}<\operatorname{col}(w)$, there exists a unique $v \in U(n)$ such that $v \prec w$ and $\operatorname{col}(v)=i_{1} \ldots i_{n}$.
3. For every finite anti-chain A in $U(n)$ and every color $i_{1} \ldots i_{n}$ with $i_{1} \ldots i_{n} \leq$ $\operatorname{col}(u)$ for all $u \in A$, there exists a unique $v \in U(n)$ such that $v \prec A$ and $\operatorname{col}(v)=i_{1} \ldots i_{n}$.

By Theorem 3.2.2 for every $n \in \omega$ the n-universal model of IPC exists and is unique up to isomorphism. The 1-universal model of IPC is shown in Figure 3.1. The 1-universal model is often called the Rieger-Nishimura ladder (for more information on the Rieger-Nishimura ladder, see Chapter 4). More generally, for each $n>1$, one can think of the n-universal model of IPC as it is shown in Figure 3.2.
3.2.4. Definition. We call the underlying frame $\mathbb{U}(n)=(U(n), R)$ of $\mathcal{U}(n)$ the n-universal frame.

Figure 3.2: The n-universal model
3.2.5. Lemma. For every $m, n \in \omega$, the frame $\mathfrak{G}_{m}=\left(D_{\leq m}, R \upharpoonright D_{\leq m}\right)$ consisting of the first m-layers of $\mathcal{U}(n)$ is n-generated.

Proof. Let V^{\prime} be the restriction of the valuation V of $\mathcal{U}(n)$ to \mathfrak{G}_{m}. Suppose $f: \mathfrak{G}_{m} \rightarrow \mathfrak{F}^{\prime}$ is a proper onto p-morphism, where \mathfrak{F}^{\prime} is some finite frame. Then by Lemma 3.1.7, f is a composition of finitely many α - and β-reductions. It follows from the construction of $\mathcal{U}(n)$ that any α - or β-reduction of \mathfrak{G}_{m} identifies points of different colors. Therefore, by the Coloring Theorem, \mathfrak{G}_{m} is n-generated.

3.2.2 Free Heyting algebras

In this section we show that universal models constitute the upper part of the dual frames of finitely generated free Heyting algebras. First we recall the definition of free algebras; see, e.g., [23, Definition 10.9].
3.2.6. Definition. Let \mathbf{V} be a variety of algebras. For every set X, the free X generated \mathbf{V}-algebra, denoted $F(X)$, is the \mathbf{V}-algebra containing X and satisfying the following property: for every \mathbf{V}-algebra \mathfrak{A}, every map $f: X \rightarrow \mathfrak{A}$ can be extended uniquely to a homomorphism $h: F(X) \rightarrow \mathfrak{A}$.

There is a close connection between free Heyting algebras and canonical or Henkin models of intuitionistic logic. In fact, the descriptive frame dual to the n generated free Heyting algebra is isomorphic to the n-Henkin frame of intuitionistic logic; see, e.g., [24, §7].

3.2.7. Definition.

1. Let $F(n)$ be the free n-generated Heyting algebra. Let $\mathbb{H}(n)$ denote the descriptive frame of $F(n)$. We call $\mathbb{H}(n)$ the n-Henkin frame of IPC.
2. Let g_{1}, \ldots, g_{n} be the generators of $F(n)$. These generators define a coloring of $\mathbb{H}(n)$. We call the n-Henkin frame with this coloring the n-Henkin model and denote it by $\mathcal{H}(n)=(\mathbb{H}(n), V) .{ }^{3}$
3.2.8. Lemma. Let \mathfrak{A} be a Heyting algebra generated by $g_{1}^{\prime}, \ldots, g_{n}^{\prime}$, for some $n \in$ ω, and let $\left(\mathfrak{F}, V^{\prime}\right)$ be the corresponding descriptive model. Then $\left(\mathfrak{F}, V^{\prime}\right)$ is up to isomorphism a generated submodel of $\mathcal{H}(n)$.

Proof. Let g_{1}, \ldots, g_{n} be the generators of $F(n)$. Then there exists an onto homomorphism $h: F(n) \rightarrow \mathfrak{A}$ such that $h\left(g_{i}\right)=g_{i}^{\prime}$ for every $i=1, \ldots, n$. Therefore, by Theorem 2.3.7(1), \mathfrak{F} is a generated subframe of $\mathbb{H}(n)$. Let $\mathfrak{F}=$ (W, R, \mathcal{P}). Then $h\left(g_{i}\right)=g_{i}^{\prime}$, for every $i=1, \ldots, n$, implies that $V^{\prime}\left(p_{i}\right)=V\left(p_{i}\right) \cap$ W, where V is the valuation of $\mathcal{H}(n)$. Thus, $\left(\mathfrak{F}, V^{\prime}\right)$ is a generated submodel of $\mathcal{H}(n)$.

For the next theorem consult either of [24, Sections 8.6 and 8.7], [57, §2], [4], [116] and [108].
3.2.9. Theorem. The generated submodel of $\mathcal{H}(n)$ consisting of all the points of finite depth is isomorphic to the universal model $\mathcal{U}(n)$; that is, $\operatorname{Upper}(\mathcal{H}(n))$ is isomorphic to $\mathcal{U}(n)$.

Proof. By Theorem 3.1.10, $\operatorname{Upper}(\mathcal{H}(n))=\bigcup_{m \in \omega} D_{m}$, where $D_{m} \cap D_{k}=\emptyset$, for $m \neq k$. By Lemmas 3.2.5 and 3.2.8, the generated submodel $\max (\mathcal{U}(n))$ of $\mathcal{U}(n)$ consisting of the maximal points of $\mathcal{U}(n)$ is isomorphic to a generated submodel of $\mathcal{H}(n)$. Moreover, by Definition 3.2.3(1) and Theorem 3.1.8, $|\max (\mathcal{U}(n))|=2^{n}$ and $|\max (\mathcal{H}(n))| \leq 2^{n}$. Therefore, $\max (\mathcal{H}(n))$ and $\max (\mathcal{U}(n))$ are isomorphic.

Now assume that for each $k \in \omega$, the first k layers of $\mathcal{H}(n)$ and $\mathcal{U}(n)$ are isomorphic. We will prove that the first $k+1$ layers of $\mathcal{U}(n)$ and $\mathcal{H}(n)$ are isomorphic as well. By Lemmas 3.2.5 and 3.2.8 we know that the model \mathfrak{M}_{k+1} consisting of the first $k+1$ layers of $\mathcal{U}(n)$ is n-generated and is isomorphic to a generated submodel of $\mathcal{H}(n)$. (We identify \mathfrak{M}_{k+1} with the generated submodel of $\mathcal{H}(n)$ that it is isomorphic to.) Now suppose there is u in $\mathcal{H}(n)$ of depth $k+1$ such that u does not belong to \mathfrak{M}_{k+1}. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be the set of immediate successors of u. By the induction hypothesis, each u_{i} belongs to \mathfrak{M}_{k+1}. By Theorem 3.1.10(1), $\left\{u_{1}, \ldots, u_{m}\right\}$ is finite. Moreover, $m>0$ as u is not a maximal point. If $m=1$, two cases are possible:

Case 1. $\operatorname{col}(u)=\operatorname{col}\left(u_{1}\right)$; see Figure 3.3(a). In this case we consider the α reduction that identifies u and u_{1}.

[^14]

Figure 3.3: The α - and β-reductions

Case 2. $\operatorname{col}(u)<\operatorname{col}\left(u_{1}\right)$. In this case, by the construction of the n-universal model, there is v in \mathfrak{M}_{k+1} such that v is totally covered by u_{1} and $\operatorname{col}(v)=$ $\operatorname{col}(u)$; see Figure 3.3(b). Then we consider the β-reduction that identifies u and v.

In either case the Coloring Theorem ensures that $F(n)$ is not generated by g_{1}, \ldots, g_{n}, which is a contradiction.

If $m>1$ we have that $\operatorname{col}(u) \leq \operatorname{col}\left(u_{i}\right)$ for every $i=1, \ldots, m$. Again, by the construction of $\mathcal{U}(n)$, there exists a point v of \mathfrak{M}_{k+1} that is totally covered by $\left\{u_{1}, \ldots, u_{m}\right\}$, and $\operatorname{col}(u)=\operatorname{col}(v)$; see Figure 3.3(c), where $m=3$. Consider the β-reduction that identifies u and v. The Coloring Theorem ensures that $F(n)$ is not generated by g_{1}, \ldots, g_{n}, which is again a contradiction. Therefore, the first $k+1$ layers of $\mathcal{H}(n)$ and $\mathcal{U}(n)$ are isomorphic. Thus, by induction, $\mathcal{U}(n)$ is isomorphic to $\operatorname{Upper}(\mathcal{H}(n))$.

From now on we will identify $\mathcal{U}(n)$ with $\operatorname{Upper}(\mathcal{H}(n))$. For every intermediate logic L, let $\mathcal{H}_{L}(n)$ be defined by replacing IPC by L in Definition 3.2.7. It is well known that every logic is characterized by its n-Henkin models; see, e.g., [24, Theorem 5.5]:
3.2.10. Theorem. Let L be an intermediate logic. Then for every $n \in \omega$ and every formula ϕ in n variables, we have

$$
L \vdash \phi \text { iff } \mathcal{H}_{L}(n) \models \phi .
$$

Next we recall the definition of the disjunction property for intermediate logics; see, e.g., [24, p. 19 and p.471].
3.2.11. Definition. An intermediate logic L has the disjunction property if $L \vdash$ $\phi \vee \psi$ implies $L \vdash \phi$ or $L \vdash \psi$.

The following theorem can be found with a different proof in [24, Theorem 15.5(ii)].

Figure 3.4: The n-Henkin model
3.2.12. ThEOREM. An intermediate logic L has the disjunction property iff the n-Henkin model $\mathcal{H}_{L}(n)$ of L is rooted, for every $n \in \omega$.

Proof. Suppose L has the disjunction property. Let $F_{L}(n)$ be the n-generated free algebra dual to $\mathcal{H}_{L}(n)$. We show that the filter $\{1\}$ is prime. Recall that elements of $F_{L}(n)$ are the equivalence classes of the relation \equiv defined on FORM_{n} by

$$
\phi \equiv \psi \text { iff } L \vdash \phi \leftrightarrow \psi
$$

Suppose $[\phi] \vee[\psi]=1$ for some $[\phi],[\psi] \in F_{L}(n)$. Then $L \vdash \phi \vee \psi$. Since L has the disjunction property, we have that $L \vdash \phi$ or $L \vdash \psi$. Therefore, $[\phi]=1$ or $[\psi]=1$. Thus, $\{1\}$ is a prime filter. This proves that $\{1\}$ is a prime filter. Clearly, for every filter F of $F_{L}(n)$ we have $\{1\} \subseteq F$. Therefore, $\{1\}$ is the root of $\mathcal{H}_{L}(n)$.

Conversely, suppose $\mathcal{H}_{L}(n)$ is rooted for every $n \in \omega$, and $L \vdash \phi \vee \psi$. Let n be the number of distinct variables occurring in ϕ and ψ. Then, by Theorem 3.2.10, $\mathcal{H}_{L}(n), r \models \phi \vee \psi$, where r is the root of $\mathcal{H}_{L}(n)$. Thus $\mathcal{H}_{L}(n), r \models \phi$ or $\mathcal{H}_{L}(n), r \models$ ψ, which by Theorem 3.2.10, shows that $L \vdash \phi$ or $L \vdash \psi$. Therefore, L has the disjunction property.

Since IPC has the disjunction property its n-Henkin models are rooted. Therefore, we can think of $\mathcal{H}(n)$ as it is shown in Figure 3.4. It is rooted and its upper part is isomorphic to $\mathcal{U}(n)$. We will see in the next section that for $n>1$, the cardinality of $H(n) \backslash U(n)$ is that of the continuum (see Theorem 3.4.21).

3.2.13. Theorem.

1. $H(n) \backslash U(n) \neq \emptyset$, for every $n \geq 1$.
2. $H(1) \backslash U(1)$ is a singleton set. Therefore, $\mathcal{H}(1)$ is isomorphic to the model shown in Figure 3.5.

Proof. (1) Suppose $H(n) \backslash U(n)=\emptyset$. Then $\mathbb{H}(n)$ is isomorphic to $\mathbb{U}(n)$. This implies that $\mathbb{U}(n)$ is a descriptive frame. Therefore, by Theorem 2.3.24(2) every point of $\mathbb{U}(n)$ is seen by some minimal point. This is a contradiction because, by the construction of $\mathbb{U}(n)$, we have $\min (\mathbb{U}(n))=\emptyset$.
(2) By $(1), H(1) \backslash U(1) \neq \emptyset$. By Theorems 3.2.9 and 3.1.10, for every $w \in$ $H(1) \backslash U(1)$ and $m \in \omega$, there is a point v of depth m such that $w R v$. Looking at the coloring of $\mathcal{U}(1)$, (see Figure 3.1) we see that for every $v \in U(1)$ with $d(v)>1$ we have $\operatorname{col}(v)=0$. By Theorem 3.2.9, for every $w \in H(1) \backslash U(1)$ there exists $v \in U(1)$ such that $w R v$ and $\operatorname{col}(v)=0$. Then $\operatorname{col}(w) \leq \operatorname{col}(v)$ and therefore $\operatorname{col}(w)=0$. Consider an equivalence relation E on $H(1)$ such that

$$
E=\{(w, w): w \in U(1)\} \cup\{(w, v): w, v \in H(1) \backslash U(1)\}
$$

Then E is a bisimulation equivalence. If E is proper, then by the Coloring Theorem, $\mathcal{H}(1)$ is not 1 -generated, which is a contradiction. Thus, E is not proper, which means that $H(1) \backslash U(1)$ is a singleton set.
3.2.14. Remark. We point out on some topological properties of the Esakia space corresponding to $\mathcal{H}(n)$. One can show that $U(n)$ is an open subset of $\mathcal{H}(n)$ consisting of all the points that are topologically isolated, and that the topological closure of $U(n)$ is equal to $H(n)$. Since $U(n)$ is open, the set $H(n) \backslash U(n)$ is closed. Therefore, it is also an Esakia space. Thus, by Theorem 2.3.24(1), every point in $H(n) \backslash U(n)$ sees some maximal point of $H(n) \backslash U(n)$. In fact, $H(n)$ is an order compactification of $U(n)$ with the discrete topology.

In the remainder of this section we state some properties of the n-universal and n-Henkin models that will be used subsequently. These results have previously appeared in [24, Sections 8.6 and 8.7], [57], [4], [116] and [108].

3.2.15. LEmMA.

1. Let \mathfrak{A} be a Heyting algebra and $v: \operatorname{Prop}_{m} \rightarrow \mathfrak{A}$ be a valuation on \mathfrak{A}. Then for every $n \in \omega$, there exist a subalgebra \mathfrak{A}^{\prime} of \mathfrak{A} and a valuation $v^{\prime}: \operatorname{Prop}_{n} \rightarrow \mathfrak{A}^{\prime}$ such that \mathfrak{A}^{\prime} is generated by $\left\{v^{\prime}(p): p \in \operatorname{Prop}_{n}\right\}$, and $v^{\prime}(p)=v(p)$ for every $p \in \mathrm{PROP}_{k}$, where $k=\min (m, n)$.
2. For every descriptive model $\mathfrak{M}=(\mathfrak{F}, V)$ and $n \in \omega$ there exists a generated submodel $\mathfrak{M}^{\prime}=\left(\mathfrak{F}^{\prime}, V^{\prime}\right)$ of $\mathcal{H}(n)$ such that \mathfrak{M}^{\prime} is a p-morphic image of \mathfrak{M}.

Proof. (1) Suppose $n>m$. Then we let \mathfrak{A}^{\prime} be the subalgebra of \mathfrak{A} generated by $\left\{v(p): p \in \operatorname{Prop}_{m}\right\}$, we let $v^{\prime}(p)=v(p)$ for all $p \in \operatorname{PROP}_{m}$ and $v^{\prime}(p)=v\left(p_{1}\right)$

Figure 3.5: The 1-Henkin model
for all other $p \in \operatorname{PROP}_{n}$. Now suppose $n \leq m$ then we let \mathfrak{A}^{\prime} be the subalgebra generated by $\left\{v(p): p \in \operatorname{PROP}_{n}\right\}$ and we let v^{\prime} be the restriction of v to PROP_{n}.
(2) follows from (1) and the duality between Heyting algebras and descriptive frames.
3.2.16. Theorem. For every finite frame \mathfrak{F}, there exist a valuation V and $n \leq$ $|\mathfrak{F}|$ such that $\mathfrak{M}=(\mathfrak{F}, V)$ is a generated submodel of $\mathcal{U}(n)$.

Proof. The result follows immediately from the fact that every finite algebra is finitely generated and hence is a homomorphic image of $F(n)$ for some $n \leq$ $|\mathfrak{F}|$. One can observe this directly too. For every point w of \mathfrak{F} introduce a new propositional variable p_{w} and define a valuation V on \mathfrak{F} by putting $V\left(p_{w}\right)=R(w)$. It is easy to see that the model (\mathfrak{F}, V) is a generated submodel of the $|\mathfrak{F}|$-universal model. ${ }^{4}$

Recall that \mathcal{L}_{n} is the propositional language built from $\mathrm{PROP}_{n}=\left\{p_{1}, \ldots, p_{n}\right\}$.
3.2.17. Corollary. For every formula ϕ in the language \mathcal{L}_{n}, we have

$$
\mathbf{I P C} \vdash \phi \quad \text { iff } \quad \mathcal{U}(n) \models \phi
$$

Proof. It is clear that if IPC $\vdash \phi$, then $\mathcal{U}(n) \models \phi$. Conversely, suppose IPC $\vdash \phi$. Then by Theorems 2.1.17 and 2.3.27, there exists a finite Heyting algebra \mathfrak{A} with a valuation $v: \mathrm{PROP}_{n} \rightarrow \mathfrak{A}$ such that $v(\phi) \neq 1_{\mathfrak{A}}$. Let \mathfrak{A}^{\prime} be the subalgebra of \mathfrak{A} generated by the elements $v\left(p_{1}\right), \ldots, v\left(p_{n}\right)$. Then \mathfrak{A}^{\prime} is finite, n-generated and

[^15]$v(\phi) \neq 1_{\mathfrak{A}}$. Therefore, \mathfrak{A}^{\prime} is a homomorphic image of $F(n)$. This, by Lemma 3.2.8, means that the corresponding model \mathfrak{M} is a generated submodel of $\mathcal{H}(n)$. Since \mathfrak{M} is finite, \mathfrak{M} is a generated submodel of $\mathcal{U}(n)$. This implies that $\mathcal{U}(n) \not \models \phi$.
3.2.18. Definition. We call a set $U \subseteq U(n)$ definable if there is a formula $\phi\left(p_{1}, \ldots, p_{n}\right)$ such that $U=\{w \in U(n): w \models \phi\}$. In other words, a subset U of $U(n)$ is definable if there exists a formula ϕ such that $U=V(\phi) \cap U(n)$, where V is the valuation of $\mathcal{H}(n)$.

3.2.19. Theorem.

1. For every $n>1$, the set $Z(n):=\{w \in U(n): \operatorname{col}(w)>\underbrace{0 \ldots 0}_{n \text { times }}\}$ is infinite.
2. For every $n>1$, there are continuum many distinct upsets of $\mathcal{U}(n)$.

Proof. (1) Consider the maximal points w and v of $\mathcal{U}(n)$ such that $\operatorname{col}(w)>$ $\operatorname{col}(v)>\underbrace{0 \ldots 0}_{n \text { times }}$. It is easy to see that if $n>1$, such w and v always exist (if $n=2$ we can take the points w and v such that $\operatorname{col}(w)=11$ and $\operatorname{col}(v)=10)$. Let \mathfrak{M} be the model obtained from the 1-universal model $\mathcal{U}(1)$ (shown in Figure 3.1) by replacing everywhere the color 0 by $\operatorname{col}(v)$ and the color 1 by $\operatorname{col}(w)$. Then it follows from Definition 3.2.3 that \mathfrak{M} is a generated submodel of $\mathcal{U}(n)$. Every point of \mathfrak{M} belongs to $Z(n)$. Therefore, $Z(n)$ is infinite.
(2) We will construct an infinite antichain of points of $\mathcal{U}(n)$. By the construction of $\mathcal{U}(n)$, for every $v \in Z(n)$ there exists u such that $u \prec v$ (that is, v totally covers u) and $\operatorname{col}(u)=\underbrace{0 \ldots 0}_{n \text { times }}$. Let $T(n)$ be the set of all such u 's. Now we show that $T(n)$ forms an antichain. Suppose $u_{1}, u_{2} \in T(n), u_{1} \neq u_{2}$ and $u_{1} R u_{2}$. Let $u_{1}^{\prime} \in Z(n)$ be the point that totally covers u_{1}. Then, we have $u_{1}^{\prime} R u_{2}$ and $\operatorname{col}\left(u_{1}^{\prime}\right) \leq \operatorname{col}\left(u_{2}\right)$. This is a contradiction since $\operatorname{col}\left(u_{1}^{\prime}\right)>\operatorname{col}\left(u_{1}\right)=\operatorname{col}\left(u_{2}\right)$. Therefore, $T(n)$ is an antichain. This implies that for every $U, U^{\prime} \subseteq T(n)$, if $U \neq U^{\prime}$, then $R(U) \neq R\left(U^{\prime}\right)$. By (1), $Z(n)$ is countably infinite. Thus, $T(n)$ is also infinite, and so there are continuum many distinct upsets of $\mathcal{U}(n)$.

By Theorem 3.2.19(2), there are continuum many upsets of $\mathcal{U}(n)$, whereas there are only countably many formulas in n variables. Therefore, not every upset of $\mathcal{U}(n)$ is definable.
3.2.20. Theorem. The Heyting algebra of all definable upsets of the n-universal model is isomorphic to the free n-generated Heyting algebra.

Proof. Because of Theorem 3.2.9, all we need to show is that for all formulas ϕ and ψ in n variables, if $V(\phi) \neq V(\psi)$ in $\mathcal{H}(n)$, then $V(\phi) \cap U(n) \neq V(\psi) \cap U(n)$, where V is the valuation of $\mathcal{H}(n)$. If $V(\phi) \cap U(n)=V(\psi) \cap U(n)$, then $\mathcal{U}(n) \models$ $\phi \leftrightarrow \psi$. This by Corollary 3.2.17, implies IPC $\vdash \phi \leftrightarrow \psi$. Thus, $\mathcal{H}(n) \models \phi \leftrightarrow \psi$, which means that $V(\phi)=V(\psi)$.

3.3 The Jankov-de Jongh and subframe formulas

Next we discuss three types of frame based formulas. We define the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas. In subsequent sections we show how to use these formulas to axiomatize large classes of intermediate logics.

3.3.1 Formulas characterizing point generated subsets

In this section we introduce the so-called de Jongh formulas and prove that they characterize point-generated submodels of n-Henkin models. We also show that the de Jongh formulas do the same job as Jankov's characteristic formulas for IPC. The de Jongh formulas were introduced in [69, §4], see also [59, §2.5].
3.3.1. Definition. Let w be a point in the n-universal model (a point of finite depth in the n-Henkin model). We inductively define formulas ϕ_{w} and ψ_{w}. If $d(w)=1$, then let

$$
\phi_{w}:=\bigwedge\left\{p_{k}: w \models p_{k}\right\} \wedge \bigwedge\left\{\neg p_{j}: w \not \vDash p_{j}\right\} \text { for each } k, j=1, \ldots, n
$$

and

$$
\psi_{w}:=\neg \phi_{w}
$$

If $d(w)>1$, then let $\left\{w_{1}, \ldots, w_{m}\right\}$ be the set of all immediate successors of w. We let

$$
\operatorname{prop}(w):=\left\{p_{k}: w \models p_{k}\right\}
$$

and

$$
\text { newprop }(w):=\left\{p_{k}: w \not \vDash p_{k} \text { and } w_{i} \models p_{k} \text { for each } i \text { such that } 1 \leq i \leq m\right\}
$$

We define ϕ_{w} and ψ_{w} by

$$
\phi_{w}:=\bigwedge \operatorname{prop}(w) \wedge\left(\left(\bigvee \text { newprop }(w) \vee \bigvee_{i=1}^{m} \psi_{w_{i}}\right) \rightarrow \bigvee_{i=1}^{m} \phi_{w_{i}}\right)
$$

and

$$
\psi_{w}:=\phi_{w} \rightarrow \bigvee_{i=1}^{m} \phi_{w_{i}}
$$

We call ϕ_{w} and ψ_{w} the de Jongh formulas.
3.3.2. Theorem. For every $w \in U(n)(w \in H(n)$ such that $d(w)$ is finite $)$ we have that:

- $R(w)=\left\{v \in H(n): v \models \phi_{w}\right\}$, i.e., $V\left(\phi_{w}\right)=R(w)$.
- $H(n) \backslash R^{-1}(w)=\left\{v \in H(n): v \models \psi_{w}\right\}$, i.e., $V\left(\psi_{w}\right)=H(n) \backslash R^{-1}(w)$.

Proof. We prove the theorem by induction on the depth of w. Let the depth of w be 1 . This means, that w belongs to the maximum of $\mathcal{H}(n)$. By Definition 3.2.3(1) for every $v \in \max (\mathcal{H}(n))$ such that $w \neq v$ we have $\operatorname{col}(v) \neq \operatorname{col}(w)$ and thus $v \not \vDash \phi_{w}$. Therefore, if $u \in H(n)$ is such that $u R v$ for some maximal point v of $\mathcal{H}(n)$ distinct from w, then $u \not \models \phi_{w}$. Finally, assume that $v R w$ and v is not related to any other maximal point. By Definition 3.2.3(2) and (3), this implies that $\operatorname{col}(v)<\operatorname{col}(w)$. Therefore, $v \not \models \phi_{w}$, and so $v \models \phi_{w}$ iff $v=w$. Thus, $V\left(\phi_{w}\right)=\{w\}$. Consequently, by the definition of the intuitionistic negation, we have that $V\left(\psi_{w}\right)=V\left(\neg \phi_{w}\right)=H(n) \backslash R^{-1}\left(V\left(\phi_{w}\right)\right)=H(n) \backslash R^{-1}(w)$.

Now suppose the depth of w is greater than 1 and the theorem holds for the points with depth strictly less than $d(w)$. This means that the theorem holds for every immediate successor w_{i} of w, i.e., for each $i=1, \ldots, m$ we have $V\left(\phi_{w_{i}}\right)=R\left(w_{i}\right)$ and $V\left(\psi_{w_{i}}\right)=H(n) \backslash R^{-1}\left(w_{i}\right)$.

First note that, by the induction hypothesis, $w \not \vDash \bigvee_{i=1}^{m} \psi_{w_{i}}$; hence, by the definition of $\operatorname{newprop}(w)$, we have $w \not \vDash \bigvee \operatorname{newprop}(w) \vee \bigvee_{i=1}^{m} \psi_{w_{i}}$. Therefore, $w \models \phi_{w}$, and so, by the persistence of intuitionistic valuations, $v \models \phi_{w}$ for every $v \in R(w)$.

Now let $v \notin R(w)$. First assume that $v \in U(n)$. If $v \not \models \bigwedge \operatorname{prop}(w)$, then $v \not \vDash \phi_{w}$. Thus, suppose $v \models \bigwedge \operatorname{prop}(w)$. This means that $\operatorname{col}(v) \geq \operatorname{col}(w)$. Then two cases are possible:

Case 1. $v \in \bigcup_{i=1}^{m} H(n) \backslash R^{-1}\left(w_{i}\right)$. Then by the induction hypothesis, $v \models$ $\bigvee_{i=1}^{m} \psi_{w_{i}}$ and since $v \notin R(w)$, we have $v \not \models \bigvee_{i=1}^{m} \phi_{w_{i}}$. Therefore, $v \not \models \phi_{w}$.

Case 2. $v \notin \bigcup_{i=1}^{m} H(n) \backslash R^{-1}\left(w_{i}\right)$. Then $v R w_{i}$ for every $i=1, \ldots, m$. If $v R v^{\prime}$ and $v^{\prime} \in \bigcup_{i=1}^{m} H(n) \backslash R^{-1}\left(w_{i}\right)$, then, by Case $1, v^{\prime} \not \vDash \phi_{w}$, and so $v \not \vDash \phi_{w}$. Now assume that for every $v^{\prime} \in U(n), v R v^{\prime}$ implies $v^{\prime} \notin \bigcup_{i=1}^{m} H(n) \backslash R^{-1}\left(w_{i}\right)$. By the construction of $\mathcal{U}(n)$ (see Definition 3.2.3(3)), there exists a point $u \in U(n)$ such that $u \prec\left\{w_{1}, \ldots, w_{m}\right\}$ and $v R u$. We again specify two cases.

Case 2.1. $u=w$. Then there exists $t \in U(n)$ such that $t \prec w$ and $v R t$. So, $\operatorname{col}(v) \leq \operatorname{col}(t)$ and by Definition 3.2.3(2), $\operatorname{col}(t)<\operatorname{col}(w)$, which is a contradiction.

Case 2.2. $u \neq w$. Since $v R u$ and $\operatorname{col}(v) \geq \operatorname{col}(w)$, we have $\operatorname{col}(u) \geq \operatorname{col}(v) \geq$ $\operatorname{col}(w)$. If $\operatorname{col}(u)>\operatorname{col}(w)$, then there exists p_{j}, for some $j=1, \ldots, n$, such that $u \models p_{j}$ and $w \not \vDash p_{j}$. Then $w_{i} \models p_{j}$, for every $i=1, \ldots, m$, and hence $p_{j} \in \operatorname{newprop}(w)$. Therefore, $u \models \bigvee$ newprop (w) and $u \not \models \bigvee_{i=1}^{m} \phi_{w_{i}}$. Thus, $u \not \vDash \phi_{w}$ and so $v \not \vDash \phi_{w}$. Now suppose $\operatorname{col}(u)=\operatorname{col}(w)$. Then by Definition 3.2.3(3), $u=w$ which is a contradiction.

Therefore, for every point v of $U(n)$ we have:

$$
v \models \phi_{w} \text { iff } w R v .
$$

Finally, if $v \in H(n) \backslash U(n)$, by Theorem 3.2.9, v sees a point $v^{\prime} \in U(n)$ of depth greater than $d(w)$. Then, $v^{\prime} \notin \phi_{w}$. Therefore $v \not \vDash \phi_{w}$ and $V\left(\phi_{w}\right)=R(w)$.

Now we show that ψ_{w} defines $H(n) \backslash R^{-1}(w)$. For every $v \in H(n), v \notin \psi_{w}$ iff there exists $u \in H(n)$ such that $v R u$ and $u \models \phi_{w}$ and $u \not \vDash \bigvee_{i=1}^{m} \phi_{w_{i}}$, which holds iff $u \in R(w)$ and $u \notin \bigcup_{i=1}^{m} R\left(w_{i}\right)$, which, in turn, holds iff $u=w$. Hence, $v \not \vDash \psi_{w}$ iff $v \in R^{-1}(w)$. This finishes the proof of the theorem.

3.3.2 The Jankov-de Jongh theorem

In [64] Jankov introduced the so-called characteristic formulas and proved Theorem 3.3.3 formulated below. In this subsection we show that the de Jongh formulas do the same job as Jankov's characteristic formulas. We first state the Jankov-de Jongh theorem. Note that Jankov's original result was formulated in terms of Heyting algebras. We will formulate it in logical terms. Most of the results in this and subsequent sections have their natural algebraic counterparts but we will not discuss these here. For an algebraic treatment of the Jankov formulas we refer to $[107, \S 5.2]$ and $[121]$. Note that analogues of these formulas for transitive modal logic were introduced by Fine [41]. In modal logic these formulas are called the Jankov-Fine formulas (see Chapter 8, for the details). Now we formulate the Jankov-de Jongh theorem; see [64], [69] and [24, Proposition 9.41].
3.3.3. Theorem. For every finite rooted frame \mathfrak{F} there exists a formula $\chi(\mathfrak{F})$ such that for every descriptive frame \mathfrak{G} :
$\mathfrak{G} \not \vDash \chi(\mathfrak{F})$ iff \mathfrak{F} is a p-morphic image of a generated subframe of \mathfrak{G}.
Here we give a proof of Theorem 3.3.3 using the de Jongh formulas. An alternative proof is given in $[24, \S 9.4]$, where Jankov formulas are treated as particular instances of more general "canonical formulas". First we prove one additional lemma.
3.3.4. Lemma. A descriptive frame \mathfrak{F} is a p-morphic image of a generated subframe of a descriptive frame \mathfrak{G} iff \mathfrak{F} is a generated subframe of a p-morphic image of \mathfrak{G}.

Proof. The proof follows from Theorem 2.3.7 and a result in universal algebra which says that if a variety \mathbf{V} has the congruence extension property, then for every algebra $\mathfrak{A} \in \mathbf{V}$ we have $\mathbf{H S}(\mathfrak{A})=\mathbf{S H}(\mathfrak{A})$. It is well known that the variety of Heyting algebras has the congruence extension property [2, §4, p. 178]. The result now follows from the duality established in Theorem 2.3.7.

Proof of Theorem 3.3.3

Suppose \mathfrak{F} is a finite rooted frame. By Theorem 3.2.16, there exists an $n \in \omega$ and a valuation V on \mathfrak{F} such that (\mathfrak{F}, V) is (isomorphic to) a generated submodel of $\mathcal{U}(n)$. Let $w \in U(n)$ be the root of \mathfrak{F}. Then \mathfrak{F} is isomorphic to \mathfrak{F}_{w}. We show that we can take ψ_{w} as $\chi(\mathfrak{F})$. By Lemma 3.3.4, for proving Theorem 3.3.3 it is sufficient to show that for every frame \mathfrak{G} :
$\mathfrak{G} \not \models \psi_{w}$ iff \mathfrak{F}_{w} is a generated subframe of a p-morphic image of \mathfrak{G}.
Suppose \mathfrak{F}_{w} is a generated subframe of a p-morphic image of \mathfrak{G}. Clearly, $w \not \models \psi_{w}$. Therefore, $\mathfrak{F}_{w} \not \vDash \psi_{w}$, and since p-morphisms preserve the validity of formulas, $\mathfrak{G} \not \models \psi_{w}$.

Now suppose $\mathfrak{G} \notin \psi_{w}$. Then, there exists a model $\mathfrak{M}=\left(\mathfrak{G}, V_{1}\right)$ such that $\mathfrak{M} \not \vDash \psi_{w}$. By Lemma 3.2.15(2), there exists a generated submodel $\mathfrak{M}^{\prime}=\left(\mathfrak{G}^{\prime}, V^{\prime}\right)$ of $\mathcal{H}(n)$ such that \mathfrak{M}^{\prime} is a p-morphic image of \mathfrak{M}. This implies that $\mathfrak{M}^{\prime} \not \vDash \psi_{w}$. Now, $\mathfrak{M}^{\prime} \not \vDash \psi_{w}$ iff there exists v in \mathfrak{G}^{\prime} such that $v R w$, which holds iff w belongs to \mathfrak{G}^{\prime}. Therefore, w is in \mathfrak{G}^{\prime}, and \mathfrak{F}_{w} is a generated subframe of \mathfrak{G}^{\prime}. Thus, \mathfrak{F}_{w} is a generated subframe of a p-morphic image of \mathfrak{G}.
3.3.5. Remark. We point out one essential difference between the Jankov formulas and the de Jongh formulas: the number of propositional variables used in the Jankov formula depends on the cardinality of \mathfrak{F}, whereas the number of variables in the de Jongh formula is the smallest n such that $\mathcal{U}(n)$ contains \mathfrak{F} as a generated subframe. Therefore, in general, the de Jongh formula contains fewer variables than the Jankov formula. From now on we will use the general term "the Jankov-de Jongh formula" to refer to the formulas having the property formulated in Theorem 3.3.3 and denote them by $\chi(\mathfrak{F})$.

3.3.3 Subframes, subframe and cofinal subframe formulas

In this section we introduce subframe formulas and cofinal subframe formulas. The subframe formulas for modal logic were first defined by Fine [42]. Subframe formulas for intuitionistic logic were introduced by Zakharyaschev [133]. Zakharyaschev also defined cofinal subframe formulas for intuitionistic and transitive modal logic [135]. For an overview of these results see [24, §9.4]. We define the subframe and cofinal subframe formulas differently and connect them to the NNIL formulas of [127], i.e., the formulas that are preserved under submodels. For an algebraic approach to subframe formulas we refer to [9].

3.3.6. DEfinition.

1. Let $\mathfrak{F}=(W, R)$ be a Kripke frame. A frame $\mathfrak{F}^{\prime}=\left(W^{\prime}, R^{\prime}\right)$ is called a subframe of \mathfrak{F} if $W^{\prime} \subseteq W$ and R^{\prime} is the restriction of R to W^{\prime}.
2. Let $\mathfrak{F}=(W, R, \mathcal{P})$ be a descriptive frame. A descriptive frame $\mathfrak{F}^{\prime}=$ $\left(W^{\prime}, R^{\prime}, \mathcal{P}^{\prime}\right)$ is called a subframe of \mathfrak{F} if $\left(W^{\prime}, R^{\prime}\right)$ is a subframe of (W, R), $\mathcal{P}^{\prime}=\left\{U \cap W^{\prime}: U \in \mathcal{P}\right\}$ and the following condition, which we call the topo-subframe condition, is satisfied:

For every $U \subseteq W^{\prime}$ such that $W^{\prime} \backslash U \in \mathcal{P}^{\prime}$ we have $W \backslash R^{-1}(U) \in \mathcal{P}$.
In topological terms the formulation becomes simpler. An Esakia space $\mathcal{X}^{\prime}=$ $\left(X^{\prime}, \mathcal{O}^{\prime}, R^{\prime}\right)$ is a subframe of an Esakia space $\mathcal{X}=(X, \mathcal{O}, R)$ if $\left(X^{\prime}, R^{\prime}\right)$ is a subframe of (X, R), and $\left(X^{\prime}, \mathcal{O}^{\prime}\right)$ is a subspace of $(X, \mathcal{O}),{ }^{5}$ and

For every clopen U of \mathcal{X}^{\prime} we have that $R^{-1}(U)$ is a clopen subset of \mathcal{X}.
3.3.7. Remark. The reason for adding the topo-subframe condition to the definition of subframes of descriptive frames is explained by the next proposition. The topo-subframe condition allows us to extend a descriptive valuation V^{\prime} defined on a subframe \mathfrak{F}^{\prime} of a descriptive frame \mathfrak{F} to a descriptive valuation V of \mathfrak{F} such that the restriction of V to \mathfrak{F}^{\prime} is equal to V^{\prime}. A correspondence between subframes and nuclei (special operations on Heyting algebras) is established in [9]. This correspondence gives another motivation for defining the subframes of descriptive frames in this way.

Now we prove one of the main properties of subframes. Note that the proof makes essential use of the topo-subframe condition.
3.3.8. Proposition. Let $\mathfrak{F}=(W, R, \mathcal{P})$ and $\mathfrak{F}^{\prime}=\left(W^{\prime}, R^{\prime}, \mathcal{P}^{\prime}\right)$ be descriptive frames. If \mathfrak{F}^{\prime} is a subframe of \mathfrak{F}, then for every descriptive valuation V^{\prime} on \mathfrak{F}^{\prime} there exists a descriptive valuation V on \mathfrak{F} such that the restriction of V to W^{\prime} is V^{\prime}.

Proof. For every $p \in$ Prop let $V(p)=W \backslash R^{-1}\left(W^{\prime} \backslash V^{\prime}(p)\right)$. By the toposubframe condition, $V(p) \in \mathcal{P}$. Now suppose $x \in W^{\prime}$. Then $x \notin V(p)$ iff $x \in R^{-1}\left(W^{\prime} \backslash V^{\prime}(p)\right)$ iff (there is $y \in W^{\prime}$ such that $y \notin V^{\prime}(p)$ and $x R y$) iff $x \notin V^{\prime}(p)$, since $V^{\prime}(p)$ is an upset of \mathfrak{F}^{\prime}. Therefore, $V(p) \cap W^{\prime}=V^{\prime}(p)$.

Next we introduce cofinal subframes.

[^16]
3.3.9. Definition.

1. Let (W, R) and $\left(W^{\prime}, R^{\prime}\right)$ be Kripke frames. \mathfrak{F}^{\prime} is called a cofinal subframe of \mathfrak{F} if \mathfrak{F}^{\prime} is a subframe of \mathfrak{F} and $R\left(W^{\prime}\right) \subseteq R^{-1}\left(W^{\prime}\right)$, that is, for every $w, v \in W$ if $w \in W^{\prime}$ and $w R v$, there exists $u \in W^{\prime}$ such that $v R u$.
2. Let $\mathfrak{F}=(W, R, \mathcal{P})$ be a descriptive frame. A subframe $\mathfrak{F}^{\prime}=\left(W^{\prime}, R^{\prime}, \mathcal{P}^{\prime}\right)$ of \mathfrak{F} is called a cofinal subframe if $\left(W^{\prime}, R^{\prime}\right)$ is a cofinal subframe of (W, R).

We extend the notion of subframes and cofinal subframes to descriptive models and Kripke models.
3.3.10. Definition. Let $\mathfrak{M}=(\mathfrak{F}, V)$ and $\mathfrak{M}^{\prime}=\left(\mathfrak{F}^{\prime}, V^{\prime}\right)$ be (descriptive or Kripke) models. We say that \mathfrak{M}^{\prime} is a (cofinal) submodel of \mathfrak{M} if \mathfrak{F}^{\prime} is a (cofinal) subframe of \mathfrak{F} and V^{\prime} is the restriction of V.

Let \mathfrak{F} be a finite rooted frame. For every point w of \mathfrak{F} we introduce a propositional letter p_{w} and let V be such that $V\left(p_{w}\right)=R(w)$. We denote by \mathfrak{M} the model (\mathfrak{F}, V). It is easy to see that \mathfrak{M} is isomorphic to a generated submodel of the n-Henkin model, where $n=|\mathfrak{F}|$ (see Theorem 3.2.16).
3.3.11. Proposition. Let (\mathfrak{F}, V) be as above. Then for every $w, v \in W$ we have:

1. $w \neq v$ and $w R v$ iff $\operatorname{col}(w)<\operatorname{col}(v)$,
2. $w=v i f f \operatorname{col}(w)=\operatorname{col}(v)$.

Proof. The proof is just spelling out the definitions.
Next we inductively define the subframe formula $\beta(\mathfrak{F})$. Note that this definition is different from that of $[24, \S 9.4]$.

For every $v \in W$ let

$$
\operatorname{notprop}(v):=\left\{p_{k}: v \not \models p_{k}, k \leq n\right\}
$$

3.3.12. Definition. We define $\beta(\mathfrak{F})$ by induction. If v is a maximal point of \mathfrak{M} then let

$$
\beta(v):=\bigwedge \operatorname{prop}(v) \rightarrow \bigvee n o t p r o p(v)
$$

Let w be a point in \mathfrak{M} and let w_{1}, \ldots, w_{m} be all the immediate successors of w. We assume that $\beta\left(w_{i}\right)$ is already defined, for every w_{i}. We define $\beta(w)$ by

$$
\beta(w):=\bigwedge \operatorname{prop}(w) \rightarrow\left(\bigvee \operatorname{notprop}(w) \vee \bigvee_{i=1}^{m} \beta\left(w_{i}\right)\right)
$$

Let r be the root of \mathfrak{F}. We define $\beta(\mathfrak{F})$ by

$$
\beta(\mathfrak{F}):=\beta(r) .
$$

We call $\beta(\mathfrak{F})$ the subframe formula of \mathfrak{F}.

We will need the next three lemmas for establishing the crucial property of subframe formulas and cofinal subframe formulas.
3.3.13. Lemma. Let $\mathfrak{F}=(W, R)$ be a finite rooted frame and let V be defined as above. Let $\mathfrak{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ be an arbitrary (descriptive or Kripke) model. For every $w, v \in W$ and $x \in W^{\prime}$, if $w R v$, then

$$
\mathfrak{M}^{\prime}, x \not \models \beta(w) \text { implies } \mathfrak{M}^{\prime}, x \not \models \beta(v) .
$$

Proof. The proof is a simple induction on the depth of v. If $d(v)=d(w)-1$ and $w R v$, then v is an immediate successor of w. Then $\mathfrak{M}^{\prime}, x \not \vDash \beta(w)$ implies $\mathfrak{M}^{\prime}, x \not \vDash \beta(v)$, by the definition of $\beta(w)$. Now suppose $d(v)=d(w)-(k+1)$ and the lemma is true for every u such that $w R u$ and $d(u)=d(w)-k$, for every k. Let u^{\prime} be an immediate predecessor of v such that $w R u^{\prime}$. Such a point clearly exists since we have $w R v$. Then $d\left(u^{\prime}\right)=d(w)-k$ and by the induction hypothesis $\mathfrak{M}, x \nLeftarrow \beta\left(u^{\prime}\right)$. This, by definition of $\beta\left(u^{\prime}\right)$, means that $\mathfrak{M}^{\prime}, x \not \vDash \beta(v)$.
3.3.14. Lemma. Let $\mathfrak{M}_{1}=\left(W_{1}, R_{1}, \mathcal{P}_{1}, V_{1}\right)$ and $\mathfrak{M}_{2}=\left(W_{2}, R_{2}, \mathcal{P}_{2}, V_{2}\right)$ be descriptive models. Let \mathfrak{M}_{2} be a submodel of \mathfrak{M}_{1}. Then for every finite rooted frame $\mathfrak{F}=(W, R)$ we have $\mathfrak{M}_{2} \not \models \beta(\mathfrak{F})$ implies $\mathfrak{M}_{1} \not \models \beta(\mathfrak{F})$.

Proof. We prove the lemma by induction on the depth of \mathfrak{F}. If the depth of \mathfrak{F} is 1 , i.e., it is a reflexive point, then the lemma clearly holds. Now assume that it holds for every rooted frame of depth less than the depth of \mathfrak{F}. Let r be the root of \mathfrak{F}. Then $\mathfrak{M}_{2} \not \vDash \beta(\mathfrak{F})$ means that there is a point $t \in W_{2}$ such that $\mathfrak{M}_{2}, t \models \bigwedge \operatorname{prop}(r), \mathfrak{M}_{2}, t \not \models \bigvee$ notprop (r) and $\mathfrak{M}_{2}, t \not \vDash \beta\left(r^{\prime}\right)$, for every immediate successor r^{\prime} of r. By the induction hypothesis, we get that $\mathfrak{M}_{1}, t \not \vDash \beta\left(r^{\prime}\right)$. Since $V_{2}(p)=V_{1}(p) \cap W_{2}$ we also have $\mathfrak{M}_{1}, t \not \models \bigvee$ notprop (r) and $\mathfrak{M}_{1}, t \models \bigwedge p r o p(r)$. Therefore, $\mathfrak{M}_{1}, t \notin \beta(\mathfrak{F})$.

Subsequently we will use the following auxiliary lemma.
3.3.15. Lemma. Let $\mathfrak{F}=(W, R, \mathcal{P}, V)$ be a descriptive model and let $\mathcal{X}=$ (X, \mathcal{O}, R, V) be an Esakia space with a valuation.

1. For every color $c=i_{1} \ldots i_{n}$ the set $C=\{w \in W: \operatorname{col}(w)=c\}$ is a finite intersection of elements of $\mathcal{P} \cup-\mathcal{P}$, where $-\mathcal{P}=\{W \backslash U: U \in \mathcal{P}\}$.
2. For every color $c=i_{1} \ldots i_{n}$ the set $C=\{x \in X: \operatorname{col}(x)=c\}$ is a clopen of \mathcal{X}.

Proof. (1) It is a easy to see that $C=\bigcap_{k=1}^{n} I^{\epsilon_{k}}$, where

$$
I^{\epsilon_{k}}= \begin{cases}V\left(p_{k}\right) & \text { if } \epsilon_{k}=1, \\ W \backslash V\left(p_{k}\right) & \text { if } \epsilon_{k}=0\end{cases}
$$

(2) The result follows from (1) and the duality between descriptive frames and Esakia spaces, see Section 2.3.3.

The next theorem states the crucial property of subframe formulas.
3.3.16. Theorem. Let $\mathfrak{G}=\left(W^{\prime}, R^{\prime}, \mathcal{P}^{\prime}\right)$ be a descriptive frame and let $\mathfrak{F}=$ (W, R) be a finite rooted frame. Then
$\mathfrak{G} \not \vDash \beta(\mathfrak{F})$ iff \mathfrak{F} is a p-morphic image of a subframe of \mathfrak{G}.
Proof. Suppose $\mathfrak{G} \notin \beta(\mathfrak{F})$. Then there exists a valuation V^{\prime} on \mathfrak{G} such that $\left(\mathfrak{G}, V^{\prime}\right) \notin \beta(\mathfrak{F})$. For every $w \in W$, let $\left\{w_{1}, \ldots w_{m}\right\}$ denote the set of all immediate successors of w. Let p_{1}, \ldots, p_{n} be the propositional variables occurring in $\beta(\mathfrak{F})$ (in fact $n=|W|$). Therefore, V^{\prime} defines a coloring of \mathfrak{G}. Let

$$
P_{w}:=\left\{x \in W^{\prime}: \operatorname{col}(x)=\operatorname{col}(w) \text { and } x \not \models \bigvee_{i=1}^{m} \beta\left(w_{i}\right)\right\}
$$

Let $Y:=\bigcup_{w \in W} P_{w}$ and let $\mathfrak{H}:=(Y, S, \mathcal{Q})$, where S is the restriction of R^{\prime} to Y and $\mathcal{Q}=\left\{U^{\prime} \cap Y: U^{\prime} \in \mathcal{P}^{\prime}\right\}$. We show that \mathfrak{H} is a subframe of \mathfrak{G} and \mathfrak{F} is a p-morphic image of \mathfrak{H}.

First we show that \mathfrak{H} is a subframe of \mathfrak{G}. The definition of \mathfrak{H} ensures that (Y, S) is a subframe of $\left(W^{\prime}, R^{\prime}\right)$. We need to show that \mathfrak{H} satisfies the toposubframe condition. To simplify the proof we will use the topological terminology. First note that for every $w \in W, P_{w}=C_{w} \cap D_{w}$, where $C_{w}=\left\{x \in W^{\prime}: \operatorname{col}(x)=\right.$ $\operatorname{col}(w)\}$ and $D_{w}=\left\{x \in W^{\prime}: x \not \models \bigvee_{i=1}^{m} \beta\left(w_{i}\right)\right\}$. By Lemma 3.3.15, C_{w} is a clopen set. For every $w \in W$ we have $D_{w} \in-\mathcal{P}^{\prime}$, i.e., $W \backslash D_{w} \in \mathcal{P}^{\prime}$. This means that D_{w} is also clopen. Hence P_{w} is an intersection of two clopens and thus is again a clopen. Then Y is a finite union of clopens and therefore is also a clopen. Thus, every clopen subset U of \mathfrak{H} is a clopen subset of \mathfrak{G} and by Definition 2.3.20(5), $R^{-1}(U)$ is clopen. Therefore, \mathfrak{H} satisfies the topo-subframe condition and \mathfrak{H} is a subframe of \mathfrak{G}.

Define a map $f: Y \rightarrow W$ by

$$
f(x)=w \text { if } x \in P_{w} .
$$

We show that f is a well-defined onto p-morphism. By Proposition 3.3.11, distinct points of W have distinct colors. Therefore, $P_{w} \cap P_{w^{\prime}}=\emptyset$ if $w \neq w^{\prime}$. This means that f is well defined.

Now we prove that f is onto. By the definition of f, it is sufficient to show that $P_{w} \neq \emptyset$ for every $w \in W$. If r is the root of \mathfrak{F}, then since $\left(\mathfrak{G}, V^{\prime}\right) \not \vDash \beta(\mathfrak{F})$, there exists a point $x \in W^{\prime}$ such that $x \models \bigwedge \operatorname{prop}(r)$ and $x \not \models \bigvee \operatorname{notprop}(r)$ and $x \not \vDash \bigvee_{i=1}^{m} \beta\left(r_{i}\right)$. This means that $x \in P_{r}$. If w is not the root of \mathfrak{F} then we have $r R w$. Therefore, by Lemma 3.3.13, we have $x \not \vDash \beta(w)$. This means that there is a successor y of x such that $y \models \bigwedge \operatorname{prop}(w), y \not \models \bigvee \operatorname{notprop}(w)$ and $y \not \models \beta\left(w_{i}\right)$, for every immediate successor w_{i} of w. Therefore, $y \in P_{w}$ and f is surjective.

Next assume that $x, y \in Y$ and $x S y$. Note that by the definition of f, for every $t \in Y$ we have

$$
\operatorname{col}(t)=\operatorname{col}(f(t)) .
$$

Obviously, $x S y$ implies $\operatorname{col}(x) \leq \operatorname{col}(y)$. Therefore, $\operatorname{col}(f(x))=\operatorname{col}(x) \leq \operatorname{col}(y)=$ $\operatorname{col}(f(y))$. By Proposition 3.3.11, this yields $f(x) R f(y)$. Now suppose $f(x) R f(y)$. Then by the definition of f we have that $x \not \vDash \beta(f(x))$ and by Lemma 3.3.13, $x \not \vDash \beta(f(y))$. This means that there is $z \in W^{\prime}$ such that $x R^{\prime} z, \operatorname{col}(z)=\operatorname{col}(f(y))$, and $z \not \vDash \beta(u)$, for every immediate successor u of $f(y)$. Thus, $z \in P_{f(y)}$ and $f(z)=f(y)$. Therefore, \mathfrak{F} is a p-morphic image of \mathfrak{H}.

Conversely, suppose \mathfrak{H} is a subframe of a descriptive frame \mathfrak{G} and $f: \mathfrak{H} \rightarrow \mathfrak{F}$ is a p-morphism. Clearly, $\mathfrak{F} \not \vDash \beta(\mathfrak{F})$ and since f is a p-morphism, we have that $\mathfrak{H} \not \vDash \beta(\mathfrak{F})$. This means that there is a valuation V^{\prime} on \mathfrak{H} such that $\left(\mathfrak{H}, V^{\prime}\right) \not \vDash$ $\beta(\mathfrak{F})$. By Proposition 3.3.8, V^{\prime} can be extended to a valuation V on \mathfrak{G} such that the restriction of V to \mathfrak{G}^{\prime} is equal to V^{\prime}. This, by Lemma 3.3.14, implies that $\mathfrak{G} \notin \beta(\mathfrak{F})$.
3.3.17. Remark. We remark on a close connection between subframe formulas and NNIL formulas introduced in [127]. NNIL formulas are the formulas without nestings of implications to the left. In [127] it is proved that NNIL formulas are exactly those formulas that are preserved under taking submodels, and therefore they are also preserved under taking subframes. It is easy to see that every $\beta(\mathfrak{F})$ is a NNIL formula. It will follow from Theorem 3.4.16 that every subframe logic is axiomatized by NNIL formulas.

Next we define cofinal subframe formulas in a fashion similar to subframe formulas. Let \mathfrak{F} be a finite rooted frame. For every point w of \mathfrak{F} introduce a propositional letter p_{w} and let V be such that $V\left(p_{w}\right)=R(w)$. For the root r of \mathfrak{F} let r_{1}, \ldots, r_{m} be the immediate successors of r and u_{1}, \ldots, u_{k} be the maximal points of \mathfrak{F}. For every $w \in W$ let $\beta(w)$ be as in Definition 3.3.12. Let

$$
\begin{aligned}
\mu(\mathfrak{F}):= & \neg \neg\left(\left(\bigwedge \operatorname{prop}\left(u_{1}\right) \wedge \neg \bigvee \text { notprop }\left(u_{1}\right)\right) \vee \ldots \vee\right. \\
& \left.\left(\bigwedge \operatorname{prop}\left(u_{k}\right) \wedge \neg \bigvee \text { notprop }\left(u_{k}\right)\right)\right) .
\end{aligned}
$$

We are now ready to define cofinal subframe formulas.
3.3.18. Definition. The formula

$$
\gamma(\mathfrak{F}):=(\bigwedge \operatorname{prop}(r) \wedge \mu(\mathfrak{F})) \rightarrow\left(\bigvee \operatorname{notprop}(r) \vee \bigvee_{i=1}^{m} \beta\left(r_{i}\right)\right)
$$

is called the cofinal subframe formula of \mathfrak{F}.
3.3.19. Theorem. Let $\mathfrak{G}=\left(W^{\prime}, R^{\prime}, \mathcal{P}^{\prime}\right)$ be a descriptive frame and $\mathfrak{F}=(W, R)$ a finite rooted frame. Then
$\mathfrak{G} \neq \gamma(\mathfrak{F})$ iff \mathfrak{F} is a p-morphic image of a cofinal subframe of \mathfrak{G}.

Proof. The proof is similar to the proof of Theorem 3.3.16. We follow the notations of the proof of Theorem 3.3.16. For every $w \in W$ we define

$$
P_{w}:=\left\{x \in W^{\prime}: \operatorname{col}(x)=\operatorname{col}(w) \text { and } x \not \vDash \bigvee_{i=1}^{k} \beta\left(w_{i}\right) \text { and } x \models \mu(\mathfrak{F})\right\} .
$$

We proceed as in the proof of Theorem 3.3.16. Define Y as the union of all P_{w}, for $w \in W$. The frame \mathfrak{H} is obtained by restricting to Y the valuation and the order of \mathfrak{G}. Exactly the same argument as in the proof of Theorem 3.3 .16 shows that \mathfrak{H} is a subframe of \mathfrak{G} and that \mathfrak{F} is a p-morphic image of \mathfrak{H}. All we need to show is that in this case, \mathfrak{H} is a cofinal subframe of \mathfrak{G}. Let $x \in Y$ and $x R^{\prime} y$. We need to find $z \in Y$ such that $y R^{\prime} z$. By Theorem 2.3.24, there exists $z \in \max (\mathfrak{G})$ such that $y R^{\prime} z$. We show that $z \in Y$. Since $\left(\mathfrak{G}, V^{\prime}\right), x \models \mu(\mathfrak{F})$, we have $z \models \mu(\mathfrak{F})$ and moreover $z \models\left(\bigwedge \operatorname{prop}\left(u_{1}\right) \wedge \neg \bigvee \operatorname{notprop}\left(u_{1}\right)\right) \vee \ldots \vee\left(\bigwedge \operatorname{prop}\left(u_{k}\right) \wedge \neg \bigvee \operatorname{notprop}\left(u_{k}\right)\right)$, (for the truth definition of the formulas with double negations consult Section 2.1). This means that $z \models \mu(\mathfrak{F})$ and there exists a maximal point u_{i} of \mathfrak{F}, for some $i=1, \ldots, k$, such that $\operatorname{col}\left(u_{i}\right)=\operatorname{col}(z)$. Thus, $z \in P_{u_{i}}$ and $z \in Y$. Therefore, \mathfrak{H} is a cofinal subframe of \mathfrak{G}.

3.4 Frame-based formulas

In this section we will treat the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas in a uniform framework. This will enable us to get simple proofs of some old results and also derive some new results. We give a definition of frame-based formulas and show that these three types of formulas are particular cases of frame-based formulas. We prove a criterion for recognizing whether an intermediate logic is axiomatized by frame-based formulas. Using this criterion we show that every locally tabular intermediate logic is axiomatized by the Jankov-de Jongh formulas and that every tabular logic is finitely axiomatized by these formulas. We also recall the definitions of subframe logics and cofinal subframe logics and show that every subframe logic is axiomatized by subframe formulas and every cofinal subframe logic is axiomatized by cofinal subframe formulas. At the end of the section we show that there are intermediate logics that are not axiomatized by frame-based formulas. We first recall some basic definitions and results.
3.4.1. Definition. Let L be an intermediate logic.

1. A descriptive frame \mathfrak{F} is called an L-frame if \mathfrak{F} validates all the theorems of L.
2. Let $\mathbb{F} \mathbb{G}(L)$ denote the set of all finitely generated rooted descriptive L frames modulo isomorphism.
3. Let \mathbf{F}_{L} denote the set of all finite rooted L-frames modulo isomorphism.

Then $\mathbf{F}_{\text {IPC }}$ is the set of all finite rooted frames modulo isomorphism. As we mentioned in the beginning of this chapter, every variety of algebras is generated by its finitely generated members. This result can be extended to finitely generated subdirectly irreducible algebras; see, e.g., [23].
3.4.2. Theorem. Every variety of algebras is generated by its finitely generated subdirectly irreducible algebras.

Translating this theorem in terms of intermediate logics we obtain the following corollary.
3.4.3. Corollary. Every intermediate logic L is complete with respect to its finitely generated rooted descriptive frames, i.e., L is complete with respect to $\mathbb{F} \mathbb{G}(L)$.

Next we define three relations on descriptive frames.
3.4.4. Definition. Let \mathfrak{F} and \mathfrak{G} be descriptive frames. We say that

1. $\mathfrak{F} \leq \mathfrak{G}$ iff \mathfrak{F} is a p-morphic image of a generated subframe of $\mathfrak{G} .{ }^{6}$
2. $\mathfrak{F} \preccurlyeq \mathfrak{G}$ iff \mathfrak{F} is a p-morphic image of a subframe of \mathfrak{G}.
3. $\mathfrak{F} \preccurlyeq^{\prime} \mathfrak{G}$ iff \mathfrak{F} is a p-morphic image of a cofinal subframe of \mathfrak{G}.

We write $\mathfrak{F}<\mathfrak{G}, \mathfrak{F} \prec \mathfrak{G}$ and $\mathfrak{F} \prec^{\prime} \mathfrak{G}$ if $\mathfrak{F} \leq \mathfrak{G}, \mathfrak{F} \preccurlyeq \mathfrak{G}$ and $\mathfrak{F} \preccurlyeq^{\prime} \mathfrak{G}$, respectively, and \mathfrak{F} is not isomorphic to \mathfrak{G}.

The next proposition discusses some basic properties of \leq, \preccurlyeq and \preccurlyeq^{\prime}. The proof is simple and we will skip it.

3.4.5. Proposition.

1. Each of \leq, \preccurlyeq and \preccurlyeq^{\prime} is reflexive and transitive.
2. If we restrict ourselves to finite frames, then each of \leq, \preccurlyeq and \preccurlyeq^{\prime} is a partial order.
3. In the infinite case none of $\leq, \preccurlyeq, \preccurlyeq^{\prime}$ is in general anti-symmetric.
4. Let \mathfrak{F} and \mathfrak{F}^{\prime} be two finite rooted frames. Let \mathfrak{G} be an arbitrary descriptive frame. Then

[^17](a) $\mathfrak{F} \leq \mathfrak{F}^{\prime}$ and $\mathfrak{G} \models \chi(\mathfrak{F})$ imply $\mathfrak{G} \models \chi\left(\mathfrak{F}^{\prime}\right)$.
(b) $\mathfrak{F} \preccurlyeq \mathfrak{F}^{\prime}$ and $\mathfrak{G} \models \beta(\mathfrak{F})$ imply $\mathfrak{G} \models \beta\left(\mathfrak{F}^{\prime}\right)$.
(c) $\mathfrak{F} \preccurlyeq^{\prime} \mathfrak{F}^{\prime}$ and $\mathfrak{G} \models \gamma(\mathfrak{F})$ imply $\mathfrak{G} \models \gamma\left(\mathfrak{F}^{\prime}\right)$.

Note that Theorems 3.3.3, 3.3.16 and 3.3.19 can be formulated in terms of the relations \leq, \preccurlyeq and \preccurlyeq^{\prime} as follows:
3.4.6. Theorem. For every finite rooted frame \mathfrak{F} there exist formulas $\chi(\mathfrak{F}), \beta(\mathfrak{F})$ and $\gamma(\mathfrak{F})$ such that for every descriptive frame \mathfrak{G} :

1. $\mathfrak{G} \mid \neq \chi(\mathfrak{F})$ iff $\mathfrak{F} \leq \mathfrak{G}$.
2. $\mathfrak{G} \notin \beta(\mathfrak{F})$ iff $\mathfrak{F} \preccurlyeq \mathfrak{G}$.
3. $\mathfrak{G} \not \models \gamma(\mathfrak{F})$ iff $\mathfrak{F} \preccurlyeq^{\prime} \mathfrak{G}$.

Proposition 3.4.5 and Theorem 3.4.6 clearly indicate that these three types of formulas can be treated in a uniform framework. Next we give a general definition of frame-based formulas and show that the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas are particular cases of frame-based formulas. Let \unlhd be a relation on $\mathbb{F} \mathbb{G}(L)$. We write $\mathfrak{F} \triangleleft \mathfrak{G}$ if $\mathfrak{F} \unlhd \mathfrak{G}$ and \mathfrak{F} and \mathfrak{G} are not isomorphic.
3.4.7. Definition. Call a reflexive and transitive relation \unlhd on $\mathbb{F} \mathbb{G}(\mathbf{I P C})$ a frame order if the following two conditions are satisfied:

1. For every $\mathfrak{F}, \mathfrak{G} \in \mathbb{F} \mathbb{G}(L), \mathfrak{G} \in \mathbf{F}_{\text {IPC }}$ and $\mathfrak{F} \triangleleft \mathfrak{G}$ imply $|\mathfrak{F}|<|\mathfrak{G}|$.
2. For every finite rooted frame \mathfrak{F} there exists a formula $\alpha(\mathfrak{F})$ such that for every $\mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C})$

$$
\mathfrak{G} \not \models \alpha(\mathfrak{F}) \quad \text { iff } \quad \mathfrak{F} \unlhd \mathfrak{G} .
$$

We call the formula $\alpha(\mathfrak{F})$ the frame-based formula for \unlhd or simply the α-formula of \mathfrak{F}.

Obviously, the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas are frame-based formulas for \leq, \preccurlyeq and \preccurlyeq^{\prime}, respectively.

3.4.8. Lemma.

1. The restriction of \unlhd to $\mathbf{F}_{\mathbf{I P C}}$ is a partial order.
2. $\mathbf{F}_{\mathbf{I P C}}$ is a -downset, i.e., $\mathfrak{F} \in \mathbf{F}_{\mathbf{I P C}}$ and $\mathfrak{F}^{\prime} \unlhd \mathfrak{F}$ imply $\mathfrak{F}^{\prime} \in \mathbf{F}_{\mathbf{I P C}}$.

Proof. The relation \unlhd is reflexive and transitive by definition. That the restriction of \unlhd is anti-symmetric on finite frames follows from Definition 3.4.7(1). That $\mathbf{F}_{\text {IPC }}$ is a \unlhd-downset, also follows immediately from Definition 3.4.7(1).
3.4.9. Lemma. Let \mathfrak{F} and \mathfrak{F}^{\prime} be finite rooted frames.

$$
\text { If } \mathfrak{F} \unlhd \mathfrak{F}^{\prime} \text {, then } \mathbf{I P C}+\alpha(\mathfrak{F}) \vdash \alpha\left(\mathfrak{F}^{\prime}\right) .
$$

Proof. Let $\mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C})$ and $\mathfrak{G} \not \models \alpha\left(\mathfrak{F}^{\prime}\right)$, then $\mathfrak{F}^{\prime} \unlhd \mathfrak{G}$. By the transitivity of \unlhd we then have that $\mathfrak{F} \unlhd \mathfrak{G}$ and $\mathfrak{G} \not \models \alpha(\mathfrak{F})$. By Corollary 3.4.3 we get that $\mathbf{I P C}+\alpha(\mathfrak{F}) \vdash \alpha\left(\mathfrak{F}^{\prime}\right)$.
3.4.10. Definition. Let L be an intermediate logic and let \unlhd be a frame order on $\mathbb{F} \mathbb{G}(\mathbf{I P C})$. We say that L is axiomatized by frame-based formulas for \unlhd if there exists a family $\left\{\mathfrak{F}_{i}\right\}_{i \in I}$ of finite rooted frames such that $L=\left\{\alpha\left(\mathfrak{F}_{i}\right): i \in I\right\}$.

For every subset U of $\mathbb{F} \mathbb{G}(L)$ let $\min _{\unlhd}(U)$ denote the set of the \unlhd-minimal elements of U.
3.4.11. Definition. Let L be an intermediate logic. We let

$$
\mathbf{M}(L, \unlhd):=\min _{\unlhd}(\mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L))
$$

We give a criterion recognizing whether an intermediate logic is axiomatized by frame-based formulas.
3.4.12. Theorem. Let L be an intermediate logic and let \unlhd be a frame order on $\mathbb{F} \mathbb{G}(\mathbf{I P C})$. Then L is axiomatized by frame-based formulas for \unlhd iff the following two conditions are satisfied.

1. $\mathbb{F} \mathbb{G}(L)$ is a \unlhd-downset. That is, for every $\mathfrak{F}, \mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C})$, if $\mathfrak{G} \in \mathbb{F} \mathbb{G}(L)$ and $\mathfrak{F} \unlhd \mathfrak{G}$, then $\mathfrak{F} \in \mathbb{F} \mathbb{G}(L)$.
2. For every $\mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L)$ there exists a finite $\mathfrak{F} \in \mathbf{M}(L, \unlhd)$ such that $\mathfrak{F} \unlhd \mathfrak{G}$.

Proof. Suppose L is axiomatized by frame-based formulas for \unlhd. Then $L=$ IPC $+\left\{\alpha\left(\mathfrak{F}_{i}\right): i \in I\right\}$, for some family $\left\{\mathfrak{F}_{i}\right\}_{i \in I}$ of finite rooted frames. First we show that $\mathbb{F} \mathbb{G}(L)$ is \unlhd-downset. Suppose, for some $\mathfrak{F}, \mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C})$ we have $\mathfrak{G} \in \mathbb{F} \mathbb{G}(L)$ and $\mathfrak{F} \unlhd \mathfrak{G}$. Assume that $\mathfrak{F} \notin \mathbb{F} \mathbb{G}(L)$. Then there exists $i \in I$ such that $\mathfrak{F} \not \vDash \alpha\left(\mathfrak{F}_{i}\right)$. Therefore, by Definition 3.4.7(2), $\mathfrak{F}_{i} \unlhd \mathfrak{F}$. By the transitivity of \unlhd, we have that $\mathfrak{F}_{i} \unlhd \mathfrak{G}$, which implies $\mathfrak{G} \not \models \alpha\left(\mathfrak{F}_{i}\right)$, a contradiction. Thus, $\mathbb{F} \mathbb{G}(L)$ is a \unlhd-downset.

Suppose there exist $i, j \in I$ such that $i \neq j$ and $\mathfrak{F}_{i} \unlhd \mathfrak{F}_{j}$. Then by Lemma 3.4.9, IPC $+\alpha\left(\mathfrak{F}_{i}\right) \vdash \alpha\left(\mathfrak{F}_{j}\right)$. Therefore, we can exclude $\alpha\left(\mathfrak{F}_{j}\right)$ from the axiomatization
of L. So it is sufficient to consider only \unlhd-minimal elements of $\left\{\mathfrak{F}_{i}\right\}_{i \in I}$. (By Definition 3.4.7(1), the set of \unlhd-minimal elements of an infinite set of finite rooted frames is non-empty.) Thus, without loss of generality we may assume that $\neg\left(\mathfrak{F}_{i} \unlhd\right.$ $\left.\mathfrak{F}_{j}\right)$, for $i \neq j$. To verify the second condition suppose $\mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L)$. Then $\mathfrak{G} \not \vDash \alpha\left(\mathfrak{F}_{i}\right)$ for some $i \in I$, which implies $\mathfrak{F}_{i} \unlhd \mathfrak{G}$. Hence, if we show that $\mathfrak{F}_{i} \in \mathbf{M}(L, \unlhd)$, then Condition (2) of the theorem is satisfied.

We now prove that every \mathfrak{F}_{i} belongs to $\mathbf{M}(L, \unlhd)$. By the reflexivity of \unlhd, we have $\mathfrak{F}_{i} \not \vDash \alpha\left(\mathfrak{F}_{i}\right)$ for every $i \in I$. Therefore, $\mathfrak{F}_{i} \in \mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L)$. Now suppose $\mathfrak{F} \triangleleft \mathfrak{F}_{i}$. By Definition 3.4.7(1), $|\mathfrak{F}|<\left|\mathfrak{F}^{\prime}\right|$ implying that \mathfrak{F} is finite. By Lemma 3.4.8, \unlhd is anti-symmetric on finite frames, hence $\neg\left(\mathfrak{F}_{i} \unlhd \mathfrak{F}\right)$. If $\mathfrak{F}_{j} \unlhd \mathfrak{F}$, for some $j \in I$ and $j \neq i$, then by the transitivity of \unlhd we have $\mathfrak{F}_{j} \unlhd \mathfrak{F}_{i}$, which is a contradiction. Therefore, $\neg\left(\mathfrak{F}_{j} \unlhd \mathfrak{F}\right)$, for every $j \in I$. Thus, $\mathfrak{F} \models \alpha\left(\mathfrak{F}_{j}\right)$, for every $j \in I$, which implies that $\mathfrak{F} \in \mathbb{F} \mathbb{G}(L)$ and that \mathfrak{F}_{i} is a minimal element of $\mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L)$. Thus, $\mathfrak{F}_{i} \in \mathbf{M}(L, \unlhd)$ and Condition (2) is satisfied.

For the right to left direction, first note that, by our assumption, $\mathbf{M}(L, \unlhd)$ consists of only finite frames. We show that $L=\mathbf{I P C}+\{\alpha(\mathfrak{F}): \mathfrak{F} \in \mathbf{M}(L, \unlhd)\}$. We prove this by showing that the finitely generated rooted descriptive frames of L and of IPC $+\{\alpha(\mathfrak{F}): \mathfrak{F} \in \mathbf{M}(L, \unlhd)\}$ coincide. Let $\mathfrak{G} \in \mathbb{F} \mathbb{G}(L)$, then since $\mathbb{F} \mathbb{G}(L)$ is a \unlhd-downset, for every $\mathfrak{F} \in \mathbf{M}(L, \unlhd)$ we have that $\neg(\mathfrak{F} \unlhd \mathfrak{G})$ and hence $\mathfrak{G} \models \alpha(\mathfrak{F})$. On the other hand, if $\mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L)$, then by our assumption there exists $\mathfrak{F} \in \mathbf{M}(L, \unlhd)$ such that $\mathfrak{F} \unlhd \mathfrak{G}$. Therefore, $\mathfrak{G} \not \vDash \alpha(\mathfrak{F})$ and \mathfrak{G} is not a frame for $\operatorname{IPC}+\{\alpha(\mathfrak{F}): \mathfrak{F} \in \mathbf{M}(L, \unlhd)\}$. Since every intermediate logic is complete with respect to its finitely generated rooted descriptive frames (see Corollary 3.4.3), we obtain that $L=\mathbf{I P C}+\{\alpha(\mathfrak{F}): \mathfrak{F} \in \mathbf{M}(L, \unlhd)\}$.

Next we apply this criterion to the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas.

3.4.13. Theorem. Let L be an intermediate logic.

1. $\mathbb{F} \mathbb{G}(L)$ is $a \leq$-downset.
2. For every $\mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L)$ there exists a finite $\mathfrak{F} \in \mathbf{M}(L, \preccurlyeq)$ such that $\mathfrak{F} \preccurlyeq \mathfrak{G}$.
3. For every $\mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L)$ there exists a finite $\mathfrak{F} \in \mathbf{M}\left(L, \preccurlyeq^{\prime}\right)$ such that $\mathfrak{F} \preccurlyeq^{\prime} \mathfrak{G}$.

Proof. (1) is trivial since generated subframes and p-morphisms preserve the validity of formulas. The proofs of (2) and (3) are quite involved, we will skip them here. For the proofs we refer to [24, Theorem 11.15].

These results allow us to obtain the following criterion.
3.4.14. Corollary. Let L be an intermediate logic.

1. L is axiomatized by the Jankov-de Jongh formulas iff for every frame \mathfrak{G} in $\mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L)$ there exists a finite $\mathfrak{F} \in \mathbf{M}(L, \leq)$ such that $\mathfrak{F} \leq \mathfrak{G}$.
2. L is axiomatized by subframe formulas iff $\mathbb{F} \mathbb{G}(L)$ is a \preccurlyeq-downset.
3. L is axiomatized by cofinal subframe formulas iff $\mathbb{F} \mathbb{G}(L)$ is a \preccurlyeq^{\prime}-downset.

Proof. The result is an immediate consequence of Theorems 3.4.12 and 3.4.13.
3.4.15. Definition. Let L be an intermediate logic.

1. L is called a subframe logic if for every L-frame \mathfrak{G}, every subframe \mathfrak{G}^{\prime} of \mathfrak{G} is also an L-frame.
2. L is called a cofinal subframe logic if for every L-frame \mathfrak{G}, every cofinal subframe \mathfrak{G}^{\prime} of \mathfrak{G} is also an L-frame.

For the next theorem consult [24, Theorem 11.21].
3.4.16. Corollary. Let L be an intermediate logic.

1. L is axiomatized by subframe formulas iff L is a subframe logic.
2. L is axiomatized by cofinal subframe formulas iff L is a cofinal subframe logic.

Proof. Since every intermediate logic L is complete with respect to $\mathbb{F} \mathbb{G}(L)$, it is easy to see that L is a subframe logic iff $\mathbb{F} \mathbb{G}(L)$ is a \preccurlyeq-downset and L is a cofinal subframe logic iff $\mathbb{F} \mathbb{G}(L)$ is a \preccurlyeq^{\prime}-downset. The proof now follows from Theorem 3.4.13.

Next we mention yet another general result about subframe logics and cofinal subframe logics; see [24, Theorem 11.20]. An algebraic proof of the result can be found in [9].
3.4.17. Theorem. All subframe logics and cofinal subframe logics enjoy the finite model property.

Proof. We prove the theorem for subframe logics only. The proof for cofinal subframe logics is identical. Let L be a subframe logic. Suppose $L \nvdash \phi$. Then there exists $\mathfrak{F} \in \mathbb{F} \mathbb{G}(L)$ such that $\mathfrak{F} \notin \phi$. Consider $L+\phi$. If it is inconsistent then every finite L-frame refutes ϕ. Thus, assume $L+\phi$ is consistent. By Proposition 2.1.6, it is an intermediate logic. Then by Theorem 3.4.13(2), there is $\mathfrak{F}^{\prime} \in$ $\mathbf{M}(L+\phi, \preccurlyeq)$ such that $\mathfrak{F}^{\prime} \preccurlyeq \mathfrak{F}$. Since $\mathfrak{F}^{\prime} \in \mathbf{M}(L+\phi, \preccurlyeq)$ we have $\mathfrak{F}^{\prime} \neq \phi$ and as L is a subframe logic, by Corollary 3.4.14(2), $\mathbb{F} \mathbb{G}(L)$ is a \preccurlyeq-downset. Therefore, $\mathfrak{F}^{\prime} \in \mathbf{F}_{L}$ and L has the fmp.

Figure 3.6: The sequence Δ
Next we show that every locally tabular intermediate logic is axiomatized by the Jankov-de Jongh formulas, and that every tabular logic is finitely axiomatized by the Jankov-de Jongh formulas. We also construct intermediate logics that can be axiomatized by Jankov-de Jongh formulas but not by subframe and cofinal subframe formulas, and vice versa. First we show that there are continuum many intermediate logics.

We discuss a method for constructing continuum many intermediate logics. Let \unlhd be a frame order on $\mathbb{F} \mathbb{G}(\mathbf{I P C})$. A set of frames Δ is called an \unlhd-antichain if for every distinct $\mathfrak{F}, \mathfrak{G} \in \Delta$ we have $\neg(\mathfrak{F} \unlhd \mathfrak{G})$ and $\neg(\mathfrak{G} \unlhd \mathfrak{F})$.
3.4.18. Theorem. Let $\Delta=\left\{\mathfrak{F}_{i}\right\}_{i \in \omega}$ be an \unlhd-antichain. For every $\Gamma_{1}, \Gamma_{2} \subseteq \Delta$, if $\Gamma_{1} \neq \Gamma_{2}$, then $\log \left(\Gamma_{1}\right) \neq \log \left(\Gamma_{2}\right)$.

Proof. Without loss of generality assume that $\Gamma_{1} \nsubseteq \Gamma_{2}$. This means that there is $\mathfrak{F} \in \Gamma_{1}$ such that $\mathfrak{F} \notin \Gamma_{2}$. Consider the α-formula $\alpha(\mathfrak{F})$. Then, by the reflexivity of \unlhd, we have $\mathfrak{F} \notin \alpha(\mathfrak{F})$. Hence, $\Gamma_{1} \notin \alpha(\mathfrak{F})$ and $\alpha(\mathfrak{F}) \notin \log \left(\Gamma_{1}\right)$. Now we show that $\alpha(\mathfrak{F}) \in \log \left(\Gamma_{2}\right)$. Suppose $\alpha(\mathfrak{F}) \notin \log \left(\Gamma_{2}\right)$. Then there is $\mathfrak{G} \in \Gamma_{2}$ such that $\mathfrak{G} \not \models \alpha(\mathfrak{F})$. This means that $\mathfrak{F} \unlhd \mathfrak{G}$, which contradicts the fact that Δ forms an \unlhd-antichain. Therefore, $\alpha(\mathfrak{F}) \notin \log \left(\Gamma_{1}\right)$ and $\alpha(\mathfrak{F}) \in \log \left(\Gamma_{2}\right)$. Thus, $\log \left(\Gamma_{1}\right) \neq \log \left(\Gamma_{2}\right)$.

Now we construct an infinite $\leq-$ antichain. Consider the sequence Δ of finite rooted frames shown in Figure 3.6.

3.4.19. LEMMA. Δ forms an \leq-antichain.

Proof. Suppose there are distinct frames $\mathfrak{F}, \mathfrak{G} \in \Delta$ such that $\mathfrak{F} \leq \mathfrak{G}$. Then there is a generated subframe \mathfrak{G}^{\prime} of \mathfrak{G} and an onto p-morphism $f: \mathfrak{G}^{\prime} \rightarrow \mathfrak{F}$. By Proposition 3.1.7, there are finitely many α - and β-reductions f_{1}, \ldots, f_{n} such that $f=f_{n} \circ \cdots \circ f_{1}$. Looking at the structure of \mathfrak{G} (see Figure 3.6) we see that there is no point that has a unique immediate successor and that the only points w and v such that $R(w) \backslash\{w\}=R(v) \backslash\{v\}$ are the maximal points. Therefore, f_{1} can only be the β-reduction identifying two maximal points of \mathfrak{G}^{\prime}. Thus, $f\left(\mathfrak{G}^{\prime}\right)$ cannot be isomorphic to \mathfrak{F}.

Figure 3.7: The coloring of \mathfrak{F}_{2}

In the next chapter we construct more antichains of finite rooted frames. We have the following corollary of Theorem 3.4.18 and Lemma 3.4.19 first observed by Jankov [65].

3.4.20. Corollary. There are continuum many intermediate logics.

Proof. Consider the countable sequence Δ of finite rooted frames. Then by Lemma 3.4.19, Δ forms an \leq-antichain. By Theorem 3.4.18, this implies that there are continuum many intermediate logics.

For the examples of infinite \preccurlyeq and \preccurlyeq^{\prime}-antichains of finite rooted frames consult [24, Lemma 11.18 and Theorem 11.19]. Now we determine the size of $\mathcal{H}(n)$ using the Jankov-de Jongh formulas.
3.4.21. Theorem. The cardinality of $\mathcal{H}(n)$, for every $n>1$ is that of the continuum.

Proof. (Sketch) We first show that if there is a sequence of formulas $\left\{\phi_{i}\right\}_{i \in \omega}$ in n variables such that for every finite $\Phi, \Psi \subsetneq\left\{\phi_{i}\right\}_{i \in \omega}$ we have $\mathbf{I P C} \nvdash \bigwedge \Phi \rightarrow \bigvee \Psi$, then the cardinality of $\mathcal{H}(n)$ is that of continuum. Obviously, the n-generated free Heyting algebra $F(n)$ is countable; there are only countably many formulas in n variables. Therefore, there are at most continuum many prime filters of $F(n)$ and the cardinality of $\mathcal{H}(n)$ is at most continuum. For every subset $I \subseteq \omega$ consider $\left\{\phi_{i}\right\}_{i \in I}$ and let F_{I} be the filter generated by $\left\{\phi_{i}\right\}_{i \in I}$. Then $\phi_{i} \in F_{I}$ iff $i \in I$. Now using the standard Lindenbaum construction (see e.g., [24, Lemma 5.1]) we extend F_{I} to a prime filter F_{I}^{\prime} such that $\phi_{j} \notin F_{I}^{\prime}$ for every $j \notin I$. Now let $I, J \subseteq \omega$ and $I \neq J$. Then w.l.o.g. there is $i \in I$ such that $i \notin J$. It follows that $\phi_{i} \in F_{I} \subseteq F_{I}^{\prime}$ and $\phi_{i} \notin F_{J}^{\prime}$. Therefore, $F_{I}^{\prime} \neq F_{J}^{\prime}$, for every $I, J \subseteq \omega$ and $I \neq J$.

Therefore, all we need to do is to construct such a sequence of formulas. Let Δ be the sequence of frames shown in Figure 3.6. Then every $\mathfrak{F} \in \Delta$ is finitely generated. To see this, consider the coloring shown in Figure 3.7. Now it is
easy to see that every $\mathfrak{F} \in \Delta$ with this coloring is a generated submodel of $\mathcal{U}(2)$. Indeed, the maximal points of \mathfrak{F} have different colors. No point is totally covered by a singleton set and if a point is totally covered by an antichain then there is no other point that is totally covered by the same antichain. This guarantees that \mathfrak{F} with this coloring is a generated submodel of $\mathcal{U}(2)$.

Therefore, $\left\{\chi\left(\mathfrak{F}_{i}\right): i>1\right.$ and $\left.\mathfrak{F}_{i} \in \Delta\right\}$ is a sequence of formulas in two variables. Finally, we will sketch the proof of IPC $\forall \bigwedge \Phi \rightarrow \bigvee \Psi$ for $\Phi, \Psi \subseteq$ $\left\{\chi\left(\mathfrak{F}_{i}\right): i>1\right.$ and $\left.\mathfrak{F}_{i} \in \Delta\right\}$. Let $\Phi=\left\{\chi\left(\mathfrak{F}_{i_{1}}\right), \ldots, \chi\left(\mathfrak{F}_{i_{k}}\right)\right\}$ and let $\Psi=$ $\left\{\chi\left(\mathfrak{F}_{j_{1}}\right), \ldots, \chi\left(\mathfrak{F}_{j_{m}}\right)\right\}$. Let \mathfrak{F} be the frame obtained by adjoining a new root to the disjoint union of $\mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{m}}$. Obviously, every $\mathfrak{F}_{j_{s}}$ is a generated subframe of \mathfrak{F}. So $\mathfrak{F} \not \vDash \chi\left(\mathfrak{F}_{j_{s}}\right)$, which implies $\mathfrak{F} \not \vDash \bigvee \Psi$. Moreover, we can show that for every $j>1$ and $j \notin\left\{j_{1}, \ldots, j_{m}\right\}$ we have $\mathfrak{F}_{j} \not \leq \mathfrak{F}$. It follows that $\mathfrak{F} \models \Lambda \Phi$. Thus, $\mathfrak{F} \not \models \bigwedge \Phi \rightarrow \bigvee \Psi$, which finishes the proof of the theorem.

Next we axiomatize some intermediate logics using the Jankov-de Jongh formulas. Intuitively speaking the Jankov-de Jongh formula of a frame \mathfrak{F} axiomatizes the least logic that does not have \mathfrak{F} as its frame.
3.4.22. Lemma. Let L be an intermediate logic. Then

1. $\left(\mathbf{F}_{L}, \leq\right)$ is well-founded.
2. For every finite rooted frame $\mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L)$, there exists a finite rooted $\mathfrak{F} \in \mathbf{M}(L, \leq)$ such that $\mathfrak{F} \leq \mathfrak{G}$.

Proof. (1) The proof follows immediately from the fact that if $\mathfrak{F}, \mathfrak{G} \in \mathbf{F}_{L}$ then $\mathfrak{F}<\mathfrak{G}$ implies $|\mathfrak{F}|<|\mathfrak{G}|$.
(2) The proof is similar to the proof of (1).

To prove that every locally tabular intermediate logic is axiomatized by the Jankov-de Jongh formulas, we use the following criterion of local tabularity established by G. Bezhanishvili [7].
3.4.23. Theorem. A logic L is locally tabular iff the class of rooted descriptive L-frames is uniformly locally tabular. That is, for every natural number n there exists a natural number $M(n)$ such that for every n-generated rooted descriptive L-frame \mathfrak{F} we have $|\mathfrak{F}| \leq M(n)$.
3.4.24. Theorem. Every locally tabular intermediate logic is axiomatized by Jankov-de Jongh formulas.

Proof. Let L be a locally tabular intermediate logic. By Corollary 3.4.14(1), we need to show that for every $\mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L)$ there exists a finite $\mathfrak{F} \in \mathbf{M}(L, \leq)$ such that $\mathfrak{F} \leq \mathfrak{G}$. Suppose $\mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L)$. If \mathfrak{G} is
finite, then by Lemma 3.4.22(2), there exists a finite rooted $\mathfrak{F} \in \mathbf{M}(L, \leq)$ such that $\mathfrak{F} \leq \mathfrak{G}$. Now assume that \mathfrak{G} is infinite. Let \mathfrak{G}^{\prime} be a finite rooted frame such that $\mathfrak{G}^{\prime}<\mathfrak{G}$. If $\mathfrak{G}^{\prime} \in \mathbb{F} \mathbb{G}(\mathbf{I P C}) \backslash \mathbb{F} \mathbb{G}(L)$, then by Lemma 3.4.22(2), there exists $\mathfrak{F} \in \mathbf{M}(L, \leq)$ with $\mathfrak{F} \leq \mathfrak{G}^{\prime}$. Since \leq is transitive, we have $\mathfrak{F} \leq \mathfrak{G}$. Now suppose, for every finite rooted \mathfrak{G}^{\prime} such that $\mathfrak{G}^{\prime}<\mathfrak{G}$ we have $\mathfrak{G}^{\prime} \in \mathbb{F} \mathbb{G}(L)$. By Theorem 3.1.10, for every $i \in \omega$ there exists a point x_{i} of \mathfrak{G} of depth i. Let \mathfrak{H}_{i} be the x_{i}-generated subframe of \mathfrak{G}. Then \mathfrak{H}_{i} is finite and n-generated (since \mathfrak{H}_{i} is a generated subframe of $\mathfrak{G})$. Moreover, $\sup \left\{\left|\mathfrak{H}_{i}\right|: i \in \omega\right\}=\omega$. Therefore, the set of all rooted finitely generated descriptive L-frames is not uniformly locally finite. By Theorem 3.4.23, L is not locally tabular, which is a contradiction. Thus, by Corollary 3.4.14(1) L is axiomatized by the Jankov-de Jongh formulas.

Since every tabular logic is locally tabular, it follows from Theorem 3.4.24 that every tabular logic is also axiomatized by the Jankov-de Jongh formulas. Next we show that every tabular logic is in fact finitely axiomatized by the Jankov-de Jongh formulas. For an alternative proof of the theorem consult [24, Theorem 12.4]. First we prove two auxiliary lemmas.
3.4.25. Lemma. For every finite rooted frame \mathfrak{F}, consisting of at least two points, there exists a frame \mathfrak{G} and $f: \mathfrak{F} \rightarrow \mathfrak{G}$ such that f is an α - or β-reduction.

Proof. If $\max (\mathfrak{F})$ contains more than one point, consider the β-reduction that identifies two distinct maximal points of \mathfrak{F}. If $\max (\mathfrak{F})$ is a singleton set, we consider the second layer of \mathfrak{F}. By our assumption the second layer is not empty. If the second layer of \mathfrak{F} consists of one point, then consider the α-reduction that identifies the point of the second layer with the maximal point. If the second layer of \mathfrak{F} consists of at least two points, we consider a β-reduction that identifies two points from the second layer.
3.4.26. Lemma. Let \unlhd be a frame order on $\mathbb{F} \mathbb{G}(\mathbf{I P C})$. Suppose that \mathfrak{F} is a finite rooted L-frame, where $L=\log (\mathfrak{G})$ for some $\mathfrak{G} \in \mathbb{F} \mathbb{G}(\mathbf{I P C})$. Then $\mathfrak{F} \unlhd \mathfrak{G}$.

Proof. Suppose $\neg(\mathfrak{F} \unlhd \mathfrak{G})$. Then $\mathfrak{G} \models \alpha(\mathfrak{F})$, where $\alpha(\mathfrak{F})$ is the frame-based formula for \unlhd. Therefore, since \mathfrak{F} is an L-frame, $\mathfrak{F} \models \alpha(\mathfrak{F})$. This is a contradiction since \unlhd is reflexive.
3.4.27. Theorem. Every tabular logic is finitely axiomatizable by Jankov-de Jongh formulas.

Proof. Let L be tabular. Then $L=\log (\mathfrak{F})$ for some finite frame \mathfrak{F}. By Lemma 3.4.26, for every rooted L-frame \mathfrak{F}^{\prime} we have $\mathfrak{F}^{\prime} \leq \mathfrak{F}$. Therefore, if $\mathfrak{F}^{\prime} \in \mathbf{F}_{L}$, then $\left|\mathfrak{F}^{\prime}\right| \leq|\mathfrak{F}|$. Hence, every finite rooted L-frame contains at most $|\mathfrak{F}|$ points. We will show that $\mathbf{M}(L, \leq)$ is finite.
3.4.28. Claim. For every $\mathfrak{H} \in \mathbf{M}(L, \leq)$ we have $|\mathfrak{H}| \leq|\mathfrak{F}|+1$.

Proof. Assume $\mathfrak{H} \in \mathbf{M}(L, \leq)$. If $|\mathfrak{H}|=1$, then trivially $|\mathfrak{H}| \leq|\mathfrak{F}|+1$. Now suppose \mathfrak{H} is such that $|\mathfrak{H}|>1$. Then by Lemma 3.4.25, there exists a frame \mathfrak{H}^{\prime} such that $\mathfrak{H}^{\prime}<\mathfrak{H}$. If $\mathfrak{H}^{\prime} \notin \mathbf{F}_{L}$, then \mathfrak{H} is not a minimal element of $\mathbb{F} \mathbb{G}($ IPC $) \backslash$ $\mathbb{F} \mathbb{G}(L)$, that is, $\mathfrak{H} \notin \mathbf{M}(L, \leq)$, which is a contradiction. If $\mathfrak{H}^{\prime} \in \mathbf{F}_{L}$, then since α and β-reductions identify only two points, $|\mathfrak{H}|=\left|\mathfrak{H}^{\prime}\right|+1$. As \mathfrak{H}^{\prime} is an L-frame, $\left|\mathfrak{H}^{\prime}\right| \leq|\mathfrak{F}|$. Thus, $|\mathfrak{H}| \leq|\mathfrak{F}|+1$.

There are only finitely many non-isomorphic frames consisting of m points for $m \in \omega$. Therefore, $\mathbf{M}(L, \leq)$ is finite. Let $\mathbf{M}(L, \leq)=\left\{\mathfrak{G}_{1}, \ldots, \mathfrak{G}_{k}\right\}$. Then, by the proof of Theorem 3.4.12, we have $L(\mathfrak{F})=$ IPC $+\chi\left(\mathfrak{G}_{1}\right)+\ldots+\chi\left(\mathfrak{G}_{k}\right)$.

However, not every intermediate logic is axiomatized by Jankov-de Jongh formulas. We construct a subframe logic that is not axiomatized by Jankov-de Jongh formulas. We first introduced the notion of width of an intermediate logic. For modal logics this notion was defined by Fine [42] and for intermediate logics by Sobolev [117].
3.4.29. Definition. Let \mathfrak{F} be a rooted (descriptive or Kripke) frame. We say that

1. \mathfrak{F} has (cofinal) width n if there is an antichain of n points in $\mathfrak{F}($ in $\max (\mathfrak{F})$) and no other antichain in $\mathfrak{F}($ in $\max (\mathfrak{F}))$ contains more than n points.
2. An intermediate logic $L \supseteq$ IPC has width (cofinal width) $n \in \omega$ if every descriptive rooted L-frame has width (cofinal width) $\leq n$.

We denote by $w(\mathfrak{F})$ the width of \mathfrak{F} and by $w_{c}(\mathfrak{F})$ the cofinal width of \mathfrak{F}.
3.4.30. Definition. For every $n \in \omega$ let

1. $L_{w}(n):=\log \left(\Gamma_{n}\right)$, where $\Gamma_{n}=\{\mathfrak{F}:|\mathfrak{F}|<\omega$ and $w(\mathfrak{F}) \leq n\}$.
2. $L_{w}^{\prime}(n):=\log \left(\Gamma_{n}^{\prime}\right)$, where $\Gamma_{n}^{\prime}=\left\{\mathfrak{F}:|\mathfrak{F}|<\omega\right.$ and $\left.w_{c}(\mathfrak{F}) \leq n\right\}$.

It can be shown that $L_{w}(n)$ is the least logic of width n and $L_{w}^{\prime}(n)$ is the least logic of cofinal width n.

We sketch a proof that $L_{w}^{\prime}(5)$ is not axiomatizable by the Jankov-de Jongh formulas. For the details we refer to [24, Proposition 9.50].
3.4.31. Theorem. $L_{w}^{\prime}(5)$ is not axiomatizable by Jankov-de Jongh formulas.

Figure 3.8: The frame \mathfrak{G}

Proof. (Sketch) By Corollary 3.4.14, it is sufficient to construct a finitely generated rooted descriptive frame \mathfrak{G} such that \mathfrak{G} is not an $L_{w}^{\prime}(5)$-frame and if a finite rooted \mathfrak{F} is such that $\mathfrak{F} \leq \mathfrak{G}$, then \mathfrak{F} is an $L_{w}^{\prime}(5)$-frame.

We will modify the example used in [24, Proposition 9.50]. Consider the frame $\mathfrak{G}=(W, R, \mathcal{P})$ shown in Figure 3.8, where $\mathcal{P}=\left\{R\left(z_{1}\right) \cup R\left(z_{2}\right), W, \emptyset, U, U \cup R\left(z_{i}\right)\right.$: U is a finite upset of $\mathfrak{G}, i=1,2\}$. Then it can be shown that \mathfrak{G} is a finitely generated descriptive frame. It is obvious that \mathfrak{G} has width 6 and hence is not an $L_{w}^{\prime}(5)$-frame.

The main idea of the proof is that every finite rooted generated subframe of \mathfrak{G} has width ≤ 5 and every p-morphism identifies at least two maximal points of \mathfrak{G}. Therefore, for every finite $\mathfrak{F}<\mathfrak{G}$ we have $w_{c}(\mathfrak{F}) \leq 5$ and \mathfrak{F} is an $L_{w}^{\prime}(5)$-frame. By Corollary 3.4.14(1), this means that $L_{w}^{\prime}(5)$ is not axiomatized by the Jankov-de Jongh formulas. We skip the details.

3.4.32. Theorem. For every $n \in \omega$ the following holds.

1. $L_{w}(n)$ is axiomatized by subframe formulas.
2. $L_{w}^{\prime}(n)$ is axiomatized by cofinal subframe formulas.

Proof. By Corollary 3.4.14, it is sufficient to observe that for every frame \mathfrak{F} of width $\leq n$ every subframe and cofinal subframe of \mathfrak{F} also has width $\leq n$. Thus $L_{w}(n)$ is a subframe logic and $L_{w}^{\prime}(n)$ is a cofinal subframe logic and therefore by Corollary 3.4.16, they are axiomatizable by subframe formulas and cofinal subframe formulas, respectively.

Now we prove the converse of Theorem 3.4.31.
3.4.33. Theorem. There are intermediate logics that are axiomatized by Jankovde Jongh formulas but not axiomatized by subframe formulas or by cofinal subframe formulas.

Proof. Let Δ be as in Lemma 3.4.19. Consider $\mathfrak{F}_{i} \in \Delta$ such that $i>0$. Then $L=\log \left(\mathfrak{F}_{i}\right)$ is tabular and by Theorem 3.4.27, L is finitely axiomatized by the Jankov-de Jongh formulas. Now we show that L is neither a subframe nor a cofinal subframe logic. It is easy to see that \mathfrak{F}_{0} is a subframe of \mathfrak{F}_{i}, moreover it is a cofinal subframe. By Lemma 3.4 .26 , if \mathfrak{F}_{0} is an L-frame, then $\mathfrak{F}_{0} \leq \mathfrak{F}_{i}$. This is a contradiction because by Theorem 3.4.18, Δ is an \leq-antichain. Therefore L is neither a subframe nor a cofinal subframe logic and by Corollary 3.4.16, it is not axiomatized by subframe formulas.

We will close this section by showing that there are intermediate logics that are not axiomatized by frame-based formulas. Note that this proof is very nonconstructive.
3.4.34. Theorem. For every frame order \unlhd on $\mathbb{F} \mathbb{G}(\mathbf{I P C})$ there are intermediate logics that are not axiomatized by frame-based formulas for \unlhd.

Proof. Suppose every intermediate logic is axiomatized by frame-based formulas for \unlhd. We show that this implies that every intermediate logic has the fmp, which contradicts the fact that there are continuum many intermediate logics without the fmp, e.g., [24, Theorem 6.3], see also Chapter 4. Let L be an intermediate logic. Suppose $L \nvdash \phi$. Then there exists a finitely generated rooted L-frame \mathfrak{G} such that $\mathfrak{G} \not \models \phi$. Consider the logic $L+\phi$. If $L+\phi$ is inconsistent, then every finite L-frame refutes ϕ. So, assume that $L+\phi$ is consistent. By our assumption, $L+\phi$ is also axiomatized by frame-based formulas for \unlhd. Then \mathfrak{G} is not an $(L+\phi)$-frame and by applying Theorem 3.4.12 to the logic $L+\phi$, we obtain that there exists a frame $\mathfrak{H} \in \mathbf{M}(L, \unlhd)$ such that $\mathfrak{H} \unlhd \mathfrak{G}$. Since $\mathbb{F} \mathbb{G}(L)$ is a \unlhd-downset, \mathfrak{H} is an L-frame. Since $\mathfrak{H} \in \mathbf{M}(L+\phi, \unlhd)$ we have that $\mathfrak{H} \not \models \phi$. Therefore, we found a finite L-frame that refutes ϕ. This means that L has the fmp. This contradiction finishes the proof of the theorem.

Thus, it is impossible to axiomatize all the intermediate logics by frame-based formulas only. In order to axiomatize all intermediate logics by formulas arising from finite frames one has to generalize frame-based formulas by introducing a new parameter. Zakharyaschev's canonical formulas are extensions of the Jankovde Jongh formulas and (cofinal) subframe formulas with a new parameter. Instead of considering just finite rooted frame \mathfrak{F} we need to consider a pair $(\mathfrak{F}, \mathfrak{D})$, where \mathfrak{D} is some set of antichains of \mathfrak{F}. We would also need to modify the definition of \unlhd
to take this parameter into account. Formulas arising from such pairs are called "canonical formulas". They provide axiomatizations of all intermediate logics. We do not discuss canonical formulas here. For a systematic study of canonical formulas the reader is referred to $[24, \S 9]$.

Chapter 4

The logic of the Rieger-Nishimura ladder

In this chapter, which is based on [8], we apply the tools and techniques developed in the previous chapter to the logic $\mathbf{R N}$ of the Rieger-Nishimura ladder. The logic RN was first studied by Kuznetsov and Gerciu [83], Gerciu [48], and independently by Kracht [73]. Kuznetsov and Gerciu [83] introduced an intermediate logic KG of which RN is a proper extension. This logic will play an important role in our investigations. We show that the structure of finitely generated KG and $\mathbf{R N}$-frames is quite simple. These frames are the finite sums of 1 -generated descriptive frames.

We apply the technique of frame-based formulas in two ways. Firstly, using the Jankov-de Jongh formulas we construct a continuum of extensions of KG that do not have the finite model property. Secondly, we give a simple axiomatization of RN using subframe formulas and the Jankov-de Jongh formulas. In contrast to the extensions of $\mathbf{K G}$, every extension of $\mathbf{R N}$ does have the finite model property. This result was first proved by Gerciu [48], and independently by Kracht [73]. However, both proofs contain some gaps. We will develop the technique of gluing models and provide a rather simple proof of this theorem.

Finally, we show that $\mathbf{R N} . \mathbf{K C}=\mathbf{R N}+(\neg p \vee \neg \neg p)$ is the unique pre-locally tabular extension of KG. It follows that an extension L of $\mathbf{K G}(\mathbf{R N})$ is not locally tabular iff $L \subseteq \mathbf{R N} . K \mathbf{C}$. For extensions of RN we establish another criterion of local tabularity. For every $L \supseteq \mathbf{R N}$ we define the internal depth of L and prove that L is locally tabular iff its internal depth is finite.

This chapter is organized as follows: in the first section we introduce RN, define the n-scheme logics over IPC and n-conservative extensions of IPC. We prove that RN is the 1-scheme logic over IPC and the greatest 1-conservative extension of IPC. In Section 4.2 we describe the finite rooted frames of RN. The next section introduces the logic KG and characterizes the finitely generated descriptive frames of KG. In Section 4.4 we prove that every extension of RN has the fmp. In Section 4.5, continuum many extensions of KG without the finite
model property are constructed. In the last two section we give an axiomatization of RN using the Jankov-de Jongh formulas and subframe formulas and investigate locally tabular extensions of KG and RN.

$4.1 \quad n$-conservative extensions, linear and vertical sums

In this section we recall the structure of the 1-generated free Heyting algebra and its dual 1-Henkin frame. We call them the Rieger-Nishimura lattice and ladder respectively. We will also introduce the n-conservative and the n-scheme logics over IPC and show that the logic of the n-Henkin model is the n-scheme logic over IPC and the greatest n-conservative extension of IPC. In the last section we define the linear and vertical sums of descriptive frames and Heyting algebras and prove that these operations are dual to each other.

4.1.1 The Rieger-Nishimura lattice and ladder

In the previous chapter we discussed finitely generated free Heyting algebras and their dual Henkin models. In this chapter we will take a closer look at the simplest finitely generated free Heyting algebra, namely, the 1-generated free Heyting algebra. The 1-generated free Heyting algebra was described independently by Rieger [106] and Nishimura [102] and is called the Rieger-Nishimura lattice after them. Recall that by Theorem 3.2.13(2), the 1-Henkin model of IPC is isomorphic to the model shown in Figure 4.1, where $V(p)=\left\{w_{0}\right\}$.

4.1.1. Definition.

1. Denote by \mathfrak{L} the 1 -Henkin frame. We call \mathfrak{L} the Rieger-Nishimura ladder. We also let \mathfrak{L}_{0} denote the upper part of \mathfrak{L}, i.e., the frame $\mathfrak{L} \backslash\{\omega\}$.
2. Denote by \mathfrak{N} the 1-generated free Heyting algebra. We call \mathfrak{N} the RiegerNishimura lattice.

By Theorem 3.2.9, \mathfrak{L}_{0} is isomorphic to the 1 -universal frame. By Theorem 3.3.2, every finite upset of \mathfrak{L} is admissible. It is also easy to see that the carrier set of \mathfrak{L}_{0} is not admissible. We will give a topological argument to this fact. Suppose the carrier set of \mathfrak{L}_{0} is admissible. Then it is (topologically) closed. Every closed subset of a compact space is compact. Thus \mathfrak{L}_{0} is compact, which is a contradiction; $\mathcal{F}=\left\{R^{-1}\left(w_{i}\right)\right\}_{i \in \omega}$ is a family of closed subsets of \mathfrak{L}_{0} with the finite intersection property but $\bigcap \mathcal{F}=\emptyset$.

By the duality between descriptive frames and Heyting algebras, the RiegerNishimura lattice \mathfrak{N} is isomorphic to the Heyting algebra of all admissible subsets of \mathfrak{L}. The generator of \mathfrak{N} is the upset $V(p)=\left\{w_{0}\right\}$. It is easy to check that \mathfrak{N} is

Figure 4.1: The Rieger-Nishimura ladder \mathfrak{L}
isomorphic to the lattice shown in Figure 4.2 and every element of \mathfrak{N} is represented by one of the Rieger-Nishimura polynomials:
4.1.2. Definition. The Rieger-Nishimura polynomials are given by the following recursive definition:

1. $g_{0}(p):=p$,
2. $g_{1}(p):=\neg p$,
3. $f_{1}(p):=p \vee \neg p$,
4. $g_{2}(p):=\neg \neg p$,
5. $g_{3}(p):=\neg \neg p \rightarrow p$,
6. $g_{n+4}(p):=g_{n+3}(p) \rightarrow\left(g_{n}(p) \vee g_{n+1}(p)\right)$,
7. $f_{n+2}(p):=g_{n+2}(p) \vee g_{n+1}(p)$.

Let $\mathfrak{A}=(A, \vee, \wedge, \rightarrow, 0)$ be a Heyting algebra. For every element $a \in A$ let

$$
[a)=\{b \in A: a \leq b\}
$$

and

$$
(a]=\{b \in A: b \leq a\}
$$

$[a)$ and (a] are called the principal filter and the principal ideal generated by a, respectively. It is obvious that the principal filters $\left[g_{k}(p)\right)$ and $\left[f_{k}(p)\right)$ are proper

Figure 4.2: The Rieger-Nishimura lattice \mathfrak{N}
filters of \mathfrak{N} for every $k \in \omega$. Moreover, it is obvious that the unit filter $\{1\}$ is a proper filter of \mathfrak{N}, and that every proper filter of \mathfrak{N} is principal. Furthermore, $\{1\}$ and $\left[g_{k}(p)\right)$, for every $k \in \omega$, are the only prime filters of \mathfrak{N}.
4.1.3. Definition. Let \mathfrak{L} be labeled by w_{k} 's as it is shown in Figure 4.1. For every $k \in \omega$:

1. Let $\mathfrak{L}_{g_{k}}$ denote the generated subframe of \mathfrak{L} generated by the point w_{k}, i.e., $\mathfrak{L}_{g_{k}}=\left(R\left(w_{k}\right), R \upharpoonright R\left(w_{k}\right)\right)$,
2. Let $\mathfrak{L}_{f_{k}}$ denote the generated subframe of \mathfrak{L} generated by the points w_{k} and w_{k-1}, i.e., $\mathfrak{L}_{f_{k}}=\left(R\left(w_{k}\right) \cup R\left(w_{k-1}\right), R \upharpoonright R\left(w_{k}\right) \cup R\left(w_{k-1}\right)\right)$,
3. Let $\mathfrak{N}_{g_{k}}$ denote the algebra corresponding to $\mathfrak{L}_{g_{k}}$,
4. Let $\mathfrak{N}_{f_{k}}$ denote the algebra corresponding to $\mathfrak{L}_{f_{k}}$.

The next proposition shows that $\mathfrak{L}_{g_{k}}$ and $\mathfrak{L}_{f_{k}}$ are precisely those generated subframes of \mathfrak{L} that satisfy $g_{k}(p)$ and $f_{k}(p)$, respectively.
4.1.4. Proposition. For every $k \in \omega$ we have:

1. $R\left(w_{k}\right)=\left\{w \in \mathfrak{L}: w \models g_{k}(p)\right\}$,
2. $R\left(w_{k}\right) \cup R\left(w_{k-1}\right)=\left\{w \in \mathfrak{L}: w \models f_{k}(p)\right\}$.

Proof. The proof is a routine check.

4.1. N-CONSERVATIVE EXTENSIONS, LINEAR AND VERTICAL SUMS83

Now we introduce the logic that we are going to study in this chapter.

4.1.5. Definition.

1. Let $\mathbf{R N}$ denote the logic of \mathfrak{L}, i.e., $\mathbf{R N}=\log (\mathfrak{L})$.
2. Let $\mathcal{R N}$ denote the variety generated by \mathfrak{N}, i.e., $\mathcal{R N}=\operatorname{HSP}(\mathfrak{N})$.

The rest of this chapter will be devoted to the investigation of $\mathbf{R N}(\mathcal{R N})$ and other intermediate logics (varieties of Heyting algebras) related to RN (to $\mathcal{R N}$).
4.1.6. REmARK. Before engaging into the technical details we mention one more example of a very natural "appearance" of the Rieger-Nishimura ladder from a different perspective. This fact was first observed by L. Esakia [36]. Consider the ordered set (\mathbb{N}, \leq) of natural numbers. Define the relation R on \mathbb{N} by putting: $n R m$ if $n-m \geq 2$. It is now easy to check that the frame (\mathbb{N}, R) is isomorphic to \mathfrak{L}_{0}, the upper part of the Rieger-Nishimura ladder.

4.1.2 n-conservative extensions and the n-scheme logics

In this section we describe some syntactic properties of $\mathbf{R N}$. They will not be used subsequently but give some motivation for studying RN.
4.1.7. Definition. Suppose L and S are intermediate logics. We say that S is an n-conservative extension of L if $L \subseteq S$ and for every formula $\phi\left(p_{1}, \ldots, p_{n}\right)$ in n variables we have $L \vdash \phi$ iff $S \vdash \phi$.

Note that this definition, as well as the next one, apply not only to intermediate logics, but to any propositional logic. By a propositional logic we mean any set of formulas (not necessarily in the language \mathcal{L}), closed under (Subst).
4.1.8. Definition. Let L be an intermediate logic. A set of formulas $L(n)$ is called the n-scheme logic of L if for every $\psi\left(p_{1}, \ldots, p_{k}\right)$ and $k \in \omega$:

$$
\begin{gathered}
\psi\left(p_{1}, \ldots, p_{k}\right) \in L(n) \Leftrightarrow \text { for all } \chi_{1}\left(p_{1}, \ldots p_{n}\right), \ldots, \chi_{k}\left(p_{1}, \ldots, p_{n}\right) \\
\text { we have } L \vdash \psi\left(\chi_{1}, \ldots, \chi_{k}\right) .
\end{gathered}
$$

It is easy to see $L(n)$ is closed under (MP) and (Subst). Therefore, $L(n)$ is an intermediate logic, for every $n \in \omega$.
4.1.9. Proposition. Let L be an intermediate logic.

1. L^{\prime} is an n-conservative extension of L iff $L \subseteq L^{\prime} \subseteq L(n)$.
2. $L(n)$ is the largest n-conservative extension of L.

Proof. Suppose L^{\prime} is n-conservative. Let $L^{\prime} \vdash \psi\left(p_{1}, \ldots, p_{k}\right)$. Then for arbitrary $\chi_{1}\left(p_{1}, \ldots, p_{n}\right), \ldots, \chi_{k}\left(p_{1}, \ldots, p_{n}\right)$ we have that $L^{\prime} \vdash \psi\left(\chi_{1}, \ldots, \chi_{k}\right)$. By n-conservativity $L \vdash \psi\left(\chi_{1}, \ldots, \chi_{k}\right)$. By the definition of the n-scheme logic $L(n) \vdash \psi\left(p_{1}, \ldots, p_{k}\right)$. Therefore, $L^{\prime} \subseteq L(n)$.

For the converse it is sufficient to show that $L(n)$ is n-conservative over L. Let $L(n) \vdash \psi\left(p_{1}, \ldots, p_{k}\right)$. Then $L \vdash \psi\left(\psi_{1}, \ldots, \psi_{k}\right)$, for every $\psi_{i}\left(p_{1}, \ldots, p_{n}\right), i \leq k$ and $k \in \omega$. This obviously holds for $\psi_{i}=p_{i}$, for $i \leq k$. Thus, $L \vdash \psi\left(p_{1}, \ldots, p_{k}\right)$.
(2) The result follows from (1).

The next theorem spells out the connection between the n-scheme logic of IPC and the n-universal and n-Henkin models. Recall from the previous chapter that for every $n \in \omega \mathbb{H}(n)=(H(n), R, \mathcal{P})$ and $\mathbb{U}(n)=\left(U(n), R^{\prime}, \mathcal{P}^{\prime}\right)$ denote the n Henkin frame and the n-universal frame, i.e., the underlying descriptive frames of the n-Henkin model $\mathcal{H}(n)$ and the n-universal model $\mathcal{U}(n)$, respectively. Recall also that for every frame \mathfrak{F}, we denote by $\log (\mathfrak{F})$ the set of formulas that are valid in \mathfrak{F}.

4.1.10. Theorem.

1. $\log (\mathbb{U}(n))$ is the greatest n-conservative extension of IPC.
2. $\log (\mathbb{H}(n))=\log (\mathbb{U}(n))=\operatorname{IPC}(n)$.

Proof. (1) Clearly, $\log (\mathbb{U}(n))$ is an intermediate logic. Therefore, IPC \subseteq $\log (\mathbb{U}(n))$. Now suppose $\log (\mathbb{U}(n)) \vdash \phi\left(p_{1}, \ldots, p_{n}\right)$, then ϕ is valid in the n universal frame and hence it is valid in the n-universal model. Thus, by Theorem 3.2.17, IPC $\vdash \phi$. Therefore, $\log (\mathbb{U}(n))$ is n-conservative over IPC.

Let L be an n-conservative extension of IPC. If $L \nsubseteq \log (\mathbb{U}(n))$, then there exists a formula ϕ such that $\phi \in L$ and $\phi \notin \log (\mathbb{U}(n))$. Therefore, there exists $x \in$ $U(n)$ such that $x \not \vDash \phi$. Let \mathfrak{F} be the rooted upset of $\mathbb{U}(n)$ generated by x. Then \mathfrak{F} is finite and $\mathfrak{F} \not \models \phi$. Let $\chi(\mathfrak{F})$ be the de Jongh formula of \mathfrak{F}. By the definition of the de Jongh formulas $\chi(\mathfrak{F})$ is in n variables. ${ }^{1}$ If $\chi(\mathfrak{F}) \notin L$, then \mathfrak{F} is an L-frame refuting ϕ, which contradicts the assumption $\phi \in L$. Therefore, $\chi(\mathfrak{F}) \in L$. But then $\chi(\mathfrak{F}) \in$ IPC as L is n-conservative over IPC, which is obviously false. Thus, $L \subseteq \log (\mathbb{U}(n))$ and $\log (\mathbb{U}(n))$ is the greatest n-conservative extension of IPC.
(2) That $\log (\mathbb{H}(n))$ is the greatest n-conservative extension of IPC is proved in a similar way as (1), using the fact that $\mathbb{H}(n)$ is completely determined by $\mathbb{U}(n)$. That is, $\mathbb{H}(n) \models \phi$ iff $\mathbb{U}(n) \models \phi$ The result now follows from (1).
4.1.11. Corollary. RN is the 1-scheme logic of IPC and the greatest 1-conservative extension of IPC.

Proof. The result is an immediate consequence of Theorem 4.1.10.

[^18]
4.1.3 Sums of Heyting algebras and descriptive frames

In this section we recall the constructions of the linear sum of descriptive frames and the vertical sum of Heyting algebras used subsequently in this chapter.
4.1.12. Definition. (see e.g., [30, p. 17 and p.179]) Let $\mathfrak{F}_{1}=\left(W_{1}, R_{1}\right)$ and $\mathfrak{F}_{2}=\left(W_{2}, R_{2}\right)$ be Kripke frames. The linear sum of \mathfrak{F}_{1} and \mathfrak{F}_{2} is the Kripke frame $\mathfrak{F}_{1} \oplus \mathfrak{F}_{2}:=\left(W_{1} \uplus W_{2}, R\right)$ such that $W_{1} \uplus W_{2}$ is a disjoint union of W_{1} and W_{2} and for every $w, v \in W_{1} \uplus W_{2}$ we have

$$
\begin{array}{lll}
w R v \text { iff } & & w, v \in W_{1} \text { and } w R_{1} v, \\
& \text { or } & w, v \in W_{2} \text { and } w R_{2} v, \\
& \text { or } & w \in W_{2} \text { and } v \in W_{1} .
\end{array}
$$

In other words, $R=R_{1} \cup R_{2} \cup\left(W_{2} \times W_{1}\right)$.
Figuratively speaking, the operation \oplus puts \mathfrak{F}_{1} on top of \mathfrak{F}_{2}. Now we define the dual operation of \oplus for Heyting algebras.
4.1.13. Definition. Let \mathfrak{A}_{1} and \mathfrak{A}_{2} be Heyting algebras. The vertical sum $\mathfrak{A}_{1} \bar{\oplus} \mathfrak{A}_{2}$ of \mathfrak{A}_{1} and \mathfrak{A}_{2} is obtained from a linear sum of $\mathfrak{A}_{2} \oplus \mathfrak{A}_{1}$ by identifying the greatest element of \mathfrak{A}_{1} with the least element of \mathfrak{A}_{2}.

Figuratively speaking, $\bar{\oplus}$ puts \mathfrak{A}_{2} on top of \mathfrak{A}_{1}. The next proposition was first observed by Troelstra [122].
4.1.14. Proposition. For every Heyting algebra \mathfrak{A}_{1} and \mathfrak{A}_{2} the vertical sum $\mathfrak{A}_{1} \bar{\oplus} \mathfrak{A}_{2}$ is also a Heyting algebra.

Proof. The proof is just spelling out the definitions.
Next we extend the definition of a linear sum to descriptive frames.
4.1.15. Definition. Let $\mathfrak{F}_{1}=\left(W_{1}, R_{1}, \mathcal{P}_{1}\right)$ and $\mathfrak{F}_{2}=\left(W_{2}, R_{2}, \mathcal{P}_{2}\right)$ be descriptive frames. The linear sum of \mathfrak{F}_{1} and \mathfrak{F}_{2} is the descriptive frame $\mathfrak{F}_{1} \oplus \mathfrak{F}_{2}=(W, R, \mathcal{P})$, where (W, R) is the linear sum of $\left(W_{1}, R_{1}\right)$ and $\left(W_{2}, R_{2}\right)$ and \mathcal{P} is such that

$$
U \in \mathcal{P} \text { iff } U \in \mathcal{P}_{1} \text { or } U=W_{1} \cup S \text {, where } S \in \mathcal{P}_{2} .^{2}
$$

The operations of the vertical sum of Heyting algebras and the linear sum of descriptive frames are dual to each other.
4.1.16. Theorem. Let \mathfrak{A}_{1} and \mathfrak{A}_{2} be Heyting algebras and $\mathfrak{F}_{1}=\left(W_{1}, R_{1}, \mathcal{P}_{1}\right)$ and $\mathfrak{F}_{2}=\left(W_{2}, R_{2}, \mathcal{P}_{2}\right)$ be descriptive frames. Then

[^19]1. $\left(\mathfrak{F}_{1} \oplus \mathfrak{F}_{2}\right)^{*}$ is isomorphic to $\mathfrak{F}_{1}^{*} \bar{\oplus} \mathfrak{F}_{2}^{*}$.
2. $\left(\mathfrak{A}_{1} \bar{\oplus} \mathfrak{A}_{2}\right)_{*}$ is isomorphic to $\left(\mathfrak{A}_{1}\right)_{*} \oplus\left(\mathfrak{A}_{2}\right)_{*}$.

Proof. (Sketch) (1) We define $h:\left(\mathfrak{F}_{1} \oplus \mathfrak{F}_{2}\right)^{*} \rightarrow \mathfrak{F}_{1}^{*} \bar{\oplus}_{2}^{*}$ by putting for every element of $\left(\mathfrak{F}_{1} \oplus \mathfrak{F}_{2}\right)^{*}$, i.e., an admissible upset U of $\mathfrak{F}_{1} \oplus \mathfrak{F}_{2}$:

$$
h(U)= \begin{cases}U & \text { if } U \subseteq W_{1}, \\ U \cap W_{2} & \text { otherwise }\end{cases}
$$

(2) We define $f:\left(\mathfrak{A}_{1} \bar{\oplus} \mathfrak{A}_{2}\right)_{*} \rightarrow\left(\mathfrak{A}_{1}\right)_{*} \oplus\left(\mathfrak{A}_{2}\right)_{*}$ by putting for every point of $\left(\mathfrak{A}_{1} \bar{\oplus} \mathfrak{A}_{2}\right)_{*}$, i.e., a prime filter F of $\mathfrak{A}_{1} \bar{\oplus}_{\mathfrak{A}_{2}}$:

$$
f(F)= \begin{cases}F & \text { if } F \subsetneq A_{2} \\ F \cap A_{1} & \text { otherwise }\end{cases}
$$

We exclude the case $F=A_{2}$ in the definition of f, since in that case F is not a proper subset of A_{2} and therefore is not a filter of \mathfrak{A}_{2}. It is not hard to see that f and h are isomorphisms.

Next we generalize the notions of the vertical sum of two Heyting algebras and the linear sum of two descriptive frames to countable sums; see [10].
4.1.17. Definition. Let $\left\{\mathfrak{A}_{i}\right\}_{i \in \omega}$ be a countable family of Heyting algebras. The vertical sum of $\left\{\mathfrak{A}_{i}\right\}_{i \in \omega}$ is the partially ordered set $\bar{\bigoplus}_{i \in \omega} \mathfrak{A}_{i}=\left(\bigcup_{i \in \omega} \bar{A}_{i} \cup\right.$ $\{1\}, \leq)$, where $\overline{\mathfrak{A}}_{i}=\left(\bar{A}_{i}, \vee_{i}, \wedge_{i}, \rightarrow_{i}, 0_{i}\right)$ is an isomorphic copy of \mathfrak{A}_{i}, such that $\bar{A}_{i} \cap \bar{A}_{i+1}=\left\{1_{i}\right\}=\left\{0_{i+1}\right\}$. Let \leq_{i} be the order of \mathfrak{A}_{i}. The order \leq is defined by letting for every $a, b \in \bigcup_{i \in \omega} \bar{A}_{i}$:

$$
\begin{array}{ll}
a \leq b \text { iff } \quad & a \in \bar{A}_{i}, b \in \bar{A}_{j} \text { and } i<j, \\
& \text { or } \\
\text { or } & b=1 .
\end{array}
$$

Figuratively speaking, we form a tower from a countable family of Heyting algebras by putting all algebras on top of each other, and then adjoining a new top element. The reason that we adjoin a new top to the vertical sum of Heyting algebras is to make sure that the resulting object is again a Heyting algebra.
4.1.18. Proposition. A vertical sum of a countable family of Heyting algebras is also a Heyting algebra.

Proof. The proof is a routine check.

Note that the filter $\{1\}$ of $\bar{\oplus}_{i \in \omega} \mathfrak{H}_{i}$ is a prime filter, which implies that the corresponding descriptive frame should have a root. This is the motivation behind the following definition of the linear sum of a countable family of descriptive frames.
4.1.19. Definition. Let $\left\{\mathfrak{F}_{i}\right\}_{i \in \omega}$ be a countable family of descriptive frames, where $\mathfrak{F}_{i}=\left(W_{i}, R_{i}, \mathcal{P}_{i}\right)$ for every $i \in \omega$. The linear sum of $\left\{\mathfrak{F}_{i}\right\}_{i \in \omega}$ is a frame $\bigoplus_{i \in \omega} \mathfrak{F}_{i}=\left(\{\infty\} \cup \biguplus_{i \in \omega}, W_{i}, R, \mathcal{P}\right)$ such that for every $w, v \in \biguplus_{i \in \omega} W_{i}$:
$w R v$ iff $\quad w \in W_{i}, v \in W_{j}$ and $i>j$,
or there is $i \in \omega$ such that $w, v \in W_{i}$ and $w R_{i} v$, or $\quad w=\infty$.
and \mathcal{P} is such that

$$
U \in \mathcal{P} \text { iff } U \text { is an upset, } U \neq \biguplus_{i \in \omega} W_{i} \text { and } U \cap W_{i} \in \mathcal{P}_{i} \text {, for every } i \in \omega \text {. }
$$

Figuratively speaking, we form a tower from a countable family of descriptive frames by putting all frames below each other, and then adjoining a new root to it. Moreover, the complement of the root is not admissible.
4.1.20. Proposition. A linear sum of a countable family of descriptive frames is also a descriptive frame.

Proof. The proof is a routine check.

We have the following infinite analogue of Theorem 4.1.16.
4.1.21. Theorem. Let $\left\{\mathfrak{A}_{i}\right\}_{i \in \omega}$ be a family of Heyting algebras and $\left\{\mathfrak{F}_{i}\right\}_{i \in \omega}$ a family of descriptive frames. Then

1. $\left(\bigoplus_{i \in \omega} \mathfrak{F}_{i}\right)^{*}$ is isomorphic to $\bar{\bigoplus}_{i \in \omega} \mathfrak{F}_{i}^{*}$.
2. $\left(\bar{\bigoplus}_{i \in \omega} \mathfrak{A}_{i}\right)_{*}$ is isomorphic to $\bigoplus_{i \in \omega}\left(\mathfrak{A}_{i}\right)_{*}$.

Proof. The proof is similar to the proof of Theorem 4.1.16.

If each \mathfrak{A}_{i} and \mathfrak{F}_{i} is equal to \mathfrak{A} or \mathfrak{F} respectively, then we simply write $\bar{\bigoplus}_{\omega} \mathfrak{A}$ or $\bigoplus_{\omega} \mathfrak{F}$. Next we consider linear sums of finitely generated frames.
4.1.22. Theorem. If a descriptive finitely generated frame \mathfrak{F} is isomorphic to $\mathfrak{G} \oplus \mathfrak{H}$ and both \mathfrak{G} and \mathfrak{H} are descriptive, then \mathfrak{G} and \mathfrak{H} are also finitely generated.

Proof. Let \mathfrak{F} be n-generated, for some $n \in \omega$. This means that there is a valuation $V: \operatorname{Prop}_{n} \rightarrow \mathfrak{F}$ such that the upsets $V\left(p_{1}\right), \ldots, V\left(p_{n}\right)$ generate \mathfrak{F}^{*}. As was shown in the previous chapter, V defines a coloring of \mathfrak{F}. Let V^{\prime} be the restriction of V to \mathfrak{G}. We show that $V^{\prime}\left(p_{1}\right), \ldots, V^{\prime}\left(p_{n}\right)$ generate \mathfrak{G}^{*}, which implies that \mathfrak{G} is finitely generated. Suppose \mathfrak{G}^{*} is not generated by $V^{\prime}\left(p_{1}\right), \ldots, V^{\prime}\left(p_{n}\right)$. Then by the Coloring Theorem, (see Theorem 3.1.5) there exists a descriptive frame \mathfrak{T} and a p-morphism $f: \mathfrak{G} \rightarrow \mathfrak{T}$ such that for every $u, v \in \mathfrak{G}, f(u)=f(v)$ implies $\operatorname{col}(u)=\operatorname{col}(v)$. Consider the frame $\mathfrak{T} \oplus \mathfrak{H}$ and let $\bar{f}: \mathfrak{G} \oplus \mathfrak{H} \rightarrow \mathfrak{T} \oplus \mathfrak{H}$ be such that

$$
\bar{f}(x)= \begin{cases}f(x) & \text { if } x \in \mathfrak{G} \\ x & \text { if } x \in \mathfrak{H}\end{cases}
$$

Then it is easy to see that \bar{f} is a p-morphism and for every $u, v \in \mathfrak{G} \oplus \mathfrak{H}$, $\bar{f}(u)=\bar{f}(v)$ implies $\operatorname{col}(u)=\operatorname{col}(v)$. By the Coloring Theorem, this means that $\mathfrak{G} \oplus \mathfrak{H}$ is not generated by $V\left(p_{1}\right), \ldots, V\left(p_{n}\right)$, which is a contradiction. Therefore, \mathfrak{G} is n-generated. The proof that \mathfrak{H} is n-generated is similar.

The next lemma shows that an n-generated descriptive frame cannot be a linear sum of more than $2 n$ frames.
4.1.23. Lemma. Suppose \mathfrak{F} is an n-generated descriptive frame isomorphic to $\mathfrak{F}_{1} \oplus \ldots \oplus \mathfrak{F}_{m}$. Then $m \leq 2 n$.

Proof. Let $V: \operatorname{Prop}_{n} \rightarrow \mathfrak{F}$ be such that $V\left(p_{1}\right), \ldots, V\left(p_{n}\right)$ generate the Heyting algebra \mathfrak{F}^{*}. Then V defines a coloring of \mathfrak{F}. Suppose $m>2 n$. Given the fact that every $V\left(p_{i}\right)$ is an upset of \mathfrak{F}, for each i there can be at most one j such that \mathfrak{F}_{j} contains both points that make p_{i} true, and points that make p_{i} false. So, if $m>2 n$ there exists $j<m$ such that $\operatorname{col}(x)=\operatorname{col}(y)$ for every x, y in \mathfrak{F}_{j} or \mathfrak{F}_{j+1}. Consider the smallest equivalence relation that identifies all the points in \mathfrak{F}_{j} and \mathfrak{F}_{j+1}. Then E is a bisimulation equivalence and every E-equivalence class contains points of the same color. This, by the Coloring Theorem, implies that \mathfrak{F}^{*} is not generated by $V\left(p_{1}\right), \ldots, V\left(p_{n}\right)$, which is a contradiction.

4.2 Finite frames of RN

This section is devoted to finite frames of $\mathbf{R N}$. We characterize the finite rooted $\mathbf{R N}$-frames and the finite subdirectly irreducible algebras of $\mathcal{R N}$ in terms of linear and vertical sums. First we characterize the generated subframes of \mathfrak{L} and the homomorphic images of \mathfrak{N}.

4.2.1. Theorem.

1. A descriptive frame \mathfrak{F} is a generated subframe of \mathfrak{L} iff \mathfrak{F} is isomorphic to $\mathfrak{L}, \mathfrak{L}_{g_{k}}$ or $\mathfrak{L}_{f_{k}}$ for some $k \in \omega$.
2. Every proper generated subframe of \mathfrak{L} is finite.

Proof. The proof is a routine verification. The only fact that needs to be pointed out is that since the carrier set of \mathfrak{L}_{0} is not compact, see Section 4.1.1, \mathfrak{L}_{0} is not a generated subframe of \mathfrak{L}.

4.2.2. Corollary.

1. A Heyting algebra \mathfrak{A} is a homomorphic image of \mathfrak{N} iff \mathfrak{A} is isomorphic to $\mathfrak{N}, \mathfrak{N}_{g_{k}}$ or $\mathfrak{N}_{f_{k}}$ for some $k \in \omega$.
2. Every proper homomorphic image of \mathfrak{N} is finite.

Proof. The theorem follows immediately from Theorem 4.2.1 and the duality between Heyting algebras and descriptive Kripke frames.

Similarly to Theorem 4.2.1 and Corollary 4.2 .2 we can characterize the generated subframes of $\mathfrak{L}_{g_{k}}$ and $\mathfrak{L}_{f_{k}}$, and the homomorphic images of $\mathfrak{N}_{g_{k}}$ and $\mathfrak{N}_{f_{k}}$, respectively.
4.2.3. Theorem. For every $k \in \omega$:

1. A frame \mathfrak{F} is a generated subframe of $\mathfrak{L}_{g_{k}}$ iff \mathfrak{F} is isomorphic to $\mathfrak{L}_{g_{j}}$ for some $j \leq k$ and $j \neq k-1$, or \mathfrak{F} is isomorphic to $\mathfrak{L}_{f_{j}}$ for some $j \leq k-2$.
2. A frame \mathfrak{F} is a generated subframe of $\mathfrak{L}_{f_{k}}$ iff \mathfrak{F} is isomorphic to $\mathfrak{L}_{g_{j}}$ for some $j \leq k$, or \mathfrak{F} is isomorphic to $\mathfrak{L}_{f_{j}}$ for some $j \leq k$.
3. A Heyting algebra \mathfrak{A} is a homomorphic image of $\mathfrak{N}_{g_{k}}$ iff \mathfrak{N} is isomorphic to $\mathfrak{N}_{g_{j}}$ for some $j \leq k$, and $j \neq k-1$ or \mathfrak{N} is isomorphic to $\mathfrak{N}_{f_{j}}$ for some $j \leq k-2$.
4. A frame \mathfrak{N} is a generated subframe of $\mathfrak{N}_{f_{k}}$ iff \mathfrak{N} is isomorphic to $\mathfrak{N}_{g_{j}}$ for some $j \leq k$, or \mathfrak{N} is isomorphic to $\mathfrak{N}_{f_{j}}$ for some $j \leq k$.

Proof. The proof is a routine verification.
Next we characterize the p-morphic images of \mathfrak{L} and the subalgebras of \mathfrak{N}. We will show that up to isomorphism there are three different types of p-morphic images of \mathfrak{L} and subalgebras of \mathfrak{N}. In order to describe them, we will use the linear sums of descriptive frames and vertical sums of Heyting algebras.

4.2.4. Definition.

1. Let $\mathbf{2}$ denote the two-element Boolean algebra.
2. Let 4 denote the the four-element Boolean algebra.

4.2.5. Proposition.

1. The frame $\mathbf{2}_{*}$ consists of a single reflexive point.
2. The frame $\mathbf{4}_{*}$ is isomorphic to $\mathbf{2}_{*} \uplus \mathbf{2}_{*}$.

Proof. The proof is easy.

The following result was first established by Kracht [73] using descriptive frames for IPC, see also [10]. Below we will give a purely algebraic proof, which in our opinion is the simplest one.
4.2.6. Theorem. A Heyting algebra \mathfrak{A} is a subalgebra of \mathfrak{N} iff \mathfrak{A} is isomorphic to $\mathfrak{N}, \bar{\bigoplus}_{i \in \omega} \mathfrak{B}_{i}$, $\left(\bar{\bigoplus}_{i=1}^{n} \mathfrak{B}_{i}\right) \bar{\oplus} \mathbf{2}$, or $\left(\bar{\bigoplus}_{i=1}^{n} \mathfrak{B}_{i}\right) \bar{\oplus} \mathfrak{N}$, for some $n \in \omega$, where each \mathfrak{B}_{i} is isomorphic to $\mathbf{2}$ or $\mathbf{4}$.

Proof. Suppose $\mathfrak{A}=(A, \vee, \wedge, \rightarrow, 0)$ is a subalgebra of \mathfrak{N}. If \mathfrak{A} is a chain, then \mathfrak{A} is isomorphic to $\bar{\bigoplus}_{i \in \alpha} \mathfrak{B}_{i}$, for $\alpha \leq \omega$, where each \mathfrak{B}_{i} is isomorphic to 2 . Now assume that \mathfrak{A} is not isomorphic to a chain. Then there are at least two incomparable elements a and b in \mathfrak{A}. Since \mathfrak{N} is well-founded we can assume that a and b are the least two incomparable elements of \mathfrak{A}; that is, the set $\{c \in A: c \leq a$ or $c \leq b\}$ is a chain. Then from the structure of \mathfrak{N} it follows directly that there is $k \in \omega$ such that one of the following four cases holds:

1. $\{a, b\}=\left\{f_{2 k}, g_{2 k+1}\right\}$.
2. $\{a, b\}=\left\{g_{2 k}, f_{2 k-1}\right\}$.
3. $\{a, b\}=\left\{g_{2 k}, g_{2 k-1}\right\}$.
4. $\{a, b\}=\left\{g_{2 k}, g_{2 k+1}\right\}$.

Case 1. If $\{a, b\}=\left\{f_{2 k}, g_{2 k+1}\right\}$, then the element $f_{2 k-1}=f_{2 k} \wedge g_{2 k+1}$ belongs to A. Looking at the filter $\left[f_{2 k-1}\right)$ we see that it is isomorphic to \mathfrak{N}. Moreover, in the same way as g_{0} generates $\mathfrak{N}, f_{2 k}$ generates $\left[f_{2 k-1}\right)$. So the whole filter [$f_{2 k-1}$) is contained in A. Now since a and b are the least two incomparable elements in \mathfrak{A}, we have that $A \backslash\left[f_{2 k-1}\right)$ is a chain. Therefore, \mathfrak{A} is isomorphic to \mathfrak{N} or $\bar{\bigoplus}_{i=1}^{n} \mathfrak{B}_{i} \bar{\oplus} \mathfrak{N}$, where each \mathfrak{B}_{i} is isomorphic to $\mathbf{2}$.

Case 2. The proof is similar to the proof of Case 1. If $\{a, b\}=\left\{g_{2 k}, f_{2 k-1}\right\}$, then the element $f_{2 k}=g_{2 k} \wedge f_{2 k-1}$ belongs to A, and so the whole filter $\left[f_{2 k}\right)$ is contained in A. Now $\left[f_{2 k}\right)$ is isomorphic to \mathfrak{N}, and $A \backslash\left[f_{2 k}\right)$ is a chain. Thus \mathfrak{A} is isomorphic to \mathfrak{N} or $\bar{\bigoplus}_{i=1}^{n} \mathfrak{B}_{i} \bar{\oplus} \mathfrak{N}$, where each \mathfrak{B}_{i} is isomorphic to $\mathbf{2}$.

Case 3. If $\{a, b\}=\left\{g_{2 k}, g_{2 k-1}\right\}$, then $f_{2 k-1}=g_{2 k} \wedge g_{2 k-1}$ and $f_{2 k}=g_{2 k} \vee g_{2 k-1}$ belong to A. Since $g_{2 k}$ and $g_{2 k-1}$ are the least two incomparable elements, none of $g_{2(k-1)}, f_{2 k-1}, f_{2 k}, g_{2 k+1}$ are in A. Therefore, every element of \mathfrak{A} is below $a \wedge b$, above $a \vee b$, or in $\{a, b, a \wedge b, a \vee b\}$, which is isomorphic to 4 . Moreover, $(a \wedge b]$ is a chain. If $[a \vee b)$ is also a chain, then \mathfrak{A} is isomorphic to $\bar{\bigoplus}_{i \in \omega} \mathfrak{B}_{i}$ or $\left(\bar{\bigoplus}_{i=1}^{n} \mathfrak{B}_{i}\right) \bar{\oplus} \mathbf{2}$, where each \mathfrak{B}_{i} is isomorphic to $\mathbf{2}$ or $\mathbf{4}$. (In fact there will be exactly one \mathfrak{B}_{i} isomorphic to 4.) If $[a \vee b)$ is not a chain, then let c and d be the least incomparable elements in $[a \vee b)$. Then one of the above four possibilities holds for $\{c, d\}$, and we are back in one of the four cases, but this time for $\{c, d\}$. Repeating this process we eventually obtain that \mathfrak{A} is isomorphic to one of $\mathfrak{N}, \bar{\bigoplus}_{i \in \omega} \mathfrak{B}_{i},\left(\bar{\bigoplus}_{i=1}^{n} \mathfrak{B}_{i}\right) \bar{\oplus} \mathbf{2}$, or $\left(\bar{\bigoplus}_{i=1}^{n} \mathfrak{B}_{i}\right) \bar{\oplus} \mathfrak{N}$, where each \mathfrak{B}_{i} is isomorphic to 2 or $\mathbf{4}$.

Case 4. The proof is similar to the proof of Case 3. If $\{a, b\}=\left\{g_{2 k}, g_{2 k+1}\right\}$, then $f_{2 k}=g_{2 k} \wedge g_{2 k+1}$ and $f_{2 k+1}=g_{2 k} \vee g_{2 k+1}$ are in A, and none of $g_{2 k-1}, f_{2 k-1}$, $f_{2 k}$, and $g_{2(k+1)}$ belong to A. Therefore, every element of \mathfrak{A} is either below $a \wedge b$, above $a \vee b$, or in $\{a, b, a \wedge b, a \vee b\}$, and $(a \wedge b]$ is a chain; and we proceed as in 3.
4.2.7. Corollary. A descriptive frame \mathfrak{F} is a p-morphic image of \mathfrak{L} iff \mathfrak{F} is isomorphic to $\mathfrak{L}, \bigoplus_{i \in \omega} \mathfrak{F}_{i},\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathbf{2}_{*}$ or $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}$, where each \mathfrak{F}_{i} is isomorphic to either $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$ and $n \in \omega$.

Proof. Follows immediately from Theorem 4.2.6 and the duality between Heyting algebras and descriptive frames.

Theorem 4.2.1 and Corollary 4.2.7 enable us to characterize generated subframes of p-morphic images of \mathfrak{L}.

4.2.8. Theorem.

1. An infinite descriptive frame \mathfrak{F} is a generated subframe of a p-morphic image of \mathfrak{L} iff \mathfrak{F} is isomorphic to $\bigoplus_{i \in \omega} \mathfrak{F}_{i}$ or $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}$, where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$ and $n \in \omega$.
2. A finite frame \mathfrak{F} is a generated subframe of a p-morphic image of \mathfrak{L} iff \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$ or $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{f_{k}}$, where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$ and $k, n \in \omega$.
3. A finite rooted frame \mathfrak{F} is a generated subframe of a p-morphic image of \mathfrak{L} iff \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$ and $k, n \in \omega$.

Proof. (1) The right to left implication follows immediately from Corollary 4.2.7. Conversely, suppose an infinite descriptive frame \mathfrak{F} is a generated subframe of a p-morphic image of \mathfrak{L}. Then there exists an infinite descriptive frame \mathfrak{G} such that \mathfrak{F} is a generated subframe of \mathfrak{G} and \mathfrak{G} is a p-morphic image of \mathfrak{L}. Then by Corollary 4.2.7, \mathfrak{G} is isomorphic to $\bigoplus_{i \in \omega} \mathfrak{F}_{i}$ or $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}$. It is easy to see that neither $\bigoplus_{i \in \omega} \mathfrak{F}_{i}$ nor $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}$ contains a proper infinite generated subframe. Therefore, \mathfrak{F} is isomorphic to either $\bigoplus_{i \in \omega} \mathfrak{F}_{i}$ or $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}$.
(2) The right to left implication again follows from Corollary 4.2.7. Conversely, suppose \mathfrak{G} is a p-morphic image of \mathfrak{L} and \mathfrak{F} is a finite generated subframe of \mathfrak{G}. Then by Corollary 4.2.7, \mathfrak{G} is isomorphic to $\mathfrak{L}, \bigoplus_{i \in \omega} \mathfrak{F}_{i},\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathbf{2}_{*}$, or $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}$. Consequently, in the first case \mathfrak{F} is isomorphic to $\mathfrak{L}_{g_{k}}$ or $\mathfrak{L}_{f_{k}}$, in the second and third cases \mathfrak{F} is isomorphic to $\bigoplus_{i=1}^{n} \mathfrak{F}_{i}$, and in the fourth case \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$ or $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{f_{k}}$, where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$.
(3) The result follows immediately from (2) since for every $k>0$ the frame $\mathfrak{L}_{f_{k}}$ is not rooted.

We recall that for a class of algebras $K, \mathbf{H}(K), \mathbf{S}(K)$, and $\mathbf{P}(K)$ denote the classes of all homomorphic images, subalgebras, and direct products of the algebras from K, respectively.

4.2.9. Corollary.

1. An infinite Heyting algebra \mathfrak{A} belongs to $\mathbf{H S}(\mathfrak{N})$ iff \mathfrak{A} is isomorphic to $\bar{\bigoplus}_{i \in \omega} \mathfrak{B}_{i}$ or $\left(\bar{\bigoplus}_{i=1}^{n} \mathfrak{B}_{i}\right) \bar{\oplus} \mathfrak{N}$, where each \mathfrak{B}_{i} is isomorphic to $\mathbf{2}$ or $\mathbf{4}$ and $k, n \in \omega$.
2. A finite Heyting algebra \mathfrak{A} belongs to $\mathbf{H S}(\mathfrak{N})$ iff \mathfrak{A} is isomorphic to $\left(\bar{\bigoplus}_{i=1}^{n} \mathfrak{B}_{i}\right)$ $\bar{\oplus} \mathfrak{N}_{k}$, where each \mathfrak{B}_{i} is isomorphic to $\mathbf{2}$ or $\mathbf{4}$ and $k, n \in \omega$.

Proof. The result follows immediately from Corollary 4.2.8 and the duality theory for Heyting algebras.
4.2.10. Corollary. A finite rooted frame \mathfrak{F} is an $\mathbf{R N}$-frame iff \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$ and $k, n \in \omega$.

Proof. It is obvious that if a finite rooted frame \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus$ $\mathfrak{L}_{g_{k}} \oplus$, where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$, then \mathfrak{F} is an $\mathbf{R N}$-frame. Conversely, suppose a finite rooted frame \mathfrak{F} is an $\mathbf{R N}$-frame. Then \mathfrak{F} is a generated subframe of a p-morphic image of \mathfrak{L}. To see this, note that if \mathfrak{F} is not a generated subframe of a p-morphic image of \mathfrak{L}, by Theorem 3.3.3, we have $\mathfrak{L} \models \chi(\mathfrak{F})$. Then, as $\mathbf{R N}=\log (\mathfrak{L})$ and \mathfrak{F} is an $\mathbf{R N}$-frame we have $\mathfrak{F} \models \chi(\mathfrak{F})$, which is a contradiction. Thus \mathfrak{F} is a generated subframe of a p-morphic image of \mathfrak{L}. Therefore, by Theorem 4.2.8(3), \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$.
4.2.11. Theorem. A finite subdirectly irreducible algebra \mathfrak{A} belongs to $\mathcal{R N}$ if \mathfrak{A} is isomorphic to $\left(\bar{\bigoplus}_{i=1}^{n} \mathfrak{B}_{i}\right) \bar{\oplus} \mathfrak{N}_{g_{k}}$, where each \mathfrak{B}_{i} is isomorphic to $\mathbf{2}$ or $\mathbf{4}$ and $k, n \in \omega$.

Proof. The theorem follows immediately from Theorem 4.2.10 and the duality theory for Heyting algebras.

Similarly to Theorem 4.2.6 and Corollary 4.2 .7 we can characterize subalgebras and p-morphic images of $\mathfrak{L}_{g_{k}}$'s and $\mathfrak{N}_{g_{k}}$'s.
4.2.12. Theorem. For every $k, n \in \omega$:

1. The frame $\bigoplus_{i=1}^{n} \mathfrak{F}_{i} \oplus \mathfrak{L}_{g_{k}}$ is a p-morphic image of $\mathfrak{L}_{g_{(k+3 n)}}$, where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$.
2. The algebra $\bar{\bigoplus}_{i=1}^{n} \mathfrak{B}_{i} \bar{\oplus} \mathfrak{N}_{g_{k}}$, is a subalgebra of $\mathfrak{N}_{g_{(k+3 n)}}$, where each \mathfrak{B}_{i} is either empty of isomorphic to $\mathbf{2}$ or $\mathbf{4}$.

Proof. The proof is an adaptation of the proofs of Theorem 4.2.6 and Corollary 4.2.7.
4.2.13. Lemma. $\mathfrak{L}_{g_{k}}$ is not a p-morphic image of $\mathfrak{L}_{g_{m}}$, for $m \neq k$.

Proof. Suppose there exists a p-morphism $f: \mathfrak{L}_{g_{m}} \rightarrow \mathfrak{L}_{g_{k}}$, then by Proposition 3.1.7, f is a composition of α and β-reductions. It is easy to see that by applying α and β-reductions to $\mathfrak{L}_{g_{m}}$ we cannot obtain a frame isomorphic to $\mathfrak{L}_{g_{k}}$.

4.3 The Kuznetsov-Gerciu logic

In this section we introduce the logic whose finitely generated frames are the finite linear sums of 1-generated frames. This logic and the corresponding variety were first introduced and studied by Kuznetsov and Gerciu [83].
4.3.1. Definition. Let

$$
\phi_{K G}:=(p \rightarrow q) \vee(q \rightarrow r) \vee((q \rightarrow r) \rightarrow r) \vee(r \rightarrow(p \vee q))
$$

We call IPC $+\phi_{K G}$ the Kuznetsov-Gerciu logic and denote it by KG. We denote the corresponding variety by $\mathcal{K} \mathcal{G}$.

Our first task is to show that KG is a subframe logic. Consider the frames \mathfrak{K}_{1}, \mathfrak{K}_{2}, and \mathfrak{K}_{3} shown in Figure 4.3.

Figure 4.3: The frames $\mathfrak{K}_{1}, \mathfrak{K}_{2}$, and \mathfrak{K}_{3}
4.3.2. Lemma. Suppose $\mathfrak{F}=(W, R, \mathcal{P})$ is a descriptive frame.

1. If either $\mathfrak{K}_{1}, \mathfrak{K}_{2}$ or \mathfrak{K}_{3} is a p-morphic image of a subframe of \mathfrak{F}, then $\mathfrak{F} \not \vDash$ $\phi_{K G}$.
2. If $\mathfrak{F} \models \phi_{K G}$, then $\mathfrak{F} \models \beta\left(\mathfrak{K}_{1}\right) \wedge \beta\left(\mathfrak{K}_{2}\right) \wedge \beta\left(\mathfrak{K}_{3}\right)$.

Proof. (1) First we show that $\mathfrak{K}_{i} \not \models \phi_{K G}$ for every $i=1,2,3$. In case $i=1$ we let $V_{1}(p)=\left\{w_{2}\right\}, V_{1}(q)=\left\{w_{3}\right\}$ and $V_{1}(r)=\left\{w_{4}\right\}$. If $i=2$, then let $V_{2}(p)=\left\{v_{2}, v_{3}\right\}$, $V_{2}(q)=\left\{v_{3}\right\}$ and $V_{2}(r)=\left\{v_{5}\right\}$. And if $i=3$, then we put $V_{3}(p)=\left\{u_{5}\right\}$, $V_{3}(q)=\left\{u_{2}\right\}$ and $V_{3}(r)=\left\{u_{4}, u_{5}\right\}$. It is easy to check that $\left(\mathfrak{K}_{i}, V_{i}\right) \not \vDash \phi_{K G}$ for each $i=1,2,3$. Now assume that \mathfrak{G} is a subframe of \mathfrak{F} such that \mathfrak{K}_{i} is a p-morphic image of \mathfrak{G} for some $i=1,2,3$. Suppose $f: \mathfrak{G} \rightarrow \mathfrak{K}_{i}$ is this p-morphism. Let V^{\prime} be a valuation on \mathfrak{G} defined by

$$
V^{\prime}(p)=f^{-1}\left(V_{i}(p)\right)
$$

Then $\left(\mathfrak{G}, V^{\prime}\right) \not \vDash \phi_{K G}$. Now let us extend the valuation V^{\prime} on \mathfrak{G} to a valuation V on \mathfrak{F} as in the proof of Lemma 3.3.14. That is, we put

$$
V(p)=W \backslash R^{-1}\left(V^{\prime}(p)\right)
$$

Then it is easy to see that $(\mathfrak{F}, V) \not \vDash \phi_{K G}$.
(2) is an immediate consequence of (1).

Next we prove the converse of Lemma 4.3.2 for Kripke frames. Consequently, we will axiomatize KG by the subframe formulas of $\mathfrak{K}_{1}, \mathfrak{K}_{2}$, and \mathfrak{K}_{3}.
4.3.3. Lemma. Suppose $\mathfrak{F}=(W, R)$ is a rooted Kripke frame.

1. If neither $\mathfrak{K}_{1}, \mathfrak{K}_{2}$, nor \mathfrak{K}_{3} is a subframe of \mathfrak{F}, then $\mathfrak{F} \models \phi_{K G}$.
2. If $\mathfrak{F} \models \beta\left(\mathfrak{K}_{1}\right) \wedge \beta\left(\mathfrak{K}_{2}\right) \wedge \beta\left(\mathfrak{K}_{3}\right)$, then $\mathfrak{F} \models \phi_{K G}$.

Proof. (1) Suppose $\mathfrak{F} \not \vDash \phi_{K G}$. Let w_{0} be the root of \mathfrak{F}. Then there exists a valuation V on W such that $\mathfrak{M}, w_{0} \not \models \phi_{K G}$, where $\mathfrak{M}=(\mathfrak{F}, V)$. Therefore, there exist $w_{1}, w_{2}, w_{3}, w_{4} \in R(w)$ such that $\mathfrak{M}, w_{1} \models p$ and $\mathfrak{M}, w_{1} \not \models q, \mathfrak{M}, w_{2} \models q$ and $\mathfrak{M}, w_{2} \not \vDash r, \mathfrak{M}, w_{3} \models q \rightarrow r$ and $\mathfrak{M}, w_{3} \not \vDash r$, and $\mathfrak{M}, w_{4} \models r, \mathfrak{M}, w_{4} \not \models p$ and $\mathfrak{M}, w_{4} \not \vDash q$.

Let us assume that \mathfrak{K}_{1} is not a subframe of \mathfrak{F}, and show that then either \mathfrak{K}_{2} or \mathfrak{K}_{3} is a subframe of \mathfrak{F}. Since $\mathfrak{M}, w_{2} \models q, \mathfrak{M}, w_{4} \not \models q$ and $\mathfrak{M}, w_{4} \models r, \mathfrak{M}, w_{2} \not \vDash r$, we have that w_{2} and w_{4} are incomparable. As $\mathfrak{M}, w_{3} \models q \rightarrow r$ and \mathfrak{M}, $w_{3} \not \vDash r$, it follows that \mathfrak{M}, $w_{3} \not \models q$, which together with $\mathfrak{M}, w_{2} \models q$ gives us $\neg\left(w_{2} R w_{3}\right)$. Also since $\mathfrak{M}, w_{3} \models q \rightarrow r, \mathfrak{M}, w_{2} \models q$ and $\mathfrak{M}, w_{2} \not \models r$, we have that $\neg\left(w_{3} R w_{2}\right)$. Thus, w_{2} and w_{3} are incomparable as well. As $\mathfrak{M}, w_{4} \models r$ and $\mathfrak{M}, w_{3} \not \models r$, we also have that $\neg\left(w_{4} R w_{3}\right)$. Therefore, as \mathfrak{K}_{1} is not a subframe of \mathfrak{F}, we have that $w_{3} R w_{4}$. Otherwise the subframe of \mathfrak{F} based on $\left\{w_{0}, w_{2}, w_{3}, w_{4}\right\}$ would be isomorphic to \mathfrak{F}_{1}. Moreover, $\mathfrak{M}, w_{2} \models q$ and $\mathfrak{M}, w_{1} \not \models q$ give us $\neg\left(w_{2} R w_{1}\right)$, and $\mathfrak{M}, w_{1} \models p$ and $\mathfrak{M}, w_{4} \not \models p$ give us that $\neg\left(w_{1} R w_{4}\right)$, and hence that $\neg\left(w_{1} R w_{3}\right)$. Since \mathfrak{K}_{1} is not a subframe of \mathfrak{F}, we have that either $w_{1} R w_{2}$ or $w_{4} R w_{1}$. First suppose that $w_{1} R w_{2}$. Then as w_{3} and w_{2} are incomparable we have that $\neg\left(w_{3} R w_{1}\right)$ and $\neg\left(w_{4} R w_{1}\right)$. Therefore, \mathfrak{K}_{2} is a subframe of \mathfrak{F}. Now suppose that $w_{4} R w_{1}$. Then as w_{4} and w_{2} are incomparable we have that $\neg\left(w_{1} R w_{2}\right)$, which implies that \mathfrak{K}_{3} is a subframe of \mathfrak{F}. Thus, if $\mathfrak{F} \notin \phi_{K G}$, then either $\mathfrak{K}_{1}, \mathfrak{K}_{2}$ or \mathfrak{K}_{3} is a subframe of \mathfrak{F}.
(2) is an immediate consequence of (1).

4.3.4. THEOREM. $\mathbf{K G}=\mathbf{I P C}+\beta\left(\mathfrak{K}_{1}\right) \wedge \beta\left(\mathfrak{K}_{2}\right) \wedge \beta\left(\mathfrak{K}_{3}\right)$.

Proof. Suppose \mathfrak{F} is a descriptive KG-frame. Then, by Lemma 4.3.2(2), $\mathfrak{F} \models$ $\beta\left(\mathfrak{K}_{1}\right) \wedge \beta\left(\mathfrak{K}_{2}\right) \wedge \beta\left(\mathfrak{K}_{3}\right)$. Therefore, $\mathbf{I P C}+\beta\left(\mathfrak{K}_{1}\right) \wedge \beta\left(\mathfrak{K}_{2}\right) \wedge \beta\left(\mathfrak{K}_{3}\right) \subseteq \mathbf{K G}$. Now suppose \mathfrak{F} is a Kripke frame such that $\mathfrak{F} \models \beta\left(\mathfrak{K}_{1}\right) \wedge \beta\left(\mathfrak{K}_{2}\right) \wedge \beta\left(\mathfrak{K}_{3}\right)$. Then, by Lemma 4.3.3(2), \mathfrak{F} is a KG-frame. As $\mathbf{I P C}+\beta\left(\mathfrak{K}_{1}\right) \wedge \beta\left(\mathfrak{K}_{2}\right) \wedge \beta\left(\mathfrak{K}_{3}\right)$ is a subframe logic, see Corollary 3.4.16(2), it follows from Theorem 3.4.17 that $\mathbf{I P C}+\beta\left(\mathfrak{K}_{1}\right) \wedge \beta\left(\mathfrak{K}_{2}\right) \wedge \beta\left(\mathfrak{K}_{3}\right)$ has the finite model property, and hence is Kripke complete. Therefore, $\mathbf{K G} \subseteq \mathbf{I P C}+\beta\left(\mathfrak{K}_{1}\right) \wedge \beta\left(\mathfrak{K}_{2}\right) \wedge \beta\left(\mathfrak{K}_{3}\right)$, and our result follows.
4.3.5. Corollary. $\mathcal{K} \mathcal{G}=\mathcal{H} \mathcal{A}+\left[\beta\left(\mathfrak{K}_{1}\right) \wedge \beta\left(\mathfrak{K}_{2}\right) \wedge \beta\left(\mathfrak{K}_{3}\right)=1\right]$.

Subsequently in the paper we will use the following shorthand.
4.3.6. Definition. A frame \mathfrak{F} is called cyclic if it is a 1 -generated ${ }^{3}$ descriptive frame.

Then we have the following immediate characterization of cyclic frames.

[^20]4.3.7. Theorem. A descriptive frame \mathfrak{F} is cyclic iff \mathfrak{F} is isomorphic to $\mathfrak{L}, \mathfrak{L}_{g_{k}}$ or $\mathfrak{L}_{f_{k}}$, for some $k \in \omega$.

Proof. Every 1-generated Heyting algebra is a homomorphic image of the 1generated free Heyting algebra. By the duality, this means that every cyclic frame is a generated subframe of \mathfrak{L}.

By definition, \mathfrak{F} is cyclic iff \mathfrak{F} is a generated subframe of \mathfrak{L}. The result now follows from Theorem 4.2.1.

Thus, every cyclic frame is descriptive, moreover except for \mathfrak{L}, every cyclic frame is finite. To characterize the finitely generated rooted KG-frames, we will need the following technical lemma.

4.3.8. Lemma. Let \mathfrak{F} be a finitely generated rooted descriptive KG-frame.

1. There exist descriptive frames \mathfrak{G}^{\prime} and \mathfrak{H}^{\prime} such that \mathfrak{H}^{\prime} is cyclic and \mathfrak{F} is isomorphic to $\mathfrak{G}^{\prime} \oplus \mathfrak{H}^{\prime}$.
2. Suppose \mathfrak{F} is isomorphic to $\mathfrak{H} \oplus \mathfrak{G}$, where \mathfrak{G} is a non-cyclic descriptive frame and \mathfrak{H} is a cyclic descriptive frame. Then there exist descriptive frames \mathfrak{G}^{\prime} and \mathfrak{H}^{\prime} such that \mathfrak{H}^{\prime} is cyclic and \mathfrak{F} is isomorphic to $\mathfrak{H} \oplus \mathfrak{H}^{\prime} \oplus \mathfrak{G}^{\prime}$.

Proof. (1) Let r be the root of \mathfrak{F}. As \mathfrak{F} is a KG-frame, \mathfrak{K}_{1} is not a subframe of \mathfrak{F}, implying that $|\max (\mathfrak{F})| \leq 2$. If $\max (\mathfrak{F})=\{x\}$, then let $\mathfrak{H}^{\prime}=(\{x\},=)$, and let $\mathfrak{G}^{\prime}=\mathfrak{F} \backslash \mathfrak{H}^{\prime}$. It is then obvious that \mathfrak{H}^{\prime} is a cyclic frame, and that \mathfrak{F} is isomorphic to $\mathfrak{H}^{\prime} \oplus \mathfrak{G}^{\prime}$. Moreover, by Theorem 3.1.10 (see also Claim 3.1.11), \mathfrak{G}^{\prime} is a descriptive frame. If $\max (\mathfrak{F})=\{x, y\}$, then two cases are possible: either the next layer of \mathfrak{F} consists of a single point z, or the next layer of \mathfrak{F} consists of two distinct points z and u.

Case 1. Suppose that the next layer of \mathfrak{F} consists of a single point z, and that $z R x$ and $z R y$. Then we put $\mathfrak{H}^{\prime}=(\{x, y\},=)$ and $\mathfrak{G}^{\prime}=\mathfrak{G} \backslash \mathfrak{H}^{\prime}$. It then follows that \mathfrak{H}^{\prime} is a cyclic frame. By Theorem 3.1.10, \mathfrak{G}^{\prime} is a descriptive frame, and therefore \mathfrak{F} is isomorphic to $\mathfrak{H}^{\prime} \oplus \mathfrak{G}^{\prime}$. Now suppose that $z R x$ and $\neg(z R y)$. Then we again have two cases: either the next layer of \mathfrak{F} consists of a single point v, or the next layer of \mathfrak{F} consists of two distinct points v and w.

Case 1a. Suppose the next layer of \mathfrak{F} consists of a single point v. Then $v R z$. If $\neg(v R y)$, then $(\{r, v, z, x, y\}, R \upharpoonright\{r, v, z, x, y\})$ is a subframe of \mathfrak{F}, isomorphic to \mathfrak{K}_{3}, which is a contradiction. Therefore, we have $v R y$, and we put $\mathfrak{H}^{\prime}=$ $(\{v, z, x, y\}, R \upharpoonright\{v, z, x, y\})$ and $\mathfrak{G}^{\prime}=\mathfrak{F} \backslash \mathfrak{H}^{\prime}$. It then follows that \mathfrak{H}^{\prime} is a cyclic frame. Again by Theorem 3.1.10, \mathfrak{G}^{\prime} is a descriptive frame, and therefore \mathfrak{F} is isomorphic to $\mathfrak{H}^{\prime} \oplus \mathfrak{G}$.

Case 1b. Suppose the next layer of \mathfrak{F} consists of two distinct points v and w. Then $v R z$ and $w R z$. If $\neg(v R y)$ and $\neg(w R y)$, then $(\{r, v, w, y\}, R \upharpoonright\{r, v, w, y\})$
is a subframe of \mathfrak{F} isomorphic to \mathfrak{K}_{1}, which is a contradiction. Therefore, $v R y$ or $w R y$. If $\neg(v R y)$ and $w R y$, then $(\{r, v, z, x, y\}, R \upharpoonright\{r, v, z, x, y\})$ is a subframe of \mathfrak{F} isomorphic to \mathfrak{K}_{3}; and if $v R y$ and $\neg(w R y)$, then $(\{r, w, z, x, y\}, R \upharpoonright\{r, w, z, x, y\})$ is a subframe of \mathfrak{F} isomorphic to \mathfrak{K}_{3}. In both cases we arrive at a contradiction. Thus, $v R y$ and $w R y$. But then we put $\mathfrak{H}^{\prime}=(\{z, x, y\}, R \upharpoonright\{z, x, y\})$ and $\mathfrak{G}^{\prime}=$ $\mathfrak{F} \backslash \mathfrak{H}^{\prime}$. It follows that \mathfrak{H}^{\prime} is a cyclic frame. By Theorem 3.1.10, \mathfrak{G}^{\prime} is a descriptive frame, and \mathfrak{F} is isomorphic to $\mathfrak{H}^{\prime} \oplus \mathfrak{G}^{\prime}$.

Case 2. Suppose the next layer of \mathfrak{F} consists of two distinct points z and u. If $z R x, u R x, \neg(z R y)$ and $\neg(u R y)$, then $(\{r, z, u, y\}, R \upharpoonright\{r, z, u, y\})$ is a subframe of \mathfrak{F} isomorphic to \mathfrak{K}_{1}, which is a contradiction. If $z R x, \neg(z R y), u R y$ and $\neg(u R x)$, then $(\{r, z, u, x, y\}, R \upharpoonright\{r, z, u, x, y\})$ is a subframe of \mathfrak{F} isomorphic to \mathfrak{K}_{2}, which is also a contradiction. If $z R x, z R y, u R x$ and $u R y$, then we put $\mathfrak{H}^{\prime}=(\{x, y\},=)$ and $\mathfrak{G}^{\prime}=\mathfrak{F} \backslash \mathfrak{H}^{\prime}$. It then follows that \mathfrak{H}^{\prime} is a cyclic frame, by Theorem 3.1.10, \mathfrak{G}^{\prime} is a descriptive frame, and \mathfrak{F} is isomorphic to $\mathfrak{H}^{\prime} \oplus \mathfrak{G}^{\prime}$. Finally, if $z R x, \neg(z R y), u R x$ and $u R y$, then there are two possible cases: either the next layer of \mathfrak{F} consists of a single point z_{1}, or the next layer of \mathfrak{F} consists of two distinct points z_{1} and u_{1}.

Case 2a. Suppose the next layer of \mathfrak{F} consists of a single point z_{1}. If $z_{1} R z$ and $z_{1} R u$, then we put $\mathfrak{H}^{\prime}=(\{z, u, x, y\}, R \upharpoonright\{z, u, x, y\})$ and $\mathfrak{G}^{\prime}=\mathfrak{F} \backslash \mathfrak{H}^{\prime}$. It then follows that \mathfrak{H}^{\prime} is a cyclic frame, by Theorem 3.1.10, \mathfrak{G}^{\prime} is a descriptive frame, and \mathfrak{F} is isomorphic to $\mathfrak{H}^{\prime} \oplus \mathfrak{G}^{\prime}$. Otherwise we have that either $z_{1} R z$ and $\neg\left(z_{1} R u\right)$, or $z_{1} R u$ and $\neg\left(z_{1} R z\right)$. If $z_{1} R u$ and $\neg\left(z_{1} R z\right)$, then $\left(\left\{r, z_{1}, z, x, y\right\}, R \upharpoonright\right.$ $\left.\left\{r, z_{1}, z, x, y\right\}\right)$ is a subframe of \mathfrak{F} isomorphic to \mathfrak{K}_{2}, which is a contradiction. So we can assume that $z_{1} R z$ and $\neg\left(z_{1} R u\right)$. If $\neg\left(z_{1} R y\right)$, then we have that $\left(\left\{r, z_{1}, z\right.\right.$, $\left.x, y\}, R \upharpoonright\left\{r, z_{1}, z, x, y\right\}\right)$ is a subframe of \mathfrak{F} isomorphic to \mathfrak{K}_{3}, which is a contradiction. Therefore $z_{1} R y$, and we again have two cases: either the next layer of \mathfrak{F} consists of a single point v_{1}, or the next layer of \mathfrak{F} consists of two distinct points v_{1} and w_{1}. In the former case, the same argument as in Case 1a gives us that $v_{1} R z_{1}$ and $v_{1} R u$. Thus we put $\mathfrak{H}^{\prime}=\left(\left\{z_{1}, z, u, x, y\right\}, R \upharpoonright\left\{z_{1}, z, u, x, y\right\}\right)$ and $\mathfrak{G}^{\prime}=\mathfrak{F} \backslash \mathfrak{H}^{\prime}$. It then follows that \mathfrak{H}^{\prime} is a cyclic frame (in fact \mathfrak{H}^{\prime} is isomorphic to $\mathfrak{L}_{g_{5}}$). By Theorem 3.1.10, \mathfrak{G}^{\prime} is a descriptive frame, and \mathfrak{F} is isomorphic to $\mathfrak{H}^{\prime} \oplus \mathfrak{G}^{\prime}$. In the latter case, the same argument as in Case 1 b gives us that $v_{1} R z_{1}$, $w_{1} R z_{1}, v_{1} R u$ and $w_{1} R u$. Thus, we put $\mathfrak{H}^{\prime}=\left(\left\{z_{1}, z, u, x, y\right\}, R \upharpoonright\left\{z_{1}, z, u, x, y\right\}\right)$ and $\mathfrak{G}^{\prime}=\mathfrak{F} \backslash \mathfrak{H}^{\prime}$. It then follows that \mathfrak{H}^{\prime} is a cyclic frame, that \mathfrak{G}^{\prime} is a descriptive frame, and that \mathfrak{F} is isomorphic to $\mathfrak{H}^{\prime} \oplus \mathfrak{G}^{\prime}$.

Case 2b. Suppose the next layer of \mathfrak{F} consists of two distinct points z_{1} and u_{1}. Then the same argument as in the beginning of Case 2 guarantees that $z_{1} R z$, $z_{1} R y, u_{1} R z$ and $u_{1} R u$, and we move on to the next layer of \mathfrak{F}.

Continuing in this fashion, if our process terminates after finitely many steps, we obtain that either \mathfrak{F} is isomorphic to a finite cyclic frame or that \mathfrak{F} is isomorphic to $\mathfrak{H}^{\prime} \oplus \mathfrak{G}^{\prime}$ with \mathfrak{H}^{\prime} cyclic and \mathfrak{G}^{\prime} descriptive. Otherwise we obtain that \mathfrak{F} is isomorphic to \mathfrak{L} or that \mathfrak{F} is isomorphic to $\mathfrak{L} \oplus \mathfrak{G}^{\prime}$ with \mathfrak{G}^{\prime} descriptive. In either
case, our result follows.
(2) Suppose \mathfrak{F} is isomorphic to $\mathfrak{H} \oplus \mathfrak{G}$, where \mathfrak{G} is a non-cyclic descriptive frame and \mathfrak{H} is a cyclic descriptive frame. Since \mathfrak{F} is finitely generated, so is \mathfrak{G} by Theorem 4.1.22. Therefore, by (1) there exist descriptive frames \mathfrak{G}^{\prime} and \mathfrak{H}^{\prime} such that \mathfrak{H}^{\prime} is cyclic and \mathfrak{G} is isomorphic to $\mathfrak{H}^{\prime} \oplus \mathfrak{G}^{\prime}$. Then \mathfrak{F} is isomorphic to $\mathfrak{H} \oplus \mathfrak{H}^{\prime} \oplus \mathfrak{G}^{\prime}$. This finishes the proof of the lemma.

Recall from Definition 2.3.15 that descriptive rooted frames are such rooted frames that the complement of the root is admissible.

4.3.9. Corollary. A rooted descriptive KG-frame \mathfrak{F} is finitely generated iff \mathfrak{F}

 is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where each \mathfrak{F}_{i} is a cyclic frame and $k \in \omega$.Proof. It is obvious that if \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where each \mathfrak{F}_{i} is a cyclic frame, then \mathfrak{F} is finitely generated. Conversely, suppose \mathfrak{F} is a finitely generated rooted descriptive $\mathbf{K G}$-frame. If \mathfrak{F} is cyclic, then we are done. Otherwise, by Lemma 4.3 .8 (1), \mathfrak{F} is isomorphic to $\mathfrak{H} \oplus \mathfrak{G}$, where \mathfrak{H} is cyclic and \mathfrak{G} is descriptive. If \mathfrak{G} is cyclic, then we are done. If not, by Lemma 4.3.8(2), \mathfrak{F} is isomorphic to $\mathfrak{H} \oplus \mathfrak{H}^{\prime} \oplus \mathfrak{G}$, where \mathfrak{H}^{\prime} is cyclic and \mathfrak{G}^{\prime} is descriptive. Continuing this process we obtain that \mathfrak{F} is isomorphic to $\bigoplus_{i \in \alpha} \mathfrak{F}_{i}$, where each \mathfrak{F}_{i} is a cyclic frame. If $\omega \leq \alpha$, then by Lemma 4.1.23, $\bigoplus_{i \in \alpha} \mathfrak{F}_{i}$ is not finitely generated. Therefore, $\alpha<\omega$. This means that $\min (\mathfrak{F})=\min \left(\mathfrak{F}_{\alpha}\right)$. Thus, if \mathfrak{F}_{α} is isomorphic to $\mathfrak{L}_{f_{m}}$ for some $m>0$, then \mathfrak{F} is not rooted. If \mathfrak{F}_{α} is isomorphic to \mathfrak{L}, then by Definition 4.1.15, the complement of the root of \mathfrak{F} is not an admissible set. Therefore, by Definition 2.3.15, \mathfrak{F} is not a rooted descriptive frame. Thus, we obtain that \mathfrak{F}_{α} is isomorphic to $\mathfrak{L}_{g_{k}}$ for some $k \in \omega$.
4.3.10. Corollary. A subdirectly irreducible algebra $\mathfrak{A} \in \mathcal{K} \mathcal{G}$ is finitely generated iff \mathfrak{A} is isomorphic to $\left(\bar{\bigoplus}_{i=1}^{n} \mathfrak{A}_{i}\right) \bar{\oplus} \mathfrak{N}_{g_{k}}$, where each \mathfrak{A}_{i} is a cyclic Heyting algebra and $k \in \omega$.

Proof. The result follows immediately from Corollary 4.3.9 and the duality theory for Heyting algebras.

4.4 The finite model property in extensions of RN

In this section we characterize finitely generated rooted $\mathbf{R N}$-frames and prove that every extension of RN has the finite model property. First we show that $\mathbf{R N}$ is a proper extension of $\mathbf{K G}$.

4.4.1. Theorem.

1. $\mathbf{R N} \supsetneq \mathbf{K G}$.
2. $\mathcal{R N} \subsetneq \mathcal{K G}$.

Proof. (1) That none of $\mathfrak{K}_{1}, \mathfrak{K}_{2}, \mathfrak{K}_{3}$ is a subframe of \mathfrak{L} is routine to check. Therefore, by Theorem 4.3.4, \mathfrak{L} is a KG-frame. Hence, $\log (\mathfrak{L})=\mathbf{R N} \supseteq$ KG. Now we show that $\mathbf{R N} \neq \mathbf{K G}$. Consider the frame $\mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$. By Theorem 4.3.4, $\mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ is a rooted $\mathbf{K G}$-frame. On the other hand, by Corollary 4.2.10, $\mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ is not an $\mathbf{R N}$-frame. Consider the Jankov-de Jongh formula $\chi\left(\mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}\right)$. Then $\chi\left(\mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}\right) \in \mathbf{R N}$ and $\chi\left(\mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}\right) \notin \mathbf{K G}$. Therefore, $\mathbf{R N} \nsubseteq \mathbf{K G}$.
(2) is an immediate consequence of (1).

Therefore, by Corollary 4.3.9 and Theorem 4.4.1, every finitely generated rooted descriptive $\mathbf{R N}$-frame is a finite linear sum of cyclic frames. In this section we characterize those finitely generated rooted KG-frames that are also RN-frames.
4.4.2. Theorem. Let \mathfrak{F} be a finitely generated descriptive rooted $\mathbf{K G}$-frame and \mathfrak{A} a subdirectly irreducible Heyting algebra in $\mathcal{K} \mathcal{G}$.

1. If \mathfrak{F} is an $\mathbf{R N}$-frame, then there exist $k, n \in \omega$ such that \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where each \mathfrak{F}_{i} is isomorphic to $\mathfrak{L}, \mathbf{2}_{*}$ or $\mathbf{4}_{*}$.
2. If \mathfrak{A} belongs to $\mathcal{R N}$, then there exist $k, n \in \omega$ such that \mathfrak{A} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{B}_{i}\right) \bar{\oplus} \mathfrak{N}_{g_{k}}$, where each \mathfrak{B}_{i} is isomorphic to $\mathfrak{N}, \mathbf{2}$ or $\mathbf{4}$.

Proof. By Theorems 4.4.1 and 4.3.9, \mathfrak{F} is isomorphic to a linear sum $\left(\bigoplus_{k=1}^{n} \mathfrak{G}_{i}\right) \oplus$ $\mathfrak{L}_{g_{k}}$, where each \mathfrak{G}_{i} is a cyclic frame and $k \in \omega$. If for every $j \leq n$ we have that \mathfrak{G}_{j} is isomorphic to $\mathfrak{L}, \boldsymbol{2}_{*}$ or $\boldsymbol{4}_{*}$, then \mathfrak{F} satisfies the condition of the theorem. Therefore, assume that there exists $j \leq n$, such that \mathfrak{G}_{j} is isomorphic to $\mathfrak{L}_{g_{m}}$ for some $m \geq 4$ or \mathfrak{G}_{j} is isomorphic to $\mathfrak{L}_{f_{l}}$ for some $l \geq 2$. (For $m<4$ and $l<2$ the frames $\mathfrak{L}_{g_{m}}$ and $\mathfrak{L}_{f_{l}}$ are isomorphic to linear sums of $\mathbf{2}_{*}$'s and $\mathbf{4}_{*}$'s.) Let $j \leq n$ be the the least such j. We show that \mathfrak{F} is not an $\mathbf{R N}$-frame.

We first discuss the idea of the proof. We show that there exists a finite rooted \mathfrak{F}^{\prime} such that \mathfrak{F}^{\prime} is not an $\mathbf{R N}$-frame and \mathfrak{F}^{\prime} is a p-morphic image of \mathfrak{F}. Thus, if \mathfrak{F} is an $\mathbf{R N}$-frame then so is \mathfrak{F}^{\prime}, which is a contradiction. To construct this p-morphism we consider a bisimulation equivalence on \mathfrak{F} which identifies: all the points above \mathfrak{G}_{j}, all the points below \mathfrak{G}_{j} and leaves the points of \mathfrak{G}_{j} untouched. Then the resulting rooted frame is a p-morphic image of \mathfrak{F}, but by our characterization of finite rooted $\mathbf{R N}$-frames (see Theorem 4.2.10) it is not an RN-frame.

We will now make this more precise. We only consider the case when \mathfrak{G}_{j} is isomorphic to $\mathfrak{L}_{g_{m}}$. The proof for the other case is similar. Thus, assume \mathfrak{G}_{j} is isomorphic to $\mathfrak{L}_{g_{m}}$, for some $m \geq 4$. Then two cases are possible:

Case 1. $1<j \leq n$. We define an equivalence relation E on \mathfrak{F} by

- $w E v$ if $w=v$ for every $w, v \in \mathfrak{G}_{j}$,
- $w E v$ if $w, v \in \mathfrak{G}_{1} \oplus \ldots \oplus \mathfrak{G}_{j-1}$,
- $w E v$ if $w, v \in \mathfrak{G}_{j+1} \oplus \ldots \oplus \mathfrak{G}_{n} \oplus \mathfrak{L}_{g_{k}}$.

It is easy to check that E is a bisimulation equivalence and that \mathfrak{F} / E is isomorphic to $\mathbf{2}_{*} \oplus \mathfrak{G}_{j} \oplus \mathbf{2}_{*}$. Since \mathfrak{G}_{j} is isomorphic to $\mathfrak{L}_{g_{m}}$, we obtain that $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$ is a p-morphic image of \mathfrak{F}. This, by Theorem 4.2.10, is a contradiction.

Case 2. $j=1$. The proof is similar to that of Case 1, except that, in this case we obtain that $\mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$ is a p-morphic image of \mathfrak{F}, which again contradicts to Theorem 4.2.10.
(2) follows form (1) by the duality theory of Heyting algebras.

To show that the converse of Theorem 4.4.2 also holds we need to define a new operation on frames.

4.4.3. Definition.

1. Let $\mathfrak{F}_{1}=\left(W_{1}, R_{1}\right)$ and $\mathfrak{F}_{2}=\left(W_{2}, R_{2}\right)$ be two Kripke frames and let $x \in$ $\min \left(\mathfrak{F}_{1}\right)$ and $y \in \max \left(\mathfrak{F}_{2}\right)$. The gluing sum of the pairs $\left(\mathfrak{F}_{1}, x\right)$ and $\left(\mathfrak{F}_{2}, y\right)$ is a frame $\left(\mathfrak{F}_{1}, x\right) \widehat{\oplus}\left(\mathfrak{F}_{2}, y\right)=\left(W \uplus W^{\prime}, S\right)$ such that $W \uplus W^{\prime}$ is the disjoint union of W and W^{\prime} and

$$
S:=R_{1} \cup R_{2} \cup\left(W_{2} \times W_{1} \backslash\{(y, x)\}\right)
$$

2. Let $\mathfrak{F}_{1}=\left(W_{1}, R_{1}, \mathcal{P}_{1}\right)$ and $\mathfrak{F}_{2}=\left(W_{2}, R_{2}, \mathcal{P}_{2}\right)$ be descriptive frames and let $x \in \min \left(\mathfrak{F}_{1}\right)$ and $y \in \max \left(\mathfrak{F}_{2}\right)$. The gluing sum of $\left(\mathfrak{F}_{1}, x\right)$ and $\left(\mathfrak{F}_{2}, y\right)$ is the descriptive frame $\left(\mathfrak{F}_{1}, x\right) \widehat{\oplus}\left(\mathfrak{F}_{2}, y\right)=\left(W_{1} \uplus W_{2}, S, \mathcal{P}\right)$ such that $\left(W_{1} \uplus W_{2}, S\right)$ is the gluing sum of $\left(\left(W_{1}, R_{1}\right), x\right)$ and $\left(\left(W_{2}, R_{2}\right), y\right)$ and
$\mathcal{P}:=\left\{U \subseteq W_{1} \uplus W_{2}: U\right.$ is an S-upset and $U \cap W_{1} \in \mathcal{P}_{1}$ and $\left.U \cap W_{2} \in \mathcal{P}_{2}\right\}$.
Figuratively speaking, we take the linear sum of \mathfrak{F}_{1} and \mathfrak{F}_{2} and erase an arrow going from y to x. This definition is motivated by the next lemma, which states that we can "glue" two cyclic frames together in such a way that the resulting frame is again a cyclic frame. We will need the operation of gluing models for proving the main theorem of this section that every extension of RN has the fmp.
4.4.4. Proposition. The gluing sum of two descriptive frames is again a descriptive frame.

Proof. The proof is just spelling out the definitions.
For every $k \in \omega$ we assume that $\mathfrak{L}_{g_{k}}$ and $\mathfrak{L}_{f_{k}}$ are labeled as in Figure 4.1.
4.4.5. Lemma. Suppose $k, m \in \omega$ and m is odd. Then the following holds.

1. $\left(\mathfrak{L}_{f_{m}}, w_{m}\right) \widehat{\oplus}\left(\mathfrak{L}, w_{0}\right)$ is isomorphic to \mathfrak{L}.
2. $\left(\mathfrak{L}_{f_{m}}, w_{m}\right) \widehat{\oplus}\left(\mathfrak{L}_{g_{k}}, w_{0}\right)$ is isomorphic to $\mathfrak{L}_{g_{k+m}}$.

Proof. The proof is a routine check.

Next we recall the definition of the complexity of a formula.
4.4.6. Definition. We define the complexity $c(\phi)$ of a formula ϕ as follows:

$$
\begin{gathered}
c(p)=0, \\
c(\perp)=0, \\
c(\phi \wedge \psi)=\max \{c(\phi), c(\psi)\}, \\
c(\phi \vee \psi)=\max \{c(\phi), c(\psi)\}, \\
c(\phi \rightarrow \psi)=1+\max \{c(\phi), c(\psi)\} .
\end{gathered}
$$

Recall from the previous chapter that for every point x of a frame \mathfrak{F} the depth of x is denoted by $d(x)$. Let U be an upset of \mathfrak{F}, then the depth $d(U)$ of U is defined as

$$
d(U):=\sup \{d(x): x \in U\}
$$

4.4.7. Definition. Let $V: \operatorname{Prop}_{n} \rightarrow \mathfrak{L}$ be a descriptive valuation on \mathfrak{L}.

1. The rank of V is the number

$$
\operatorname{rank}(V):=\max \left\{d\left(V\left(p_{i}\right)\right): V\left(p_{i}\right) \subsetneq \mathfrak{L}\right\} .
$$

2. For every formula $\phi\left(p_{1}, \ldots, p_{n}\right)$, let

$$
M_{V}(\phi)=\operatorname{rank}(V)+c(\phi)+1
$$

4.4.8. Lemma. Let V be any descriptive valuation on \mathfrak{L}. Then for an arbitrary formula $\phi\left(p_{1}, \ldots, p_{n}\right)$ and for every $x, y \in \mathfrak{L}$ such that $d(x), d(y)>M_{V}(\phi)$, we have

$$
x \models \phi \text { iff } y \models \phi .
$$

Proof. We will prove the lemma by induction on the complexity of ϕ. If $c(\phi)=0$, that is, ϕ is either \perp or a propositional letter then the the lemma obviously holds. Now assume that $c(\phi)=k$ and the lemma is correct for every formula ψ such that $c(\psi)<k$. The cases when $\phi=\psi_{1} \wedge \psi_{2}$ and $\phi=\psi_{1} \vee \psi_{2}$ are trivial. So, suppose $\phi=\psi_{1} \rightarrow \psi_{2}$, for some formulas ψ_{1} and ψ_{2}. Clearly, $c\left(\psi_{1}\right), c\left(\psi_{2}\right)<k$. Let $x, y \in \mathfrak{L}$ be such that $d(x), d(y)>M_{V}(\phi)$. Without loss of generality assume $x \not \vDash \phi$ and show that $y \not \models \phi$. Then $x \not \models \psi_{1} \rightarrow \psi_{2}$ implies that there exists x^{\prime} such that $x R x^{\prime}, x^{\prime} \models \psi_{1}$ and $x^{\prime} \not \models \psi_{2}$. If $d\left(x^{\prime}\right)<d(y)-1$, because of the structure of \mathfrak{L}, we have $y R x^{\prime}$ and so $y \not \vDash \phi$. If $d\left(x^{\prime}\right) \geq d(y)-1$, then $d\left(x^{\prime}\right)>$ $M_{V}(\phi)-1=\operatorname{rank}(V)+c(\phi) \geq \operatorname{rank}(V)+c\left(\psi_{i}\right)+1=M\left(\psi_{i}\right)$, for each $i=1,2$. Thus, $d\left(x^{\prime}\right), d(y)>M\left(\psi_{i}\right)$ and by the induction hypothesis $y \models \psi_{1}$ and $y \not \vDash \psi_{2}$, which again implies $y \not \models \phi$.

Observe that if $c(\phi)>c(\psi)$, then $M_{V}(\phi)>M_{V}(\psi)$. The analogue of Lemma 4.4.9(1) is proved in Kracht [75].
4.4.9. Lemma. Let \mathfrak{L}_{1} and \mathfrak{L}_{2} be two distinct isomorphic copies of \mathfrak{L}. For an arbitrary formula $\phi\left(p_{1}, \ldots, p_{n}\right)$ the following holds.

1. If $\mathfrak{L}_{1} \oplus \mathfrak{L}_{2} \not \models \phi$, then $\mathfrak{L} \not \models \phi$.
2. If $\mathfrak{L}_{1} \oplus \mathfrak{L}_{2} \oplus \mathfrak{G} \notin \phi$, for some frame \mathfrak{G}, then $\mathfrak{L} \oplus \mathfrak{G} \neq \phi$.
3. If $\mathfrak{F} \oplus \mathfrak{L}_{1} \oplus \mathfrak{L}_{2} \not \models \phi$, for some frame \mathfrak{F}, then $\mathfrak{F} \oplus \mathfrak{L} \not \models \phi$.
4. If $\mathfrak{F} \oplus \mathfrak{L}_{1} \oplus \mathfrak{L}_{2} \oplus \mathfrak{G} \notin \phi$, for some frames \mathfrak{F} and \mathfrak{G}, then $\mathfrak{F} \oplus \mathfrak{L} \oplus \mathfrak{G} \notin \phi$.
5. If for some $k \in \omega, \mathfrak{L} \oplus \mathfrak{L}_{g_{k}} \not \vDash \phi$, then $\mathfrak{L}_{g_{m}} \not \vDash \phi$, for some $m \geq k$.
6. If for some $k \in \omega$, $\mathfrak{L} \oplus \mathfrak{L}_{g_{k}} \oplus \mathfrak{G} \not \models \phi$, then $\mathfrak{L}_{g_{m}} \oplus \mathfrak{G} \not \vDash \phi$, for some $m \geq k$.
7. If for some $k \in \omega$ and some frame $\mathfrak{F}, \mathfrak{F} \oplus \mathfrak{L} \oplus \mathfrak{L}_{g_{k}} \not \equiv \phi$, then $\mathfrak{F} \oplus \mathfrak{L}_{g_{m}} \neq \phi$, for some $m \geq k$.
8. If for some $k \in \omega$ and some frames \mathfrak{G} and $\mathfrak{F}, \mathfrak{F} \oplus \mathfrak{L} \oplus \mathfrak{L}_{g_{k}} \oplus \mathfrak{F} \not \models \phi$, then $\mathfrak{F} \oplus \mathfrak{L}_{g_{m}} \oplus \mathfrak{G} \not \vDash \phi$, for some $m \geq k$.

Proof. (1) Let V be a descriptive valuation on $\mathfrak{L}_{1} \oplus \mathfrak{L}_{2}$ such that $\left(\mathfrak{L}_{1} \oplus \mathfrak{L}_{2}, V\right) \not \vDash \phi$. Let V_{1} and V_{2} be the restrictions of V to \mathfrak{L}_{1} and \mathfrak{L}_{2}, respectively. That is, $V_{i}(p)=V(p) \cap \mathfrak{L}_{i}$ for each $i=1,2$. Let $M_{1}(\phi)=\operatorname{rank}\left(V_{1}\right)+c(\phi)+1$ and let $m:=$ $2 \cdot M_{1}(\phi)+1$. Assume that on \mathfrak{L}_{1} and \mathfrak{L}_{2} we have the labeling shown in Figure 4.1. Consider the gluing sum $\left(\mathfrak{L}_{f_{m}}, w_{m}\right) \widehat{\oplus}\left(\mathfrak{L}_{2}, w_{0}\right)$ and let V^{\prime} be the restriction of V to $\left(\mathfrak{L}_{f_{m}}, w_{m}\right) \widehat{\oplus}\left(\mathfrak{L}_{2}, w_{0}\right)$. By Lemma 4.4.5, $\left(\mathfrak{L}_{f_{m}}, w_{m}\right) \widehat{\oplus}\left(\mathfrak{L}_{2}, w_{0}\right)$ is isomorphic to \mathfrak{L}. Thus, to finish the proof we only need to show that $\left(\left(\mathfrak{L}_{f_{m}}, w_{m}\right) \widehat{\oplus}\left(\mathfrak{L}_{2}, w_{0}\right), V^{\prime}\right) \not \vDash \phi$. The next claim finishes the proof.
4.4.10. CLAIM. $\left(\left(\mathfrak{L}_{f_{m}}, w_{m}\right) \widehat{\oplus}\left(\mathfrak{L}_{2}, w_{0}\right), V^{\prime}\right) \not \vDash \phi$.

Proof. We prove the claim by induction on the complexity of ϕ. The cases when ϕ is either \perp, a propositional variable, a conjunction or disjunction of two formulas are simple. Now let $\phi=\psi \rightarrow \chi$. Then since $\left(\mathfrak{L}_{1} \oplus \mathfrak{L}_{2}, V\right) \not \vDash \phi$, there exists y in $\mathfrak{L}_{1} \oplus \mathfrak{L}_{2}$ such that $\left(\mathfrak{L}_{1} \oplus \mathfrak{L}_{2}, V\right), y \models \psi$ and $\left(\mathfrak{L}_{1} \oplus \mathfrak{L}_{2}, V\right), y \not \vDash \chi$. If y belongs to $\left(\mathfrak{L}_{f_{m}}, w_{m}\right) \widehat{\oplus}\left(\mathfrak{L}_{2}, w_{0}\right)$ then we are done. If y does not belong to $\left(\mathfrak{L}_{f_{m}}, w_{m}\right) \widehat{\oplus}\left(\mathfrak{L}_{2}, w_{0}\right)$, then we take a point y^{\prime} in $\mathfrak{L}_{f_{m}}$ of depth $M_{1}(\phi)$. Since $c(\psi), c(\chi)<c(\phi)$ we have $M_{1}(\psi), M_{1}(\chi)<M_{1}(\phi)$ and it follows from Lemma 4.4.8, that $\left(\mathfrak{L}_{1} \oplus \mathfrak{L}_{2}, V\right), y^{\prime} \models$ ψ and $\left(\mathfrak{L}_{1} \oplus \mathfrak{L}_{2}, V\right), y^{\prime} \notin \chi$. Therefore, $\left(\left(\mathfrak{L}_{f_{m}}, w_{m}\right) \widehat{\oplus}\left(\mathfrak{L}_{2}, w_{0}\right), V^{\prime}\right), y^{\prime} \models \psi$ and $\left(\left(\mathfrak{L}_{f_{m}}, w_{m}\right) \widehat{\oplus}\left(\mathfrak{L}_{2}, w_{0}\right), V^{\prime}\right), y^{\prime} \not \vDash \chi$. Thus, $\left(\left(\mathfrak{L}_{f_{m}}, w_{m}\right) \widehat{\oplus}\left(\mathfrak{L}_{2}, w_{0}\right), V^{\prime}\right), y^{\prime} \not \vDash \phi$.
(2) The proof is similar to (1).
(3),(4) The proof is similar to (1) and (2) with the only difference that in these cases instead of $\mathfrak{L}_{f_{m}}$ we should consider $\mathfrak{F} \oplus \mathfrak{L}_{f_{m}}$.
(5) The proof is similar to (1). We take the upset \mathfrak{F}^{\prime} consisting of $M_{V}(\phi)$ layers of \mathfrak{L} and then consider a gluing sum of this frame with $\mathfrak{L}_{g_{k}}$.
(6), (7) and (8) are similar to (5).
4.4.11. Lemma. For every $\mathbf{R N}$-frame \mathfrak{F} there exist $k, m \in \omega$ such that \mathfrak{F} is a p-morphic image of $\left(\bigoplus_{i=1}^{n} \mathfrak{L}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where \mathfrak{L}_{i} is an isomorphic copy of \mathfrak{L}, for each $i=1, \ldots, m$.

Proof. By Theorem 4.4.2, \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where every \mathfrak{F}_{i} is isomorphic to either $\mathfrak{L}, \mathbf{2}_{*}$ or $\mathbf{4}_{*}$. Let m be the number of copies of \mathfrak{L} occurring in $\bigoplus_{i=1}^{n} \mathfrak{F}_{i}$. Then \mathfrak{F} is isomorphic to a frame $\bigoplus_{i=1}^{m}\left(\bigoplus_{j=1}^{m_{i}}\left(\mathfrak{G}_{j} \oplus \mathfrak{L}_{i}\right)\right) \oplus \bigoplus_{j=1}^{s} \mathfrak{G}_{j} \oplus \mathfrak{L}_{g_{k}}$, for some $k \in \omega$, where each \mathfrak{G}_{j} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$ and $m_{i} \in \omega$. By Corollary 4.2.7, the frame $\left(\bigoplus_{j=1}^{m_{i}} \mathfrak{G}_{j}\right) \oplus \mathfrak{L}_{i}$ is a p-morphic image of \mathfrak{L}_{i}. On the other hand, by Theorem 4.2.12, the frame $\left(\bigoplus_{j=1}^{s} \mathfrak{G}_{j}\right) \oplus \mathfrak{L}_{g_{k}}$ is a p-morphic image of $\mathfrak{L}_{g_{k+3 s}}$. Therefore, \mathfrak{F} is a p-morphic image of the frame $\left(\bigoplus_{i=1}^{m} \mathfrak{L}_{i}\right) \oplus \mathfrak{L}_{g_{k+3 s}}$, where each \mathfrak{L}_{i} is an isomorphic copy of \mathfrak{L} for every $i=1, \ldots, m$.

We are now ready to characterize the finitely generated rooted descriptive $\mathbf{R N}$ frames and subdirectly irreducible algebras in $\mathcal{R N}$.

4.4.12. Theorem.

1. A finitely generated rooted descriptive $\mathbf{K G}$-frame \mathfrak{F} is an $\mathbf{R N}$-frame iff \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where each \mathfrak{F}_{i} is isomorphic to either \mathfrak{L}, $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$ and $k \in \omega$.
2. A finitely generated subdirectly irreducible $\mathcal{K} \mathcal{G}$-algebra \mathfrak{A} belongs to $\mathcal{R N}$ iff \mathfrak{A} is isomorphic to $\left(\bar{\bigoplus}_{i=1}^{n} \mathfrak{B}_{i}\right) \bar{\oplus} \mathfrak{N}_{g_{k}}$, where each \mathfrak{B}_{i} is isomorphic to either $\mathfrak{L}, \mathbf{2}$ or $\mathbf{4}$, and $k \in \omega$.

Proof. (1) The direction from left to right is proved in Theorem 4.4.2. For the other direction, by Lemma 4.4.11, it is sufficient to show that if a frame \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{m} \mathfrak{L}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where \mathfrak{L}_{i} is an isomorphic copy of \mathfrak{L}, for each $i=1, \ldots, m$ and $k, m \in \omega$, then \mathfrak{F} is an $\mathbf{R N}$-frame.

We will prove that for every formula ϕ, if $\phi \in \mathbf{R N}$ then $\mathfrak{F} \models \phi$. So, assume that $\mathfrak{F} \not \vDash \phi$. By applying Lemma 4.4.9 (2), (m-1) times, we obtain that $\mathfrak{L} \oplus \mathfrak{L}_{g_{k}} \not \vDash \phi$. By Lemma 4.4.9 (5), there is $m \geq k$ such that $\mathfrak{L}_{g_{m}} \not \vDash \phi$. Thus, we found an $\mathbf{R N}$-frame that refutes ϕ. Since $\phi \in \mathbf{R N}$, this is a contradiction. Hence, $\mathfrak{F} \models \phi$ for every $\phi \in \mathbf{R N}$ and therefore \mathfrak{F} is an $\mathbf{R N}$-frame.
(2) The result follows immediately from (1) by the duality theory of Heyting algebras.

The next result was proved independently by Gerciu [48] and Kracht [73]. However, both proofs contain some gaps. We will provide a simple proof of this result. Our technique is very similar to the one from [73]. However, [73] claims that every extension of KG has the fmp, which, as we will see in the next section, is not the case.

4.4.13. Theorem.

1. Every extension of $\mathbf{R N}$ has the finite model property.
2. Every subvariety of $\mathcal{R N}$ is finitely approximable.

Proof. (1) Suppose $L \supseteq \mathbf{R N}$ and let $\phi \notin L$. Then there exists a finitely generated rooted descriptive L-frame \mathfrak{F} such that $\mathfrak{F} \not \vDash \phi$. By Theorem 4.4.12, \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{G}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where every \mathfrak{G}_{i} is isomorphic to $\mathfrak{L}, \mathbf{2}_{*}$ or $\boldsymbol{4}_{*}$ for every $i=1, \ldots, n$. Let $j \leq n$ be the least such that \mathfrak{G}_{j} is isomorphic to \mathfrak{L}. If such j does not exist then \mathfrak{F} is finite and there is nothing to prove. Denote by \mathfrak{G}^{\prime}, the finite frame $\mathfrak{G}_{1} \oplus \ldots \oplus \mathfrak{G}_{j-1}$. Then \mathfrak{F} is isomorphic to $\mathfrak{G}^{\prime} \oplus \mathfrak{G}_{j} \oplus \ldots \oplus \mathfrak{G}_{n} \oplus$ $\mathfrak{L}_{g_{k}}$. By Lemma 4.4.11, $\mathfrak{G}_{j} \oplus \ldots \oplus \mathfrak{G}_{n} \oplus \mathfrak{L}_{g_{k}}$ is a p-morphic image of the frame $\mathfrak{L}_{1} \oplus \ldots \oplus \mathfrak{L}_{s} \oplus \mathfrak{L}_{g_{m}}$, where \mathfrak{L}_{i} is an isomorphic copy of \mathfrak{L} for each $i=1, \ldots, s$ and $s, m \in \omega$. Therefore, \mathfrak{F} is a p-morphic image of $\mathfrak{G}=\mathfrak{G}^{\prime} \oplus \mathfrak{L}_{1} \oplus \ldots \oplus \mathfrak{L}_{s} \oplus \mathfrak{L}_{g_{m}}$. Since p-morphisms preserve the validity of formulas $\mathfrak{G} \not \vDash \phi$. Now we apply Lemma 4.4.9(4) and (7) to obtain a $t \geq m$ such that $\mathfrak{G}^{\prime} \oplus \mathfrak{L}_{g_{t}} \not \vDash \phi$, for some $t \geq m$. To finish the proof it is sufficient to show that $\mathfrak{G}^{\prime} \oplus \mathfrak{L}_{g_{t}}$ is an L-frame. To see this, observe that $\mathfrak{G}^{\prime} \oplus \mathfrak{L}_{g_{t}}$ is a generated subframe of $\mathfrak{G}^{\prime} \oplus \mathfrak{L}$, which is a generated subframe of \mathfrak{F}. Therefore, $\mathfrak{G}^{\prime} \oplus \mathfrak{L}_{g_{t}}$ is an L-frame and thus L has the finite model property.
(2) The result follows immediately from (1).
4.4.14. Remark. In fact, Theorem 4.4 .13 can be strengthened. It is proved in [8] that every extension of RN has the poly-size model property. This means that every non-theorem of L can be refuted in a frame which has the size polynomial
in the length of ϕ. It is also shown in [8] that for every function $f: \mathbb{N} \rightarrow \mathbb{N}$, where \mathbb{N} is the set of natural numbers, there exists an extension of KG that has the fmp but does not have the f-size model property.

4.5 The finite model property in extensions of KG

In this section we show that in extensions of KG the situation is completely different. We prove that there are continuum many extensions of KG without the finite model property. We also show that there is exactly one extension of KG that has the pre-finite model property.

4.5.1 Extensions of KG without the finite model property

First we discuss a systematic method of constructing logics without the fmp. Let \mathfrak{G} be a finite rooted KG-frame that is not isomorphic to an RN-frame. The simplest such frame is $\mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$. Let \mathfrak{H} be isomorphic to $\mathfrak{L} \oplus \mathfrak{G}$ and suppose $L=\log (\mathfrak{H})$. If \mathfrak{G} is isomorphic to $\mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$, then the frame \mathfrak{H} is isomorphic to the frame shown in Figure 4.4. We will prove that L lacks the finite model property. First we characterize the finite rooted L-frames.
4.5.1. Theorem. Let \mathfrak{G} be a finite rooted $\mathbf{K G}$-frame that is not isomorphic to an $\mathbf{R N}$-frame. Let \mathfrak{H} be isomorphic to $\mathfrak{L} \oplus \mathfrak{G}$ and suppose $L=\log (\mathfrak{H})$. A finite rooted KG-frame \mathfrak{F} is an L-frame iff either of the following two conditions is satisfied.

1. \mathfrak{F} is an $\mathbf{R N}$-frame.
2. \mathfrak{F} is isomorphic to a p-morphic image of a generated subframe of $\bigoplus_{i=1}^{n} \mathfrak{F}_{i} \oplus$ $\mathbf{2}_{*} \oplus \mathfrak{G}$, where each \mathfrak{F}_{i} is either empty or isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$.

Proof. First we show that if a finite rooted frame satisfies the conditions of the theorem, then it is an L-frame. Since \mathfrak{L} is a generated subframe of \mathfrak{H} we have that every $\mathbf{R N}$-frame is an L-frame. By Theorem 4.2.7, every frame of the form $\bigoplus_{i=1}^{n} \mathfrak{F}_{i} \oplus \mathbf{2}_{*}$, where each \mathfrak{F}_{i} is isomorphic to either $\mathbf{2}_{*}$ or $\boldsymbol{4}_{*}$, is a p-morphic image of \mathfrak{L}. Therefore, $\bigoplus_{i=1}^{n} \mathfrak{F}_{i} \oplus \mathbf{2}_{*} \oplus \mathfrak{G}$ is a p-morphic image of $\mathfrak{L} \oplus \mathfrak{G}$. Thus if \mathfrak{F} is a p-morphic image of a generated subframe of $\bigoplus_{i=1}^{n} \mathfrak{F}_{i} \oplus \mathbf{2}_{*} \oplus \mathfrak{G}$, then \mathfrak{F} is an L-frame.

Conversely, let \mathfrak{F} be a finite rooted L-frame. Then by Lemma 3.4.26, \mathfrak{F} is a p-morphic image of a generated subframe \mathfrak{H}^{\prime} of \mathfrak{H}. If \mathfrak{H}^{\prime} is a generated subframe of \mathfrak{L}, then \mathfrak{F} is an $\mathbf{R N}$-frame. Now suppose that \mathfrak{H}^{\prime} is isomorphic to $\mathfrak{L} \oplus \mathfrak{H}^{\prime \prime}$, where $\mathfrak{H}^{\prime \prime}$ is a generated subframe of \mathfrak{G}. By Theorem 4.2.7, every finite p-morphic image of \mathfrak{L} has the form $\bigoplus_{i=1}^{n} \mathfrak{F}_{i} \oplus \mathbf{2}_{*}$, where each \mathfrak{F}_{i} is isomorphic to either $\mathbf{2}_{*}$

Figure 4.4: The frame $\mathfrak{L} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$
or $\boldsymbol{4}_{*}$. Thus, if \mathfrak{F} is a p-morphic image of \mathfrak{H}^{\prime}, then \mathfrak{F} is a p-morphic image of $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathbf{2}_{*} \oplus \mathfrak{H}^{\prime \prime}$, where each \mathfrak{F}_{i} is isomorphic to either $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$. It is easy to see that $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathbf{2}_{*} \oplus \mathfrak{H}^{\prime \prime}$ is a generated subframe of $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathbf{2}_{*} \oplus \mathfrak{G}$.
4.5.2. Theorem. Let \mathfrak{G} be a finite rooted $\mathbf{K G}$-frame that is not isomorphic to an RN-frame. Let \mathfrak{H} be isomorphic to $\mathfrak{L} \oplus \mathfrak{G}$ and suppose $L=\log (\mathfrak{H})$. Then L does not have the finite model property.

Proof. Consider the Jankov-de Jongh formulas $\chi_{1}=\chi\left(\mathbf{2}_{*} \oplus \mathfrak{G}\right)$ and $\chi_{2}=\chi\left(\mathfrak{L}_{g_{4}}\right)$ with separated variables. Let $\phi=\chi_{1} \vee \chi_{2}$. It is easy to see that $\mathbf{2}_{*} \oplus \mathfrak{G}$ is a p-morphic image of \mathfrak{H} (we just map all the points in \mathfrak{L} to the top node of $\mathbf{2}_{*} \oplus \mathfrak{G}$). Hence, $\mathfrak{H} \not \vDash \chi_{1}$. Obviously, $\mathfrak{L}_{g_{4}}$ is a generated subframe of \mathfrak{H}. This means that $\mathfrak{H} \not \vDash \chi_{2}$. Therefore, $\mathfrak{H} \not \vDash \phi$. Now suppose there is a finite rooted L-frame \mathfrak{F} such that $\mathfrak{F} \not \vDash \phi$, whence $\mathfrak{F} \not \vDash \chi_{1}$ and $\mathfrak{F} \not \vDash \chi_{2}$. Then $\mathfrak{F} \notin \chi_{1}$ implies that $\mathbf{2}_{*} \oplus \mathfrak{G}$ is a p-morphic image of a generated subframe of \mathfrak{F}. Hence, if \mathfrak{F} is an RN-frame, then $\mathbf{2}_{*} \oplus \mathfrak{G}$ is also an $\mathbf{R N}$-frame, which is a contradiction, by Theorem 4.2.10. Thus, $\mathfrak{F} \notin \chi_{1}$ implies \mathfrak{F} is not an $\mathbf{R N}$-frame. By (2) of Theorem 4.5.1, this means that \mathfrak{F} is a p-morphic image of some $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathbf{2}_{*} \oplus \mathfrak{H}^{\prime \prime}$, where $\mathfrak{H}^{\prime \prime}$ is a generated subframe of \mathfrak{G} and each \mathfrak{F}_{i} is isomorphic to either $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$.

Next we show that $\mathfrak{L}_{g_{4}}$ cannot be a p-morphic image of a generated subframe of \mathfrak{F}. Let \mathfrak{F}^{\prime} be a generated subframe of \mathfrak{F} and $f: \mathfrak{F}^{\prime} \rightarrow \mathfrak{L}_{g_{4}}$ be a p-morphism. If $\left|\max \left(\mathfrak{F}^{\prime}\right)\right|=1$, then clearly $\mathfrak{L}_{g_{4}}$ cannot be a p-morphic image of \mathfrak{F}^{\prime}. Now suppose \mathfrak{F}^{\prime} has two maximal points u_{1} and u_{2}. Then $f\left(u_{1}\right) \neq f\left(u_{2}\right)$ and $f\left(u_{1}\right)$ and $f\left(u_{2}\right)$
are the maximal points of $\mathfrak{L}_{g_{4}}$. Let u be a point of the second layer of \mathfrak{F}^{\prime}. Then since the top layers of \mathfrak{F}^{\prime} are sums of $\mathbf{2}_{*}$'s and $\boldsymbol{4}_{*}$'s we have $u R u_{1}$ and $u R u_{2}$. Therefore, $f(u) \neq f\left(u_{1}\right)$ and $f(u) \neq f\left(u_{2}\right)$. But then u should be mapped to a point of the second layer of $\mathfrak{L}_{g_{4}}$, which consists of only one point. This implies that this point of the second layer of $\mathfrak{L}_{g_{4}}$ sees both maximal points of $\mathfrak{L}_{g_{4}}$, which is a contradiction. Hence, no generated subframe of \mathfrak{F} can be p-morphically mapped onto $\mathfrak{L}_{g_{4}}$, and $\mathfrak{F} \models \chi_{2}$. This contradicts our earlier assumption that $\mathfrak{F} \not \models \chi_{2}$. Thus, there is no finite L-frame that refutes both χ_{1} and χ_{2}. This means that L does not have the finite model property.

Next we show that there are continuum many extensions of KG without the finite model property. To construct these extensions we will need to construct infinite antichains of finite KG-frames.

Recall from the previous chapter that for every frame \mathfrak{F} and \mathfrak{G} :
$\mathfrak{F} \leq \mathfrak{G}$ iff \mathfrak{F} is a p-morphic image of a generated subframe of \mathfrak{G}.
If \mathfrak{A} and \mathfrak{B} are Heyting algebras. Then
$\mathfrak{A} \leq \mathfrak{B}$ iff \mathfrak{A} is a subalgebra of a homomorphic image of \mathfrak{B}.
In the next lemma we show how to construct antichains of finite KG and RNframes. These antichains will allow us to show that both KG and RN have continuum many extensions. The antichain in Lemma 4.5.3(3) was constructed by Kracht [73].

4.5.3. Lemma.

1. The sequence $\Gamma=\left\{\mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}: k \geq 4\right\}$ of rooted $\mathbf{K G}$-frames forms an $\leq-$ antichain.
2. The sequences $\Delta_{1}=\left\{\mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}: k \geq 4\right.$ and k is even $\}$ and $\Delta_{2}=\left\{\mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}: k \geq 5\right.$ and k is odd $\}$ of rooted $\mathbf{K G}$-frames form \leq-antichains.
3. $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*} \not \leq\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$ where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$ and $k \neq m$.
4. The sequences $\Upsilon_{1}=\left\{\bigoplus_{i=1}^{k} \mathbf{4}_{*} \oplus \mathfrak{L}_{g_{4}}: k \in \omega\right\}$ and $\Upsilon_{2}=\left\{\bigoplus_{i=1}^{k} \mathbf{4}_{*} \oplus \mathfrak{L}_{g_{5}}\right.$: $k \in \omega\}$ of rooted $\mathbf{R N}$-frames form \leq-antichains.

Proof. (1) Consider any two frames $\mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ and $\mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$ in Γ and suppose $m>k$. Then $\left|\mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}\right|<\left|\mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}\right|$ and clearly $\mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ cannot be a p-morphic image of a generated subframe of $\mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$. Now suppose there exists a generated subframe \mathfrak{H} of $\mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$ such that $\mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ is a p-morphic image of \mathfrak{H}. If \mathfrak{H} is a proper generated subframe of $\mathfrak{L}_{m} \oplus \mathbf{2}_{*}$, then \mathfrak{H} is an $\mathbf{R N}$-frame. On the other

Figure 4.5: The frames $\mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}, \mathfrak{L}_{g_{6}} \oplus \mathbf{2}_{*}$ and $\mathfrak{L}_{g_{8}} \oplus \mathbf{2}_{*}$
hand, by Theorem 4.2.10, $\mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$ is not an $\mathbf{R N}$-frame and therefore cannot be a p-morphic image of \mathfrak{H}. Thus, \mathfrak{H} is isomorphic to $\mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$ and $\mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ is a p-morphic image of $\mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$. Then the least point of $\mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$ is mapped to the least point of $\mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ and no other point of $\mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$ is mapped to the least point of $\mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$; otherwise $\mathfrak{L}_{k} \oplus \mathbf{2}_{*}$ would be a p-morphic image of $\mathfrak{L}_{g_{m}}$ which is a contradiction, since $\mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ is not an $\mathbf{R N}$-frame. This gives us that $\mathfrak{L}_{g_{k}}$ is a p-morphic image of $\mathfrak{L}_{g_{m}}$, which is a contradiction by Lemma 4.2.13.
(2) We prove that Δ_{1} is a \leq-antichain. Suppose for $m>k$ we have that $\mathbf{2}_{*} \oplus$ $\mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ is a p-morphic image of a generated subframe of $\mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$. Then there exist \mathfrak{H} and f such that \mathfrak{H} is a generated subframe of $\mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$ and $f: \mathfrak{H} \rightarrow \mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ is a p-morphism. Obviously \mathfrak{H} contains the first three layers of $\mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$. Moreover, the restriction of f to the first three layers of \mathfrak{H} is an isomorphism. To see this, observe that if not then the first three layers of \mathfrak{H} should be mapped to the top point of $\mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$. Then $\mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ would be a p-morphic image of $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{m}}$. This implies that $\mathfrak{L}_{g_{k}}$ is a p-morphic image $\mathfrak{L}_{g_{m}}$, which contradicts Theorem 4.2.12. Hence, the restriction of f to the first three layers of \mathfrak{H} is an isomorphism. Then there exists a point x in \mathfrak{H} of depth $d(x)>3$ such that $d(f(x)) \leq 3$. Otherwise, $\mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ is a p-morphic image of a generated subframe of $\mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$ which, by (1), is a contradiction. For every point y of \mathfrak{H} of depth $d(y) \leq 3$ we have that $x R y$ and hence $f(x) R f(y)$. This is a contradiction because for every point u of $\mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ of depth ≤ 3 there exists a point z of depth ≤ 3 such that $\neg(u R z)$. Therefore, there is no generated subframe of $\mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$ that can be p-morphically mapped onto $\mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$.
(3) The proof is a routine adaptation of the proof of (2).
(4) The proof is similar to (1) and (2) and is based on the fact that there is no p-morphism from $\bigoplus_{i=1}^{n} 4$ onto $\bigoplus_{i=1}^{m} 4$ for $m, n \in \omega$ and $m \neq n$.

Figure 4.6: The frames in Δ_{1}

Figure 4.7: The frames in Υ_{1}

4.5.4. Theorem.

1. There are continuum many extensions of $\mathbf{R N}$.
2. There are continuum many subvarieties of $\mathcal{R N}$.
3. There are continuum many extensions of $\mathbf{K G}$ with the finite model property.
4. There are continuum many finitely approximable subvarieties of $\mathcal{K} \mathcal{G}$.

Proof. The theorem is proved in the same way as Lemma 3.4.19 and Theorem 3.4.20.

Denote by \mathfrak{H}_{k} the frame $\mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{k}} \oplus \mathfrak{L}$, where $k \geq 4$ is even. Let $\Theta=\left\{\mathfrak{H}_{k}: k\right.$ is even $\geq 4\}$. For every subset $\Theta^{\prime} \subseteq \Theta$, let $\log \left(\Theta^{\prime}\right)=\bigcap\left\{\log \left(\mathfrak{H}_{k}\right): \mathfrak{H}_{k} \in \Theta^{\prime}\right\}$.

4.5.5. Theorem.

1. $\log \left(\mathfrak{H}_{k}\right)$ lacks the finite model property, for every $k \geq 4$.
2. For every $\Theta^{\prime} \subseteq \Theta$, the logic $\log \left(\Theta^{\prime}\right)$ lacks the finite model property.
3. For every $\Theta_{1}, \Theta_{2} \subseteq \Theta$, such that $\Theta_{1} \neq \Theta_{2}$ we have $\log \left(\Theta_{1}\right) \neq \log \left(\Theta_{2}\right)$.

Proof. (1) The result follows immediately from Theorem 4.5.2, since $\mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ is not an $\mathbf{R N}$-frame.
(2) First we show that a finite rooted frame \mathfrak{F} is a $\log \left(\Theta^{\prime}\right)$-frame iff \mathfrak{F} is a $\log \left(\mathfrak{H}_{k}\right)$-frame for some $\mathfrak{H}_{k} \in \Theta^{\prime}$. Let \mathfrak{F} be a finite rooted $\log \left(\Theta^{\prime}\right)$-frame. Let $\log (\mathfrak{F})$ be the logic of \mathfrak{F}. Then $\log (\mathfrak{F}) \supseteq \log \left(\Theta^{\prime}\right)$. Since in the lattice of intermediate logics the logic of a finite rooted frame is a splitting [24, Theorem 10.49] and every splitting is completely meet irreducible ${ }^{4}$ [24, Proposition 10.46] we have that there is $\mathfrak{H}_{k} \in \Theta^{\prime}$ such that $\log (\mathfrak{F}) \supseteq \log \left(\mathfrak{H}_{k}\right)$. This means that \mathfrak{F} is a $\log \left(\mathfrak{H}_{k}\right)$-frame. Now the same technique as in the proof of Theorem 4.5.2 and (1) shows that $\log \left(\Theta^{\prime}\right)$ lacks the fmp for every $\Theta^{\prime} \subseteq \Theta$.
(3) Suppose $\Theta_{1}, \Theta_{2} \subseteq \Theta$, such that $\Theta_{1} \neq \Theta_{2}$. Without loss of generality assume that there is $\mathfrak{H}_{k} \in \Theta_{1}$ and $\mathfrak{H}_{k} \notin \Theta_{2}$. Then it is easy to see that $\mathfrak{G}_{k}:=$ $\mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{k}} \oplus \mathbf{2}_{*}$ is a p-morphic image of \mathfrak{H}_{k} and hence \mathfrak{G}_{k} is a $\log \left(\Theta_{1}\right)$-frame. Suppose \mathfrak{G}_{k} is a $\log \left(\Theta_{2}\right)$-frame. Then, as was shown in (2), there exists $\mathfrak{H}_{m} \in \Theta_{2}$ such that $m \neq k$ and \mathfrak{G}_{k} is a $\log \left(\mathfrak{H}_{m}\right)$-frame. Similarly to Theorem 4.5.1 we can show that all finite rooted frames of $\log \left(\mathfrak{H}_{m}\right)$ are finite rooted $\mathbf{R N}$-frames or p-morphic images of generated subframes of $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$, where each \mathfrak{F}_{i} is isomorphic to either $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$. Then \mathfrak{G}_{k} is a p-morphic image of a generated subframe of $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathbf{2}_{*} \oplus \mathfrak{L}_{f_{3}} \oplus \mathfrak{L}_{g_{m}} \oplus \mathbf{2}_{*}$, which is a contradiction by Lemma 4.5.3(3). Therefore, \mathfrak{G}_{k} is not a $\log \left(\Theta_{2}\right)$-frame. Then the Jankov-de Jongh formula of \mathfrak{G}_{k} belongs to $\log \left(\Theta_{2}\right)$ but does not belong to $\log \left(\Theta_{1}\right)$. Thus, $\log \left(\Theta_{1}\right) \neq \log \left(\Theta_{2}\right)$.

[^21]
4.5.6. COROLLARY.

1. There are continuum many extensions of $\mathbf{K G}$ without the finite model property.
2. There are continuum many subvarieties of $\mathcal{K} \mathcal{G}$ that are not finitely approximable.

Proof. The proof follows immediately from Theorem 4.5.5.

4.5.2 The pre-finite model property

We will now characterize the logics that bound the finite model property in extensions of KG.
4.5.7. Definition. A logic L is said to have the pre-finite model property if L does not have the fmp, but all proper extensions of L do have the fmp.

Let \mathfrak{T}_{1} and \mathfrak{T}_{2} denote the frames $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}} \oplus \mathfrak{L} \oplus \mathbf{2}_{*}$ and $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{5}} \oplus \mathfrak{L} \oplus \mathbf{2}_{*}$, respectively. The frames \mathfrak{T}_{1} and \mathfrak{T}_{2} are shown in Figure 4.8.

4.5.8. Lemma.

1. $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ is a p-morphic image of $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{5}} \oplus \mathbf{2}_{*}$.
2. \mathfrak{T}_{1} is a p-morphic image of \mathfrak{T}_{2}.

Proof. (1) Let $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ and $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{5}} \oplus \mathbf{2}_{*}$ be labeled as it is shown in Figure 4.9. Define a map $f: \mathbf{2}_{*} \oplus \mathfrak{L}_{g_{5}} \oplus \mathbf{2}_{*} \rightarrow \mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ by putting: $f\left(y_{i}\right)=x_{i}$, for every $i=1, \ldots, 5$ and $f\left(y_{6}\right)=x_{5}$. It is now easy to check that f is a p-morphism.
(2) The proof is a simple adaptation of the proof of (1).

The next theorem was first established by Gerciu [48]. However, his proof was very sketchy. Here we give a full proof of this result skipping just some technical details.
4.5.9. THEOREM. Let $L \supseteq$ KG.

1. If L does not have the fmp, then $L \subseteq \log \left(\mathfrak{T}_{1}\right)$.
2. $\log \left(\mathfrak{T}_{1}\right)$ is the only extension of $\mathbf{K G}$ with the pre finite model property.

Figure 4.8: The frames \mathfrak{T}_{1} and \mathfrak{T}_{2}

Figure 4.9: The frames $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ and $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{5}} \oplus \mathbf{2}_{*}$ with the labels

Proof. (1) Suppose $L \supseteq \mathbf{K G}$ and L does not have the finite model property. Then there is a formula ϕ such that $L \nvdash \phi$ and for every finite L-frame \mathfrak{G} we have $\mathfrak{G} \models \phi$. By Corollary 3.4.3, there is a finitely generated, rooted descriptive L-frame \mathfrak{F} such that $\mathfrak{F} \not \models \phi$. By our assumption, \mathfrak{F} is infinite. This implies that $\log (\mathfrak{F})$ also lacks the fmp. Obviously, we have $L \subseteq \log (\mathfrak{F})$. Hence, to prove that $L \subseteq \log \left(\mathfrak{T}_{1}\right)$, it is sufficient to show that $\log (\mathfrak{F}) \subseteq \log \left(\mathfrak{T}_{1}\right)$. We will prove this by showing that \mathfrak{T}_{1} is a p-morphic image of \mathfrak{F}.

By Theorem 4.3.10, \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where $k, n \in \omega$ and each \mathfrak{F}_{i} is a cyclic frame. Since \mathfrak{F} is infinite, there is $j \leq n$ such that \mathfrak{F}_{j} is isomorphic to \mathfrak{L}. Let j be the least such. First suppose $j>1$. This means that \mathfrak{F} is isomorphic to $\mathfrak{G} \oplus \mathfrak{F}_{j} \oplus \mathfrak{F}_{j-1} \oplus \ldots \oplus \mathfrak{F}_{n} \oplus \mathfrak{L}_{g_{k}}$, where \mathfrak{F}_{j} is isomorphic to \mathfrak{L} and \mathfrak{G} is a finite frame. If there is no i with $n \geq i \geq j-1$ such that \mathfrak{F}_{i} is isomorphic to $\mathfrak{L}_{g_{m}}$ or $\mathfrak{L}_{f_{l}}$ for some $m \geq 4$ and $l \geq 2$, then the same argument as in the proof Theorem 4.4.13 shows that $\log (\mathfrak{F})$ has the fmp, which is a contradiction. So, there is such i and we take the least. Then two cases are possible: \mathfrak{F}_{i} is isomorphic to $\mathfrak{L}_{g_{m}}$, for $m \geq 4$ or \mathfrak{F}_{i} is isomorphic to $\mathfrak{L}_{f_{l}}$, for $l \geq 2$. We only consider the case when \mathfrak{F}_{i} is isomorphic to $\mathfrak{L}_{g_{m}}$, for $m \geq 4$. The case when \mathfrak{F}_{i} is isomorphic to $\mathfrak{L}_{f_{l}}$, for $l \geq 2$ is similar. Next we define an equivalence relation on \mathfrak{F} which leaves \mathfrak{F}_{i} and \mathfrak{F}_{j} untouched and identifies all the points above \mathfrak{F}_{j}, all the points below \mathfrak{F}_{i} and all the points between \mathfrak{F}_{i} and \mathfrak{F}_{j}. Now we will define this relation more precisely. Let E be an equivalence relation on \mathfrak{F} such that for every $w, v \in \mathfrak{F}:$

- $w E v$ if $w, v \in \mathfrak{G}$,
- $w E v$ if $w=v$, for $w, v \in \mathfrak{F}_{j}$,
- $w E v$ if $w, v \in \mathfrak{F}_{j-1} \oplus \ldots \oplus \mathfrak{F}_{i-1}$,
- $w E v$ if $w=v$, for $w, v \in \mathfrak{F}_{i}$,
- $w E v$ if $w, v \in \mathfrak{F}_{i+1} \oplus \ldots \oplus \mathfrak{L}_{g_{k}}$.

Then E is a bisimulation equivalence and \mathfrak{F} / E is isomorphic to $\mathbf{2}_{*} \oplus \mathfrak{F}_{j} \oplus \mathbf{2}_{*} \oplus \mathfrak{F}_{i} \oplus \mathbf{2}_{*}$, where \mathfrak{F}_{j} is isomorphic to \mathfrak{L} and \mathfrak{F}_{i} is isomorphic to $\mathfrak{L}_{g_{m}}$ for $m \geq 4$. Suppose $m \geq 4$. Looking at the structure of $\mathfrak{L}_{g_{m}}$ we see that if m is even, then the subframe of $\mathfrak{L}_{g_{m}}$ consisting of the last three layers of $\mathfrak{L}_{g_{m}}$ is isomorphic to $\mathfrak{L}_{g_{4}}$, and if m is odd, then the subframe of $\mathfrak{L}_{g_{m}}$ consisting of the last three layers of $\mathfrak{L}_{g_{m}}$ is isomorphic to $\mathfrak{L}_{g_{5}}$. Therefore, if m is even and $m>4$ then by identifying all but the points of the last three layers of $\mathfrak{L}_{g_{m}}$ we obtain a p-morphic image of $\mathfrak{L}_{g_{m}}$ that is isomorphic to $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}}$ and if m is odd and $m>5$ then by identifying all but the points of the last three layers of $\mathfrak{L}_{g_{m}}$ we obtain a p-morphic image of $\mathfrak{L}_{g_{m}}$ that is isomorphic to $\boldsymbol{2}_{*} \oplus \mathfrak{L}_{g_{5}}$. Thus, if $m>4$ and m is even the frame $\mathfrak{H}_{1}:=\mathbf{2}_{*} \oplus \mathfrak{L} \oplus \mathbf{2}_{*} \oplus \mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ is a p-morphic image of \mathfrak{F} / E and if $m>5$ and
m is odd the frame $\mathfrak{H}_{2}:=\mathbf{2}_{*} \oplus \mathfrak{L} \oplus \mathbf{2}_{*} \oplus \mathbf{2}_{*} \oplus \mathfrak{L}_{g_{5}} \oplus \mathbf{2}_{*}$ is a p-morphic image of \mathfrak{F} / E. Clearly, if $m=4$, then \mathfrak{F} / E is isomorphic to $\mathfrak{H}_{1}^{\prime}:=\mathbf{2}_{*} \oplus \mathfrak{L} \oplus \mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ and if $m=5$, then \mathfrak{F} / E is isomorphic to $\mathfrak{H}_{2}:=\mathbf{2}_{*} \oplus \mathfrak{L} \oplus \mathbf{2}_{*} \oplus \mathfrak{L}_{g_{5}} \oplus \mathbf{2}_{*}$. It is easy to see that $\mathfrak{H}_{1}^{\prime}$ is a p-morphic image of \mathfrak{H}_{1} and that $\mathfrak{H}_{2}^{\prime}$ is a p-morphic image of \mathfrak{H}_{2}. Now by identifying the greatest element of $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ with the least point of $\mathfrak{L} \oplus \mathbf{2}_{*}$ we obtain that \mathfrak{T}_{1} is a p-morphic image of $\mathfrak{H}_{1}^{\prime}$. Exactly the same argument shows that \mathfrak{T}_{2} is a p-morphic image of $\mathfrak{H}_{2}^{\prime}$. Finally, Lemma 4.5.8(2) ensures that \mathfrak{T}_{1} is a p-morphic image of \mathfrak{T}_{2}, which means that \mathfrak{T}_{1} is a p-morphic image of \mathfrak{F}.

The proof in case $j=1$ is analogous, with the only difference that we also use that, by Theorem 4.2.7, $\mathbf{2}_{*} \oplus \mathfrak{L}$ is a p-morphic image of \mathfrak{L}, and hence $\mathbf{2}_{*} \oplus$ $\mathfrak{L} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ is a p-morphic image of $\mathfrak{L} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ and $\mathbf{2}_{*} \oplus \mathfrak{L} \oplus \mathfrak{L}_{g_{5}} \oplus \mathbf{2}_{*}$ is a p-morphic image of $\mathfrak{L} \oplus \mathfrak{L}_{g_{5}} \oplus \mathbf{2}_{*}$. Therefore, \mathfrak{T}_{1} is a p-morphic image of \mathfrak{F} and $\log \left(\mathfrak{T}_{1}\right) \supseteq \log (\mathfrak{F})$.
(2) Suppose L has the pre-fmp. Then by (1) $L \supseteq \log \left(\mathfrak{T}_{1}\right)$. If $L \supsetneq \log \left(\mathfrak{T}_{1}\right)$, then L does not have the pre-fmp. Therefore, $L=\log \left(\mathfrak{T}_{1}\right)$.

4.5.3 The axiomatization of RN

First we show that $\mathbf{R N}$ is not a subframe logic and hence by Theorem 3.4.16, cannot be axiomatized by subframe formulas. Denote by $\mathfrak{K}_{4}, \mathfrak{K}_{5}$ and \mathfrak{K}_{6} the frames $\mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}, \mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$, and $\mathfrak{L}_{g_{5}} \oplus \mathbf{2}_{*}$, respectively (see Figure 4.11).

4.5.10. Theorem. The following holds.

1. $\mathbf{R N}$ is not a subframe logic.
2. $\mathbf{R N}$ is not a cofinal subframe logic.

Proof. By Theorem 4.2.10, neither \mathfrak{K}_{4} nor \mathfrak{K}_{6} is an $\mathbf{R N}$-frame. However, as follows from Figure 4.10 , both \mathfrak{K}_{4} and \mathfrak{K}_{6} are subframes of \mathfrak{L}. Moreover, they are cofinal subframes. Therefore, $\mathbf{R N}$ is neither a subframe logic nor a cofinal subframe logic. ${ }^{5}$

Next we show that RN is finitely axiomatizable by subframe formulas and Jankovde Jongh formulas. That RN is finitely axiomatizable was first shown by Kuznetsov and Gerciu [83] without using these formulas. Kracht [73] gave an axiomatization of RN by subframe and Jankov-de Jongh formulas. However, the formula $\chi\left(\mathfrak{K}_{6}\right)$, see below, is missing in his axiomatization. Consider the frames $\mathfrak{K}_{4}, \mathfrak{K}_{5}, \mathfrak{K}_{6}$ shown in Figure 4.11 and let $\mathfrak{A}_{4}, \mathfrak{A}_{5}, \mathfrak{A}_{6}$ be the corresponding Heyting algebras shown in Figure 4.12. Recall that the frames $\mathfrak{K}_{1}, \mathfrak{K}_{2}, \mathfrak{K}_{3}$ are shown in Figure 4.3.

[^22]

Figure 4.10: Subframes of \mathfrak{L}

Figure 4.11: The frames $\mathfrak{K}_{4}, \mathfrak{K}_{5}, \mathfrak{K}_{6}$

4.5.11. Theorem.

1. (a) $\mathbf{R N}=\mathbf{I P C}+\bigwedge_{i=1}^{3} \beta\left(\mathfrak{K}_{i}\right)+\bigwedge_{i=4}^{6} \chi\left(\mathfrak{K}_{i}\right)$.
(b) $\left.\mathcal{R N}=\mathcal{H} \mathcal{A}+\left[\bigwedge_{i=1}^{3} \beta\left(\mathfrak{K}_{i}\right)=1\right]+\left[\bigwedge_{i=4}^{6} \chi\left(\mathfrak{A}_{i}\right)=1\right]\right)$.
2. (a) $\mathbf{R N}=\mathbf{I P C}+\phi_{K G}+\bigwedge_{i=4}^{6} \chi\left(\mathfrak{K}_{i}\right)$.
(b) $\mathcal{R N}=\mathcal{H} \mathcal{A}+\left[\phi_{K G}=1\right]+\left[\bigwedge_{i=4}^{6} \chi\left(\mathfrak{A}_{i}\right)=1\right]$.

Proof. (1) As was mentioned above $\mathbf{R N} \supseteq \mathbf{K G}$. Moreover, by Theorem 4.2.10 none of \mathfrak{K}_{i} for $i=4,5,6$ is an $\mathbf{R N}$-frame. We first prove the following claim.
4.5.12. Claim. A finitely generated rooted $\mathbf{K G}$-frame \mathfrak{F} is an $\mathbf{R N}$-frame iff $\mathfrak{K}_{i} \not \subset$ \mathfrak{F}, for each $i=4,5,6 .{ }^{6}$

[^23]

Figure 4.12: The algebras $\mathfrak{A}_{4}, \mathfrak{A}_{5}, \mathfrak{A}_{6}$

Proof. Suppose \mathfrak{F} is an $\mathbf{R N}$-frame and $\mathfrak{K}_{i} \leq \mathfrak{F}$, for each $i=4,5,6$. Then the $\mathfrak{K}_{i} \mathrm{~s}$ are also $\mathbf{R N}$-frames, for every $i=4,5,6$, which is a contradiction by Theorem 4.2.10.

Conversely, since \mathfrak{F} is a KG-frame, by Theorem 4.3.9, \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where all \mathfrak{F}_{i} 's are cyclic frames. As \mathfrak{F} is not an $\mathbf{R N}$-frame, by Theorem 4.4.12, there exists $i \leq n$ such that \mathfrak{F}_{i} is isomorphic to $\mathfrak{L}_{g_{m}}$ or $\mathfrak{L}_{f_{l}}$, for some $m \geq 4$ and $l \geq 2$. We take the least such i. We again consider the case when \mathfrak{F}_{i} is isomorphic to $\mathfrak{L}_{g_{m}}$ for some $m \geq 4$. The proof for the other case is similar. We define a bisimulation equivalence that identifies all the points above \mathfrak{F}_{i}, identifies all the points below \mathfrak{F}_{i} and leaves the points of \mathfrak{F}_{i} untouched. Now we define this relation more precisely. Two cases are possible.

Case 1. $i>1$. Define an equivalence relation E on \mathfrak{F} by putting for every $w, v \in \mathfrak{F}:$

- $w E v$ for $w, v \in \mathfrak{F}_{1} \oplus \ldots \oplus \mathfrak{F}_{i-1}$,
- $w E v$ if $w=v$, for $w, v \in \mathfrak{F}_{i}$,
- $w E v$ for $w, v \in \mathfrak{F}_{i+1} \oplus \ldots \oplus \mathfrak{F}_{n} \oplus \mathfrak{L}_{g_{k}}$.

Then E is a bisimulation equivalence and \mathfrak{F} / E is isomorphic to $\mathbf{2}_{*} \oplus \mathfrak{F}_{i} \oplus \mathbf{2}_{*}$. Next we apply exactly the same argument as in the proof of Theorem 4.5.9. If $m>4$ is even then $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}}$ is a p-morphic image of $\mathfrak{L}_{g_{m}}$ and if $m>4$ is odd, then $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{5}}$ is a p-morphic image of $\mathfrak{L}_{g_{m}}$. Therefore, if $m>4$ and m is even then $\mathfrak{G}_{1}:=\mathbf{2}_{*} \oplus \mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ is a p-morphic image of \mathfrak{F} / E and if $m>4$ is odd then $\mathfrak{G}_{2}:=\mathbf{2}_{*} \oplus \mathbf{2}_{*} \oplus \mathfrak{L}_{g_{5}} \oplus \mathbf{2}_{*}$ is a p-morphic image of \mathfrak{F} / E. Clearly, if $m=4, \mathfrak{F} / E$ is isomorphic to $\mathfrak{K}_{5}=\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{4}} \oplus \mathbf{2}_{*}$ and if $m=5$ then \mathfrak{F} / E is isomorphic to $\mathfrak{K}_{5}^{\prime}=\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{5}} \oplus \mathbf{2}_{*}$ is a p-morphic image of \mathfrak{F} / E. It is easy to see that \mathfrak{K}_{5} is a p-morphic image of \mathfrak{G}_{1} and $\mathfrak{K}_{5}^{\prime}$ is a p-morphic image of \mathfrak{G}_{2}. Finally, by Lemma 4.5.8, \mathfrak{K}_{5} is a p-morphic image of $\mathfrak{K}_{5}^{\prime}$, which gives us that \mathfrak{K}_{5} is a p-morphic image of \mathfrak{F}.

Case 2. $i=1$. This case is similar to Case 1 , except that if \mathfrak{F}_{i} is isomorphic to $\mathfrak{L}_{g_{4}}$, then \mathfrak{K}_{4} is a p-morphic image of \mathfrak{F} and if \mathfrak{F}_{i} is isomorphic to $\mathfrak{L}_{g_{5}}$ then \mathfrak{K}_{6} is a p-morphic image of \mathfrak{F}.

The result now follows from Corollary 3.4 .14 by replacing $\mathbb{F} \mathbb{G}(\mathbf{I P C})$ with $\mathbb{F G}(\mathbf{K G})$.
(2) is an immediate consequence of (1), Theorem 4.3.4 and Corollary 4.3.5.

4.6 Locally tabular extensions of RN and KG

In this section we give criteria of local tabularity in extensions of KG and RN. For the definition of locally tabular intermediate logics and locally finite varieties of Heyting algebras consult Sections 2.1.2 and 2.3.5.

4.6.1. Definition.

1. A logic L is called pre-locally tabular if L is not locally tabular but every proper extension of L is locally tabular.
2. A variety \mathbf{V} is called pre-locally finite if \mathbf{V} is not locally finite but every proper subvariety of \mathbf{V} is locally finite.

Pre-local tabularity and pre-local finiteness are dual notions. That is, an intermediate logic is pre-locally tabular iff the corresponding variety of Heyting algebras is pre-locally finite. Now we prove that there is only one pre-locally tabular extension of KG. This fact will immediately provide us with a criterion of local tabularity in extensions of KG.

Let \mathfrak{K} denote the frame $\mathbf{2}_{*} \oplus \mathfrak{L}$. \mathfrak{K} is shown in Figure 4.13. It is easy to see that \mathfrak{K} is obtained from \mathfrak{L} by identifying the two maximal nodes of \mathfrak{L}.
4.6.2. Theorem. $\log (\mathfrak{K})$ is complete with respect to $\left\{\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{k}}: k \in \omega\right\}$.

Proof. Suppose $\mathfrak{K} \not \vDash \phi$, for some formula ϕ. Then by Lemma 4.4.9, there exists a descriptive valuation V and a point x of \mathfrak{K} of finite depth such that $(\mathfrak{K}, V), x \not \equiv \phi$. We consider the generated subframe \mathfrak{F}_{x} of \mathfrak{K} generated by the point x. Then it is easy to see that \mathfrak{F}_{x} is isomorphic to $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{k}}$ for some $k \in \omega$ and that $\mathfrak{F}_{x} \not \models \phi$. Therefore, $\log (\mathfrak{K})$ is complete with respect to $\left\{\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{k}}: k \in \omega\right\}$.
4.6.3. Definition. Let RN.KC $=\mathbf{R N}+(\neg p \vee \neg \neg p)$.

Figure 4.13: The frame \mathfrak{K}

4.6.4. Theorem. $\log (\mathfrak{K})=$ RN.KC.

Proof. It is well known see, e.g., [24, Proposition 2.37] that a descriptive frame \mathfrak{F} validates $\neg p \vee \neg \neg p$ iff $\max (\mathfrak{F})$ is a singleton set. \mathfrak{K} is a p-morphic image of \mathfrak{L} therefore it is an RN-frame. \mathfrak{K} has a greatest element, thus \mathfrak{K} is an RN.KC-frame and $\log (\mathfrak{K}) \supseteq \mathbf{R N}$.KC.

Conversely, RN.KC is an extension of RN. By Theorem 4.4.13, RN.KC has the finite model property. Finite rooted RN.KC-frames, then are finite rooted $\mathbf{R N}$-frames with a greatest element. Similar arguments as in Theorem 4.2.8 show that every finite rooted RN.KC-frame is a p-morphic image of a generated subframe of \mathfrak{K}. Therefore, RN.KC $\supseteq \log (\mathfrak{K})$.

Now we are ready to prove a criterion of local tabularity for extensions of RN. We will again use the criterion formulated in Theorem 3.4.23.
4.6.5. Theorem. For every $L \supseteq$ KG:
L is not locally tabular iff $L \subseteq \log (\mathfrak{K})$.
Proof. We first show that $\log (\mathfrak{K})$ is not locally tabular. Observe that for every point x of \mathfrak{K} the point-generated subframe \mathfrak{F}_{x} is 2-generated and $\sup \left(\left\{\left|\mathfrak{F}_{x}\right|: x \in\right.\right.$ $\mathfrak{K}\})=\omega$. Therefore, by Theorem 3.4.23, $\log (\mathfrak{K})$ is not locally tabular. Thus, if there are infinitely many pairwise non-equivalent formulas in n variables in $\log (\mathfrak{K})$, then there are infinitely many pairwise non-equivalent formulas in n variables in every $L \subseteq \log (\mathfrak{K})$. Therefore, if $L \subseteq \log (\mathfrak{K})$, then L is not locally tabular.

Now suppose L is not locally tabular. Then by Theorem 3.4.23, there are two cases:

Case 1. There exists $n \in \omega$ such that there is an n-generated infinite rooted L frame \mathfrak{F}. By Theorem 4.3.10, \mathfrak{F} is isomorphic to $\bigoplus_{i=1}^{m} \mathfrak{G}_{i}$, where each \mathfrak{G}_{i} is a cyclic frame. Since \mathfrak{F} is infinite there is $j \leq m$ such that \mathfrak{G}_{j} is isomorphic to \mathfrak{L}. Again two cases are possible:

Case 1.1. $j>1$. Similarly to the other cases we define a bisimulation equivalence that identifies all the points above \mathfrak{G}_{j}, all the points below \mathfrak{G}_{j} and leaves the points in \mathfrak{G}_{j} untouched. More precisely, let E be an equivalence relation on \mathfrak{F} such that for every $w, v \in \mathfrak{F}$:

- $w E v$ if $w, v \in \mathfrak{G}_{j+1} \oplus \ldots \oplus \mathfrak{G}_{n}$,
- $w E v$ if $w=v$, for $w, v \in \mathfrak{G}_{j}$,
- $w E v$ if $w, v \in \mathfrak{G}_{1} \oplus \ldots \oplus \mathfrak{G}_{j-1}$.

Then E is a bisimulation equivalence and \mathfrak{F} / E is isomorphic to $\mathbf{2}_{*} \oplus \mathfrak{L} \oplus \mathbf{2}_{*}$. Finally, by identifying the least two points of $\mathbf{2}_{*} \oplus \mathfrak{L} \oplus \mathbf{2}_{*}$ we obtain a p morphic image of $\mathbf{2}_{*} \oplus \mathfrak{L} \oplus \mathbf{2}_{*}$ isomorphic to \mathfrak{K}. Therefore, \mathfrak{K} is a p-morphic image of \mathfrak{F} and $L \subseteq \log (\mathfrak{F})$.

Case 1.2. $j=1$. In the same way as in Case 1 we obtain that \mathfrak{L} is a p-morphic image of \mathfrak{F}. As we mentioned above the p-morphism that identifies the two maximal points of \mathfrak{L} give us a frame isomorphic to \mathfrak{K}.

Case 2. There exists $n \in \omega$ such that the cardinality of $\sup (\{|\mathfrak{H}|: \mathfrak{H}$ is a n generated finite rooted L-frame $\})=\omega$. This means that for every $m \in \omega$ there is a finite rooted n-generated frame \mathfrak{H} such that $|\mathfrak{H}|>m$. Since every \mathfrak{H} is a KG-frame, every \mathfrak{H} is isomorphic to $\bigoplus_{i=1}^{s} \mathfrak{H}_{i}$, where every \mathfrak{H}_{i} is finite and cyclic. Now consider these \mathfrak{H}_{i} 's. We again have two cases: the cardinality of the family \mathfrak{H}_{i} 's is bounded or it is not bounded.

Case 2.1. For every $m \in \omega$ there exists an n-generated finite rooted frame $\mathfrak{H}=$ $\bigoplus_{i=1}^{s} \mathfrak{H}_{i}$ and a cyclic frame \mathfrak{H}_{i}, for $i \leq s$ such that $\left|\mathfrak{H}_{i}\right|>m$. Then the same technique as in Case 1 shows that for every $k \in \omega$ the frame $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{k}}$ is an L-frame. By Theorem 4.6.2 this implies that $L \subseteq \log (\mathfrak{K})$.

Case 2.2. There is $m \in \omega$ such that for every n-generated finite rooted L-frame $\mathfrak{H}=\bigoplus_{i=1}^{s} \mathfrak{H}_{i}$, we have $\left|\mathfrak{H}_{i}\right| \leq m$, for $i=1, \ldots, s$. By Claim 4.5.12, $s \leq 2 n$. Therefore, $|\mathfrak{H}| \leq m \cdot 2 n$ and by Theorem 3.4.23, L is locally tabular, which contradicts our assumptions.
4.6.6. Corollary. If $L \supseteq \mathbf{K G}$ is decidable, then it is decidable whether L is locally tabular.

Proof. By Theorem 4.6.5, L is not locally tabular iff $L \vdash \phi$ for every axiom ϕ of RN.KC. This problem is clearly decidable if L is decidable.

Next we give another criterion of local tabularity in extensions of RN. By Theorem 4.2.10 every finite rooted L-frame is isomorphic to $\mathfrak{L}_{g_{k}} \oplus \bigoplus_{i=1}^{n} \mathfrak{F}_{i}$, where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\boldsymbol{4}_{*}$, and $k, n \in \omega$.

4.6.7. Definition.

1. The initial segment of a frame $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$, is the frame $\mathfrak{L}_{g_{k}}$.
2. The internal depth of a finite rooted $\mathbf{R N}$-frame \mathfrak{F} is the depth of its initial segment. Denote by $d_{I}(\mathfrak{F})$ the internal depth of a frame \mathfrak{F}.
3. Define the internal depth of a logic $L \supseteq \mathbf{R N}$ as $\sup \left\{d_{I}(\mathfrak{F}): \mathfrak{F}\right.$ is a finite rooted L-frame $\}$. We denote by $d_{I}(L)$ the internal depth of L.
4.6.8. Theorem. A logic $L \supseteq \mathbf{R N}$ is locally tabular iff $d_{I}(L)<\omega$.

Proof. First suppose $d_{I}(L)=\omega$. Then for every $m \in \omega$ there exists $k>m$ such that $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$ is an L-frame, where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$. Then $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{k}}$ is a p-morphic image of $\left(\bigoplus_{i=1}^{n} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$. We map all the points in $\bigoplus_{i=1}^{n} \mathfrak{F}_{i}$ onto the top node of $\mathbf{2}_{*} \oplus \mathfrak{L}_{g_{k}}$. Then by Theorem 4.1.23, $\log (\mathfrak{K}) \subseteq L$ and by Theorem 4.6.5, L is not locally tabular.

Now suppose $d_{I}(L)=m<\omega$. Let \mathfrak{F} be an n-generated rooted L-frame. Then, by Lemma 4.6.2, \mathfrak{F} isomorphic to a finite sum of cyclic frames, therefore \mathfrak{F} is isomorphic to $\left(\bigoplus_{i=1}^{s} \mathfrak{F}_{i}\right) \oplus \mathfrak{L}_{g_{k}}$, where each \mathfrak{F}_{i} is isomorphic to $\mathbf{2}_{*}$ or $\mathbf{4}_{*}$. Then since $d_{I}(L)=m$ we have $\left|\mathfrak{L}_{g_{k}}\right| \leq m$, and by Lemma 4.6.2, $s \leq 2 n$. Therefore, $|\mathfrak{H}| \leq(m+2 n) \cdot 2$. Thus, the cardinality of every n-generated rooted L-frame is bounded by $|\mathfrak{H}|$. Therefore, by Theorem 3.4.23, L is locally tabular.

Part II

Lattices of cylindric modal logics

Chapter 5

Cylindric modal logic and cylindric algebras

In the second part of this thesis we investigate lattices of two-dimensional cylindric modal logics. Cylindric modal logics can be seen as finite variable fragments of the classical first-order logic FOL and also arise naturally as multi-dimensional products of the well-known modal logic S5.

The idea of "approximating" FOL by its finite variable fragments goes back to Tarski. Tarski and his collaborators developed the theory of cylindric algebrasthe algebraic models of FOL [60]. In particular, cylindric algebras of dimension n are Boolean algebras with n additional operators. They are algebraic models of the n-variable fragment of FOL. Therefore, finite dimensional cylindric algebras provide an algebraic semantics for finite variable fragments of FOL, and so give their algebraic "approximation".

Because of the close connection between Boolean algebras with additional operators and modal logic, which we will discuss in this chapter, this approach can be formulated purely in modal logic terms. Venema [125] defined cylindric modal logic - the modal logic counterpart of cylindric algebras-which gives a modal approximation of FOL. Cylindric modal logic can be also approached from the point of view of products of modal logics of Gabbay and Shehtman [44]. In the framework of products of modal logics, cylindric modal logics constitute a special case, namely products of the well-known modal logic S5.

The one variable fragment of FOL is $\mathbf{S 5}$. This logic has a lot of "nice" properties: S5 is finitely axiomatizable, has the finite model property and is decidable. Moreover, the lattice of normal extensions of $\mathbf{S 5}$ is rather simple: it is an $(\omega+1)$-chain. Every proper normal extension of $\mathbf{S} 5$ is tabular, is finitely axiomatizable and is decidable (see Scroggs [111]). In contrast to this, the three variable fragment of FOL - the three dimensional cylindric modal logic is much more complicated and no longer has "nice" properties. It has been shown by Maddux [88] that three-dimensional cylindric modal logic is undecidable and has continuum many undecidable extensions. Kurucz [79] strengthened this by show-
ing that the fmp also fails for all these logics [43, Theorem 8.12]. It follows from Monk [99] and Johnson [67] that three dimensional cylindric modal logics are not finitely axiomatizable.

In this thesis we investigate in detail two-dimensional cylindric modal logic. We will show that the two-dimensional case is not as complicated as the threedimensional, but is not as simple as the one-dimensional case. We consider two different formalisms: cylindric modal logic without diagonal and cylindric modal logic with diagonal. As we will see below, the former corresponds to the twodimensional substitution-free fragment of FOL, whereas the latter corresponds to the full two-dimensional fragment of FOL.

The chapter is organized as follows. In the first section we recall some basic facts from modal logic. In section two we discuss many-dimensional modal logics. Section three introduces two-dimensional cylindric modal logic. In the final section we discuss two-dimensional cylindric algebras and their topological representation.

5.1 Modal Logic

In this section we recall the basic facts about modal logic. Most of these were already discussed in Chapter 2 for intermediate logics. Let $\mathcal{M} \mathcal{L}$ be an extension of the propositional language \mathcal{L} with the modal operator \diamond and let $\operatorname{Form}(\mathcal{M L})$ be the set of all formulas of $\mathcal{M} \mathcal{L}$.
5.1.1. Definition. The basic modal logic \mathbf{K} is the smallest set of formulas that contains CPC and the axioms:

1. $\square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q)$.
2. $\square p \leftrightarrow \neg \diamond \neg p$.
and is closed under the rules (MP), (Subst) and
Necessitation (N): from ϕ infer $\square \phi$.
A normal modal logic is a set of formulas $L \subseteq \operatorname{Form}(\mathcal{M L})$ that contains \mathbf{K} and is closed under (MP), (Subst) and (N).

Next we recall the Kripke semantics for normal modal logics; see, e.g., [18, Definitions 1.19 and 1.20] and [24, §3.2].

5.1.2. Definition.

1. A modal Kripke frame is a pair $\mathfrak{F}=(W, R)$, where $W \neq \emptyset$ and R is a binary relation on W.
2. A modal Kripke model is a pair $\mathfrak{M}=(\mathfrak{F}, V)$, where \mathfrak{F} is a Kripke frame and V is an arbitrary map $V: \operatorname{Prop} \rightarrow \mathcal{P}(W)$, called a valuation.

Let $\mathfrak{M}=(W, R, V)$ be a modal Kripke model and consider an element w of W. For a formula $\phi \in \operatorname{FORm}(\mathcal{M L})$ the following provides an inductive definition of $\mathfrak{M}, w \models \phi$.

1. $\mathfrak{M}, w \models p$ iff $w \in V(p)$,
2. $\mathfrak{M}, w \models \phi \wedge \psi$ iff $\mathfrak{M}, w \models \phi$ and $\mathfrak{M}, w \models \psi$,
3. $\mathfrak{M}, w \models \phi \vee \psi$ iff $\mathfrak{M}, w \models \phi$ or $\mathfrak{M}, w \models \psi$,
4. $\mathfrak{M}, w \models \phi \rightarrow \psi$ iff $\mathfrak{M}, w \not \models \phi$ or $\mathfrak{M}, w \models \psi$,
5. $\mathfrak{M}, w \not \vDash \perp$,
6. $\mathfrak{M}, w \models \diamond \phi$ iff there exists v such that $w R v$ and $\mathfrak{M}, v \models \phi$,
7. $\mathfrak{M}, w \models \square \phi$ iff for all v such that $w R v$ we have $\mathfrak{M}, v \models \phi$.

Since in Part II of this thesis we will only be concerned with modal logics, we call "modal Kripke frames" simply "Kripke frames".
5.1.3. Remark. The definitions of truth, validity, completeness, and the fmp remain the same as in the intuitionistic case. The same holds for all the definitions, constructions and theorems in Section 2.1.1. We will refer to these theorems as the modal analogues of the corresponding theorems for intermediate logics.
5.1.4. Definition. Let $\mathfrak{F}=(W, R)$ be a Kripke frame. \mathfrak{F} is called rooted if there exists $w \in W$ such that for every $v \in W$ we have $w R^{*} v$, where R^{*} is the reflexive and transitive closure of R.

We have the following analogue of Corollary 2.1.15; see e.g., [24, Proposition 1.11].
5.1.5. Theorem. If a modal logic L is Kripke complete, then L is Kripke complete with respect to the class of its rooted frames.

Next we recall the axiomatizations of some well-known modal logics; see, e.g., $[18, \S 4.1]$ and $[24, \S 3.8]$.
5.1.6. Definition. Let

1. $\mathbf{K} 4=\mathbf{K}+(\diamond \Delta p \rightarrow \diamond p)$,
2. $\mathbf{S} \mathbf{4}=\mathbf{K} \mathbf{4}+(p \rightarrow \diamond p)$,
3. $\mathbf{S} \mathbf{5}=\mathbf{S} 4+(p \rightarrow \square \diamond p)$.

We also recall the completeness results for these logics; see, e.g., [18, §4.2 and $\S 4.3]$ and $[24, \S 5.2]$.

5.1.7. Theorem.

1. \mathbf{K} is complete with respect to the class of all finite rooted frames.
2. K4 is complete with respect to the class of all finite transitive rooted frames.
3. $\mathbf{S 4}$ is complete with respect to the class of all finite transitive and reflexive rooted frames.
4. S 5 is complete with respect to the class of all finite transitive, reflexive and symmetric rooted frames.

5.1.1 Modal algebras

In this section we discuss the algebraic semantics for modal logic. In the same way as Boolean algebras provide an algebraic semantics for the classical propositional calculus modal algebras provide an algebraic semantics for modal logic.
5.1.8. Definition. A modal algebra is a pair $\mathfrak{B}=(B, \diamond)$, where B is a Boolean algebra and $\diamond: B \rightarrow B$ is a map satisfying the following two conditions for every $a, b \in B:$

1. $\diamond(a \vee b)=\diamond a \vee \diamond b$,
2. $\diamond 0=0$.

We also assume that $\square: B \rightarrow B$ is defined by $\square a=-\diamond-a$, for every $a \in B$.
The interpretation of a modal formula in a modal algebra is defined in the same way as in Section 2.2.2; the interpretation of the modal operators is as follows:

- $v(\diamond \phi)=\Delta v(\phi)$,
- $v(\square \phi)=\square v(\phi)$.

As in Section 2.2.2 with every normal modal logic L we associate a variety \mathbf{V}_{L} of modal algebras that validate all the theorems of L. Using the standard Lindenbaum-Tarski construction we can show that every normal modal logic is complete with respect to its algebraic semantics; see, e.g., [18, Theorem 5.27] and [24, Theorem 7.52].
5.1.9. Theorem. Every normal modal logic L is complete with respect to \mathbf{V}_{L}.

Moreover, we have that the lattice of all normal modal logics is dually isomorphic to the lattice of all varieties of modal algebras; see, e.g., [24, Theorem 7.54].
5.1.10. Theorem. There exists a lattice anti-isomorphism between the lattice of normal extensions of a normal modal logic L and the lattice of subvarieties of \mathbf{V}_{L}.

The notion of a filter was defined in Section 2.2.3. Next we recall the definitions of ultrafilters and modal filters; see, e.g., [24, §7.4 and §7.7].
5.1.11. Definition. Let $\mathfrak{B}=(B, \diamond)$ be a modal algebra and $F \subseteq B$ be a filter. Then

1. F is called an ultrafilter if for every $a \in B$ we have

$$
a \in B \text { or }-a \in B
$$

2. F is called a modal filter if for every $a \in B$ we have

$$
a \in B \text { implies } \square a \in B
$$

The next theorem is an analogue of Theorem 2.3.11 (1)-(2); see, e.g., [24, Proposition 7.69].
5.1.12. Theorem. Let \mathfrak{B} be a modal algebra. Then there is a lattice antiisomorphism between the lattice of congruences on \mathfrak{B} and the lattice of modal filters of \mathfrak{B}.

We will use this correspondence in the subsequent chapters.

5.1.2 Jónsson-Tarski representation

The dual frames of modal algebras are similar to the descriptive frames of intuitionistic logic. This duality was explicitly formulated by Goldblatt [51, 52]. However, the idea of this duality goes back to Jónsson and Tarski [71].
5.1.13. Definition. A modal general frame is a triple $\mathfrak{F}=(W, R, \mathcal{P})$, where (W, R) is a modal Kripke frame and \mathcal{P} is a set of subsets of W, i.e. $\mathcal{P} \subseteq \mathcal{P}(W)$ such that

1. $\emptyset, W \in \mathcal{P}$,
2. If $U_{1}, U_{2} \in \mathcal{P}$, then $U_{1} \cap U_{2} \in \mathcal{P}$,
3. If $U \in \mathcal{P}$, then $(W \backslash U) \in \mathcal{P},{ }^{1}$
4. If $U \in \mathcal{P}$, then $R^{-1}(U) \in \mathcal{P}$.

Next we introduce descriptive frames for modal logic; see, e.g., [18, Definition $5.65]$ and $[24, \S 8.4]$.
5.1.14. Definition. Let $\mathfrak{F}=(W, R, \mathcal{P})$ be a modal general frame.

1. \mathfrak{F} is called differentiated if for each $w, v \in W$,

$$
w \neq v \text { implies there is } U \in \mathcal{P} \text { such that } w \in U \text { and } v \notin U .
$$

2. \mathfrak{F} is called tight if for every $w, v \in W$,
$\neg(w R v)$ implies that there is $U \in \mathcal{P}$ such that $v \in U$ and $w \notin R^{-1}(U)$.
3. \mathfrak{F} is called refined if it is differentiated and tight.
4. \mathfrak{F} is called compact if for every $\Gamma \subseteq \mathcal{P}$ with the finite intersection property we have $\bigcap \Gamma \neq \emptyset$.
5. \mathfrak{F} is called descriptive if it is refined and compact.

Note that for every descriptive frame $\mathfrak{F}=(W, R, \mathcal{P})$ the algebra $\left(\mathcal{P}, \cup, \cap, \backslash, \emptyset, R^{-1}\right)$ is a modal algebra. In fact, every modal algebra can be represented in such a way; see, e.g., [18, Theorem 5.43] and [24, Theorem 8.51].
5.1.15. Theorem. For every modal algebra \mathfrak{B} there exists a descriptive frame $\mathfrak{F}=(W, R, \mathcal{P})$ such that \mathfrak{B} is isomorphic to $\left(\mathcal{P}, \cup, \cap, \backslash, \emptyset, R^{-1}\right)$.

We quickly sketch the main idea of the proof. Let $W_{\mathfrak{B}}$ be the set of all ultrafilters of \mathfrak{B}, and let $\mathcal{P}_{\mathfrak{B}}=\{\widehat{a}: a \in B\}$, where $\widehat{a}=\left\{w \in W_{\mathfrak{B}}: a \in w\right\}$. We define $R_{\mathfrak{B}}$ on $W_{\mathfrak{B}}$ by

$$
w R_{\mathfrak{B}} v \text { iff } a \in v \text { implies } \diamond a \in w \text { for each } a \in B
$$

which is equivalent to

$$
w R_{\mathfrak{B}} v \text { iff } \square a \in w \text { implies } a \in v
$$

Then $\left(W_{\mathfrak{B}}, R_{\mathfrak{B}}, \mathcal{P}_{\mathfrak{B}}\right)$ is a descriptive frame and \mathfrak{B} is isomorphic to the modal algebra $\left(\mathcal{P}_{\mathfrak{B}}, \cup, \cap, \backslash, \emptyset, R_{\mathfrak{B}}^{-1}\right)$.

[^24]5.1.16. Remark. The notions of generated subframes, generated submodels, p morphisms and disjoint unions of modal descriptive frames and the preservation results are exactly the same as in Section 2.3.1.

We will finish this section by reformulating the representation theorem for modal algebras in topological terms.
5.1.17. Definition. A triple $\mathcal{X}=(X, \mathcal{O}, R)$ is called a modal space if (X, \mathcal{O}) is a Stone space and R is a point-closed and clopen relation; that is, for every $x \in X$, the set $R(x)$ is closed and for every clopen $U \subseteq X$, the set $R^{-1}(U)$ is clopen.

Similar to Esakia spaces, a triple $\mathcal{X}=(X, \mathcal{O}, R)$ is a modal space iff R is a clopen relation on X satisfying the following condition:
$\neg(x R y)$ implies there is a clopen U such that $y \in U$ and $x \notin R^{-1}(U)$.
Note that in the case R is a partial order, this condition becomes equivalent to the Priestley separation axiom. We also note that for every clopen relation R we have that $R^{-1}(U)$ is closed for every closed set U. Then the representation theorem of modal algebras can be formulated as follows.
5.1.18. Theorem. For every modal algebra \mathfrak{B} there exists a modal space $\mathcal{X}=$ (X, \mathcal{O}, R) such that \mathfrak{B} is isomorphic to $\left(\mathcal{C P}(X), \cup, \cap, \backslash, \emptyset, R^{-1}\right)$, where $\mathcal{C P}(X)$ is the Boolean algebra of all clopens of \mathcal{X}.

The correspondence between modal descriptive frames and modal spaces is even more straightforward than in the intuitionistic case. For every modal space $\mathcal{X}=$ (X, \mathcal{O}, R), the triple $(X, R, \mathcal{C P}(X))$ is a modal descriptive frame. Conversely, if $\mathfrak{F}=(W, R, \mathcal{P})$ is a modal descriptive frame, then define topology on W by letting \mathcal{P} be a basis for the topology. Then the triple $\left(W, \mathcal{O}_{\mathcal{P}}, R\right)$ is a modal space.

In Part I we defined bisimulation equivalences for intuitionistic descriptive frames. Now we will give an analogous definition of bisimulation equivalence for modal descriptive frames.
5.1.19. Definition. Let $\mathfrak{F}=(W, R, \mathcal{P})$ be a descriptive frame. An equivalence relation Q on W is called a bisimulation equivalence if the following two conditions are satisfied:

1. For every $w, v, u \in W, w Q v$ and $v R u$ imply there is $u^{\prime} \in W$ such that $w R u^{\prime}$ and $u^{\prime} Q u$. In other words, $R Q(w) \subseteq Q R(w)$.
2. For every $w, v \in W$, if $\neg(w Q v)$ then w and v are separated by a Q-saturated admissible set; that is, there exists $U \in \mathcal{P}$ such that $Q(U)=U, w \in U$ and $v \notin U$.

We reformulate the definition of bisimulation equivalence in topological terms.
5.1.20. Definition. Let $\mathcal{X}=(X, \mathcal{O}, R)$ be a modal space. An equivalence relation Q on W is called a bisimulation equivalence if the following two conditions are satisfied:

1. For every $x, y, z \in X, x Q y$ and $y R z$ imply there is $z^{\prime} \in X$ such that $x R z^{\prime}$ and $z^{\prime} Q z$. In other words, $R Q(x) \subseteq Q R(x)$.
2. For every $x, y \in X$, if $\neg(x Q y)$ then x and y are separated by a Q-saturated clopen; that is, there exists a clopen $U \subseteq X$ such that $Q(U)=U, x \in U$ and $y \notin U$.

We order the set of all bisimulation equivalences of \mathcal{X} by set-theoretic inclusion. Then we have the following analogue of Theorem 2.3.10.
5.1.21. Theorem. The lattice of subalgebras of a modal algebra \mathfrak{B} is dually isomorphic to the lattice of bisimulation equivalences of its dual \mathcal{X}.

As in the case of Heyting algebras, the category of modal descriptive frames is isomorphic to the category of modal spaces, and is dual to the category of all modal algebras. In this part of the thesis we mostly use the topological duality between modal algebras and modal spaces.

5.2 Many-dimensional modal logics

In this section we extend the notions defined in the previous section for modal logics to their multi-dimensional analogues.

5.2.1 Basic definitions

Let $\mathcal{M} \mathcal{L}_{n}$ be an extension of the propositional language \mathcal{L} with n modal operators $\diamond_{1}, \ldots, \diamond_{n}$. Let $\operatorname{Form}\left(\mathcal{M} \mathcal{L}_{n}\right)$ be the set of all formulas of $\mathcal{M} \mathcal{L}_{n}$. Manydimensional normal modal logics are obtained as straightforward generalizations of normal modal logics; see, e.g., [43, §1.4].
5.2.1. Definition. The minimal n-modal logic \mathbf{K}_{n} is the smallest set of formulas that contains CPC, the following axioms for $i \leq n$:

1. $\square_{i}(p \rightarrow q) \rightarrow\left(\square_{i} p \rightarrow \square_{i} q\right)$,
2. $\square_{i} p \leftrightarrow \neg \widehat{i}_{i} \neg p$.
and is closed under the rules (MP), (Subst) and

Necessitation ($\mathbf{N})_{i}:$ from ϕ infer $\square_{i} \phi$.
An n-normal modal logic is a set $L \subseteq \operatorname{Form}\left(\mathcal{M} \mathcal{L}_{n}\right)$ that contains \mathbf{K}_{n} and is closed under (MP), (Subst) and (N) i_{i}, for each $i \leq n$.
5.2.2. Remark. The Kripke semantics for many-dimensional modal logics is obtained by a straightforward generalization of the uni-modal case.

Throughout, we will skip the prefix n in " n-normal modal logics" if it is clear from the context. As we saw in Part I, an important class of frames is the class of rooted frames. Next we discuss rooted Kripke frames for many-dimensional modal logics; see, e.g, [43, §1.4].
5.2.3. Definition. Let $\mathcal{F}=\left(W, R_{1}, \ldots, R_{n}\right)$ be a many-dimensional Kripke frame. Then \mathcal{F} is called rooted if there is a point $w \in W$ that is related to every point $v \in W$ by the reflexive and transitive closure of the relation $\bigcup_{i=1}^{n} R_{i}$. The point w is called a root of \mathcal{F}.

We have the following analogue of Theorem 5.1.5; see, e.g., [43, Proposition 1.11]
5.2.4. Theorem. If a many-dimensional modal logic L is Kripke complete, then L is Kripke complete with respect to the class of its rooted frames.

5.2.2 Products of modal logics

In this section we recall the fusion and product of modal logics. For an extensive study of many-dimensional modal logics we refer to [43] and [95].
5.2.5. Definition. Let L_{1} and L_{2} be normal modal logics with the modal operators \diamond_{1} and \diamond_{2}, respectively. The fusion $L_{1} \otimes L_{2}$ of L_{1} and L_{2} is the smallest normal modal logic, in the language $\mathcal{M} \mathcal{L}_{2}$, containing $L_{1} \cup L_{2}$.

Consider the following formulas called right and left commutativity formulas, and the Church-Rosser formula.

1. $\operatorname{com}^{\mathbf{r}}:=\diamond_{1} \diamond_{2} p \rightarrow \diamond_{2} \diamond_{1} p$
2. com $^{1}:=\diamond_{2} \diamond_{1} p \rightarrow \diamond_{1} \diamond_{2} p$
3. chr $:=\diamond_{1} \square_{2} p \rightarrow \square_{2} \diamond_{1} p$.

The next theorem gives a semantic characterization of $\mathbf{c o m}^{\mathbf{r}}, \mathbf{c o m}^{1}$ and chr; see, e.g., $[43, \S 5.1]$.
5.2.6. Theorem. For every frame $\mathcal{F}=\left(W, R_{1}, R_{2}\right)$ we have

1. $\mathcal{F} \models \mathbf{c o m}^{\mathbf{r}}$ iff $(\forall w, v, u \in W)\left(w R_{1} v \wedge v R_{2} u \rightarrow(\exists z)\left(w R_{2} z \wedge z R_{1} u\right)\right)$,
2. $\mathcal{F} \models \operatorname{com}^{1}$ iff $(\forall w, v, u \in W)\left(w R_{2} v \wedge v R_{2} u \rightarrow(\exists z)\left(w R_{1} z \wedge z R_{2} u\right)\right)$,
3. $\mathcal{F} \models \mathbf{c h r}$ iff $(\forall w, v, u \in W)\left(w R_{1} v \wedge w R_{2} u \rightarrow(\exists z)\left(v R_{1} z \wedge u R_{2} z\right)\right)$.

Proof. The proof follows directly from the Sahlqvist correspondence, because $\mathbf{c o m}^{\mathbf{r}}, \mathbf{c o m}^{1}$ and chr are Sahlqvist formulas; see, e.g., [18, §3.6].

Next we define the product of Kripke frames and the product of modal logics. These constructions were introduced in [115] and [44], (see also [43, §5.1]).

5.2.7. Definition.

1. Let $\mathcal{F}=(W, R)$ and $\mathcal{F}^{\prime}=\left(W^{\prime}, R^{\prime}\right)$ be Kripke frames. The product of \mathcal{F} and \mathcal{F}^{\prime} is the frame $\mathcal{F} \times \mathcal{F}^{\prime}:=\left(W \times W^{\prime}, R_{1}, R_{2}\right)$, where

$$
\left(w, w^{\prime}\right) R_{1}\left(v, v^{\prime}\right) \text { iff } w R v \text { and } w^{\prime}=v^{\prime}
$$

and

$$
\left(w, w^{\prime}\right) R_{2}\left(v, v^{\prime}\right) \text { iff } w^{\prime} R^{\prime} v^{\prime} \text { and } w=v
$$

The frame $\mathcal{F} \times \mathcal{F}^{\prime}$ is called a product frame.
2. Let L_{1} and L_{2} be Kripke complete normal modal logics. The product $L_{1} \times L_{2}$ of L_{1} and L_{2} is defined as

$$
L_{1} \times L_{2}:=\log \left(\left\{\mathcal{F} \times \mathcal{F}^{\prime}: \mathcal{F} \text { is an } L_{1} \text {-frame and } \mathcal{F}^{\prime} \text { is an } L_{2} \text {-frame }\right\}\right)
$$

Product logics can be axiomatized by the commutativity and the Church-Rosser formulas. Let

$$
\operatorname{com}=\operatorname{com}^{r} \wedge \operatorname{com}^{l}
$$

The next theorem, gives a sufficient condition when a product logic is axiomatized by com and chr; see, e.g., [43, Theorem 5.9].
5.2.8. Theorem. If L_{1} and L_{2} are normal uni-modal logics axiomatized by Sahlquist formulas, then

$$
L_{1} \times L_{2}=L_{1} \otimes L_{2}+\mathbf{c o m}+\mathbf{c h r}
$$

The rest of this thesis is devoted to the two-dimensional products of the modal logic S5.

5.3 Cylindric modal logics

In this section we introduce cylindric modal logics, investigate their Kripke semantics, and discuss the connection with FOL. We start with the logic $\mathbf{S} 5^{2}$, which is the substitution-free fragment of FOL.

5.3.1 $\mathrm{S} 5 \times \mathrm{S} 5$

We consider a very special case of products of modal logics. In particular, we look at the product $L_{1} \times L_{2}$, for $L_{1}=L_{2}=\mathbf{S} 5$. We first simplify the axiomatization of $\mathbf{S} 5 \times \mathbf{S} 5$.
5.3.1. Lemma. Let $\mathcal{F}=\left(W, R_{1}, R_{2}\right)$ be a frame such that R_{1} and R_{2} are symmetric relations. Then the following three conditions are equivalent:

1. $\mathcal{F} \models \operatorname{com}^{\mathrm{r}}$,
2. $\mathcal{F} \models \operatorname{com}^{1}$,
3. $\mathcal{F} \models \mathrm{chr}$.

Proof. (1) $\Rightarrow(2)$. Let $\mathcal{F} \models \boldsymbol{\operatorname { c o m }}^{\mathbf{r}}$. We will show that $\mathcal{F} \models$ com 1. Suppose $w, v, u \in W, w R_{2} v$ and $v R_{1} u$. Then since R_{1} is symmetric, we have $u R_{1} v$ and $v R_{2} w$. From $\mathcal{F} \models \mathbf{c o m}^{\mathbf{r}}$ and Theorem 5.2.6(1) it follows that there exists $z \in W$ such that $u R_{2} z$ and $z R_{1} w$. By the symmetry of R_{1}, we get $w R_{1} z$ and $z R_{2} u$. By Theorem 5.2.6(2), this means that $\mathcal{F} \models$ com 1. The proof of (2) \Rightarrow (3) and (3) $\Rightarrow(1)$ is similar.

It is well known that the axioms of $\mathbf{S 5}$ are Sahlqvist formulas; see, e.g., [18, §3.6]. Thus we have the following corollary of Theorem 5.2.8; see, e.g., [43, Corollary 5.11 and Theorem 5.12].

5.3.2. COROLLARY.

$$
\mathbf{S} 5 \times \mathbf{S} 5=\mathbf{S} 5 \otimes \mathbf{S} 5+\mathbf{c o m}^{r}=\mathbf{S} 5 \otimes \mathbf{S} 5+\mathbf{c o m}^{l}=\mathbf{S} 5 \otimes \mathbf{S} 5+\mathbf{c h r} .
$$

Proof. Apply Lemma 5.3.1 and Theorem 5.2.8.
WARning. From now on we use the abbreviation $\mathbf{S 5}^{2}$ for $\mathbf{S 5} \times \mathbf{S 5}$. We denote by $\mathcal{F}, \mathcal{G}, \ldots$, the frames of $\mathbf{S} 5^{2}$. We also denote by $\mathfrak{F}, \mathfrak{G}, \ldots$, the frames in a similarity type with an additional constant d (see Section 5.3.2). Since the relations in $\mathbf{S} 5^{2}$ frames are equivalence relations we denote them by E_{1} and E_{2}.

In Definition 5.2.3 we defined rooted frames for many-dimensional modal logics. The next lemma characterizes the rooted $\mathbf{S} 5^{2}$-frames.
5.3.3. Lemma. Let $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ be an $\mathbf{S} 5^{2}$-frame. Then \mathcal{F} is rooted iff for every $w, v \in W$, there exists $u \in W$ such that $w E_{1} u$ and $u E_{2} v$.

Proof. It is easy to see that if \mathcal{F} satisfies the above condition, then every point of W is a root of \mathcal{F}. Conversely, suppose \mathcal{F} is rooted. Let $w, v \in W$, and let r be a root of \mathcal{F}. Then there are two finite sequences r_{0}, \ldots, r_{k} and $r_{0}^{\prime}, \ldots, r_{m}^{\prime}$ such that $r_{0}=r_{0}^{\prime}=r, r_{k}=w, r_{m}^{\prime}=v$ and $r_{i}\left(E_{1} \cup E_{2}\right) r_{i+1}$ for $i<k$ and $r_{i}^{\prime}\left(E_{1} \cup E_{2}\right) r_{i+1}^{\prime}$ for $i<m$. It follows that there is a sequence w_{0}, \ldots, w_{n} for $n=k+m$ such that $w_{0}=w, w_{n}=v$ and $w_{i}\left(E_{1} \cup E_{2}\right) w_{i+1}$ for $i<n$. We will prove the lemma by induction on the length of this sequence. If $n=1$, then $w\left(E_{1} \cup E_{2}\right) v$. Without loss of generality we may assume that $w E_{1} v$. So, $w E_{1} v$ and $v E_{2} v$. Now suppose that $n>1$. Then, by the induction hypothesis, there is a u such that $w E_{1} u$ and $u E_{2} w_{n-1}$. If $w_{n-1} E_{2} v$, then $u E_{2} v$ and the statement of the lemma is satisfied. If $w_{n-1} E_{1} v$, then there exists u^{\prime} such that $u E_{1} u^{\prime}$ and $u^{\prime} E_{2} v$. This means that $w E_{1} u^{\prime}$ and $u^{\prime} E_{2} v$, and so, the condition of the lemma is satisfied.

Next we introduce general definitions that will be used in subsequent chapters. Note that for every $\mathbf{S 5} 5^{2}$-frame $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ the intersection $E_{1} \cap E_{2}$ of E_{1} and E_{2} is also an equivalence relation.
5.3.4. Definition. Let $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ be an $\mathbf{S} 5^{2}$-frame.

1. Let E_{0} denote the equivalence relation $E_{1} \cap E_{2}$.
2. For $i=1,2,3$ we call the E_{i}-equivalence classes the E_{i}-clusters.
3. For $w \in W$ and $i=1,2,3$ let $E_{i}(w)$ denote the E_{i}-cluster containing w.
4. For $X \subseteq W$ and $i=1,2,3$ we let $E_{i}(X)$ denote $\bigcup_{x \in X} E_{i}(x)$.
5.3.5. Lemma. Let $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ be an $\mathbf{S} 5^{2}$-frame. Then \mathcal{F} is isomorphic to a product frame iff $E_{0}(w)=\{w\}$ for every $w \in W$.

Proof. It is easy to see that if \mathcal{F} is (isomorphic to) a product $\mathbf{S} 5^{2}$-frame, then $E_{0}(w)=\{w\}$ for every $w \in W$. Conversely, let \mathcal{F} be such that $E_{0}(w)=\{w\}$ for every $w \in W$. Fix $w \in W$ and let $\mathcal{F}^{\prime}:=\left(E_{1}(w), E_{1} \upharpoonright E_{1}(w)\right)$ and $\mathcal{F}^{\prime \prime}:=$ $\left(E_{2}(w), E_{2} \upharpoonright E_{2}(w)\right)$. Obviously \mathcal{F}^{\prime} and $\mathcal{F}^{\prime \prime}$ are $\mathbf{S} 5$-frames. It is now routine to check that $\mathcal{F}^{\prime} \times \mathcal{F}^{\prime \prime}$ is isomorphic to \mathcal{F}.

The next lemma gives a characterization of rooted $\mathbf{S} 5^{2}$-frames.
5.3.6. Lemma. Let $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ be an $\mathbf{S} 5^{2}$-frame. Let $\left\{C_{i}\right\}_{i \in I}$ and $\left\{C^{j}\right\}_{j \in J}$ be the families of all E_{1} and E_{2}-clusters of \mathcal{F}, respectively. Then \mathcal{F} is rooted iff $C_{i} \cap C^{j} \neq \emptyset$ for every $i \in I$ and $j \in J$.

Proof. It is easy to see that if the condition of the lemma is satisfied, then for every $w, v \in W$ we have $E_{1}(w) \cap E_{2}(v) \neq \emptyset$. Therefore, by Lemma 5.3.3, \mathcal{F} is rooted. Conversely, let C_{i} and C^{j} be an E_{1} and E_{2}-cluster of \mathcal{F}, respectively. Suppose $w \in C_{i}$ and $v \in C^{j}$. Then, by Lemma 5.3.3, there exists $z \in W$ such that $w E_{1} z$ and $z E_{2} v$, which means that $z \in C_{i} \cap C^{j}$, and so $C_{i} \cap C_{j} \neq \emptyset$.

We use the terms rectangles, squares, and quasi-squares to denote the following rooted $\mathbf{S 5}{ }^{2}$-frames.

5.3.7. Definition.

1. We call rooted product frames rectangles. Let Rect denote the class of all rectangles. We denote by $\mathbf{n} \times \mathbf{m}$ the finite rectangle consisting of n E_{1}-clusters and $m E_{2}$-clusters.
2. A rectangle that is isomorphic to $\mathcal{G} \times \mathcal{G}$, for some $\mathbf{S 5}$-frame \mathcal{G}, is called a square. We denote by $\mathbf{S q}$ the class of all squares. Let $\mathbf{n} \times \mathbf{n}$ denote the finite square consisting of $n E_{1}$ and E_{2}-clusters.
3. Call a rooted $\mathbf{S} 5^{2}$-frame \mathcal{F} a quasi-square if the cardinality of E_{1}-clusters of \mathcal{F} is the same as the cardinality of E_{2}-clusters of \mathcal{F}.

It is clear that $\mathbf{S q} \subseteq$ Rect. We will see in the next chapter that $\mathbf{S} \mathbf{5}^{2}$ is complete with respect to the classes of finite rectangles and finite squares.

5.3.2 Cylindric modal logic with the diagonal

Let $\mathcal{M} \mathcal{L}_{2}^{d}$ be the extension of $\mathcal{M} \mathcal{L}_{2}$ with a constant d. We call this constant the diagonal. Let $\operatorname{Form}\left(\mathcal{M} \mathcal{L}_{2}^{d}\right)$ be the set of all formulas of $\mathcal{M} \mathcal{L}_{2}^{d}$.
5.3.8. Definition. The two-dimensional cylindric modal logic $\mathbf{C M L}_{2}$ is the smallest set of formulas of $\operatorname{FORM}\left(\mathcal{M} \mathcal{L}_{2}^{d}\right)$ that contains $\mathbf{S} 5^{2}$, the axioms:

1. $\nabla_{i}(d)$,
2. $\left.\diamond_{i}(d \wedge p) \rightarrow \neg\right\rangle_{i}(d \wedge \neg p)$,
and is closed under (MP), (Subst) and (N) $)_{i}$, for $i=1,2$.
We now define the Kripke semantics for this new similarity type.

5.3.9. Definition.

1. A frame of the language \mathcal{M}_{2}^{d} is a quadruple $\left(W, R_{1}, R_{2}, D\right)$ such that (W, R_{1}, R_{2}) is a two-dimensional Kripke frame and $D \subseteq W$.
2. A model of the language $\mathcal{M} \mathcal{L}_{2}^{d}$ is a tuple $\left(W, R_{1}, R_{2}, D, V\right)$, where (W, R_{1}, R_{2}, $D)$ is a frame of $\mathcal{M} \mathcal{L}_{2}^{d}$ and $V: \operatorname{Prop} \cup\{d\} \rightarrow W$ is a valuation such that $V(d)=D$. If $w \in V(d)$ we write $w \models d$.

The next proposition characterizes the frames of $\mathbf{C M L}_{2}$; see, e.g., [60] and [125].
5.3.10. Proposition. A frame $\mathfrak{F}=\left(W, E_{1}, E_{2}, D\right)$ is a $\mathbf{C M L}_{2}$-frame iff the following three conditions are satisfied:

1. $\left(W, E_{1}, E_{2}\right)$ is an $\mathbf{S} 5^{2}$-frame,
2. For each $i=1,2$, every E_{i}-cluster of \mathfrak{F} contains a unique point from D.

Proof. The right to left direction is straightforward. Now assume \mathfrak{F} is a $\mathbf{C M L}_{2^{-}}$ frame. Since $\mathbf{C M L}_{2}$ contains $\mathbf{S 5}^{2}$ we have that (1) is satisfied. To show (2) suppose for $i=1,2$ there exists an E_{i}-cluster C such that $D \cap C=\emptyset$. Then for every $w \in C$ we have that $w \not \vDash \diamond_{i} d$, which contradicts Definition 5.3.8(1). Now suppose that for $i=1,2$ there exists an E_{i}-cluster C such that $D \cap C=\{w, v\}$ and $w \neq v$. Let V be a valuation such that $V(p)=\{w\}$. Then $w \models \diamond_{i}(d \wedge p)$. On the other hand, $v \models d \wedge \neg p$. Hence, $w \models \diamond_{i}(d \wedge \neg p)$, which contradicts Definition 5.3.8(2).
5.3.11. Corollary. For every $\mathbf{C M L}_{2}$-frame $\mathfrak{F}=\left(W, E_{1}, E_{2}, D\right)$, the cardinality of the set of all E_{1}-clusters of \mathfrak{F} is the same as the cardinality of the set of all E_{2}-clusters of \mathfrak{F}.

Proof. Let \mathcal{E}_{1} and \mathcal{E}_{2} denote the sets of all E_{1} and E_{2}-clusters of \mathfrak{F}, respectively. Define $f: \mathcal{E}_{1} \rightarrow \mathcal{E}_{2}$ by putting $f(C)=E_{2}(C \cap D)$. Suppose $C_{1}, C_{2} \in \mathcal{E}_{1}, C_{1} \neq C_{2}$, $C_{1} \cap D=\{x\}$, and $C_{2} \cap D=\{y\}$. Since every E_{i}-cluster of \mathcal{X} contains a unique point from D, it follows that $f\left(C_{1}\right)=E_{2}(x) \neq E_{2}(y)=f\left(C_{2}\right)$. Therefore, f is an injection. Now suppose $C^{\prime} \in \mathcal{E}_{2}$ and $C^{\prime} \cap D=\{x\}$. If we let $C=E_{1}(x)$, then $f(C)=E_{2}(x)=C^{\prime}$. Thus, f is a surjection. Hence, we obtain that f is a bijection.

The next theorem shows the completeness of $\mathbf{C M L}_{2}$ with respect to its Kripke semantics; see, e.g., [124, §3.2.2].
5.3.12. Theorem. $\mathbf{C M L}_{2}$ is Kripke complete.

Proof. The result follows immediately from the Sahlqvist correspondence, because (1) and (2) are Sahlqvist formulas.

The definition of rooted frames in this similarity type is the same as for $\mathcal{M} \mathcal{L}_{2}$.
5.3.13. Proposition. Let $\mathfrak{F}=\left(W, E_{1}, E_{2}, D\right)$ be a $\mathbf{C M L}_{2}$-frame. \mathfrak{F} is rooted iff $\left(W, E_{1}, E_{2}\right)$ is a rooted $\mathbf{S} 5^{2}$-frame.

Proof. Apply Lemma 5.3.3.

5.3.3 Product cylindric modal logic

Similar to the diagonal-free case we can define product frames in the signature with the diagonal.

5.3.14. Definition.

1. A rooted $\mathbf{C M L}_{2}$-frame $\mathfrak{F}=\left(W \times W, E_{1}, E_{2}, D\right)$ is called a cylindric square or square $\mathbf{C M L}_{2}$-frame, if $\left(W \times W, E_{1}, E_{2}\right)$ is a square and $D=\{(w, w)$: $w \in W\}$. Let CSq denote the class of all cylindric squares.
2. Let $\mathbf{P C M L} L_{2}$ denote the logic of $\mathbf{C S q}$; that is, $\mathbf{P C M L}{ }_{2}=\log (\mathbf{C S q})$. We call $\mathbf{P C M L}_{2}$ the product cylindric modal logic.

We note that $\mathbf{C M L}_{2} \neq \mathbf{P C M L}_{2}$. In fact, $\mathbf{P C M L}_{2}$ can be obtained by adding to $\mathbf{C M L}_{2}$ the Henkin axiom:

$$
(\mathrm{H})=\diamond_{i}\left(p \wedge \neg q \wedge \diamond_{j}(p \wedge q)\right) \rightarrow \diamond_{j}\left(\neg d \wedge \diamond_{i} p\right), \quad i \neq j, \quad i, j=1,2
$$

or the Venema axiom

$$
(\mathrm{V})=d \wedge \diamond_{i}\left(\neg p \wedge \diamond_{j} p\right) \rightarrow \diamond_{j}\left(\neg d \wedge \diamond_{i} p\right), \quad i \neq j, \quad i, j=1,2
$$

For the next theorem see [60, Theorem 3.2.65(ii)] and [124, Proposition 3.5.8].

5.3.15. Theorem. $\mathbf{P C M L}_{2}=\mathbf{C M L}_{2}+(\mathrm{H})=\mathbf{C M L}_{2}+(\mathrm{V})$.

Since both (H) and (V) are Sahlqvist formulas we have the following theorem; see, e.g., [124, Theorem 3.5.4].

5.3.16. Theorem. $\mathbf{P C M L}_{2}$ is Kripke complete.

Now we give a useful characterization of PCML_{2}-frames, which will allow us to construct rather simple finite $\mathbf{C M L}_{2}$-frames that are not $\mathbf{P C M L}_{2}$-frames. Suppose $\left(W, E_{1}, E_{2}, D\right)$ is a $\mathbf{C M L}_{2}$-frame. We call $w \in D$ a diagonal point, and $w \in W \backslash D$ a non-diagonal point. Also, call an E_{0}-cluster C a diagonal E_{0}-cluster if it contains a diagonal point. Otherwise we call C a non-diagonal E_{0}-cluster.
5.3.17. Definition. Let $\mathfrak{F}=\left(W, E_{1}, E_{2}, D\right)$ be a $\mathbf{C M L}_{2}$-frame. \mathfrak{F} is said to satisfy $(*)$ if there exists a diagonal point $x_{0} \in D$ such that $E_{0}\left(x_{0}\right)=\left\{x_{0}\right\}$ and there exists a non-singleton E_{0}-cluster C which is either E_{1} or E_{2}-related to x_{0}.

The next theorem characterizes $\mathbf{P C M L}_{2}$-frames. A similar characterization can be found in [60, Lemma 3.2.59, Theorem 3.2.65]. However, our characterization uses Venema's axiom, while the one in [60] uses Henkin's axiom. Moreover, our proof below appears to be simpler than the original one in [60].

Figure 5.1: $\mathbf{C M L}_{2}$ and $\mathbf{P C M L}_{2}$-frames
5.3.18. Theorem. Let $\mathfrak{F}=\left(W, E_{1}, E_{2}, D\right)$ be a $\mathbf{C M L}_{2}$-frame. Then \mathfrak{F} is an $\mathbf{P C M L}_{2}$-frame iff \mathfrak{F} does not satisfy (*).

Proof. Suppose \mathfrak{F} satisfies $(*)$. We show that (V) does not hold in \mathfrak{F}, implying that \mathfrak{F} is not a $\mathbf{P C M L}_{2}$-frame. Let x_{0} be a diagonal point with $E_{0}\left(x_{0}\right)=\left\{x_{0}\right\}$ and C be a non-singleton E_{0}-cluster, say E_{1}-related to x_{0} (the case when C is E_{2}-related to x_{0} is proved similarly). Choose two different points y and z from C. Then $y \in(W \backslash\{z\}) \cap E_{2}(z)$, and so $x_{0} \in D \cap E_{1}\left((W \backslash\{z\}) \cap E_{2}(z)\right)$. On the other hand, $E_{1}(z)=E_{1}\left(x_{0}\right)$. If $x_{0} \in E_{2}\left((W \backslash D) \cap E_{1}(z)\right)$, then there exists $u \in W \backslash D$ that is E_{1} and E_{2} related to x_{0}, which contradicts the fact that $E_{0}\left(x_{0}\right)=\left\{x_{0}\right\}$. Finally, if we define a valuation V on \mathfrak{F} by $V(p)=\{z\}$, then $(\mathfrak{F}, V), x_{0} \not \vDash(V)$. Thus, by Theorem 5.3.15, \mathfrak{F} is not a $\mathbf{P C M L}_{2}$.

Conversely, suppose \mathfrak{F} is not a $\mathbf{P C M L}_{2}$-frame. We show that $(*)$ holds in \mathfrak{F}. We know that (V) does not hold in \mathfrak{F}. Therefore, there exist a point $x \in W$ and a set $A \subseteq X$ such that $x \in D \cap E_{i}\left((W \backslash A) \cap E_{j}(A)\right)$ but $x \notin E_{j}\left((W \backslash D) \cap E_{i}(A)\right)$ for $i, j=1,2$ and $i \neq j$. Since $x \in D \cap E_{i}\left((W \backslash A) \cap E_{j}(A)\right)$, we have $x \in D$ and there exist points $y, z \in W$ such that $x E_{i} y, y E_{j} z, y \notin A$ and $z \in A$. From $y \notin A$ and $z \in A$ it follows that y and z are different. Also $x E_{i} y$ and $y E_{j} z$ imply that there exists a point $u \in W$ such that $x E_{j} u$ and $u E_{i} z$. If $u \neq x$, then, by Proposition 5.3.10, u is a non-diagonal point, and so $u \in(W \backslash D) \cap E_{i}(A)$. But then $x \in E_{j}\left((W \backslash D) \cap E_{i}(A)\right)$, which contradicts our assumption. Thus, $u=x$ and $x E_{i} z$. Therefore, $y E_{0} z$ and both y and z are E_{i}-related to x. Moreover, if $E_{0}(x) \neq\{x\}$, then by choosing a point $u \in E_{0}(x)$ different from x we again obtain that $u \in(W \backslash D) \cap E_{i}(A)$, and so $x \in E_{j}\left((W \backslash D) \cap E_{i}(A)\right)$, which is impossible. Therefore, $E_{0}(x)=\{x\}$ and $E_{0}(y)$ is a non-singleton E_{0}-cluster E_{i}-related to x_{0}. Thus, (*) holds in \mathfrak{F}.

Using this criterion it is easy to see that the $\mathbf{C M L}_{2}$-frames shown in Figure 5.1(b) are $\mathbf{P C M L}_{2}$-frames, while the $\mathbf{C M L}_{2}$-frames shown in Figure 5.1(a) are not. Moreover, the smallest $\mathbf{C M L}_{2}$-frame that is not a $\mathbf{P C M L}_{2}$-frame is the frame shown in Figure 5.1(a), where the non-singleton E_{0}-cluster contains only two points.

5.3.4 Connection with FOL

As we mentioned in the introduction to this chapter, one of the main reasons for studying $\mathbf{S 5}^{2}$ and $\mathbf{C M L}_{2}\left(\mathbf{P C M L}_{2}\right)$ is that they axiomatize the two-variable fragments of FOL. S5 ${ }^{2}$ corresponds to a "clean", substitution-free fragment of FOL, whereas $\mathbf{P C M L}_{2}$ is the full fragment of $\mathbf{F O L}$. To see this, consider the following translation of the formulas of the language of $\mathbf{S 5}{ }^{2}$ and $\mathbf{C M L}_{2}$ to the first order language:

- $p^{t}=P\left(x_{1}, x_{2}\right)$,
- $(\cdot)^{t}$ is a homomorphism for the Booleans,
- $\left(\diamond_{1} \varphi\right)^{t}=\exists x_{1} \varphi^{t}$,
- $\left(\diamond_{2} \varphi\right)^{t}=\exists x_{2} \varphi^{t}$,
- $d^{t}=\left(x_{1}=x_{2}\right)$.

This translation preserves the validity of formulas; see, e.g., [43, §3.5] and [124, Proposition 4.1.7].
5.3.19. Theorem. Let $\phi \in \operatorname{Form}\left(\mathcal{M} \mathcal{L}_{2}\right)$ and $\psi \in \operatorname{Form}\left(\mathcal{M} \mathcal{L}_{2}^{d}\right)$. Then

1. $\mathbf{S 5}^{2} \vdash \phi$ iff $\mathbf{F O L} \vdash \phi^{t}$.
2. $\mathbf{P C M L}_{2} \vdash \psi$ iff $\mathbf{F O L} \vdash \psi^{t}$.

Note that the analogue of this theorem for the one-variable fragment of FOL was first proved by Wajsberg [128], who showed that $\mathbf{S} 5$ axiomatizes the one-variable fragment of FOL. Similarly one can show that the logics $\mathbf{S 5}^{n}$ and $\mathbf{P C M L}_{n}$ of n-ary products of $\mathbf{S 5}$-frames are the substitution-free and full n-variable subfragments of FOL. However, for $n \geq 3$ the logics $\mathbf{S} 5^{n}$ and $\mathbf{P C M L}_{n}$ no longer have "good" properties. That $\mathbf{S} 5^{n}$ is not finitely axiomatizable for $n \geq 3$ follows from Johnson [67], and that $\mathbf{P C M L}_{n}$ is not finitely axiomatizable for $n \geq 3$ follows from Monk [99] (see also [43, Theorems 8.1 and 8.2]).

5.4 Cylindric algebras

Two-dimensional cylindric algebras are algebraic models of two-dimensional cylindric modal logics. Note that historically cylindric algebras were introduced by Tarski much earlier than cylindric modal logics.

5.4.1 Df_{2}-algebras

5.4.1. Definition. [60, Definition 1.1.2] An algebra $\mathcal{B}=\left(B, \diamond_{1}, \diamond_{2}\right)$ is said to be a two-dimensional diagonal-free cylindric algebra, or a $\mathbf{D f}_{2}$-algebra for short, if B is a Boolean algebra and each $\widehat{\nabla}_{i}: B \rightarrow B, i=1,2$, satisfies the following axioms for every $a, b \in B$:

1. $\diamond_{i} 0=0$,
2. $a \leq \diamond_{i} a$,
3. $\diamond_{i}\left(\diamond_{i} a \wedge b\right)=\diamond_{i} a \wedge \diamond_{i} b$,
4. $\diamond_{1} \diamond_{2} a=\diamond_{2} \diamond_{1} a$.

Since $\mathbf{D f}_{2}$-algebras are equationally defined, the class of all $\mathbf{D f}_{2}$-algebras forms a variety.
5.4.2. Definition. Let Df_{2} denote the variety of all two-dimensional diagonalfree cylindric algebras.

Using the standard Lindenbaum-Tarski construction we can show that $\mathbf{S 5} \mathbf{5}^{2}$ is complete with respect to $\mathbf{D f}_{2}$; see, e.g., [124, §4.2].
5.4.3. Theorem. $\mathbf{S} 5^{2} \vdash \phi$ iff ϕ is valid in every $\mathbf{D f}_{2}$-algebra.

Let $\Lambda\left(\mathbf{S} 5^{2}\right)$ denote the lattice of all normal extensions of $\mathbf{S} 5^{2}$ and let $\Lambda\left(\mathbf{D f}_{2}\right)$ denote the lattice of subvarieties of $\mathbf{D} \mathbf{f}_{2}$. Then we have the following corollary of Theorem 5.4.3 and the modal logic analogue of Theorem 2.2.19.
5.4.4. Corollary. $\Lambda\left(\mathbf{S 5}^{2}\right)$ is dually isomorphic to $\Lambda\left(\mathbf{D f}_{2}\right)$.

By adapting Definition 5.1 .11 to the case of $\mathbf{D} \mathbf{f}_{2}$ we obtain that a filter F of a $\mathbf{D f}_{2}$-algebra $\mathcal{B}=\left(B, \diamond_{1}, \diamond_{2}\right)$ is a $\mathbf{D f}_{2}$-filter provided for each $a \in B$, if $a \in F$, then $\square_{i} a \in F$. Therefore, we have the following corollary; see, e.g., [60, Theorem 2.3.4 and Remark 2.3.6].
5.4.5. Corollary. There exists a lattice isomorphism between the lattice of congruences of $\left(B, \diamond_{1}, \diamond_{2}\right)$ and the lattice of $\mathbf{D f}_{2}$-filters of $\left(B, \diamond_{1}, \diamond_{2}\right)$.

Recall from [23] that every algebra \mathfrak{A} has at least two congruence relations, the diagonal $\Delta=\{(a, a): a \in \mathfrak{A}\}$ and \mathfrak{A}^{2}. Recall also that an algebra \mathfrak{A} is simple if Δ and \mathfrak{A}^{2} are the only congruence relations of \mathfrak{A}. It is well known that every simple algebra is subdirectly irreducible. In the case of $\mathbf{D} \mathbf{f}_{2}$, the converse is also true; see [60, Theorems 2.4.43, 2.4.14].
5.4.6. Theorem. Let $\mathcal{B}=\left(B, \diamond_{1}, \diamond_{2}\right)$ be a $\mathbf{D f}_{2}$-algebra. Then \mathcal{B} is subdirectly irreducible iff \mathcal{B} is simple.
5.4.7. Remark. We mention that a $\mathbf{D f}_{1}$-algebra or Halmos' monadic algebra is a pair (B, \diamond) such that B is a Boolean algebra and \diamond is an unary operator on B satisfying conditions $1-3$ of Definition 5.4.1; see e.g., [58, p.40]. The unary operator \diamond is called a monadic operator, and $\mathbf{D} \mathbf{f}_{1}$-algebras are widely known as monadic algebras. They provide algebraic completeness for $\mathbf{S 5}$. Some of the most important proprieties of $\mathbf{D} \mathbf{f}_{1}$-algebras are:

- Every finitely generated $\mathbf{D f}_{1}$-algebra is finite. Therefore, $\mathbf{D f}_{1}$ is locally finite and $\mathbf{D f}_{1}$ is generated by its finite algebras.
- The lattice of all subvarieties of $\mathbf{D f}_{1}$ is a countable increasing chain $\mathcal{V}_{1} \subsetneq$ $\mathcal{V}_{2} \subsetneq \ldots$ that converges to $\mathbf{D f}_{1}$.

For a proof of these and other related results we refer to Halmos [58], Bass [3], Monk [100], and Kagan and Quackenbush [72].

5.4.2 Topological representation

The dual spaces of $\mathbf{D f}_{2}$-algebras can be obtained by adjusting the general duality between modal algebras and modal spaces.
5.4.8. Definition. A triple $\mathcal{X}=\left(X, E_{1}, E_{2}\right)$ is said to be a $\mathbf{D f}_{2}$-space, if $\left(X, E_{1}\right)$ and $\left(X, E_{2}\right)$ are modal spaces and $\left(X, E_{1}, E_{2}\right)$ is an $\mathbf{S} 5^{2}$-frame.

We have the following representation theorem for $\mathbf{D f}_{2}$-algebras.
5.4.9. Theorem. Every $\mathbf{D f}_{2}$-algebra can be represented as $\left(\mathcal{C P}(X), E_{1}, E_{2}\right)$ for the corresponding $\mathbf{D f}_{2}$-space $\left(X, E_{1}, E_{2}\right)$.

Proof. (Sketch). By Theorem 5.1.18 we need to verify that in the dual space $\mathcal{X}=$ $\left(X, E_{1}, E_{2}\right)$ of $\left(B, \diamond_{1}, \diamond_{2}\right)$, the relations E_{1} and E_{2} commute; that is $(\forall x, y, z \in$ $X)\left(x E_{1} y \wedge y E_{2} z \rightarrow(\exists u)\left(x E_{2} u \wedge u E_{1} z\right)\right)$; and conversely, that in every $\mathbf{D f}_{2}$-space we have $E_{1} E_{2}(A)=E_{2} E_{1}(A)$ for every $A \in \mathcal{C P}(X)$. The former follows immediately from the Sahlqvist correspondence (see [18, Theorems 3.54 and 5.91]), and the latter is obvious, since $E_{i}(A)=\bigcup_{x \in A} E_{i}(x)$ and E_{i} commutes with \bigcup for $i=1,2$.

Consequently, every finite $\mathbf{D f}_{2}$-algebra is represented as an algebra $\left(\mathcal{P}(X), E_{1}, E_{2}\right)$, where $\mathcal{P}(X)$ denotes the power set algebra of X, for the corresponding finite $\mathbf{S} 5^{2}$ frame $\left(X, E_{1}, E_{2}\right)$.

Now we can obtain dual descriptions of algebraic concepts of $\mathbf{D f}_{2}$-algebras. To obtain the dual description of $\mathbf{D f}_{2}$-filters we need the following definition. Let $\mathcal{X}=\left(X, E_{1}, E_{2}\right)$ be $\mathbf{D f}_{2}$-space. A subset U of X is said to be saturated if $E_{1}(U)=E_{2}(U)=U$.
5.4.10. Theorem. Let $\mathcal{B}=\left(B, \diamond_{1}, \diamond_{2}\right)$ be a $\mathbf{D f}_{2}$-algebra and $\mathcal{X}=\left(X, E_{1}, E_{2}\right)$ be its dual $\mathbf{D f}_{2}$-space.

1. The lattice of $\mathbf{D f}_{2}$-filters of \mathcal{B} is isomorphic to the lattice of closed saturated subsets of \mathcal{X}.
2. Congruences of \mathcal{B} correspond to closed saturated subsets of \mathcal{X}.

Proof. The proof is an easy adaptation of Theorem 2.3.11.
Bisimulation equivalences for modal descriptive frames and modal spaces were defined in Section 5.1 (see Definitions 5.1.19 and 5.1.20). For convenience we formulate the definition for Df_{2}-spaces.
5.4.11. Definition. Let $\mathcal{X}=\left(X, E_{1}, E_{2}\right)$ be a $\mathbf{D f}_{2}$-space. An equivalence relation Q on W is called a bisimulation equivalence if:

1. For every $x, y, z \in X$ and $i=1,2, x Q y$ and $y E_{i} z$ imply that there is $u \in X$ such that $x E_{i} u$ and $u Q z$. In other words, $E_{i} Q(x) \subseteq Q E_{i}(x)$.
2. For every $x, y \in X$ and $i=1,2$, if $\neg(x Q y)$ then x and y are separated by a Q-saturated clopen; that is, there exists a clopen $U \subseteq X$ such that $Q(U)=U, x \in U$ and $y \notin U$.

Note that since E_{1}, E_{2} and Q are equivalence relations, Q is a bisimulation equivalence iff it is separated and $Q E_{i}(x)=E_{i} Q(x)$ for every $x \in X$ and $i=1,2$. To obtain the dual description of subalgebras of $\mathbf{D f}_{2}$-algebras, we order the set of all bisimulation equivalences of a $\mathbf{D f}_{2}$-space \mathcal{X} by set-theoretical inclusion.
5.4.12. Theorem. The lattice of subalgebras of $\mathcal{B} \in \mathbf{D f}_{2}$ is dually isomorphic to the lattice of bisimulation equivalences of its dual \mathcal{X}.

Proof. The proof is a routine adaptation of the proof of Theorem 2.3.10.
For any $\mathbf{D f}_{2}$-space $\mathcal{X}=\left(X, E_{1}, E_{2}\right)$ and a bisimulation equivalence Q, let \mathcal{X} / Q denote the quotient space of \mathcal{X} by Q. That is, \mathcal{X} / Q is a $\mathbf{D f}_{2}$-space $\mathcal{X} / Q=$ $\left(X / Q,\left(E_{1}\right)_{Q},\left(E_{2}\right)_{Q}\right)$, where $X / Q=\{Q(x): x \in X\}$, the topology on X / Q is the quotient topology (i.e., the opens of \mathcal{X} / Q are, up to homeomorphism, the Q saturated opens of $\mathcal{X})$ and $Q(x)\left(E_{i}\right)_{Q} Q(y)$ iff there are $x^{\prime} \in Q(x)$ and $y^{\prime} \in Q(y)$ such that $x^{\prime} E_{i} y^{\prime}$ for $i=1,2$. The next lemma can be found in [60, Theorem 2.7.17].
5.4.13. Lemma. Let $\mathcal{B}=\left(B, \diamond_{1}, \diamond_{2}\right)$ be a $\mathbf{D f}_{2}$-algebra and $\mathcal{X}=\left(X, E_{1}, E_{2}\right)$ be its dual $\mathbf{D f}_{2}$-space. Then \mathcal{B} is simple iff X and \emptyset are the only saturated subsets of \mathcal{X}.

Proof. Suppose there is a closed saturated subset of X distinct from X and \emptyset. Then by Theorem 5.4.10 the corresponding congruence relation of \mathcal{B} will be proper and non-trivial. This is a contradiction since \mathcal{B} is simple. The proof for the other direction is similar.

The next theorem connects the simple $\mathbf{D} \mathbf{f}_{2}$-algebras and rooted $\mathbf{D f}_{2}$-spaces; see e.g., [60, Theorem 2.7.17].
5.4.14. Theorem. Let $\mathcal{B}=\left(B, \diamond_{1}, \diamond_{2}\right)$ be a $\mathbf{D f}_{2}$-algebra and $\mathcal{X}=\left(X, E_{1}, E_{2}\right)$ its dual $\mathbf{D f}_{2}$-space. Then \mathcal{B} is simple iff \mathcal{X} is rooted.

Proof. By Lemma 5.4.13, all we need to show is that \mathcal{X} is rooted iff X and \emptyset are the only closed saturated subsets of \mathcal{X}. If \mathcal{X} is rooted, then there exists $x \in X$ such that $E_{1} E_{2}(x)=X$. Thus, X and \emptyset are the only saturated subsets of \mathcal{X}. Now we show that if \mathcal{X} is not rooted, then there exists a closed saturated subset U different from X and \emptyset. Suppose \mathcal{X} is not rooted. Then there are two distinct points x and y such that there is no u with $x E_{1} u$ and $u E_{2} y$. Let $U=E_{1} E_{2}(x)$. By the commutativity of E_{1} and E_{2} we have $U=E_{2} E_{1}(x)$. Therefore, U is saturated. Since E_{1} and E_{2} are closed relations, U is a closed set. Moreover, $x \in U$ and $y \notin U$ imply that U is different from X and \emptyset. Therefore, if \mathcal{X} is not rooted there exists a closed saturated subset of X that is different from X and \emptyset.

5.4.3 $\quad \mathrm{CA}_{2}$-algebras

In this section we define cylindric algebras with the diagonal. They represent algebraic models of cylindric modal logic with the diagonal.
5.4.15. Definition. [60, Definition 1.1.1] A quadruple $\mathfrak{B}=\left(B, \diamond_{1}, \diamond_{2}, d\right)$ is said to be a two-dimensional cylindric algebra, or a $\mathbf{C A}_{2}$-algebra for short, if $\left(B, \diamond_{1}, \diamond_{2}\right)$ is a $\mathbf{D f}_{2}$-algebra and $d \in B$ is a constant satisfying the following conditions for all $a \in B$ and $i=1,2$.

1. $\nabla_{i}(d)=1$;
2. $\diamond_{i}(d \wedge a) \leq-\diamond_{i}(d \wedge-a)$.

Let $\mathbf{C A}_{2}$ denote the variety of all two-dimensional cylindric algebras.
Again the standard Lindenbaum-Tarski argument shows that $\mathbf{C M L}_{2}$ is complete with respect to $\mathbf{C A}_{2}$; see, e.g., [125, §4.2].
5.4.16. Theorem. $\mathbf{C M L}_{2} \vdash \phi$ iff ϕ is valid in every $\mathbf{C A}_{2}$-algebra.

Let $\Lambda\left(\mathbf{C M L}_{2}\right)$ denote the lattice of normal extensions of $\mathbf{C M L}_{2}$ and let $\Lambda\left(\mathbf{C A}_{2}\right)$ denote the lattice of subvarieties of $\mathbf{C A}_{2}$. Then we have the following corollary of Theorem 5.4.16 and the modal logic analogue of Theorem 2.2.19.

5.4.17. Corollary. $\Lambda\left(\mathbf{C M L}_{2}\right)$ is dually isomorphic to $\Lambda\left(\mathbf{C A}_{2}\right)$.

Since we will only deal with two-dimensional cylindric algebras, we simply refer to them as cylindric algebras. Below we will generalize the duality for $\mathbf{D f}_{2}$-algebras to $\mathbf{C A}_{2}$-algebras.
5.4.18. Definition. A quadruple $\left(X, E_{1}, E_{2}, D\right)$ is said to be a cylindric space if the triple $\left(X, E_{1}, E_{2}\right)$ is a $\mathbf{D f}_{2}$-space and D is a clopen subset of X such that every E_{i}-cluster $i=1,2$) of X contains a unique point from D.

The following is an immediate consequence of this definition. For an algebraic analogue see [60, Theorem 1.5.3].
5.4.19. Proposition. Suppose \mathcal{X} is a cylindric space. Then the cardinality of the set of all E_{1}-clusters of \mathcal{X} is equal to the cardinality of the set of all E_{2}-clusters of \mathcal{X}.

Proof. The proof is identical to the proof of Corollary 5.3.11.
We have the following topological representation of cylindric algebras.
5.4.20. THEOREM. Every cylindric algebra $\mathfrak{B}=\left(B, \diamond_{1}, \diamond_{2}, d\right)$ can be represented as $\left(\mathcal{C P}(X), E_{1}, E_{2}, D\right)$ for the corresponding cylindric space $\mathcal{X}=\left(X, E_{1}, E_{2}, D\right)$.

Proof. The proof is a routine adaptation of Theorem 5.4.9 to cylindric algebras.

Consequently, every finite cylindric algebra is represented as the algebra ($\mathcal{P}(X)$, $\left.E_{1}, E_{2}, D\right)$ for the corresponding finite $\mathbf{C M L}_{2}$-frame $\left(X, E_{1}, E_{2}, D\right)$ (see also [60, Theorem 2.7.34]).

In order to obtain the dual description of homomorphic images and subalgebras of cylindric algebras, as well as subdirectly irreducible and simple cylindric algebras, we need the following two definitions. Suppose \mathcal{X} is a cylindric space. A bisimulation equivalence Q of X is called a cylindric bisimulation equivalence if $Q(D)=D$. A cylindric space \mathcal{X} is called a cylindric quasi-square if its D-free reduct is a quasi-square $\mathbf{D f}_{2}$-space (see Definition 5.3.7). In other words, a cylindric space is a quasi-square if it is rooted; that is $E_{1} E_{2}(x)=X$ for every $x \in X$.

5.4.21. Theorem.

1. The lattice of congruences of a cylindric algebra \mathfrak{B} is isomorphic to the lattice of closed saturated subsets of its dual \mathcal{X}.
2. The lattice of subalgebras of a cylindric algebra \mathfrak{B} is dually isomorphic to the lattice of cylindric bisimulation equivalences of its dual \mathcal{X}.
3. A cylindric algebra \mathfrak{B} is subdirectly irreducible iff it is simple iff its dual \mathcal{X} is a cylindric quasi-square.

Proof. A routine adaptation of Theorems 5.4.6, 5.4.10, 5.4.12 and 5.4.14 to cylindric algebras. For (3) also see [60, Theorems 2.4.43, 2.4.14].

5.4.4 Representable cylindric algebras

In this final section we discuss the representable cylindric algebras, that is, the cylindric algebras corresponding to PCML_{2}.

5.4.22. Definition.

1. For a rectangle $\mathcal{F}=\left(W \times W^{\prime}, E_{1}, E_{2}\right)$ let $\mathcal{F}^{+}=\left(\mathcal{P}\left(W \times W^{\prime}\right), E_{1}, E_{2}\right)$ denote the complex algebra of \mathcal{F}. We call \mathcal{F}^{+}a rectangular algebra. ${ }^{2}$ Let $\mathbb{R E C T}$ denote the class of all rectangular $\mathbf{D f}_{2}$-algebras.
2. Call a rectangular algebra \mathcal{F}^{+}a square algebra if \mathcal{F} is isomorphic to a square. Let $\mathbb{S Q}$ denote the class of all square algebras.
3. For a $\mathbf{C M L}_{2}$-square $\mathfrak{F}=\left(W \times W, E_{1}, E_{2}, D\right)$ let $\mathfrak{F}^{+}=\left(P(W \times W), E_{1}, E_{2}, D\right)$ denote the complex algebra of \mathfrak{F}. We call \mathfrak{F}^{+}the cylindric square algebra. Let $\mathbb{C S Q}$ denote the class of all cylindric square algebras. ${ }^{3}$
4. Also let $\operatorname{Fin} \mathbb{R} \mathbb{E} \mathbb{C}$, FinSQ and Fin $\mathbb{C S Q}$ denote the classes of all finite rectangular, square and cylindric square algebras, respectively.
5.4.23. Definition. [60, Definitions 5.1.33(v), 3.1.1(vii) and Remark 1.1.13]

- A $\mathbf{D f}_{2}$-algebra \mathcal{B} is said to be rectangularly (square) representable if $\mathcal{B} \in$ $\mathbf{S P}(\mathbb{R E} \mathbb{C} \mathbb{T})(\mathcal{B} \in \mathbf{S P}(\mathbb{S Q}))$.

[^25]- A cylindric algebra \mathfrak{B} is called representable if $\mathfrak{B} \in \mathbf{S P}(\mathbb{C S Q}) .{ }^{4}$

It is known that a $\mathbf{D f}_{2}$-algebra is rectangularly representable iff it is square representable. We simply call such algebras representable [60, Definition 3.1.1]. The classes of representable $\mathbf{D f}_{2}$ and $\mathbf{C A}_{2}$-algebras are also closed under homomorphic images, and so form varieties which are usually denoted by $\mathbf{R D f}_{2}$ and $\mathbf{R C A}_{2}$, respectively. For the proof of the next theorem consult [60, Theorem 5.1.47] and [43, Corollary 5.10].

5.4.24. Theorem.

1. $\mathrm{RDf}_{2}=\mathrm{Df}_{2}=\operatorname{HSP}(\mathbb{R E C T})=\operatorname{HSP}(\mathbb{S Q})=\mathbf{S P}(\mathbb{R E C T})=\mathbf{S P}(\mathbb{S Q})$.
2. $\mathrm{RCA}_{2}=\operatorname{HSP}(\mathbb{C S Q})=\mathbf{S P}(\mathbb{C S Q})$.
3. $\mathbf{R C A}_{2} \subsetneq \mathbf{C A}_{2}$.

Let

$$
(\mathrm{H}):=\diamond_{i}\left(a \wedge-b \wedge \diamond_{j}(a \wedge b)\right) \leq \diamond_{j}\left(-d \wedge \diamond_{i} a\right), \quad i \neq j, \quad i, j=1,2
$$

and

$$
(\mathrm{V}):=d \wedge \diamond_{i}\left(-a \wedge \diamond_{j} a\right) \leq \diamond_{j}\left(-d \wedge \diamond_{i} a\right), \quad i \neq j, \quad i, j=1,2
$$

We call (H) and (V) the Henkin and Venema inequalities, respectively. Then $\mathbf{R C A}_{2}$ is axiomatized by adding either of these inequalities to the axiomatization of $\mathbf{C A}_{2}$; see, e.g., [60, Theorem 3.2.65(ii)] or [124, Proposition 3.5.8]).
5.4.25. ThEOREM. $\mathbf{R C A}_{2}=\mathbf{C A}_{2}+(\mathrm{H})=\mathbf{C A}_{2}+(\mathrm{V})$.

Note that Theorem 5.4.24(1) is an algebraic formulation of Theorem 5.3.2(3). Therefore, we have that $\mathbf{P C M L}_{2}$ is complete with respect to $\mathbf{R C A}_{2}[124, \S 4.2]$.

5.4.26. Theorem. $\mathbf{P C M L}_{2} \vdash \phi$ iff ϕ is valid in every $\mathbf{R C A}_{2}$-algebra.

Let $\Lambda\left(\mathbf{P C M L}_{2}\right)$ denote the lattice of normal extensions of $\mathbf{C M L}_{2}$ and let $\Lambda\left(\mathbf{R C A}_{2}\right)$ denote the lattice of subvarieties of $\mathbf{C A}_{2}$. We again have the following corollary of Theorem 5.4.16 and the modal logic analogue of Theorem 2.2.19.
5.4.27. Corollary. $\Lambda\left(\mathbf{P C M L}_{2}\right)$ is dually isomorphic to $\Lambda\left(\mathbf{R C A}_{2}\right)$.

As in Section 5.3.3 (see Theorem 5.3.18), we can give the dual characterization of representable cylindric algebras, and construct rather simple finite nonrepresentable cylindric algebras. We say that a cylindric space \mathcal{X} satisfies $(*)$ if its underlying $\mathbf{C M L}_{2}$-frame satisfies $(*)$ (see Definition 5.3.17). In the terminology of [60], a cylindric space satisfies $(*)$ iff the corresponding cylindric algebra has at least one defective atom (see [60, Lemma 3.2.59]).

[^26]5.4.28. Theorem. A cylindric algebra \mathfrak{B} is representable iff its dual cylindric space \mathcal{X} does not satisfy (*).

Proof. The proof is almost identical to the one of Theorem 5.3.18. For the details we refer to [14, Theorem 3.4].

For an algebraic analogue of Theorem 5.4.28 see [60, Lemma 3.2.59, Theorem 3.2.65]. Using this criterion it is easy to see that the cylindric algebras corresponding to the cylindric spaces shown in Figure 5.1(b) are representable, while the cylindric algebras corresponding to the cylindric spaces shown in Figure 5.1(a) are not. Moreover, the smallest non-representable cylindric algebra is the algebra corresponding to the cylindric space shown in Figure 5.1(a), where the non-singleton E_{0}-cluster contains only two points.

Chapter 6

Normal extensions of $\mathrm{S5}^{2}$

In this chapter, which is based on [12], we study the lattice of normal extensions of $\mathbf{S 5}{ }^{2}$. It is known that $\mathbf{S 5} \mathbf{5}^{2}$ has the finite model property and is decidable [110]; in fact, it has a NEXPTIME-complete satisfiability problem [93]. It is neither tabular nor locally tabular [60] and it lacks the interpolation property [27]. In addition, we show that every proper normal extension of $\mathbf{S} \mathbf{5}^{2}$ is locally tabular, i.e., $\mathbf{S} 5^{2}$ is pre-locally tabular. As a corollary we obtain that every normal extension of $\mathbf{S} \mathbf{5}^{2}$ has the finite model property. We also characterize all tabular extensions of $\mathbf{S 5}{ }^{2}$ by showing that there are exactly six pre-tabular extensions of $\mathbf{S 5}{ }^{2}$. A classification of normal extensions of $\mathbf{S} 5^{2}$ will also be provided.

The lattice of normal extensions of $\mathbf{S} 5$ has been well-investigated. It is known that it forms an $(\omega+1)$-chain, and that every normal extension of $\mathbf{S 5}$ is finitely axiomatizable, has the finite model property and is decidable (see [111]). Moreover, every proper normal extension of $\mathbf{S 5}$ is tabular. On the other hand, the lattice of normal extensions of $\mathbf{S 5}{ }^{3}$ is much more complicated. It has been shown that $\mathbf{S 5} 5^{3}$ is not finitely axiomatizable (see Monk [99] and Johnson [67]), that there are continuum many undecidable extensions of $\mathbf{S} 5^{3}$ (see Maddux [88] and Gabbay et al. [43, Theorem 8.5]), and that each of these extensions lacks the finite model property (see Kurucz [79] and Gabbay et al. [43, Theorem 8.12]). We show that the lattice of all normal extensions of $\mathbf{S} 5^{2}$, although complex, is still manageable to some extend.

6.1 The finite model property of $\mathrm{S} 5^{2}$

In this section we prove that $\mathbf{S} 5^{2}$ has the finite model property. Moreover, we show that it is complete with respect to the classes of finite rectangles and finite squares. We also state algebraic analogues of these results.

There is a wide variety of proofs available for the decidability of the classical first-order logic with two variables. Equivalent results were stated and proved
using quite different methods in first-order, modal and algebraic logic. We present a short historic overview.

Decidability of the validity of equality-free first-order sentences in two variables was proved by Scott [110]. The proof uses a reduction to the set of prenex formulas of the form $\exists^{2} \forall^{n} \varphi$, whose validity is decidable by Gödel [50]. Scott's result was extended by Mortimer [101], who included equality in the language and showed that such sentences cannot enforce infinite models, obtaining decidability as a corollary. A simpler proof was provided in Grädel et al. [55]. They showed that any satisfiable formula can actually be satisfied in a model whose size is single exponential in the length of the formula. Segerberg [113] proved the fmp and decidability for the so-called "two-dimensional modal logic", which is a cylindric modal logic enriched with the operation of involution. For an algebraic proof see [60, Lemma 5.1.24 and Theorem 5.1.64]. A mosaic type proof can be found in Marx and Mikulás [94]. A proof using quasimodels is provided in [43, Theorem 5.22]. Here we give a proof via the filtration method.

6.1.1. THEOREM. $\mathbf{S 5}^{2}$ has the finite model property.

Proof. Suppose $\mathbf{S 5}^{2} \nvdash \phi$. Then, by Theorems 5.3.2 and 5.2.4, there exists a rooted $\mathbf{S} 5^{2}$-frame $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ and a valuation V on \mathcal{F} such that $(\mathcal{F}, V) \not \models \phi$. Let $\operatorname{Sub}(\phi)$ be the set of all subformulas of ϕ. Define an equivalence relation \equiv on W by

$$
w \equiv v \quad \text { iff } w \models \psi \Leftrightarrow v \models \psi \text { for all } \psi \in \operatorname{Sub}(\phi) .
$$

Let $[w]$ denote the \equiv-equivalence class containing the point w, let $W / \equiv=\{[w]$: $w \in W\}$. We define E_{i}^{f} on W / \equiv by

$$
[w] E_{i}^{f}[v] \text { iff } w \models \diamond_{i} \psi \Leftrightarrow v \models \diamond_{i} \psi \text { for all } \diamond_{i} \psi \in S u b(\phi) .
$$

Let $\mathcal{F}^{f}=\left(W / \equiv, E_{1}^{f}, E_{2}^{f}\right)$ and define V^{f} on \mathcal{F}^{f} by $[w] \in V^{f}(p)$ iff $w \in V(p)$. The standard filtration argument (see e.g. [18, Theorem 2.39]) shows that for every $\psi \in \operatorname{Sub}(\phi)$:

$$
(\mathcal{F}, V), w \models \psi \quad \operatorname{iff}\left(\mathcal{F}^{f}, V^{f}\right),[w] \models \psi .
$$

Therefore, $\left(\mathcal{F}^{f}, V^{f}\right) \not \vDash \phi$. We show that \mathcal{F}^{f} is an $\mathbf{S} 5^{2}$-frame. It follows immediately from the definition of E_{i}^{f} that E_{i}^{f} is an equivalence relation. Note that for $w, v \in W$ we have:

$$
w E_{i} v \text { implies }[w] E_{i}^{f}[v] .
$$

We prove that E_{1}^{f} and E_{2}^{f} commute. Suppose $[w] E_{1}^{f}[v]$ and $[v] E_{2}^{f}[u]$. Then since \mathcal{F} is rooted, by Lemma 5.3.3, there exists $z \in W$ such that $w E_{2} z$ and $z E_{1} u$. Therefore, $[w] E_{2}^{f}[z]$ and $[z] E_{1}^{f}[u]$, which means that E_{1}^{f} and E_{2}^{f} commute and thus \mathcal{F}^{f} is an $\mathbf{S} 5^{2}$-frame.

6.1.2. COROLLARY.

1. $\mathbf{S} \mathbf{5}^{2}$ is decidable.
2. Df_{2} is finitely approximable.
3. The equational theory of $\mathbf{D f}_{2}$ is decidable.

Proof. (1) The result follows immediately from Theorem 6.1.1 since every finitely axiomatizable logic with the fmp is decidable (see Section 2.1.2).
(2) The result follows immediately from Theorem 6.1.1 and the modal logic analogue of Theorem 2.3.27(1).
(3) Apply (1) and the modal logic analogue of Theorem 2.3.27(6).

Questions concerning the computational complexity of $\mathbf{S 5} \mathbf{5}^{2}$ and its normal extensions will be addressed in Chapter 8. Here we show that $\mathbf{S} 5^{2}$ is not only complete, for finite $\mathbf{S} \mathbf{5}^{2}$-frames, but also complete for finite rectangles and finite squares.
6.1.3. Definition. For a class K of algebras or frames let Fin(K) denote the class of finite members of K .

We now show that $\mathbf{S 5}^{2}$ is complete with respect to Fin(Rect) and Fin(Sq). The next lemma is an analogue of Theorem 2.3.9. It shows a connection between p-morphisms and bisimulation equivalences.
6.1.4. Lemma. Let $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ be a finite $\mathbf{S} 5^{2}$-frame and Q an equivalence relation on W. Let $\mathcal{F} / Q=\left(W / Q, E_{1}^{\prime}, E_{2}^{\prime}\right)$, where for $i=1,2$:

$$
Q(w) E_{i}^{\prime} Q(v) \text { iff there exist } w^{\prime} \in Q(w) \text { and } v^{\prime} \in Q(v) \text { with } w^{\prime} E_{i} v^{\prime} .
$$

Let the function $f_{Q}: W \rightarrow W / Q$ be defined by $f_{Q}(w)=Q(w)$ for any $w \in W$. Then the following two conditions are equivalent:

1. Q is a bisimulation equivalence,
2. f_{Q} is a p-morphism.

Proof. The proof is similar to the proof of Theorem 2.3.9.
Next we prove a number of auxiliary lemmas.
6.1.5. Lemma. For every finite rectangle \mathcal{F}, there exists a finite square \mathcal{G} such that \mathcal{F} is a p-morphic image of \mathcal{G}.

Figure 6.1: A bisimulation equivalence of a finite square

Proof. Suppose \mathcal{F} is isomorphic to $\mathbf{m} \times \mathbf{n}$ with $n>m$. Let \mathcal{G} be the square $\mathbf{n} \times \mathbf{n}$. Define Q on $\mathbf{n} \times \mathbf{n}$ by identifying all points $(k, i),(k, j)$ such that $k \in n$ and $m-1 \leq i, j<n$ (see Figure 6.1, where the points of the same color are identified). It is routine to check that Q is a bisimulation equivalence of $\mathbf{n} \times \mathbf{n}$, and that the quotient of $\mathbf{n} \times \mathbf{n}$ by Q is a rectangle isomorphic to $\mathbf{m} \times \mathbf{n}$. Thus, by Lemma 6.1.4, \mathcal{F} is a p-morphic image of \mathcal{G}.
6.1.6. Definition. Let $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ be a rooted $\mathbf{S} 5^{2}$-frame.

1. \mathcal{F} is said to be a bicluster if $E_{1}(w)=E_{2}(w)=W$ for each $w \in W$.
2. \mathcal{F} is said to be regular if every E_{0}-cluster of \mathcal{F} has the same cardinality.
6.1.7. Lemma. For every finite bicluster \mathcal{F}, there exists a finite square \mathcal{G} such that \mathcal{F} is a p-morphic image of \mathcal{G}.

Proof. Suppose \mathcal{F} consists of n points. Consider the square $\mathbf{n} \times \mathbf{n}$. Define an equivalence relation Q on $\mathbf{n} \times \mathbf{n}$ by

$$
(k, m) R\left(k^{\prime}, m^{\prime}\right) \text { iff } k-m \equiv k^{\prime}-m^{\prime}(\bmod n)
$$

This means that every Q-equivalence class contains a unique point from every E_{i}-cluster (see Figure 6.2, where points of the same color are identified). Since $Q E_{i}(k, m)=n \times n=E_{i} Q(k, m)$ for each $k, m \in n$ and $i=1,2$, we have that Q is a bisimulation equivalence of $\mathbf{n} \times \mathbf{n}$. It should be clear now that the quotient of $\mathbf{n} \times \mathbf{n}$ by Q is isomorphic to \mathcal{F}, thus by Lemma 6.1.4, \mathcal{F} is a p-morphic image of $\mathbf{n} \times \mathbf{n}$.
6.1.8. Lemma. For every finite regular rooted \mathcal{F}, there exists a finite rectangle \mathcal{G} such that \mathcal{F} is a p-morphic image of \mathcal{G}.

Figure 6.2: The partition of a finite square

Proof. Let $\left\{C_{i}\right\}_{i=1}^{n}$ and $\left\{C^{j}\right\}_{j=1}^{m}$ be the sets of all E_{1} and E_{2}-clusters of \mathcal{F}, respectively. Also let C_{i}^{j} denote the E_{0}-cluster $C_{i}^{j}=C_{i} \cap C^{j}$. Since \mathcal{F} is regular, the cardinality of every C_{i}^{j} is the same. Let $\left|C_{i}^{j}\right|=k>0$ for every $i \leq n$ and $j \leq m$. Now consider the rectangle $\mathbf{n k} \times \mathbf{m} \mathbf{k}$. Let Δ^{j} be $(j k \times n k) \backslash((j-1) k \times n k)$ and Δ_{i} be $(m k \times i k) \backslash(m k \times(i-1) k)$. Therefore, if we think of $\mathbf{n k} \times \mathbf{m} \mathbf{k}$ as the rectangle shown in Figure 6.3, then Δ_{i} is the rectangle consisting of all the rows of $\mathbf{n k} \times \mathbf{m} \mathbf{k}$ between the $(i-1) k$-th and $i k$-th rows and Δ_{j} is the rectangle consisting of all the columns of $\mathbf{n k} \times \mathbf{m} \mathbf{k}$ between the $(j-1) k$-th and $j k$-th columns. Also let $\Delta_{i}^{j}=\Delta_{i} \cap \Delta^{j}$. Then Δ_{i}^{j} is the square with $k E_{1}$ and E_{2}-clusters. Define a partition Q on $\mathbf{n k} \times \mathbf{m k}$ by sewing each square Δ_{i}^{j} into a bicluster as in the proof of Lemma 6.1.7. It follows that Q is a bisimulation equivalence, and that the quotient of $\mathbf{n k} \times \mathbf{m} \mathbf{k}$ is isomorphic to \mathcal{F}. Hence, \mathcal{F} is a p-morphic image of $\mathrm{nk} \times \mathrm{mk}$.

Figure 6.3: The rectangle $\mathbf{n k} \times \mathbf{m k}$.
6.1.9. Lemma. For every finite rooted $\mathbf{S} 5^{2}$-frame \mathcal{F}, there exists a finite regular frame \mathcal{G} such that \mathcal{F} is a p-morphic image of \mathcal{G}.

Proof. Let C_{i}, C^{j} and C_{i}^{j} be the same as in the proof of Lemma 6.1.8. Also let $k=\max \left\{\left|C_{i}^{j}\right|: i \leq n, j \leq m\right\}$. Obviously all $\left|C_{i}^{j}\right|>0$ and therefore $k>0$. Consider the regular frame \mathcal{G} which is obtained from \mathcal{F} by replacing every E_{0} cluster of \mathcal{F} by an E_{0}-cluster containing k points. Let Q be an equivalence relation on \mathcal{G} identifying $k-\left(\left|C_{i}^{j}\right|+1\right)$ points in each E_{0}-cluster of \mathcal{G}, (see Figure 6.4, where filled circles represent the identified points). Note that in the E_{0}-clusters with k points we do not identify any points. It should be clear that Q is a bisimulation equivalence of \mathcal{G}, and that the quotient of \mathcal{G} by Q is isomorphic to \mathcal{F}. Therefore, \mathcal{F} is a p-morphic image of \mathcal{G}.

Figure 6.4: The identifications in a regular frame

Now we are ready to prove that $\mathbf{S} \mathbf{5}^{2}$ is complete with respect to finite rectangles and squares. This result was first proved by Segerberg [113]. His technique is very similar to ours with the exception that he considers the similarity type with one additional unary operation, the involution. The result also follows from Mortimer [101]. A short algebraic proof can be found in Andréka and Nemeti [1]. For a different frame theoretic proof using quasi-models see [43, Theorem 5.25].
6.1.10. Theorem. $\mathbf{S 5}^{2}$ is complete with respect to $\operatorname{Fin}($ Rect $)$ and $\operatorname{Fin}(\mathbf{S q})$.

Proof. By Theorem 6.1.1, if $\mathbf{S} 5^{2} \nvdash \phi$, then ϕ is refuted in a finite rooted $\mathbf{S} 5^{2}$ frame. By Lemmas 6.1.7-6.1.9, every finite rooted $\mathbf{S} 5^{2}$-frame is a p-morphic image of a finite rectangle and by Lemma 6.1.5, it is a p-morphic of a finite square. Since p-morphic images preserve validity of formulas, the result follows.
6.1.11. Theorem. Df_{2} is generated by finite rectangular (square) algebras, that is $\mathbf{D f}_{2}=\mathbf{H S P}(\operatorname{Fin} \mathbb{R} \mathbb{C} \mathbb{T})=\mathbf{H S P}(\operatorname{FinSQ})$.
Proof. Follows immediately from Theorems 6.1.10 and 5.4.3.
6.1.12. Remark. More algebraic properties of $\mathbf{D} \mathbf{f}_{2}$ are discussed in [12]. In particular, a characterization of finitely approximable $\mathbf{D f}_{2}$-algebras, projective and injective $\mathbf{D f}_{2}$-algebras, and absolute retracts of $\mathbf{D} \mathbf{f}_{2}$ is given in [12, §3.1 and §3.2].

6.2 Locally tabular extensions of $\mathbf{S 5}^{2}$

In this section we investigate locally tabular extensions of $\mathbf{S 5}{ }^{2}$ and locally finite subvarieties of $\mathbf{D f}_{2}$. We recall that a logic L is locally tabular if for every $n \in \omega$ there are only finitely many pairwise non- L-equivalent formulas in n variables, and that a variety \mathbf{V} is locally finite if every finitely generated \mathbf{V}-algebra is finite. As follows from Theorem 2.3.27, a logic is locally tabular iff its corresponding variety of algebras is locally finite. It is well known that $\mathbf{S 5}$ is locally tabular; see, e.g, [58]. Now we show that $\mathbf{S} 5^{2}$ is not locally tabular. We will approach the problem from an algebraic perspective. It was Tarski who first noticed that $\mathbf{D f}_{2}$ is not locally finite. Below we sketch Tarski's example. It can also be found in any of these references: Henkin, Monk and Tarski [60, Theorem 2.1.11], Halmos [58, p.92], Erdős, Faber and Larson [33].
6.2.1. Example. Consider the infinite square $\omega \times \omega$. Let $g=\{(n, m): n \leq m\}$. Then the $\mathbf{D f}_{2}$-algebra $\mathbb{G} \subseteq P(\omega \times \omega)$ generated by g is infinite. Indeed, let $g_{1}=(\omega \times \omega) \backslash E_{2}((\omega \times \omega) \backslash g)$ and $g_{2}=(\omega \times \omega) \backslash E_{1}\left(g \backslash g_{1}\right)$. Then it is easy to check that $g_{1}=\{(0, n): n \in \omega\}$ and $g_{2}=\{(n, 0): n \in \omega\}$. Then clearly $g_{1} \cap g_{2}=\{(0,0)\}$. Now let $S:=(\omega \times \omega) \backslash\left(g_{1} \cup g_{2}\right)$ and $g^{\prime}:=g \cap S_{1}$. We define g_{1}^{\prime} and g_{2}^{\prime} for the infinite square S in the same way we defined g_{1} and g_{2} for $\omega \times \omega$. That is, $g_{1}^{\prime}=S \backslash E_{2}\left(S \backslash g^{\prime}\right)$ and $g_{2}^{\prime}=S \backslash E_{1}\left(g^{\prime} \backslash g_{1}^{\prime}\right)$ Then $g_{1}^{\prime}=\{(1, n): n>0\}$ and $g_{2}^{\prime}=\{(n, 1): n \in \omega\}$. Therefore, $g_{1}^{\prime} \cap g_{2}^{\prime}=\{(1,1)\}$. Continuing this process we obtain that every element of the diagonal $\Delta=\{(n, n)\}_{n \in \omega}$ is an element of \mathbb{G}. Hence \mathbb{G} is infinite. In fact, every singleton $\{(n, m)\}$ of $\omega \times \omega$ belongs to \mathbb{G}, since $\{(n, m)\}=E_{2}(n, n) \cap E_{1}(m, m)$.

In contrast to this, we will prove that every proper subvariety of $\mathbf{D} \mathbf{f}_{2}$ is locally finite. First we prove an auxiliary lemma.

6.2.2. Lemma.

(i) The rectangle $\mathbf{k} \times \mathbf{m}$ is a p-morphic image of every rooted $\mathbf{S} 5^{2}$-frame $\mathcal{F}=$ (W, E_{1}, E_{2}) containing $k E_{1}$-clusters and $m E_{2}$-clusters.
(ii) The rectangle $\mathbf{k}^{\prime} \times \mathbf{m}^{\prime}$ is a p-morphic image of $\mathbf{k} \times \mathbf{m}$ for every $k \geq k^{\prime}$ and $m \geq m^{\prime}$.

Proof. (i) Consider $\mathcal{F} / E_{0}=\left(W / E_{0}, E_{1}^{\prime}, E_{2}^{\prime}\right)$. It is easy to see that E_{0} is a bisimulation equivalence and that \mathcal{F} / E_{0} is isomorphic to $\mathbf{k} \times \mathbf{m}$. Hence, $\mathbf{k} \times \mathbf{m}$ is a p-morphic image of \mathcal{F}.
(ii) A similar argument to Lemma 6.1 .5 shows that $\mathbf{k}^{\prime} \times \mathbf{m}^{\prime}$ is a p-morphic image of $\mathbf{k} \times \mathbf{m}$ for $k^{\prime} \leq k$ and $m^{\prime} \leq m$.
6.2.3. Definition. Let a simple $\mathbf{D f}_{2}$-algebra \mathcal{B} and its dual \mathcal{X} be given, $i=1,2$ and $n>0$.

1. \mathcal{X} is said to be of E_{i}-depth n if the number of E_{i}-clusters of \mathcal{X} is exactly n.
2. The E_{i}-depth of \mathcal{X} is said to be infinite if \mathcal{X} has infinitely many E_{i}-clusters.
3. \mathcal{B} is said to be of E_{i}-depth $n<\omega$ if the E_{i}-depth of \mathcal{X} is n.
4. The E_{i}-depth of \mathcal{B} is said to be of infinite if \mathcal{X} is of infinite E_{i}-depth.
5. $\mathbf{V} \subseteq \mathbf{D f}_{2}$ is said to be of E_{i}-depth $n<\omega$ if n is the maximal E_{i}-depth of the simple members of \mathbf{V}, and \mathbf{V} is of E_{i}-depth ω if there is no bound on the E_{i}-depth of simple members of \mathbf{V}.

For a simple $\mathbf{D f}_{2}$-algebra \mathcal{B} and its dual \mathcal{X}, let $d_{i}(\mathcal{B})$ and $d_{i}(\mathcal{X})$ denote the $E_{i^{-}}$ depth of \mathcal{B} and \mathcal{X}, respectively. Similarly, let $d_{i}(\mathbf{V})$ denote the E_{i}-depth of a variety $\mathbf{V} \subseteq \mathbf{D f}_{2}$.

Consider the following formulas:

$$
D_{i}^{n}:=\bigwedge_{k=1}^{n} \diamond p_{k} \rightarrow \bigvee_{k \neq l, 1 \leq k, l \leq n} \diamond\left(p_{k} \wedge \diamond_{i} p_{l}\right)
$$

where $n \in \omega, i=1,2$ and $\diamond \phi:=\diamond_{1} \diamond_{2} \phi$, for every formula ϕ.
We have the following characterization of varieties of E_{i}-depth n, where $i=$ 1,2 and $0<n<\omega$:
6.2.4. Theorem. Let \mathcal{B} a simple $\mathbf{D f}_{2}$-algebra, and \mathbf{V} be a variety of $\mathbf{D f}_{2}$-algebras.

1. D_{i}^{n} is valid in a simple \mathcal{B} iff the E_{i}-depth of \mathcal{B} is less than or equal to n.
2. \mathbf{V} is of E_{i}-depth n iff $\mathbf{V} \subseteq \mathbf{D f}_{2}+D_{i}^{n}$ and $\mathbf{V} \nsubseteq \mathbf{D f}_{2}+D_{i}^{n-1}$.

Proof. It is easy to see that D_{i}^{n} is a Sahlqvist formula, for every $n \in \omega$. Now apply the standard Sahlqvist algorithm (see [18, §3.6] for the details).
6.2.5. Definition. For a variety \mathbf{V}, let $\operatorname{SI}(\mathbf{V})$ and $S(\mathbf{V})$ denote the classes of all subdirectly irreducible and simple \mathbf{V}-algebras, respectively. Let also FinSI(V) and $\operatorname{FinS}(\mathbf{V})$ denote the classes of all finite subdirectly irreducible and simple V-algebras, respectively.

Now we reformulate Theorem 3.4.23 in algebraic terms; see [7].
6.2.6. Theorem. A variety \mathbf{V} of a finite signature is locally finite iff the class $\mathrm{SI}(\mathbf{V})$ is uniformly locally finite; that is, for each natural number n there is a natural number $M(n)$ such that $|A| \leq M(n)$ for each n-generated $\mathcal{A} \in \mathrm{SI}(\mathbf{V})$.
6.2.7. Lemma. $\mathbf{D f}_{2}+D_{i}^{m}$ is locally finite for any $0<m<\omega$ and $i=1,2$.

Proof. Since $\mathrm{SI}\left(\mathbf{D f}_{2}\right)=\mathrm{S}\left(\mathbf{D f}_{2}\right)$ and Df_{2} has a finite signature, it is sufficient to show that $\mathrm{S}\left(\mathbf{D f}_{2}+D_{i}^{m}\right)$ is uniformly locally finite for each $i=1,2$. We will prove that $\mathrm{S}\left(\mathbf{D f}_{2}+D_{1}^{m}\right)$ is uniformly locally finite. The case of $\mathrm{S}\left(\mathbf{D f}_{2}+D_{2}^{m}\right)$ is completely analogous. Suppose $\mathcal{B}=\left(B\left[g_{1}, \ldots, g_{n}\right], \diamond_{1}, \diamond_{2}\right)$ is an n-generated simple algebra from the variety $\mathbf{D f}_{2}+D_{1}^{m}$, where g_{1}, \ldots, g_{n} denote the generators of \mathcal{B}. Then for each $a \in B\left[g_{1}, \ldots, g_{n}\right]$, there is a polynomial $P\left(g_{1}, \ldots, g_{n}\right)$, including Boolean operations as well as \diamond_{1} and \diamond_{2}, such that $a=P\left(g_{1}, \ldots, g_{n}\right)$. Let $B_{1}=$ $\left\{\diamond_{1} b: b \in B\right\}$, and let \mathcal{X} be the dual of \mathcal{B}. Every E_{1}-saturated subset of \mathcal{X} is a union of E_{1}-clusters. Since there are at most $m E_{1}$-clusters of \mathcal{X}, there are at most 2^{m} distinct E_{1}-saturated sets. Since elements of \mathcal{B} of the form $\diamond_{1} b$ correspond to E_{1}-saturated clopens, we obtain that $\left|B_{1}\right| \leq 2^{m}$. Suppose $B_{1}=\left\{a_{1}, \ldots, a_{k}\right\}, k \leq$ 2^{m}. Then for every element b of \mathcal{B}, there exists $a_{j} \in B_{1}$ such that $\diamond_{1} b=a_{j}$. Therefore, by substituting every subformula of $P\left(g_{1}, \ldots, g_{n}\right)$ of the form $\diamond_{1} b$ by a_{j}, we obtain that $a=P^{\prime}\left(g_{1}, \ldots, g_{n}, a_{1}, \ldots, a_{k}\right)$, where P^{\prime} is a new \diamond_{1}-free polynomial. Thus, $B\left[g_{1}, \ldots, g_{n}\right]$ is generated by $g_{1}, \ldots, g_{n}, a_{1}, \ldots, a_{k}$ as a $\mathbf{D} \mathbf{f}_{1}$-algebra. Since $\mathbf{D f}_{1}$ is locally finite, there exists $M(n)$ such that $\left|B\left[g_{1}, \ldots, g_{n}\right]\right| \leq M(n)$. Therefore, $\mathrm{S}\left(\mathbf{D f}_{2}+D_{i}^{m}\right)$ is uniformly locally finite.

We proceed by showing that the join of two locally finite varieties is locally finite.

6.2.8. Lemma. The join of two locally finite varieties is locally finite.

Proof. Suppose $\mathbf{V}=\mathbf{V}_{1} \vee \mathbf{V}_{2}$, where \mathbf{V}_{1} and \mathbf{V}_{2} are locally finite varieties. In order to arrive at a contradiction, suppose that $A \in \mathbf{V}=\mathbf{H S P}\left(\mathbf{V}_{1} \cup \mathbf{V}_{2}\right)$ is a finitely generated infinite algebra. $A \in \mathbf{V}$ implies there exists a family $\left\{A_{i}\right\}_{i \in I}$ with $A_{i} \in \mathbf{V}_{1} \cup \mathbf{V}_{2}$ such that $A \in \mathbf{H S}\left(\prod_{i \in I} A_{i}\right)$. For each $i \in I$ we have $A_{i} \in \mathbf{V}_{1}$ or $A_{i} \in \mathbf{V}_{2}$. Let $I_{1}=\left\{i \in I \mid A_{i} \in \mathbf{V}_{1}\right\}$ and $I_{2}=\left\{i \in I \mid A_{i} \in \mathbf{V}_{2} \backslash \mathbf{V}_{1}\right\}$. Obviously $\prod_{i \in I} A_{i}$ is isomorphic to $\prod_{i \in I_{1}} A_{i} \times \prod_{i \in I_{2}} A_{i}$. Since \mathbf{V}_{1} and \mathbf{V}_{2} are varieties, $\prod_{i \in I_{1}} A_{i} \in \mathbf{V}_{1}$ and $\prod_{i \in I_{2}} A_{i} \in \mathbf{V}_{2}$. Hence, there exist algebras $A_{1}=\prod_{i \in I_{1}} A_{i}$ in \mathbf{V}_{1} and $A_{2}=\prod_{i \in I_{2}} A_{i}$ in \mathbf{V}_{2} such that $A \in \mathbf{H S}\left(A_{1} \times A_{2}\right)$. Therefore there is an algebra $A^{\prime} \in \mathbf{V}$ such that A is a homomorphic image of A^{\prime} and there is an embedding ι of A^{\prime} into $A_{1} \times A_{2}$. Without loss of generality we may assume that A^{\prime} is finitely generated. ${ }^{1}$ Since A is infinite, A^{\prime} is infinite as well. Let π_{i} be the natural projection of $A_{1} \times A_{2}$ onto $A_{i}(i=1,2)$. Then A^{\prime} is (isomorphic to) a subalgebra of $\pi_{1} \iota\left(A^{\prime}\right) \times \pi_{2} \iota\left(A^{\prime}\right)$. Therefore at least one of $\pi_{i} \iota\left(A^{\prime}\right)$ is infinite. On the other hand, the latter two algebras, being homomorphic images of A^{\prime}, are finitely generated. Hence, at least one of \mathbf{V}_{i} is not locally finite, which is a contradiction.

[^27]Now we are in a position to prove that every proper subvariety of $\mathbf{D f}_{2}$ is locally finite.
6.2.9. Lemma. If a variety $\mathbf{V} \subseteq \mathbf{D f}_{2}$ is not locally finite, then $\mathbf{V}=\mathbf{D f}_{2}$.

Proof. Suppose V is not locally finite. Then there exists a finitely generated infinite \mathbf{V}-algebra \mathcal{B}. Let \mathcal{X} be the dual of \mathcal{B}. Then either there exists an infinite rooted generated subframe of \mathcal{X}, or \mathcal{X} consists of infinitely many finite rooted generated subframes.

First suppose that \mathcal{X} contains an infinite rooted generated subframe \mathcal{X}_{0}. If either the E_{1} or E_{2}-depth of \mathcal{X}_{0} is finite, then the $\mathbf{D} \mathbf{f}_{2}$-algebra corresponding to \mathcal{X}_{0} belongs to $\mathbf{D f}_{2}+D_{i}^{n}$ for some $n \in \omega$. Let \mathcal{B}_{0} be the $\mathbf{D f}_{2}$-algebra dual to \mathcal{X}_{0}. Then \mathcal{B}_{0} is a homomorphic image of \mathcal{B} and is finitely generated. Moreover, by our assumption this algebra is infinite. This is a contradiction by Lemma 6.2.7. Thus, both the E_{1} and E_{2}-depths of \mathcal{X}_{0} are infinite. Consider \mathcal{X}_{0} / E_{0} and denote it by \mathcal{Y}. Since both depths of \mathcal{X}_{0} are infinite, \mathcal{Y} is an infinite rectangle of infinite E_{1} and E_{2}-depths. We will show that the complex algebra $\left(\mathcal{P}(n \times n), E_{1}, E_{2}\right)$ is a subalgebra of $\left(\mathcal{C P}(\mathcal{Y}), E_{1}, E_{2}\right)$ for any $n<\omega$.
6.2.10. Claim. There exists a bisimulation equivalence Q of \mathcal{Y} such that \mathcal{Y} / Q is isomorphic to the square $\mathbf{n} \times \mathbf{n}$.

Proof. Pick $n-1$ points $x_{1}, \ldots, x_{n-1} \in Y$ such that $\neg\left(x_{p} E_{i} x_{q}\right), p \neq q, 1 \leq$ $p, q \leq n-1$ and $i=1,2$. Obviously $\bigcup_{k=1}^{n-1} E_{1}\left(x_{k}\right)$ is a closed E_{1}-saturated set and $U_{1}=Y \backslash \bigcup_{k=1}^{n-1} E_{1}\left(x_{k}\right)$ is an open E_{1}-saturated set. Hence, there exists a non-empty E_{1}-saturated clopen $C_{1} \subseteq U_{1}$. Clearly, $Y=C_{1} \cup\left(Y \backslash C_{1}\right)$. Now consider $U_{2}=Y \backslash\left(C_{1} \cup \bigcup_{k=2}^{n-1} E_{1}\left(x_{k}\right)\right)$. Since $x_{1} \in U_{2}, U_{2}$ is non-empty and obviously is an E_{1}-saturated open set. Hence, there exists an E_{1}-saturated clopen C_{2} such that $x_{2} \in C_{2}$ and $C_{2} \subseteq U_{2}$. Then $\left(Y \backslash C_{1}\right)=C_{2} \cup\left(\left(Y \backslash C_{1}\right) \backslash C_{2}\right)$. Now let $U_{3}=Y \backslash\left(C_{1} \cup C_{2} \cup \bigcup_{k=3}^{n-1} E_{1}\left(x_{k}\right)\right)$. Since $x_{2} \in U_{3}, U_{3}$ is a non-empty E_{1}-saturated open set, and there exists an E_{1}-saturated clopen C_{3} such that $x_{3} \in C_{3}$ and $C_{3} \subseteq U_{3}$. Therefore, $\left(Y \backslash\left(C_{1} \cup C_{2}\right)=C_{3} \cup\left(\left(\left(Y \backslash C_{1}\right) \backslash C_{2}\right) \backslash C_{3}\right)\right.$. We continue this process $(n-1)$ times. At each stage U_{k} is non-empty, since $x_{k-1} \in U_{k}$. As a result we get a partition of Y into $n E_{1}$-saturated clopens $C_{1}, C_{2}, \ldots C_{n-1}, C_{n}=Y \backslash \bigcup_{j=1}^{n-1} C_{j}$. Now in exactly the same way we select n E_{2}-saturated clopens $D_{1}, D_{2}, \ldots D_{n}$ such that $\bigcup_{i=1}^{n} D_{i}=Y$ and $D_{i} \cap D_{j}=\emptyset$. Consider the partition $Q=\left\{C_{j} \cap D_{k}\right\}_{1 \leq j, k \leq n}$ (see Figure 6.5).

Since every C_{j} is E_{1}-saturated and every D_{k} is E_{2}-saturated, by Lemma 5.3.6, we have that $C_{j} \cap D_{k} \neq \emptyset$, for every $1 \leq j, k \leq n$. Moreover, as C_{j} and D_{k} are clopens, $C_{j} \cap D_{k}$ is also clopen for every $1 \leq j, k \leq n$. Thus, Q is a partition of Y into n^{2} clopens. Now we show that $Q E_{i}(x) \subseteq E_{i} Q(x)$ for each $x \in Y$ and $i=1,2$. If $y \in Q E_{1}(x)$, then there exists $z \in E_{1}(x)$ such that $y Q z$. Also suppose that $x \in C_{j} \cap D_{k}$. Then $z, y \in C_{j} \cap D_{l}$ for some l. As \mathcal{Y} is rooted,

Figure 6.5: The partition of \mathcal{Y}
by Lemma 5.3.6, $E_{1}(y) \cap D_{k} \neq \emptyset$. Moreover, since C_{j} is E_{1}-saturated, we have that $E_{1}(y) \subseteq C_{j}$. Therefore, $E_{1}(y) \cap\left(C_{j} \cap D_{k}\right)=E_{1}(y) \cap D_{k} \neq \emptyset$. Hence, there exists $u \in E_{1}(y) \cap\left(C_{j} \cap D_{k}\right)$, which means that $u \in E_{1}(y)$ and $u \in Q(x)$. Thus, $y \in E_{1} Q(x)$ and $Q E_{1}(x) \subseteq E_{1} Q(x)$. That $Q E_{2}(x) \subseteq E_{2} Q(x)$ is proved similarly. Thus, Q is a bisimulation equivalence of \mathcal{Y}. Moreover, it follows from the construction of Q that \mathcal{Y} / Q is isomorphic to $\mathbf{n} \times \mathbf{n}$.

Therefore, $(\mathbf{n} \times \mathbf{n})^{+}=\left(\mathcal{P}(n \times n), E_{1}, E_{2}\right)$ is a subalgebra of $\left(\mathcal{C P}(\mathcal{Y}), E_{1}, E_{2}\right)$. Since $\mathbf{D f}_{2}$ is generated by finite square algebras (see Theorem 5.4.24) it follows that $\mathbf{V}=\mathbf{D f}_{2}$.

Now suppose that \mathcal{X} consists of infinitely many finite rooted frames which we denote by $\left\{\mathcal{X}_{j}\right\}_{j \in J}$. If both the E_{1} and E_{2}-depths of the members of $\left\{\mathcal{X}_{j}\right\}_{j \in J}$ are bounded by some integer n, then their corresponding algebras belong to $\mathbf{D f}_{2}+D_{i}^{n}$ for some $i=1,2$. This means that there is an infinite finitely generated algebra in $\mathbf{D f}_{2}+D_{i}^{n}$, which, by Lemma 6.2.7, is a contradiction. Therefore, we can assume that either the E_{1} or E_{2}-depth of $\left\{\mathcal{X}_{j}\right\}_{j \in J}$ are not bounded by any integer. We distinguish the following two cases:

Case 1. \mathcal{X} consists of two families $\left\{\mathcal{X}_{j}^{\prime}\right\}_{j \in J^{\prime}}$ and $\left\{\mathcal{X}_{j}^{\prime \prime}\right\}_{j \in J^{\prime \prime}}$ such that the $E_{2^{-}}$ depth of the members of the first family is bounded by some integer n, but the E_{1}-depth of them is not bounded by any integer; and conversely, the E_{1}-depth of the members of the second family is bounded by some integer m, but the E_{2}-depth of them is unbounded.

Consider the varieties \mathbf{V}_{1} and \mathbf{V}_{2}, where \mathbf{V}_{1} denotes the variety generated by the algebras corresponding to the members of the first family, while \mathbf{V}_{2} denotes the variety generated by the algebras corresponding to the members of the second family. Observe that $\mathcal{B} \in \mathbf{V}_{1} \vee \mathbf{V}_{2}=\mathbf{H S P}\left(\mathbf{V}_{1} \cup \mathbf{V}_{2}\right)$.

Now from Lemma 6.2.7 it follows that both \mathbf{V}_{1} and \mathbf{V}_{2} are locally finite. By Lemma 6.2.8, $\mathbf{V}_{1} \vee \mathbf{V}_{2}$ is locally finite. Therefore, \mathcal{B} is finite, which contradicts our assumption.

Case 2. Both the E_{1} and E_{2}-depths of \mathcal{X}_{j} are not bounded by any integer. Therefore, for every $n \in \omega$, there exists \mathcal{X}_{j} such that $d_{1}\left(\mathcal{X}_{j}\right), d_{2}\left(\mathcal{X}_{j}\right)>n$. By Lemma 6.2.2, $\mathbf{n} \times \mathbf{n}$ is a p-morphic image of \mathcal{X}_{j}, which by Theorem 6.1.11 means that $\mathbf{V}=\mathbf{D f}_{2}$.

Thus, if \mathbf{V} is not locally finite, then $\mathbf{V}=\mathbf{D} \mathbf{f}_{2}$, which completes the proof of the lemma.

Recall from Chapter 4 that a variety \mathbf{V} is called pre-locally finite if \mathbf{V} is not locally finite but every proper subvariety of \mathbf{V} is locally finite, and that a logic L is called pre-locally tabular if L is not locally tabular but every proper extension of L is locally tabular.

6.2.11. Corollary.

1. $\mathbf{V} \in \Lambda\left(\mathbf{D f}_{2}\right)$ is locally finite iff \mathbf{V} is a proper subvariety of $\mathbf{D f}_{2}$.
2. $\mathbf{D} \mathbf{f}_{2}$ is the only pre-locally finite subvariety of $\mathbf{D f}_{2}$.
3. Every variety $\mathbf{V} \subseteq \mathbf{D f}_{2}$ is finitely approximable.

Proof. The result follows immediately from Lemma 6.2.9 and Corollary 6.1.2(2).

6.2.12. Corollary.

1. $L \in \Lambda\left(\mathbf{S} \mathbf{5}^{2}\right)$ is locally tabular iff L is a proper normal extension of $\mathbf{S 5} \mathbf{5}^{2}$.
2. $\mathbf{S 5}{ }^{2}$ is the only pre-locally tabular extension of $\mathbf{S 5}^{2}$.
3. Every normal extension of $\mathbf{S} 5^{2}$ has the finite model property.

Proof. The result is an immediate consequence of Corollary 6.2.11 and Theorem 5.4.3.

6.3 Classification of normal extensions of S5 ${ }^{2}$

In this section we prove a more specific version of Theorem 6.2.12. In particular, for each proper normal extension of $\mathbf{S} \mathbf{5}^{2}$, we describe the class of its finite rooted frames in terms of their E_{1} and E_{2}-depths. The E_{1} and E_{2}-depth of an $\mathbf{S 5}^{2}$ frame \mathcal{F} is defined in exactly the same way as in Definition 6.2.3. For every logic $L \supseteq \mathbf{S} 5^{2}$ let \mathbf{F}_{L} denote the set of all finite L-frames modulo isomorphism. It follows from Theorem 6.2.12 that every extension of $\mathbf{S} \mathbf{5}^{2}$ is complete with respect to \mathbf{F}_{L}.
6.3.1. Definition. For every logic $L \supseteq \mathbf{S} 5^{2}$ let $d_{i}(L)=d_{i}\left(\mathbf{F}_{L}\right)$.
6.3.2. Theorem. For every proper normal extension L of $\mathbf{S 5}^{2}$ there exists a natural number n such that \mathbf{F}_{L} can be divided into three disjoint classes $\mathbf{F}_{L}=$ $\mathbf{F}_{1} \uplus \mathbf{F}_{2} \uplus \mathbf{F}_{3}$, where $d_{2}\left(\mathbf{F}_{1}\right), d_{1}\left(\mathbf{F}_{2}\right) \leq n$ and $d_{1}\left(\mathbf{F}_{3}\right), d_{2}\left(\mathbf{F}_{3}\right) \leq n$. (Note that any two of the classes $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3} may be empty.)
Proof. Suppose L is a proper normal extension of $\mathbf{S} 5^{2}$. By Theorem 6.1.10, $\mathbf{S} 5^{2}$ is complete with respect to the class of all finite squares. Therefore, there exists a square $\mathbf{n} \times \mathbf{n}$ such that $\mathbf{n} \times \mathbf{n} \notin \mathbf{F}_{L}$. Let n be the minimal number such that $\mathbf{n} \times \mathbf{n} \notin \mathbf{F}_{L}$. Consider three subclasses of $\mathbf{F}_{L}: \mathbf{F}_{1}=\left\{\mathcal{F} \in \mathbf{F}_{L}: d_{1}(\mathcal{F})>n\right\}, \mathbf{F}_{2}=$ $\left\{\mathcal{F} \in \mathbf{F}_{L}: d_{2}(\mathcal{F})>n\right\}$ and $\mathbf{F}_{3}=\left\{\mathcal{F} \in \mathbf{F}_{L}: d_{1}(\mathcal{F}), d_{2}(\mathcal{F}) \leq n\right\}$. It is obvious that $\mathbf{F}_{L}=\mathbf{F}_{1} \cup \mathbf{F}_{2} \cup \mathbf{F}_{3}$. We prove that $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3} are disjoint.

Let us show that if $\mathcal{F} \in \mathbf{F}_{1}$, then $d_{2}(\mathcal{F}) \leq n$ and if $\mathcal{F} \in \mathbf{F}_{2}$, then $d_{1}(\mathcal{F}) \leq$ n. Suppose $\mathcal{F} \in \mathbf{F}_{1} \cup \mathbf{F}_{2}, d_{1}(\mathcal{F})=k, d_{2}(\mathcal{F})=m$ and both $k, m>n$. By Lemma 6.2.2(i), $\mathbf{k} \times \mathbf{m}$ is a p-morphic image of \mathcal{F}, and by Lemma 6.2.2(ii), $\mathbf{n} \times \mathbf{n}$ is a p-morphic image of $\mathbf{k} \times \mathbf{m}$. So, $\mathbf{n} \times \mathbf{n}$ is a p-morphic image of \mathcal{F}, and hence $\mathbf{n} \times \mathbf{n}$ belongs to \mathbf{F}_{L}, which is a contradiction. Thus, $\mathcal{F} \in \mathbf{F}_{1}$ implies $d_{1}(\mathcal{F})>n$ and $d_{2}(\mathcal{F}) \leq n$, and $\mathcal{F} \in \mathbf{F}_{2}$ implies $d_{1}(\mathcal{F}) \leq n$ and $d_{2}(\mathcal{F})>n$. Also, if $\mathcal{F} \in \mathbf{F}_{3}$, then $d_{1}(\mathcal{F}), d_{2}(\mathcal{F}) \leq n$. This shows that all the three classes are disjoint.

From this theorem we obtain the following classification of normal extensions of S5 ${ }^{2}$.
6.3.3. Theorem. For every $L \in \Lambda\left(\mathbf{S 5}^{2}\right)$, either $L=\mathbf{S} 5^{2}$, or $L=\bigcap_{i \in S} L_{i}$ for some $S \subseteq\{1,2,3\}$, where $d_{1}\left(L_{1}\right), d_{2}\left(L_{2}\right), d_{1}\left(L_{3}\right), d_{2}\left(L_{3}\right)<\omega$.
Proof. The theorem follows immediately from Theorem 6.3.2 by taking $L_{i}=$ $\log \left(\mathbf{F}_{i}\right)$ for $i=1,2,3$.
6.3.4. Theorem. For every $\mathbf{V} \in \Lambda\left(\mathbf{D f}_{2}\right)$, either $\mathbf{V}=\mathbf{D f}_{2}$, or $\mathbf{V}=\bigvee_{i \in S} \mathbf{V}_{i}$ for some $S \subseteq\{1,2,3\}$, where $d_{1}\left(\mathbf{V}_{1}\right), d_{2}\left(\mathbf{V}_{2}\right), d_{1}\left(\mathbf{V}_{3}\right), d_{2}\left(\mathbf{V}_{3}\right)<\omega$.

Proof. The result is an immediate consequence of Theorem 6.3.3.

6.4 Tabular and pre tabular extension of $\mathrm{S} 5^{2}$

Recall that a logic is tabular if it is the logic of a single finite frame, and that a logic is pre-tabular if it is not tabular, but all its proper normal extensions are tabular. Also recall that a variety is finitely generated if it is generated by a single finite algebra, and that a variety is pre-finitely generated if it is not finitely generated, but all its proper subvarieties are finitely generated. In this section we characterize the tabular logics over $\mathbf{S 5} \mathbf{5}^{2}$ by showing that there exist exactly six pre-tabular logics in $\Lambda\left(\mathbf{S} 5^{2}\right)$. The characterization of finitely generated and pre-finitely generated subvarieties of $\mathbf{D f}_{2}$ will follow from the characterization of tabular and pre-tabular logics.

Figure 6.6: The frames $\mathcal{F}_{n}^{1}-\mathcal{F}_{n}^{3}$.
6.4.1. Definition. Let $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ be a finite rooted $\mathbf{S} 5^{2}$-frame.

1. \mathcal{F} is said to be E_{i}-discrete if for every $w \in W, i, j=1,2$ and $i \neq j$, $E_{i}(w)=\{w\}$ and $E_{j}(w)=W$.
2. \mathcal{F} is said to be an E_{i}-quasi-bicluster if \mathcal{F} consists of two E_{i}-clusters, one of these clusters is a singleton set, and $E_{j}(w)=W$ for every $w \in W, i, j=1,2$ and $i \neq j$.
3. \mathcal{F} is said to be a quasi-rectangle of type (n, m) if it is obtained from $\mathbf{n} \times \mathbf{m}$ by replacing a point of $\mathbf{n} \times \mathbf{m}$ by a finite E_{0}-cluster.
4. \mathcal{F} is said to be a quasi-square of type (n, n) if it is obtained from $\mathbf{n} \times \mathbf{n}$ by replacing a point of $\mathbf{n} \times \mathbf{n}$ by a finite E_{0}-cluster.

We also recall that \mathcal{F} is a bicluster if $E_{1}(w)=E_{2}(w)=W$ for every $w \in W$. We will use the following notation (see Figures 6.6 and 6.7):

1. Let \mathcal{F}_{n}^{1} be a bicluster consisting of n points,
2. Let \mathcal{F}_{n}^{2} be a E_{2}-discrete frame consisting of n points,
3. Let \mathcal{F}_{n}^{3} be a E_{1}-discrete frame consisting of n points,
4. Let \mathcal{F}_{n}^{4} be a E_{2}-quasi-bicluster frame, whose non-singleton E_{2}-cluster consists of n points,
5. Let \mathcal{F}_{n}^{5} be a E_{1}-quasi-bicluster \mathcal{F}, whose non-singleton E_{1}-cluster consists of n points,
6. Let \mathcal{F}_{n}^{6} be a quasi-square frame of type (2,2), whose non-singleton E_{0}-cluster consists of n points.
6.4.2. Definition. For every $i=1, \ldots, 6$, let $L_{i}:=\log \left(\left\{\mathcal{F}_{n}^{i}\right\}_{n \in \omega}\right)$.

Figure 6.7: The frames $\mathcal{F}_{n}^{4}-\mathcal{F}_{n}^{6}$.
We will prove that L_{1}, \ldots, L_{6} are the only pre-tabular logics in $\Lambda\left(\mathbf{S 5}{ }^{2}\right)$. For this we need to show that every non-tabular logic is contained in one of the six logics described above. In the previous section we defined the E_{1} and E_{2}-depths of a logic $L \supseteq \mathbf{S} \mathbf{5}^{2}$. Now we define the girth of L.
6.4.3. Definition. For a finite rooted $\mathbf{S} 5^{2}$-frame \mathcal{F} and $w \in W$:

1. We call the number of elements of $E_{0}(w)$ the girth of w and denote it by $g(w)$.
2. We define the girth of \mathcal{F} as $\sup \{g(w): w \in W\}$, and denote it by $g(\mathcal{F})$.
3. The girth of $L \supseteq \mathbf{S} 5^{2}$, is $n>0$, if there is $\mathcal{F} \in \mathbf{F}_{L}$ whose girth is n, and the girths of all the other members of \mathbf{F}_{L} are less than or equal to n.
4. The girth of $L \supseteq \mathbf{S} \mathbf{5}^{2}$ is said to be ω if the girths of the members of \mathbf{F}_{L} are not bounded by any integer. Let $g(L)$ denote the girth of L.
6.4.4. Lemma. Let $L \in \Lambda\left(\mathbf{S} 5^{2}\right)$. Then L is tabular iff the E_{1}-depth, the E_{2}-depth and the girth of L are bounded by some integer.

Proof. There exist only finitely many finite non-isomorphic rooted frames whose E_{1}-depth, E_{2}-depth and girth are all bounded by some integer. Thus, if the E_{1}-depth, the E_{2}-depth and the girth of L are bounded by some n, then L is tabular. Conversely, suppose L is tabular. Then $L=\log (\mathcal{F})$ for some finite frame \mathcal{F}. It follows from Jónsson's Lemma that every finite rooted L-frame is a p-morphic image of a generated subframe of \mathcal{F}, and therefore, has the cardinality $\leq|\mathcal{F}|$. Thus, the E_{1}-depth, the E_{2}-depth and the girth of \mathbf{F}_{L} are bounded by some integer n, and so the E_{1}-depth, the E_{2}-depth and the girth of L are bounded by n.

It follows that if L is not tabular, then either the E_{1}-depth, the E_{2}-depth or the girth of L is not bounded. Consequently, no L_{i} is tabular for $i=1, \ldots, 6$. Now we show that these logics are the only pre-tabular normal extensions of $\mathbf{S 5}{ }^{2}$.

6.4.5. Theorem.

1. If L is not tabular, then $L \subseteq L_{i}$ for some $i=1, \ldots, 6$.
2. L_{1}, \ldots, L_{6} are the only pre-tabular logics in $\Lambda\left(\mathbf{S 5}^{2}\right)$.

Proof. (1) Suppose L is not tabular. Then by Lemma 6.4.4, the E_{1}-depth, the E_{2}-depth or the girth of L is not bounded. We distinguish the following cases:

Case 1. If the E_{1}-depth of L is not bounded, then for any $n \in \omega$, there is a finite rooted L-frame $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ whose E_{1}-depth is $\geq n$. It is easy to see that E_{1} is a bisimulation equivalence of \mathcal{F}. Consider the quotient of \mathcal{F} by E_{1}. Then \mathcal{F} / E_{1} is isomorphic to $\mathcal{F}_{d_{1}(\mathcal{F})}^{3}$. Hence, $\mathcal{F}_{d_{1}(\mathcal{F})}^{3}$ is a p-morphic image of \mathcal{F}, and so $\mathcal{F}_{d_{1}(\mathcal{F})}^{3} \in \mathbf{F}_{L}$. Therefore, for every $n \in \omega$, there exists $m>n$ such that \mathcal{F}_{m}^{3} is an L-frame. Thus, $L_{3} \supseteq L$.

Case 2. If the E_{2}-depth of L is not bounded, then similar to Case 1 we have $L_{2} \supseteq L$.

Case 3. If the girth of L is not bounded, then for any n there is a finite rooted $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ such that $\mathcal{F} \in \mathbf{F}_{L}$ and $g(\mathcal{F}) \geq n$. But then, at least one of the following four cases holds:

Case 3.1. For every $w \in W, E_{1}(w)=E_{2}(w)=W$. This means that \mathcal{F} consists of one E_{1}-cluster and one E_{2}-cluster. In this case \mathcal{F} is isomorphic to $\mathcal{F}_{g(\mathcal{F})}^{1}$ and therefore, $\mathcal{F}_{g(\mathcal{F})}^{1}$ is an L-frame.

Case 3.2 For every $w \in W$, we have $E_{1}(w)=W$ but $E_{2}(w) \neq W$. This means that \mathcal{F} consists of one E_{1}-cluster and at least two E_{2}-clusters. Let C denote an E_{0}-cluster of \mathcal{F} containing $g(\mathcal{F}) \geq n$ points. We define an equivalence relation Q on W that leaves all the points in C untouched and identifies all the other points of \mathcal{F} :

- $v Q u$ for any $v, u \in W \backslash C$,
- $v Q u$ iff $v=u$, for any $v, u \in C$.

It is routine to check that Q is a bisimulation equivalence of \mathcal{F}, and that the quotient of \mathcal{F} by Q is isomorphic to $\mathcal{F}_{g(\mathcal{F})}^{4}$. Thus, $\mathcal{F}_{g(\mathcal{F})}^{4}$ is a p-morphic image of \mathcal{F}, and so $\mathcal{F}_{g(\mathcal{F})}^{4}$ is an L-frame.

Case 3.3. For every $w \in W$ we have $E_{2}(w)=W$ but $E_{2}(w) \neq W$. Then the same argument as in Case 3.2 shows that $\mathcal{F}_{g(\mathcal{F})}^{5}$ is an L-frame.

Case 3.4. For every $w \in W$ we have $E_{1}(w) \neq W$ and $E_{2}(w) \neq W$. This means that \mathcal{F} consists of at least two E_{1} and at least two E_{2}-clusters. Let C denote an E_{0}-cluster containing $g(\mathcal{F}) \geq n$ points. First we define an equivalence relation Q on W that leaves points in C untouched and identifies all the points in other E_{0}-clusters of \mathcal{F} :

- $v Q u$ iff $v E_{0} u$, for every $v, u \in W \backslash C$,
- $v Q u$ iff $w=v$, for every $v, u \in C$.

It is routine to check that Q is a bisimulation equivalence. Let $\mathcal{G}=\mathcal{F} / Q$. Then \mathcal{G} is isomorphic to a quasi-rectangle with just one non-singleton $E_{0^{-}}$ cluster C (i.e., a frame obtained from a finite rectangle by replacing one point by the E_{0}-cluster $\left.C\right)$. Let $\mathcal{G}=\left(W^{\prime}, E_{1}^{\prime}, E_{2}^{\prime}\right)$. Next we define an equivalence relation Q^{\prime} on W^{\prime} that leaves points of C untouched, identifies all the other points in the E_{1}-cluster containing C, identifies all the other points in the E_{2}-cluster containing C, and identifies all the remaining points:

- $w Q^{\prime} v$, for any $w, v \in W^{\prime} \backslash\left(E_{1}^{\prime}(C) \cup E_{2}^{\prime}(C)\right)$,
- $w Q^{\prime} v$, for any $w, v \in E_{2}^{\prime}(C) \backslash C$,
- $w Q^{\prime} v$, for any $w, v \in E_{1}^{\prime}(C) \backslash C$,
- $w Q^{\prime} v$ if $w=v$, for any $w, v \in C$.

Then it is again routine to check that Q^{\prime} is a bisimulation equivalence and that \mathcal{G} / Q^{\prime} is isomorphic to a quasi-square of type $(2,2)$ with the nonsingleton E_{0}^{\prime}-cluster C. Therefore, $\mathcal{F}_{g(\mathcal{F})}^{6}$ is a p-morphic image of \mathcal{F}. Thus, $\mathcal{F}_{g(\mathcal{F})}^{6}$ is an L-frame.

Consequently, for every $n \in \omega$ there exists $m \geq n$ such that one of $\mathcal{F}_{m}^{1}, \mathcal{F}_{m}^{4}$, $\mathcal{F}_{m}^{5}, \mathcal{F}_{m}^{6}$ is an L-frame. This implies that one of $L_{1}, L_{4}, L_{5}, L_{6}$ contains L. This concludes the proof that if L is not tabular, then L is contained in one of the six $\operatorname{logics} L_{1}, \ldots, L_{6}$.
(2) First we show that every L_{i}, for $i=1, \ldots, 6$ is a pre-tabular logic. As we mentioned above, by Lemma 6.4.4, no L_{i} is tabular. It is also easy to see that all these logics are incomparable. Now suppose L is a proper normal extension of L_{i} for some $i=1, \ldots, 6$. If L is not tabular, then $L \subseteq L_{j}$ for some $j=1, \ldots, 6$ and $j \neq i$. This implies that L_{j} is a proper extension of L_{i}, which is a contradiction because these logics are incomparable. Therefore, all the L_{i} are pre-tabular. Now suppose L is a pre-tabular logic. Then L is not tabular and by (1), $L \subseteq L_{i}$ for some $i=1, \ldots, 6$. If $L \subsetneq L_{i}$, then L is not pre-tabular, because L_{i} is a nontabular extension of L. Therefore, $L=L_{i}$. This means that L_{1}, \ldots, L_{6} are the only pre tabular logics in $\Lambda\left(\mathbf{S} 5^{2}\right)$.
6.4.6. Corollary. A logic $L \supseteq \mathbf{S} 5^{2}$ is tabular iff none of $L_{1}-L_{6}$ contains L.

Proof. Suppose L is not tabular. Then, by the proof of Theorem 6.4.5, L_{i} contains L for some $i=1, \ldots, 6$. On the other hand, if L is tabular, by Lemma 6.4.4, it cannot have a non-tabular normal extension. Therefore, $L_{i} \nsupseteq L$ for every $i=1, \ldots, 6$.

For $i=1, \ldots, 6$ let \mathbf{V}_{i} be the subvariety of $\mathbf{D} \mathbf{f}_{2}$ corresponding to L_{i}. It is easy to see that \mathbf{V}_{i} is generated by the complex algebras of the frames $\mathcal{F}_{n}^{i}, n \in \omega$. Then we have the following algebraic analogue of Theorem 6.4.5.

6.4.7. COROLLARY.

1. $\mathbf{V}_{1}, \ldots, \mathbf{V}_{6}$ are the only pre-finitely generated varieties in $\Lambda\left(\mathbf{D f}_{2}\right)$.
2. A variety $\mathbf{V} \subseteq \mathbf{D f}_{2}$ is finitely generated iff none of $\mathbf{V}_{1}-\mathbf{V}_{6}$ is a subvariety of \mathbf{V}.

Proof. Follows from Theorem 6.4.5 and Corollary 6.4.6.
Another characterization of tabular logics in $\Lambda\left(\mathbf{S 5}^{2}\right)$ can be found in $[12, \S 5]$ and [14, §7].

Chapter 7

Normal extensions of CML_{2}

In Chapter 6, we investigated the lattice $\Lambda\left(\mathbf{S} 5^{2}\right)$ of normal extensions of $\mathbf{S 5}{ }^{2}$ and its dual lattice $\Lambda\left(\mathbf{D f}_{2}\right)$ of all subvarieties of $\mathbf{D f} \mathbf{f}_{2}$. In this chapter, which is based on [14], we investigate the lattice $\Lambda\left(\mathbf{C M L}_{2}\right)$ of all normal extensions of $\mathbf{C M L}_{2}$ and its dual lattice $\Lambda\left(\mathbf{C A}_{2}\right)$ of all subvarieties of $\mathbf{C A}_{2}$. We show that there exists a continuum of normal extensions of $\mathbf{P C M L} \mathbf{2}_{2}$ and continuum many subvarieties of $\mathbf{R C A}_{2}$. We also show that there exists a continuum of normal logics in between $\mathbf{C M L}_{2}$ and $\mathbf{P C M L}_{2}$ and a continuum of varieties in between $\mathbf{R C A}_{2}$ and $\mathbf{C A}_{2}$. In Section 7.2 we describe the only pre-locally tabular extension of $\mathbf{C M L}_{2}$ and the only pre-locally finite subvariety of $\mathbf{C A}_{2}$. We also characterize locally tabular extensions of $\mathbf{C M L}_{2}$ and locally finite subvarieties of $\mathbf{C A}_{2}$. In Section 7.3 a characterization of the tabular and pre-tabular logics in $\Lambda\left(\mathbf{C M L}_{2}\right)$ will be given together with a characterization of the finitely generated and prefinitely generated subvarieties of $\mathbf{C A}_{2}$. Finally, we give a rough classification of the lattice structure of $\Lambda\left(\mathbf{C M L}_{2}\right)$ and $\Lambda\left(\mathbf{C A}_{2}\right)$.

7.1 Finite CML $_{2}$-frames

In this section we discuss the finite model property of $\mathbf{C M L}_{2}$ and $\mathbf{P C M L} 2$. We show that $\mathbf{P C M L}_{2}$ is complete with respect to finite cylindric squares, construct an infinite antichain of finite cylindric squares, and prove that the cardinality of both $\Lambda\left(\mathbf{C M L}_{2}\right)$ and of $\Lambda\left(\mathbf{P C M L}_{2}\right)$ is that of the continuum.

7.1.1 The finite model property

We start by showing that $\mathbf{C M L}_{2}$ has the finite model property. This result was first proved in [60, Theorem 4.2.7] using algebraic technique. Here we present a proof using the filtration method.

7.1.1. Theorem.

1. $\mathbf{C M L}_{2}$ has the finite model property.
2. $\mathbf{C M L}_{2}$ is decidable.

Proof. (1) The proof is similar to the proof of the fmp of $\mathbf{S} 5^{2}$ (see Theorem 6.1.1). It is based on the filtration method. Suppose $\mathbf{C M L}_{2} \nvdash \phi$. Then by Theorems 5.3.12 and 5.2.4, there exists a rooted $\mathbf{C M L}_{2}$-frame $\mathfrak{F}=\left(W, E_{1}, E_{2}, D\right)$ and a valuation V such that $(\mathfrak{F}, V) \not \vDash \phi$. Let

- $\Sigma:=\operatorname{Sub}(\phi) \cup\{d\} \cup\left\{\diamond_{1}(d \wedge \psi), \diamond_{2}(d \wedge \psi): \psi \in \operatorname{Sub}(\phi)\right\}$.

We filter out (\mathfrak{F}, V) through Σ in the same way as in the proof of Theorem 6.1.1. Let $\mathfrak{F}^{f}:=\left(W^{f}, E_{1}^{f}, E_{2}^{f},[D], V^{f}\right)$ denote the resulting model, where $\left(W^{f}, E_{1}^{f}, E_{2}^{f}\right.$, $\left.V^{f}\right)$ is defined as in the proof of Theorem 6.1.1 and $[D]=\bigcup_{y \in D}[y]$. Similar to the proof of Theorem 6.1.1, we can show that $\left(W^{f}, E_{1}^{f}, E_{2}^{f}\right)$ is a finite rooted $\mathbf{S} 5^{2}$-frame and $\left(\mathfrak{F}^{f}, V^{f}\right) \not \vDash \phi$. By Proposition 5.3.10, in order to show that \mathfrak{F}^{f} is a $\mathbf{C M L}_{2}$-frame, we need to prove that for each $i=1,2$, every E_{i}^{f}-cluster of \mathfrak{F}^{f} contains a unique point of $[D]$. Suppose $C \subseteq W^{f}$ is an E_{i}^{f}-cluster and $[x] \in C$. Since \mathfrak{F} is a $\mathbf{C M L}_{2}$-frame, by Proposition 5.3.10, there exists $y \in D$ such that $x E_{i} y$. Therefore, $[x] E_{i}^{f}[y]$ and $[y] \in[D]$, implying that every E_{i}^{f}-cluster contains a point from $[D]$. Now we show that such a point is unique. Assume there are $[y],[z] \in W^{f}$ such that $[y],[z] \in[D],[y] \neq[z]$ and $[y] E_{i}^{f}[z]$. (Note that, $[y],[z] \in[D]$ and $[y] \neq[z]$ imply $\neg\left(y E_{i} z\right)$ for each $i=1,2$.) Then $y \models d$ and $z \models d$, and there is $\psi \in \Sigma$ such that w.l.o.g. $y \models \psi$ and $z \not \models \psi$. There are two cases:

Case 1. $\psi \in \operatorname{Sub}(\phi)$. Then $y \models \diamond_{i}(d \wedge \psi)$ and $z \not \vDash \diamond_{i}(d \wedge \psi)$, which is a contradiction since $[y] E_{i}^{f}[z]$ and $\diamond_{i}(d \wedge \psi) \in \Sigma$.

Case 2. $\psi=\diamond_{j}(d \wedge \chi)$ (for some $\left.j=1,2\right)$ and $\chi \in \operatorname{Sub}(\phi)$. This implies that $y \models \chi$ and $z \not \vDash \chi$ and we are back to Case 1 .

Therefore, $[y]=[z]$ and every E_{i}^{f}-cluster contains a unique point from $[D]$. Thus, \mathfrak{F}^{f} is a $\mathbf{C M L}_{2}$-frame.
(2) The result follows immediately from (1) and the fact that $\mathbf{C M L}_{2}$ is finitely axiomatizable.

7.1.2. COROLLARY.

1. $\mathbf{C A}_{2}$ is finitely approximable.
2. The equational theory of $\mathbf{C A}_{2}$ is decidable.

Proof. The result follows from Theorems 7.1.1, 5.4.16 and an analogue of Theorem 2.3.27 for modal logics.

The product cylindric modal logic $\mathbf{P C M L}_{2}$ also has the finite model property. This result follows from Mortimer [101], see also [60, Theorem 4.2.9], [95, Theorem 2.3.5] and [92]. However, the proof of this result is much more complicated than the proof of the fmp of $\mathbf{C M L}_{2}$. We will skip it.
7.1.3. Theorem. $\mathbf{P C M L}_{2}$ has the finite model property and is decidable.
7.1.4. Corollary. RCA_{2} is finitely approximable and its equational theory is decidable.

Proof. The result follows immediately from Theorems 7.1.3 and 5.4.26.
Next we define cylindric p-morphisms and cylindric bisimulation equivalences for CML_{2}-frames.

7.1.5. Definition.

1. Let $\mathfrak{F}=\left(W, E_{1}, E_{2}, D\right)$ and $\mathfrak{G}=\left(W^{\prime}, E_{1}^{\prime}, E_{2}^{\prime}, D^{\prime}\right)$ be $\mathbf{C M L}_{2}$-frames. A map $f: W \rightarrow W^{\prime}$ is called a cylindric p-morphism if f is a p-morphism between $\left(W, E_{1}, E_{2}\right)$ and $\left(W^{\prime}, E_{1}^{\prime}, E_{2}^{\prime}\right)$, and $f^{-1}\left(D^{\prime}\right)=D$.
2. Let $\mathfrak{F}=\left(W, E_{1}, E_{2}, D\right)$ be a $\mathbf{C M L}_{2}$-frame. An equivalence relation Q on W is called a cylindric bisimulation equivalence if Q is a bisimulation equivalence of $\left(W, E_{1}, E_{2}\right)$ and $Q(D)=D$.

Now similar to the diagonal-free case we will spell out the connection between cylindric p-morphisms and cylindric bisimulation equivalences.

7.1.6. Lemma.

1. Let $\mathfrak{F}=\left(W, E_{1}, E_{2}, D\right)$ be a $\mathbf{C M L}_{2}$-frame and Q an equivalence relation on W. Let the map $f_{Q}: W \rightarrow W / Q$ be defined by $f_{Q}(w)=Q(w)$ for every $w \in W$. Then the following two conditions are equivalent:
(a) Q is a cylindric bisimulation equivalence,
(b) f_{Q} is a cylindric p-morphism.
2. Let $\mathfrak{F}=\left(W, E_{1}, E_{2}, D\right)$ and $\mathfrak{F}^{\prime}=\left(W^{\prime}, E_{1}^{\prime}, E_{2}^{\prime}, D^{\prime}\right)$ be $\mathbf{C M L}_{2}$-frames and $f: W \rightarrow W^{\prime}$ a map. Let the relation $Q_{f} \subseteq W \times W$ be defined by $w Q_{f} v$ iff $f(w)=f(v)$ for any $w, v \in W$. Then the following two conditions are equivalent:
(a) f is a cylindric p-morphism,
(b) Q_{f} is a cylindric bisimulation equivalence.

Proof. The proof is an easy generalization of the proof for the case of $\mathbf{S 5}{ }^{2}$.
In order to prove that $\mathbf{P C M L}_{2}$ is complete with respect to the class of finite cylindric squares $\mathbf{C S q}$ we will show that every finite $\mathbf{P C M L}_{2}$-frame is a cylindric p-morphic image of a finite cylindric square.
7.1.7. Lemma. For every finite rooted $\mathbf{P C M L}_{2}$-frame \mathfrak{F} there is a finite cylindric square \mathfrak{G} such that \mathfrak{F} is a cylindric p-morphic image of \mathfrak{G}.

Proof. (Sketch) By Theorem 5.3.18, we have to show that every $\mathbf{C M L}_{2}$-frame \mathfrak{F} that does not satisfy $(*)$ is a cylindric p-morphic image of some finite cylindric square \mathfrak{G}. All we need to do is to check that Lemmas 6.1.7-6.1.9 hold for $\mathbf{C M L}_{2^{-}}$ frames not satisfying the $(*)$-condition. We will skip the technical details.

Now we are ready to prove that $\mathbf{P C M L}_{2}$ is complete with respect to the class of all finite cylindric squares (see [101], [60, Theorem 4.2.9] and [95, Theorem 2.3.10]).
7.1.8. Theorem. $\mathbf{P C M L}_{2}$ is complete with respect to $\operatorname{Fin}(\mathbf{C S q})$.

Proof. Let $\mathbf{P C M L}_{2} \nvdash \phi$. By Theorem 7.1.3, there is a finite rooted $\mathbf{P C M L}_{2^{-}}$ frame \mathfrak{F} that refutes ϕ. By Lemma 7.1.7, \mathfrak{F} is a p-morphic image of some finite cylindric square \mathfrak{G}. Therefore, \mathfrak{G} also refutes ϕ.

The next corollary is an algebraic version of Theorem 7.1.8.

7.1.9. Corollary. RCA_{2} is generated by $\operatorname{Fin}(\mathbb{C} \mathbb{Q})$.

7.1.2 The Jankov-Fine formulas

The modal logic analogues of the Jankov-de Jongh formulas are known in the literature as Jankov-Fine formulas and were first defined by Fine [41] (see also Rautenberg [105]) for an algebraic version. We consider the Jankov-Fine formulas for $\mathbf{S} 5^{2}$ and $\mathbf{C M L} 2_{2}$ (see [18, §3.4] and [43, $\S 8.4$ p. 399]). Let $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ be a finite $\mathbf{S} 5^{2}$-frame. For each point $w \in W$ we introduce a propositional variable p_{w}, and consider the formulas

$$
\begin{aligned}
\delta(\mathcal{F}):= & \square_{1} \square_{2}\left(\bigvee_{w \in W}\left(p_{w} \wedge \neg \bigvee_{v \in W \backslash\{w\}} p_{v}\right)\right. \\
& \left.\wedge \bigwedge_{\substack{i=1,2 \\
w, v \in W, w E_{i} v}}\left(p_{w} \rightarrow \diamond_{i} p_{v}\right) \wedge \bigwedge_{\substack{i=1,2 \\
w, v \in W, \neg\left(w E_{i} v\right)}}\left(p_{w} \rightarrow \neg \diamond_{i} p_{v}\right)\right), \\
\chi(\mathcal{F}):= & \neg \delta(\mathcal{F}) .
\end{aligned}
$$

7.1.10. Theorem. Let $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ be a finite rooted $\mathbf{S} 5^{2}$-frame and let $\mathcal{G}=\left(U, S_{1}, S_{2}\right)$ be a rooted (descriptive) $\mathbf{S} 5^{2}$-frame. Then

$$
\mathcal{G} \not \vDash \chi(\mathcal{F}) \text { iff } \mathcal{F} \text { is a p-morphic image of } \mathcal{G} .
$$

Proof. (Sketch) Suppose \mathcal{F} is a p-morphic image of \mathcal{G}. Define a valuation V on \mathcal{F} by $V\left(p_{w}\right)=\{w\}$ for any $w \in W$. Then $(\mathcal{F}, V) \not \vDash \chi(\mathcal{F})$ by the definition of $\chi(\mathcal{F})$. Now if $\mathcal{G} \models \chi(\mathcal{F})$, then since p-morphic images preserve validity of formulas, we would also have $\mathcal{F} \models \chi(\mathcal{F})$, a contradiction. Therefore, $\mathcal{G} \not \vDash \chi(\mathcal{F})$.

For the converse, we use the argument of [43, Claim 8.36]. Suppose that $\mathcal{G} \not \vDash \chi(\mathcal{F})$. Then there is a valuation V^{\prime} on \mathcal{G} and a point $u \in W^{\prime}$ such that $\left(\mathcal{G}, V^{\prime}\right), u \not \models \chi(\mathcal{F})$. Therefore, $\left(\mathcal{G}, V^{\prime}\right), u \models \delta(\mathcal{F})$. Define a map $f: U \rightarrow W$ by

$$
f(t)=w \Longleftrightarrow\left(\mathcal{G}, V^{\prime}\right), t \models p_{w}
$$

for every $t \in U$ and $w \in W$. From \mathcal{G} being rooted and the truth of the first conjunct of $\delta(\mathcal{F})$ it follows that f is well defined. The truth of the first two conjuncts of $\delta(\mathcal{F})$ together with \mathcal{F} being rooted implies that f is surjective. Finally, the truth of the second and third conjuncts of $\delta(\mathcal{F})$ guarantee that f is a p-morphism. (If \mathcal{G} is a descriptive frame, then it immediately follows from the definition of f that the inverse image of every point of \mathcal{F} is an admissible subset of \mathcal{G}.) Therefore, \mathcal{F} is a p-morphic image of \mathcal{G}.
7.1.11. Remark. Theorem 7.1 .10 is an analogue of Theorem 3.3.3 for $\mathbf{S} 5^{2}$ frames. In this case we do not require that \mathcal{F} is a p-morphic image of a generated subframe of $\mathcal{G}(\mathcal{F}$ is simply a p-morphic image of $\mathcal{G})$, because \mathcal{G} is a rooted S5 ${ }^{2}$-frame.

Suppose $\mathfrak{F}=\left(W, E_{1}, E_{2}, D\right)$ is a finite rooted $\mathbf{C M L}_{2}$-frame, $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ diagonal-free reduct of \mathfrak{F}, and $\delta(\mathcal{F})$ - the Jankov-Fine formula of \mathcal{F}.

Let

$$
\begin{aligned}
\delta_{d}(\mathfrak{F}) & :=\delta(\mathcal{F}) \wedge \square_{1} \square_{2}\left(\bigwedge_{w \in D}\left(p_{w} \rightarrow d\right) \wedge \bigwedge_{w \notin D}\left(p_{w} \rightarrow \neg d\right)\right), \\
\chi_{d}(\mathfrak{F}) & :=\neg \delta_{d}(\mathfrak{F}) .
\end{aligned}
$$

7.1.12. Theorem. Let $\mathfrak{F}=\left(W, E_{1}, E_{2}, D\right)$ be a finite rooted $\mathbf{C M L}_{2}$-frame and $\mathfrak{G}=\left(W^{\prime}, E_{1}^{\prime}, E_{2}^{\prime}, D^{\prime}\right)$ be a rooted (descriptive) $\mathbf{C M L}_{2}$-frames. Then

$$
\mathfrak{G} \not \models \chi_{d}(\mathfrak{F}) \text { iff } \mathfrak{F} \text { is a cylindric p-morphic image of } \mathfrak{G} \text {. }
$$

Proof. The proof is similar to the proof of Theorem 7.1.10. The additional conjunct of $\delta_{d}(\mathfrak{F})$ guarantees that the map f constructed in the proof of Theorem 7.1.10 is a cylindric p-morphism, i.e., $f^{-1}\left(D^{\prime}\right)=D$.

7.1.3 The cardinality of $\Lambda\left(\mathrm{CML}_{2}\right)$

Let \mathcal{F} and \mathcal{G} be rooted $\mathbf{S 5}{ }^{2}$-frames, and let \mathfrak{F} and \mathfrak{G} be rooted $\mathbf{C M L}_{2}$-frames. We write

$$
\begin{aligned}
\mathcal{F} \leq \mathcal{G} & \text { iff } \quad \mathcal{F} \text { is a } p \text {-morphic image of } \mathcal{G} . \\
\mathfrak{F} \leq \mathfrak{G} & \text { iff } \mathfrak{F} \text { is a cylindric } p \text {-morphic image of } \mathfrak{G} .
\end{aligned}
$$

It follows from Theorems 7.1.10 and 7.1.12 that if \mathcal{F} and \mathfrak{F} are finite then

1. $\mathcal{G} \not \vDash \chi(\mathcal{F})$ iff $\mathcal{F} \leq \mathcal{G}$,
2. $\mathfrak{G} \neq \chi_{d}(\mathfrak{F})$ iff $\mathfrak{F} \leq \mathfrak{G}$.

Now we show that the cardinality of $\Lambda\left(\mathbf{P C M L}_{2}\right)$ as well as the cardinality of $\Lambda\left(\mathbf{C M L}_{2}\right) \backslash \Lambda\left(\mathbf{P C M L}_{2}\right)$ is that of the continuum. In the next chapter we prove that the cardinality of $\Lambda\left(\mathbf{S} 5^{2}\right)$ is countable. First we construct \leq-antichains of finite $\mathbf{C M L}_{2}$-frames.
7.1.13. Lemma. Every two non-isomorphic finite squares are \leq-incomparable.

Proof. Let \mathfrak{F} and \mathfrak{G} be two non-isomorphic finite squares. Then \mathfrak{F} is isomorphic to $\left(n \times n, E_{1}, E_{2}, D\right)$ and \mathfrak{G} is isomorphic to $\left(m \times m, E_{1}^{\prime}, E_{2}^{\prime}, D^{\prime}\right)$ where $n \neq m$. Without loss of generality we may assume that $n>m$. Then obviously \mathfrak{F} can not be a cylindric p-morphic image of \mathfrak{G}. Suppose \mathfrak{G} is a proper cylindric p-morphic image of \mathfrak{F}. Then by Lemma 7.1.6(2), there exists a cylindric bisimulation equivalence Q of \mathfrak{F} such that $\mathfrak{F} / Q=\left(W / Q, E_{1}^{\prime}, E_{2}^{\prime}, D^{\prime}\right)$ is isomorphic to \mathfrak{G}. Therefore, Q must identify points from different E_{1} or E_{2}-clusters of \mathfrak{F}. Without loss of generality we may assume that Q identifies points from different E_{1}-clusters C_{1} and C_{2}. Let $x_{1} \in C_{1}$ be the diagonal point of C_{1} and $x_{2} \in C_{2}$ be the diagonal point of C_{2}. Since $Q(D)=D$, we have that $x_{1} Q x_{2}$. Let $E_{1}\left(x_{1}\right) \cap E_{2}\left(x_{2}\right)=\left\{y_{1}\right\}$. Since $x_{2} Q x_{1}$ and $x_{1} E_{1} y_{1}$, there exists y_{2} in \mathfrak{F} such that $y_{1} Q y_{2}$ and $y_{2} E_{1} x_{2}$. Consider $Q\left(x_{1}\right)$ and $Q\left(y_{1}\right)$. It is obvious that $Q\left(x_{1}\right) E_{1}^{\prime} Q\left(y_{1}\right)$. Also since $Q\left(x_{1}\right)=Q\left(x_{2}\right)$ and $Q\left(y_{1}\right)=Q\left(y_{2}\right)$ it follows that $Q\left(x_{1}\right) E_{2}^{\prime} Q\left(y_{1}\right)$. Therefore, $Q\left(x_{1}\right) E_{0}^{\prime} Q\left(y_{1}\right)$. Also $Q\left(x_{1}\right) \neq Q\left(y_{1}\right)$ since $x_{1} \in D, y_{1} \notin D$ and $Q(D)=D$. Therefore, there exists a non-singleton E_{0}-cluster of \mathfrak{F} / Q, which is impossible since \mathfrak{F} / Q is isomorphic to \mathfrak{G} and \mathfrak{G} is a square. Thus, \mathfrak{G} is not a proper p-morphic image of \mathfrak{F}, and so every two non-isomorphic finite squares are \leq-incomparable.

As an immediate consequence of Lemma 7.1 .13 we obtain the following theorem.

7.1.14. THEOREM.

1. The cardinality of $\Lambda\left(\mathbf{P C M L}_{2}\right)$ is that of the continuum.
2. The cardinality of $\Lambda\left(\mathbf{R C A}_{2}\right)$ is that of the continuum.

Proof. (1) Let \mathfrak{F}_{n} be the square $\left(n \times n, E_{1}, E_{2}, D\right)$. Consider the family $\Delta=$ $\left\{\mathfrak{F}_{n}\right\}_{n \in \omega}$. From Lemma 7.1.13 it follows that Δ forms a \leq-antichain. Now the result follows from Theorem 7.1.12 and the modal logic analogues of Theorems 3.4.18 and 3.4.20.
(2) follows from (1).

For $n>1$ let \mathfrak{G}_{n} denote the finite cylindric space obtained from \mathfrak{F}_{n} by replacing a singleton non-diagonal E_{0}-cluster by a two-element E_{0}-cluster. For example, \mathfrak{G}_{2} is shown in Figure 5.1(a) on page 138, where the non-singleton E_{0}-cluster contains two points. Obviously \mathfrak{G}_{n} satisfies ($*$), and so is not a $\mathbf{P C M L}_{2}$-frame. Similar to Lemma 7.1.13, we can prove the following lemma.
7.1.15. Lemma. The family $\left\{\mathfrak{G}_{n}\right\}_{n \in \omega}$ forms $a \leq$-antichain.

As an immediate consequence of Lemma 7.1.15 and the fact that every \mathfrak{G}_{n} is a $\mathbf{C M L}_{2}$-frame but not a $\mathbf{P C M L}_{2}$-frame, we obtain the following theorem.

7.1.16. Theorem.

1. The cardinality of $\Lambda\left(\mathbf{C M L}_{2}\right) \backslash \Lambda\left(\mathbf{P C M L}_{2}\right)$ is that of the continuum.
2. The cardinality of $\Lambda\left(\mathbf{C A}_{2}\right) \backslash \Lambda\left(\mathbf{R C A}_{2}\right)$ is that of the continuum.

Finally, note that because \mathfrak{G}_{n} is not a $\mathbf{P C M L}_{2}$-frame, the Fine-Jankov formula $\chi_{d}\left(\mathfrak{G}_{n}\right)$ of \mathfrak{G}_{n} belongs to $\mathbf{P C M L}_{2}$. Then the same argument as in Theorem 7.1.14 shows that $\Gamma, \Gamma^{\prime} \subseteq\left\{\mathfrak{G}_{n}\right\}_{n \in \omega}$ and $\Gamma \neq \Gamma^{\prime}$ imply $\mathbf{P C M L}_{2} \cap \log (\Gamma) \neq \mathbf{P C M L}_{2} \cap$ $\log \left(\Gamma^{\prime}\right)$. Therefore, we obtain the following corollary.

7.1.17. Corollary.

1. There exists a continuum of logics in between $\mathbf{C M L}_{2}$ and $\mathbf{P C M L}_{2}$.
2. There exists a continuum of varieties in between $\mathbf{R C A}_{2}$ and $\mathbf{C A}_{2}$.

Note that there are only countably many finitely axiomatizable logics. Therefore, Theorem 7.1.14 also implies that there exist continuum many non-finitely axiomatizable extensions of $\mathbf{P C M L}_{2}$ and of $\mathbf{C M L}_{2}$.

7.2 Locally tabular extensions of CML_{2}

In the previous chapter we proved that $\mathbf{D} \mathbf{f}_{2}$ is pre-locally finite. It is known (see, e.g., [60, Theorem 2.1.11]) that $\mathbf{R C A}_{2}$, and hence every variety in the interval $\left[\mathbf{R C A}_{2}, \mathbf{C A}_{2}\right]$, is not locally finite (the result could be obtained by using the Example 6.2.1). In this section, we present a criterion for a variety of cylindric algebras to be locally finite, and show that there exists exactly one pre-locally
finite subvariety of $\mathbf{C A}_{2}$. The corresponding results for cylindric modal logics will also be stated.

Let \mathfrak{B} be a cylindric algebra and \mathcal{X} be its dual cylindric space. Recall that a cylindric space is a quasi-square if it is rooted and the number of the E_{1} and E_{2}-clusters of \mathcal{X} is the same. We have that \mathfrak{B} is simple iff \mathcal{X} is a quasi-square (see Theorem 5.4.21(3)). Therefore, we have that the cardinalities of the sets E_{1} and E_{2}-clusters of \mathcal{X} coincide.

7.2.1. Definition.

1. A quasi-square \mathcal{X} is said to be of depth $n(0<n<\omega)$ if the number of E_{1}-clusters (E_{2}-clusters) of \mathcal{X} is equal to n.
2. A quasi-square \mathcal{X} is said to be of an infinite depth if the cardinality of the set of E_{1}-clusters (E_{2}-clusters) of \mathcal{X} is infinite.
3. A simple cylindric algebra \mathfrak{B} is said to be of depth n if its dual \mathcal{X} is of depth n.
4. A simple cylindric algebra \mathfrak{B} is said to be of an infinite depth if its dual \mathcal{X} is of an infinite depth.
5. A variety \mathbf{V} of cylindric algebras is said to be of depth n if there is a simple \mathbf{V}-algebra of depth n and the depth of every other simple \mathbf{V}-algebra is less than or equal to n.
6. A variety \mathbf{V} is said to be of depth ω if the depth of simple members of \mathbf{V} is not bounded by any natural number.

Recall that there exists a formula measuring the depth of a variety of cylindric algebras (see Theorem 6.2.4). Let $d(\mathbf{V})$ denote the depth of the variety V. Our goal is to show that a variety \mathbf{V} of cylindric algebras is locally finite iff $d(\mathbf{V})<\omega$. For this we need the following definition.

7.2.2. Definition.

1. Call a quasi-square \mathcal{X} uniform if every non-diagonal E_{0}-cluster of \mathcal{X} is a singleton set, and every diagonal E_{0}-cluster of \mathcal{X} contains only two points.
2. Call a simple cylindric algebra \mathfrak{B} uniform if its dual quasi-square \mathcal{X} is uniform.

Finite uniform quasi-squares are shown in Figure 7.1, where big dots denote the diagonal points. Let \mathcal{X}_{n} denote the uniform quasi-square of depth n. Also let \mathfrak{B}_{n} denote the uniform cylindric algebra of depth n. It is obvious that \mathcal{X}_{n} is (isomorphic to) the dual cylindric space of \mathfrak{B}_{n}. Let \mathbf{U} denote the variety generated by all finite uniform cylindric algebras; that is $\mathbf{U}=\mathbf{H S P}\left(\left\{\mathfrak{B}_{n}\right\}_{n \in \omega}\right)$.

Figure 7.1: Uniform quasi-squares

7.2.3. Proposition. $\mathrm{U} \subseteq \mathbf{R C A}_{2}$.

Proof. Since none of the diagonal E_{0}-clusters of \mathcal{X}_{n} is a singleton set, \mathcal{X}_{n} does not satisfy $(*)$. Therefore, each \mathfrak{B}_{n} is representable by Theorem 5.4.28. Thus, $\left\{\mathfrak{B}_{n}\right\}_{n \in \omega} \subseteq \mathbf{R C A}_{2}$, implying that $\mathbf{U} \subseteq \mathbf{R C A}_{2}$.

7.2.4. Lemma.

1. If \mathfrak{B} is a simple cylindric algebra of an infinite depth, then each \mathfrak{B}_{n} is a subalgebra of \mathfrak{B}.
2. If \mathfrak{B} is a simple cylindric algebra of depth $2 n$, then \mathfrak{B}_{n} is a subalgebra of \mathfrak{B}.

Proof. (1) Suppose that \mathfrak{B} is a simple cylindric algebra of an infinite depth. Let \mathcal{X} be the dual cylindric space of \mathfrak{B}. Then \mathcal{X} is a quasi-square with infinitely many E_{1} and E_{2}-clusters. As in the proof of Claim 6.2.10, for each n, we can divide \mathcal{X} into n-many E_{1}-saturated disjoint clopen sets G_{1}, \ldots, G_{n}. We let $D_{i}=D \cap G_{i}$ and $F_{i}=E_{2}\left(D_{i}\right)$ for $i=1, \ldots, n$. Obviously each of the D_{i} 's and F_{i} 's is clopen. Define an equivalence relation Q of \mathcal{X} by

- $x Q y$ if $x, y \in D$ and there exists $i=1, \ldots, n$ such that $x, y \in D_{i}$,
- $x Q y$ if $x, y \in X \backslash D$ and there exist $1 \leq j, k \leq n$ such that $x, y \in G_{j} \cap F_{k}$.

It is easy to check, or transform the proof of Claim 6.2.10, that Q is a cylindric bisimulation equivalence of \mathcal{X}, and that \mathcal{X} / Q is isomorphic to \mathcal{X}_{n}. Therefore, by Theorem 5.4.21(2), each \mathfrak{B}_{n} is a subalgebra of \mathfrak{B}.
(2) Suppose that \mathfrak{B} is a simple cylindric algebra of depth $2 n$. Let \mathcal{X} be the dual cylindric space of \mathfrak{B}. Then \mathcal{X} is a quasi-square. Moreover, there are exactly $2 n E_{1}$-clusters and exactly $2 n E_{2}$-clusters of \mathcal{X}. Obviously all of them are clopens. Let $C_{1}, \ldots, C_{2 n}$ be the E_{1}-clusters of \mathcal{X} and let $G_{i}=C_{2 i-1} \cup C_{2 i}$ for $i=1, \ldots, n$. Obviously every G_{i} is an E_{1}-saturated clopen. Now applying the same technique as in (1), we obtain that \mathfrak{B}_{n} is a subalgebra of \mathfrak{B}.

Figure 7.2: Generators of square and uniform quasi-square algebras
7.2.5. Theorem. For a variety \mathbf{V} of cylindric algebras, $d(\mathbf{V})=\omega$ iff $\mathbf{U} \subseteq \mathbf{V}$.

Proof. It is obvious that $d(\mathbf{U})=\omega$. So, if $\mathbf{U} \subseteq \mathbf{V}$, then obviously $d(\mathbf{V})=\omega$. Conversely, suppose $d(\mathbf{V})=\omega$. We want to show that every finite uniform cylindric algebra belongs to \mathbf{V}. Since $d(\mathbf{V})=\omega$, the depth of the simple members of \mathbf{V} is not bounded by any integer. So, either there exists a family of simple \mathbf{V}-algebras of increasing finite depth, or there exists a simple \mathbf{V}-algebra of an infinite depth. In either case, it follows from Lemma 7.2 .4 that $\left\{\mathfrak{B}_{n}\right\}_{n \in \omega} \subseteq \mathbf{V}$. Therefore, $\mathbf{U} \subseteq \mathbf{V}$ since $\left\{\mathfrak{B}_{n}\right\}_{n \in \omega}$ generates \mathbf{U}.

Our next task is to show that \mathbf{U} is not locally finite. For this we will need the following lemma.

7.2.6. LEMMA.

1. Every finite square algebra is 1-generated.
2. Every finite uniform algebra is 1-generated.

Proof. (1) For a finite cylindric square $\mathfrak{F}_{n}=\left(n \times n, E_{1}, E_{2}, D\right)$, consider the set $g=\{(k, m): k<m\}$. It follows from Example 6.2.1 that the cylindric algebra generated by g contains all singleton subsets of $n \times n$. Hence, $\left(P(n \times n), E_{1}, E_{2}, D\right)$ is generated by g.
(2) is proved similar to (1). Let \mathfrak{B} be a finite uniform algebra, and let \mathcal{X} be its dual cylindric quasi-square. Then the same argument as above shows that every E_{0}-cluster of \mathcal{X} belongs to the algebra generated by the lower triangle g^{\prime} (see Figure 7.2, where big dots represent the diagonal points and points in circles represent the points that belong to the sets g and g^{\prime}, respectively). Hence it is left to show that for every diagonal E_{0}-cluster C and $x \in C$, the singleton set $\{x\}$ belongs to the algebra generated by g^{\prime}. But for any $x \in C$, either $x \in D$ and hence $\{x\}=C \cap D$ or $x \notin D$ and $\{x\}=C \backslash D$. Thus, every singleton set belongs to the cylindric algebra generated by g^{\prime}, and so g^{\prime} generates \mathfrak{B}.
7.2.7. Remark. Note that the $\mathbf{D f}_{2}$-reducts of finite uniform algebras are not generated by g^{\prime}. Indeed, the $\mathbf{D f}_{2}$-algebra generated by g^{\prime} does not contain the singleton sets from non-singleton E_{0}-clusters.
7.2.8. Corollary. U is not locally finite.

Proof. Follows from Lemma 7.2.6 and Theorem 6.2.6.

Next we show that if a variety of cylindric algebras is of finite depth, then it is locally finite.
7.2.9. Theorem. If $d(\mathbf{V})<\omega$, then \mathbf{V} is locally finite.

Proof. The proof is similar to the proof of Lemma 6.2.7 for the diagonal-free case: To show \mathbf{V} is locally finite, by Theorem 6.2.6, it is sufficient to prove that the cardinality of every n-generated simple \mathbf{V}-algebra is bounded by some natural number $M(n)$. Let \mathfrak{B} be an n-generated simple \mathbf{V}-algebra. Let also $B_{i}=\left\{\diamond_{i} b: b \in B\right\}$, for $i=1,2$. Since $d(\mathbf{V})<\omega$, we have $\left|B_{1}\right|=\left|B_{2}\right|<\omega$. Suppose \mathfrak{B} is generated by $G=\left\{g_{1}, \ldots, g_{k}\right\}$. Then as a Boolean algebra \mathfrak{B} is generated by $G \cup B_{1} \cup B_{2} \cup\{d\}$. Since the variety of Boolean algebras is locally finite, there exists $M(n)<\omega$ such that $|\mathfrak{B}| \leq M(n)\left(\right.$ in fact, $|\mathfrak{B}| \leq 2^{2^{n+2\left|B_{1}\right|+1}}$). Thus, \mathbf{V} is locally finite.

Finally, combining Theorem 7.2.5 with Corollary 7.2.8 and Theorem 7.2.9, we obtain the following characterization of locally finite varieties of cylindric algebras.

7.2.10. Theorem.

1. For $\mathbf{V} \in \Lambda\left(\mathbf{C A}_{2}\right)$ the following conditions are equivalent:
(a) \mathbf{V} is locally finite,
(b) $d(\mathbf{V})<\omega$,
(c) $\mathbf{U} \nsubseteq \mathbf{V}$.
2. \mathbf{U} is the only pre-locally finite subvariety of $\mathbf{C A}_{2}$.

Proof. (1) The equivalence $(b) \Leftrightarrow(c)$ is shown in Theorem 7.2.5. The implication $(b) \Rightarrow(a)$ is proved in Theorem 7.2.9. Finally, by Corollary 7.2.8, \mathbf{U} is not locally finite. Therefore, if $\mathbf{V} \supseteq \mathbf{U}$, then \mathbf{V} is not locally finite either. Thus, $(a) \Rightarrow(c)$.
(2) First we show that \mathbf{U} is pre-locally finite. Suppose $\mathbf{V} \subsetneq \mathbf{U}$. Then by Theorem 7.2.5, $d(\mathbf{V})<\omega$, and so by Theorem 7.2.9, \mathbf{V} is locally finite. Now suppose \mathbf{V} is pre-locally finite. Then again by Theorem 7.2.9, $d(\mathbf{V})=\omega$. By Theorem 7.2.5, $\mathbf{U} \subseteq \mathbf{V}$ and since \mathbf{V} is pre-locally finite, $\mathbf{V}=\mathbf{U}$.

In order to formulate Theorem 7.2.10 in terms of logics, we need the following terminology. We define the depth of a logic $L \supseteq \mathbf{C M L}_{2}$ as the depth of its corresponding variety of cylindric algebras. We denote by $d(L)$ the depth of L. Let $L_{\mathbf{U}}$ denote the logic of all finite uniform quasi-squares (rooted $\mathbf{C M L}_{2}$-frames); that is $L_{\mathbf{U}}=\log \left(\left\{\mathcal{X}_{n}\right\}_{n \in \omega}\right)$.
7.2.11. Corollary.

1. For $L \in \Lambda\left(\mathbf{C M L}_{2}\right)$ the following conditions are equivalent:
(a) L is locally tabular,
(b) $d(L)<\omega$,
(c) $L_{\mathbf{U}} \nsupseteq L$.
2. $L_{\mathbf{U}}$ is the only pre-locally tabular extension of $\mathbf{C M L}_{2}$.

Proof. The result follows from Theorem 7.2.10.
Therefore, in contrast to the diagonal-free case, there exist uncountably many normal extensions of $\mathbf{C M L}_{2}\left(\mathbf{P C M L}_{2}\right)$ which are not locally tabular. Since every locally tabular logic has the finite model property we obtain from Theorem 7.2.10 that every normal extension of $\mathbf{C M L}_{2}$ of finite depth has the finite model property. We leave it as an open problem whether every normal extension of $\mathbf{C M L}_{2}$ has the finite model property.
7.2.12. Open Question.

1. Does every normal extension of $\mathbf{C M L}_{2}\left(\mathbf{P C M L}_{2}\right)$ have the finite model property?
2. Is every subvariety of $\mathbf{C A}_{2}\left(\mathbf{R C A}_{2}\right)$ finitely approximable?

7.3 Tabular and pre-tabular extensions of CML_{2}

In Chapter 6 we showed that there are exactly six pre tabular logics in $\Lambda\left(\mathbf{S 5}^{2}\right)$ (Theorem 6.4.5). The situation is more complex in $\Lambda\left(\mathbf{C M L}_{2}\right)$. In this section we show that there exist exactly fifteen pre-tabular logics in $\Lambda\left(\mathbf{C M L}_{2}\right)$, and that six of them belong to $\Lambda\left(\mathbf{P C M L}_{2}\right)$. It trivially implies a characterization of tabular logics of $\Lambda\left(\mathbf{C M L}_{2}\right)$.

Consider the finite quasi-squares \mathfrak{F}_{n}^{i} shown in Figures 7.3 and 7.4 , where $i=$ $1, \ldots, 15$ and $n \geq 2$. Again big dots represent the diagonal points. The pattern according to which the quasi-squares are depicted is the following: First come the frames of depth 1 , then the frames of depth 2 , and finally the frames of depth 3 ;

Figure 7.3: Quasi-squares $\mathfrak{F}_{n}^{1}-\mathfrak{F}_{n}^{7}$
quasi-squares with more clusters come later in the list; the first and last quasisquares (of the same depth) do not satisfy (*). As can be seen from the figure, each E_{0}-cluster of \mathfrak{F}_{n}^{i} consists of one, two or n points. For each $i=1, \ldots, 15$ let $L_{i}:=\log \left(\left\{\mathfrak{F}_{n}^{i}: n \geq 2\right\}\right)$. From Theorem 5.3 .18 it follows that only $\mathfrak{F}_{n}^{1} \mathfrak{F}_{n}^{2}, \mathfrak{F}_{n}^{3}$, $\mathfrak{F}_{n}^{7}, \mathfrak{F}_{n}^{14}$ and \mathfrak{F}_{n}^{15} are $\mathbf{P C M L}_{2}$-frames, and so only $L_{1}, L_{2}, L_{3}, L_{7}, L_{14}$ and L_{15} belong to $\Lambda\left(\mathbf{P C M L}_{2}\right)$.

Now we are in a position to prove that $L_{1}-L_{15}$ are the only pre-tabular normal extensions of $\mathbf{C M L}_{2}$. As we saw in the proof of Theorem 6.4.5, for this it is sufficient to show that $L_{1}-L_{15}$ are incomparable, they are not tabular, and that every normal extensions of $\mathbf{C M L}_{2}$ that is not tabular is contained in exactly one of $L_{1}-L_{15}$.

7.3.1. LEMMA. $L_{3} \supseteq L_{\mathrm{U}}$.

Proof. Suppose \mathcal{X}_{n} is the finite uniform square of depth n. We show that \mathfrak{F}_{n}^{3} is a cylindric p-morphic image of \mathcal{X}_{n}. Fix a diagonal E_{0}-cluster, say C of \mathcal{X}_{n}, and let $D \cap C=\left\{x_{0}\right\}$. Define an equivalence relation Q on \mathcal{X}_{n} by

- $x Q y$ if $x=y$ for all $x, y \in C$,

Figure 7.4: Quasi-squares $\mathfrak{F}_{n}^{8}-\mathfrak{F}_{n}^{15}$

- $x Q y$ for all $x, y \in E_{1}(C) \backslash C$,
- $x Q y$ for all $x, y \in E_{2}(C) \backslash C$,
- $x Q y$ for all $x, y \in D \backslash\left\{x_{0}\right\}$,
- Finally, looking at the subframe of \mathcal{X}_{n} based on the set $Y=X \backslash\left(E_{1}(C) \cup\right.$ $\left.E_{2}(C) \cup D\right)$ we see that it is isomorphic to the $(n-1) \times(n-1)$-square. Then Q is defined on Y in the same way as in Lemma 6.1.7; that is, we let each of the remaining $n-1 Q$-equivalence classes consist of $n-1$ points chosen so that each Q-equivalence class contains exactly one point from each E_{i}-cluster of Y for $i=1,2$.

It is a matter of routine verification that Q is a cylindric bisimulation equivalence of \mathcal{X}_{n}, and that \mathcal{X}_{n} / Q is isomorphic to \mathfrak{F}_{n}^{3}. Therefore, by Lemma 7.1.6(1), \mathfrak{F}_{n}^{3} is a cylindric p-morphic image of \mathcal{X}_{n} for every n, implying that $L_{3} \supseteq L_{\mathbf{U}}$.

Consequently, if $d(L)=\omega$, then $L_{3} \supseteq L$. Suppose $d(L)<\omega$. Then L is locally tabular by Corollary 7.2.11. Recall that \mathbf{F}_{L} denotes the class of finite rooted L-frames modulo isomorphism. Since L is locally tabular, L is complete with respect to \mathbf{F}_{L}.
7.3.2. Definition. Let $\mathcal{X}=\left(X, E_{1}, E_{2}, D\right)$ be a finite quasi-square. Fix $x \in X$.

1. The girth of x is the number of elements of $E_{0}(x)$.
2. The diagonal girth of \mathcal{X} is the maximum of the girths of all $x \in E_{0}(D)$.
3. The non-diagonal girth of \mathcal{X} is the maximum of the girths of all $x \in X \backslash$ $E_{0}(D)$.
4. The diagonal (resp. non-diagonal) girth of L is n if there is $\mathcal{X} \in \mathbf{F}_{L}$ whose diagonal (resp. non-diagonal) girth is n, and the diagonal (resp. nondiagonal) girth of every other member of \mathbf{F}_{L} is less than or equal to n.
5. The diagonal (resp. non-diagonal) girth of L is ω if the diagonal (resp. non-diagonal) girths of the members of \mathbf{F}_{L} are not bounded by any integer.
7.3.3. Lemma. Let $L \in \Lambda\left(\mathbf{C M L}_{2}\right)$. Then L is tabular iff the depth, the diagonal girth and the non-diagonal girths of L are bounded by some integer.

Proof. The proof is the same as the proof of Lemma 6.4.4.
It follows that if a a normal extension L of $\mathbf{C M L}_{2}$ has a finite depth and is not tabular, then either the diagonal girth or non-diagonal girth of L is ω.
7.3.4. Lemma. If $L \in \Lambda\left(\mathbf{C M L}_{2}\right)$ has a finite depth and an infinite diagonal girth, then one of $L_{1}-L_{3}$ contains L.

Proof. Since the diagonal girth of L is ω, for each n there is $\mathcal{X} \in \mathbf{F}_{L}$ whose diagonal girth is $m \geq n$. Let C denote a diagonal E_{0}-cluster of \mathcal{X} containing m points. Then two cases are possible:

Case 1. $d(\mathcal{X})=1$. Then \mathcal{X} is isomorphic to \mathfrak{F}_{m}^{1}.
Case 2. $d(\mathcal{X}) \geq 2$. Then we define an equivalence relation Q on X such that Q leaves points of C untouched, identifies all the points in every non-diagonal E_{0}-cluster of X, and identifies all the non-diagonal points in every diagonal E_{0}-cluster of X different from C :

- $x Q y$ if $x=y$ for any $x, y \in C \cup D$,
- $x Q y$ if $x E_{0} y$ for any $x, y \in X \backslash(C \cup D)$.

It is easy to see that Q is a cylindric bisimulation equivalence. Let \mathcal{Y} denote \mathcal{X} / Q. Then by the definition of Q, every non-diagonal E_{0}-cluster of \mathcal{Y} is a singleton set and every diagonal E_{0}-cluster different from C contains either one or two points. Again two cases are possible:

Case 2.1. $d(\mathcal{Y})=2$. Then \mathcal{Y} is isomorphic to \mathfrak{F}_{m}^{2} or \mathfrak{F}_{m}^{3}.
Case 2.2. $d(\mathcal{Y})>2$. Then we define an equivalence relation Q^{\prime} on Y such that Q^{\prime} leaves the points of C untouched, identifies all the other points in the E_{1}-cluster containing C, identifies all the other points in the E_{2}-cluster containing C, identifies all the other diagonal points, and identifies all the other remaining points:

- $x Q^{\prime} y$ if $x=y$ for any $x, y \in C$,
- $x Q^{\prime} y$ for any $x, y \in E_{1}(C) \backslash C$,
- $x Q^{\prime} y$ for any $x, y \in E_{2}(C) \backslash C$,
- $x Q^{\prime} y$ for any $x, y \in D \backslash C$,
- $x Q^{\prime} y$ for any $x, y \in Y \backslash\left(E_{1}(C) \cup E_{2}(C) \cup D\right)$.

It is routine to check that Q^{\prime} is a cylindric bisimulation equivalence, and that \mathcal{Y} / Q^{\prime} is isomorphic to \mathfrak{F}_{m}^{3}.

Therefore, by Lemma 7.1.6(1), for every $n \in \omega$, there exists $m>n$ such that either $\mathfrak{F}_{m}^{1}, \mathfrak{F}_{m}^{2}$ or \mathfrak{F}_{m}^{3} is a cylindric p-morphic image of \mathcal{X}. Thus, $L_{1} \supseteq L, L_{2} \supseteq L$ or $L_{3} \supseteq L$.
7.3.5. Lemma. If $L \in \Lambda\left(\mathbf{C M L}_{2}\right)$ has a finite depth and an infinite non-diagonal girth, then one of $L_{4}-L_{15}$ contains L.

Proof. Since the non-diagonal girth of L is ω, for each n there is $\mathcal{X} \in \mathbf{F}_{L}$ whose non-diagonal girth is $m \geq n$. Let C denote a non-diagonal E_{0}-cluster of \mathcal{X} containing m points. Since non-diagonal E_{0}-clusters exist only in quasi-squares of depth >1, we have $d(\mathcal{X})>1$. As in the previous lemma, define an equivalence relation Q on X by

- $x Q y$ if $x=y$ for any $x, y \in C \cup D$,
- $x Q y$ if $x E_{0} y$ for any $x, y \in X \backslash(C \cup D)$.

It is easy to see that Q is a cylindric bisimulation equivalence. By the definition of Q, every non-diagonal E_{0}-cluster of \mathcal{X} / Q is a singleton set and every diagonal E_{0}-cluster different from C contains either one or two points. Since $d(\mathcal{X})>1$, three cases are possible:

Case 1. $d(\mathcal{X})=2$. Then \mathcal{X} / Q is isomorphic to one of $\mathfrak{F}_{m}^{4}-\mathfrak{F}_{m}^{7}$.
Case 2. $d(\mathcal{X})=3$. Then \mathcal{X} / Q is isomorphic to one of $\mathfrak{F}_{m}^{8}-\mathfrak{F}_{m}^{15}$.
Case 3. $d(\mathcal{X})>3$. Let $\mathcal{Y}=\mathcal{X} / Q$. Let C^{\prime} denote the diagonal E_{0}-cluster E_{1} related to C, and let $C^{\prime \prime}$ denote the diagonal E_{0}-cluster E_{2}-related to C. Let also $C^{\prime \prime \prime}$ be the non-diagonal E_{0}-cluster $E_{1}\left(C^{\prime \prime}\right) \cap E_{2}\left(C^{\prime}\right)$. Next we define an equivalence relation Q^{\prime} on Y such that Q^{\prime} leaves the points of C untouched, identifies all the non-diagonal points in C^{\prime} (if such points exists), identifies all the non-diagonal points in $C^{\prime \prime}$ (if such points exist), identifies all the remaining points in the E_{1}-cluster containing C and $C^{\prime \prime}$, identifies all the remaining points in the E_{2}-cluster containing C and $C^{\prime \prime}$, identifies all the points in $C^{\prime \prime \prime}$, identifies all the remaining points in the E_{1}-cluster containing $C^{\prime \prime}$ and $C^{\prime \prime \prime}$, identifies all the remaining points in the E_{2}-cluster containing C^{\prime} and $C^{\prime \prime \prime}$, identifies all the remaining diagonal points, and identifies all the remaining non-diagonal points:

- $x Q^{\prime} y$ if $x=y$ for any $x, y \in C \cup\left(\left(C^{\prime} \cup C^{\prime \prime}\right) \cap D\right)$,
- $x Q^{\prime} y$ for any $x, y \in D \backslash\left(C^{\prime} \cup C^{\prime \prime}\right)$,
- $x Q^{\prime} y$ for any $x, y \in X \backslash\left(D \cup E_{1}\left(C^{\prime}\right) \cup E_{2}\left(C^{\prime}\right) \cup E_{1}\left(C^{\prime \prime}\right) \cup E_{2}\left(C^{\prime \prime}\right)\right.$,
- $x Q^{\prime} y$ if $x E_{0} y$ for any $\left.x, y \in\left(C^{\prime} \cup C^{\prime \prime} \cup C^{\prime \prime \prime}\right) \backslash D\right)$,
- $x Q^{\prime} y$ for any $x, y \in E_{2}(C) \backslash\left(C \cup C^{\prime \prime}\right)$,
- $x Q^{\prime} y$ for any $x, y \in E_{1}(C) \backslash\left(C \cup C^{\prime}\right)$,
- $x Q^{\prime} y$ for any $x, y \in E_{2}\left(C^{\prime}\right) \backslash\left(C^{\prime \prime \prime} \cup C^{\prime}\right)$,
- $x Q^{\prime} y$ for any $x, y \in E_{1}\left(C^{\prime \prime}\right) \backslash\left(C^{\prime \prime \prime} \cup C^{\prime \prime}\right)$.

It is a matter of routine verification that Q^{\prime} is a cylindric bisimulation equivalence. Moreover, there are four cases possible. Either both C^{\prime} and $C^{\prime \prime}$ are singleton sets, C^{\prime} is a singleton set and $C^{\prime \prime}$ is not, $C^{\prime \prime}$ is a singleton set and C^{\prime} is not, or neither C^{\prime} nor $C^{\prime \prime}$ are singleton sets. In the first case \mathcal{Y} / Q^{\prime} is isomorphic to \mathfrak{F}_{m}^{11}, in the second case \mathcal{Y} / Q^{\prime} is isomorphic to \mathfrak{F}_{m}^{13}, in the third case \mathcal{Y} / Q^{\prime} is isomorphic to \mathfrak{F}_{m}^{12}, and finally in the fourth case \mathcal{Y} / Q^{\prime} is isomorphic to \mathfrak{F}_{m}^{15}.

Consequently, going through all these cases for every $n \in \omega$ there exists $m \geq n$ such that at least one of $\mathfrak{F}_{m}^{4}-\mathfrak{F}_{m}^{15}$ is a cylindric p-morphic image of \mathcal{X}. Therefore, at least one of $L_{4}-L_{15}$ contains L.

7.3.6. COROLLARY.

1. $L_{1}-L_{15}$ are the only pre tabular logics in $\Lambda\left(\mathbf{C M L}_{2}\right)$.
2. $L_{1}, L_{2}, L_{3}, L_{7}, L_{14}$ and L_{15} are the only pre tabular logics in $\Lambda\left(\mathbf{P C M L}_{2}\right)$.

Proof. (1) The proof is similar to the proof of Theorem 6.4.5. It is easy to see that all L_{i} 's are incomparable. By Lemma 7.3.3, none of $L_{1}-L_{15}$ is tabular. If $L \supsetneq L_{i}$ and L is not tabular, then by Lemmas 7.3.1, 7.3.4 and 7.3.5, there is $j \neq i$ such that $L_{j} \supseteq L \supsetneq L_{i}$. This is a contradiction since all L_{i} 's are incomparable. Therefore, every L_{i} is pre-tabular. Finally, if L is pre-tabular, then again by Lemmas 7.3.1, 7.3.4 and 7.3.5, $L_{i} \supseteq L$ for some $i=1, \ldots, 15$. Since L is pretabular, L_{i} cannot be a proper extension of L. Therefore, $L=L_{i}$.
(2) The result is an immediate consequence of (1) since, as we mentioned above, out of $L_{1}-L_{15}$, only $L_{1}, L_{2}, L_{3}, L_{7}, L_{14}, L_{15}$ belong to $\Lambda\left(\mathbf{P C M L}_{2}\right)$.

For every $i=1, \ldots 15$ let \mathbf{V}_{i} be the subvariety of $\mathbf{C A}_{2}$ corresponding to L_{i}. Then we have the following analogue of Theorem 7.3.6.

7.3.7. COROLLARY.

1. $\mathbf{V}_{1}-\mathbf{V}_{15}$ are the only pre-finitely generated varieties in $\Lambda\left(\mathbf{C A}_{2}\right)$.
2. $\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}, \mathbf{V}_{7}, \mathbf{V}_{14}$ and \mathbf{V}_{15} are the only pre-finitely generated varieties in $\Lambda\left(\mathbf{R C A}_{2}\right)$.

It follows from Corollary 7.3 .6 that a logic $L \supseteq \mathbf{C M L}_{2}$ (resp. $L \supseteq \mathbf{P C M L}_{2}$) is tabular iff L is not contained in one of the fifteen (resp. six) pre-tabular logics. Another characterization of tabular logics in $\Lambda\left(\mathbf{C M L}_{2}\right)$ can be found [14, $\left.\S 7\right]$.

We close this section with a very rough description of the lattice structure of normal extensions of $\mathbf{C M L}_{2}$. We need the following notation:

Figure 7.5: Rough picture of $\Lambda\left(\mathbf{C M L}_{2}\right)$
$\mathbf{T}=\left\{L \in \Lambda\left(\mathbf{C M L}_{2}\right): L\right.$ is tabular $\}$,
$\mathbf{D}_{F}=\left\{L \in \Lambda\left(\mathbf{C M L}_{2}\right): d(L)<\omega\right.$ and $\left.L \notin \mathbf{T}\right\}$,
$\mathbf{D}_{\omega}=\left\{L \in \Lambda\left(\mathbf{C M L}_{2}\right): d(L)=\omega\right\}$.
Let also $\operatorname{Form}\left(\mathcal{M}_{2}^{d}\right)$ denote the inconsistent logic.

7.3.8. Theorem.

1. $\left\{\mathbf{T}, \mathbf{D}_{F}, \mathbf{D}_{\omega}\right\}$ is a partition of $\Lambda\left(\mathbf{C M L}_{2}\right)$.
2. $\operatorname{Form}\left(\mathcal{M}_{2}^{d}\right)$ is the greatest element of \mathbf{T}.
3. \mathbf{T} does not have minimal elements.
4. \mathbf{D}_{F} has precisely fifteen maximal elements.
5. \mathbf{D}_{F} does not have minimal elements.
6. $L_{\mathbf{U}}$ and $\mathbf{C M L}_{2}$ are the greatest and least elements of \mathbf{D}_{ω}, respectively.

Proof. (1) and (2) hold by definition. For (3) observe that for every tabular extension of $\mathbf{C M L}_{2}$, there is a tabular extension of $\mathbf{C M L}_{2}$ properly contained in it. Therefore, \mathbf{T} cannot have a minimum. (4) follows from Corollary 7.3.6. For (5) observe that for every extension of $\mathbf{C M L}_{2}$ of finite depth there is an extension of $\mathbf{C M L}_{2}$ of finite depth properly contained in it. (6) follows from Theorem 7.2.5.

The lattice $\Lambda\left(\mathbf{C M L}_{2}\right)$ can be roughly depicted as shown in Figure 7.5. The detailed investigation of the upper part of $\Lambda\left(\mathbf{C M L}_{2}\right)$ can be found in [14, §7]. In particular, a complete characterization of the lattice structure of the extensions of $\mathbf{C M L}_{2}$ of depth one is given in $[14,7.1]$. Obviously, there is a close connection between $\mathbf{S 5} 5^{2}$ and $\mathbf{C M L}_{2}$. $\mathbf{S 5} 5^{2}$ can be seen as a diagonal-free reduct of $\mathbf{C M L}_{2}$. Moreover, we can define a reduct functor from the lattice $\Lambda\left(\mathbf{C M L}_{2}\right)$ into the lattice $\Lambda\left(\mathbf{S} 5^{2}\right)$. This reduct functor and the properties that are preserved and reflected by it are investigated in $[14, \S 7]$.

Chapter 8

Axiomatization and computational complexity

In this chapter, based on [17] and [16], we show that every normal extension of $\mathbf{S} \mathbf{5}^{2}$ is finitely axiomatizable, and that every proper normal extension of $\mathbf{S} 5^{2}$ has the polynomial size model property and an NP-complete satisfiability problem.

WARNING. In this chapter, by the complexity of a logic we mean the complexity of its satisfiability problem.

It is well known that the logic $\mathbf{S 5}$ is NP-complete (see [84] and [43, Theorem 16(i)]) and that $\mathbf{S} 5^{2}$ is NEXPTIME-complete (see [93] and [43, Theorem 5.26]). Explicit bounds on the size of finite models are known. Every S5-consistent formula ϕ is satisfiable in a model of size $|\phi|+1$ [84]. For $\mathbf{S} 5^{2}$ the models need to be much larger. Every $\mathbf{S 5}{ }^{2}$-consistent formula ϕ can be satisfied in a product model of size $2^{f(|\phi|)}$, where f is a linear function (see [55] and [43, Theorem 5.25]). Both bounds are optimal. Here we recall that $|\phi|$ is the length of ϕ.

In Corollary 6.2 .12 we proved that every normal extension of $\mathbf{S} 5^{2}$ has the finite model property. Using this result we show that every proper normal extension L of $\mathbf{S} 5^{2}$ has the poly-size model property. That is, there is a polynomial $P(n)$ such that every L-consistent formula ϕ is satisfied in an L-frame consisting of at most $P(|\phi|)$ points. We recall that ϕ is L-consistent if $\neg \phi \notin L$.

With every proper normal extension L of $\mathbf{S} 5^{2}$ we associate a natural number $b(L)$-the bound of L. We show that for every L, there exists a polynomial $P(\cdot)$ of degree $b(L)+1$ such that every L-consistent formula ϕ is satisfiable on an L-frame whose universe is bounded by $P(|\phi|)$. We also show that this bound is optimal.

In addition, we show that every proper normal extension L of $\mathbf{S} 5^{2}$ is axiomatizable by Jankov-Fine formulas. In fact, for every proper normal extension L of $\mathbf{S} \mathbf{5}^{2}$, we find a finite set \mathbf{M}_{L} of finite rooted $\mathbf{S} \mathbf{5}^{2}$-frames such that an arbitrary finite rooted $\mathbf{S} \mathbf{5}^{2}$-frame is a frame for L iff it does not have any frame in \mathbf{M}_{L}
as a p-morphic image. This condition yields a finite axiomatization of L. Furthermore, we show that whether \mathcal{F} is an L-frame is decidable in deterministic polynomial time. This, together with the poly-size model property of L, implies NP-completeness of (satisfiability for) L.

Finally, we note that general complexity results for (uni)modal logics were investigated before. Bull and Fine proved that every normal extension of S4.3 has the finite model property, is finitely axiomatizable and therefore is decidable (see [18, Theorems 4.96, 4.101]). Hemaspaandra strengthened the second result by showing that every normal extension of $\mathbf{S} 4.3$ is NP-complete (see, e.g., [18, Theorem 6.41]). The proof of finite axiomatizability uses Kruskal's theorem on well-quasi-orderings [18, Theorem 4.99]. Kracht uses the same technique for showing that every extension of the intermediate logic of leptonic strings is finitely axiomatizable [73, Theorem 14, Proposition 15]. We take the same line of research beyond unimodal logics. However, as we will see below, the theory of well-quasi-orderings does not suffice for our purposes; instead, we will use better-quasi-orderings.

8.1 Finite axiomatization

In this section we prove that every normal extension of $\mathbf{S} 5^{2}$ is finitely axiomatizable. Let $\mathbf{F}_{\mathbf{S 5 ^ { 2 }}}$ be the class of finite rooted $\mathbf{S} 5^{2}$-frames modulo isomorphism Recall that for $\mathcal{F}, \mathcal{G} \in \mathbf{F}_{\mathbf{S 5}^{2}}$ we put

$$
\mathcal{F} \leq \mathcal{G} \text { iff } \mathcal{F} \text { is a } p \text {-morphic image of } \mathcal{G}
$$

It is routine to check that \leq is a partial order on $\mathbf{F}_{\mathbf{S 5}}{ }^{2}$. We write $\mathcal{F}<\mathcal{G}$ if $\mathcal{F} \leq \mathcal{G}$ and $\mathcal{G} \not \leq \mathcal{F}$. Then $\mathcal{F}<\mathcal{G}$ implies $|\mathcal{F}|<|\mathcal{G}|$ and we see that there are no infinite descending chains in $\left(\mathbf{F}_{\mathbf{S 5}{ }^{2}},<\right)$. Thus, for any non-empty $A \subseteq \mathbf{F}_{\mathbf{S 5}^{2}}$, the set $\min (A)$ of $<$-minimal elements of A is non-empty, and indeed for any $\mathcal{G} \in A$ there is an $\mathcal{F} \in \min (A)$ such that $\mathcal{F} \leq \mathcal{G}$.

Now we again apply the technique of frame-based formulas to show that every normal extension of $\mathbf{S} 5^{2}$ is axiomatizable by Jankov-Fine formulas. Since every normal extension of $\mathbf{S} \mathbf{5}^{2}$ has the finite model property, instead of considering the finitely generated rooted descriptive frames, as in the case of intermediate logics (see Chapter 3), we restrict ourselves to finite rooted $\mathbf{S 5}{ }^{2}$-frames. In order to make this chapter more self-contained we supply proofs for the next results, even though they can be easily derived from the results of Section 3.4.

Let L be a proper normal extension of $\mathbf{S 5}{ }^{2}$. By completeness of $\mathbf{S} 5^{2}$ with respect to $\mathbf{F}_{\mathbf{S} 5^{2}}$, the set $\mathbf{F}_{\mathbf{S 5 ^ { 2 }}} \backslash \mathbf{F}_{L}$ is non-empty. Let $\mathbf{M}_{L}=\min \left(\mathbf{F}_{\mathbf{S} 5^{2}} \backslash \mathbf{F}_{L}\right)$. Note that \mathbf{M}_{L} is a shorthand of $\mathbf{M}(L, \leq)$ used in Section 3.4.
8.1.1. Theorem. For any proper normal extension L of $\mathbf{S} 5^{2}$ and $\mathcal{G} \in \mathbf{F}_{\mathbf{S 5}^{2}}$, $\mathcal{G} \in \mathbf{F}_{L}$ iff no $\mathcal{F} \in \mathbf{M}_{L}$ is a p-morphic image of \mathcal{G}.

Proof. Let $\mathcal{G} \in \mathbf{F}_{L}$. Then since p-morphisms preserve validity of formulas, every p-morphic image of \mathcal{G} belongs to \mathbf{F}_{L} and hence can not be in \mathbf{M}_{L}. Conversely, if $\mathcal{G} \in \mathbf{F}_{\mathbf{S 5}{ }^{2}} \backslash \mathbf{F}_{L}$ then there is $\mathcal{F} \in \mathbf{M}_{L}$ such that $\mathcal{F} \leq \mathcal{G}$; that is, \mathcal{F} is a p-morphic image of \mathcal{G}.
8.1.2. Theorem. Every proper normal extension L of $\mathbf{S 5}^{2}$ is axiomatizable by the axioms of $\mathbf{S} 5^{2}$ plus $\left\{\chi(\mathcal{F}): \mathcal{F} \in \mathbf{M}_{L}\right\}$.

Proof. Let $\mathcal{G} \in \mathbf{F}_{\mathbf{S 5} 5^{2}}$. Then by Theorem 8.1.1, $\mathcal{G} \in \mathbf{F}_{L}$ iff there is no $\mathcal{F} \in \mathbf{M}_{L}$ with $\mathcal{F} \leq \mathcal{G}$, iff (by Theorem 7.1.10) there is no $\mathcal{F} \in \mathbf{M}_{L}$ with $\mathcal{G} \not \vDash \chi(\mathcal{F})$, iff $\mathcal{G} \models \chi(\mathcal{F})$ for all $\mathcal{F} \in \mathbf{M}_{L}$. Thus, $\mathcal{G} \models\left\{\chi(\mathcal{F}): \mathcal{F} \in \mathbf{M}_{L}\right\}$ iff $\mathcal{G} \in \mathbf{F}_{L}$.

Let L^{\prime} be the logic axiomatized by the axioms of $\mathbf{S} 5^{2}$ plus $\left\{\chi(\mathcal{F}): \mathcal{F} \in \mathbf{M}_{L}\right\}$. From the above it is clear that $\mathbf{F}_{L^{\prime}}=\mathbf{F}_{L}$. But L (resp. L^{\prime}) is sound and complete with respect to \mathbf{F}_{L} (resp. $\mathbf{F}_{L^{\prime}}$). So, $L^{\prime}=L$.

It follows that a proper normal extension L of $\mathbf{S} \mathbf{5}^{2}$ is finitely axiomatizable whenever \mathbf{M}_{L} is finite. We now proceed to show that \mathbf{M}_{L} is indeed finite for every proper normal extension L of $\mathbf{S} 5^{2}$.

Fix a proper normal extension L of $\mathbf{S} 5^{2}$. Since $\mathbf{S} 5^{2}$ is complete with respect to $\{\mathbf{n} \times \mathbf{n}: n \geq 1\}$ (see Theorem 6.1.10), there is $n \geq 1$ such that $\mathbf{n} \times \mathbf{n} \notin \mathbf{F}_{L}$. Let $n(L)$ be the least such.
8.1.3. Lemma. Let L be as above, and write n for $n(L)$.

1. If $\mathcal{G} \in \mathbf{F}_{L}$, then $d_{1}(\mathcal{G})<n$ or $d_{2}(\mathcal{G})<n$.
2. If $\mathcal{G} \in \mathbf{M}_{L}$, then $d_{1}(\mathcal{G}) \leq n$ or $d_{2}(\mathcal{G}) \leq n$.

Proof.

1. If $\mathcal{G} \in \mathbf{F}_{L}$ and $d_{1}(\mathcal{G}) \geq n$ and $d_{2}(\mathcal{G}) \geq n$, then by Lemma $6.2 .2, \mathbf{n} \times \mathbf{n}$ is a p-morphic image of \mathcal{G}. So, $\mathbf{n} \times \mathbf{n} \in \mathbf{F}_{L}$, a contradiction. ${ }^{1}$
2. If $\mathcal{G} \in \mathbf{M}_{L}$ and both depths of \mathcal{G} are greater than n, then again $\mathbf{n} \times \mathbf{n}$ is a p-morphic image of \mathcal{G}. Therefore, $\mathbf{n} \times \mathbf{n}<\mathcal{G}$. However, \mathcal{G} is a minimal element of $\mathbf{F}_{\mathbf{S} 5^{2}} \backslash \mathbf{F}_{L}$, implying that $\mathbf{n} \times \mathbf{n}$ belongs to \mathbf{F}_{L}, which is false.
8.1.4. Corollary. \mathbf{M}_{L} is finite iff $\left\{\mathcal{F} \in \mathbf{M}_{L}: d_{i}(\mathcal{F})=k\right\}$ is finite for every $k \leq n(L)$ and $i=1,2$.

Proof. By Lemma 8.1.3, $\mathbf{M}_{L}=\bigcup_{k \leq n(L)}\left\{\mathcal{F} \in \mathbf{M}_{L}: d_{1}(\mathcal{F})=k\right\} \cup \bigcup_{k \leq n(L)}\{\mathcal{F} \in$ $\left.\mathbf{M}_{L}: d_{2}(\mathcal{F})=k\right\}$. Thus, \mathbf{M}_{L} is finite if and only if $\left\{\mathcal{F} \in \mathbf{M}_{L}: d_{i}(\mathcal{F})=k\right\}$ is finite for every $k \leq n(L)$ and $i=1,2$.

[^28]Since \mathbf{M}_{L} is a \leq-antichain in $\mathbf{F}_{\mathbf{S 5 ^ { 2 }}}$, to show that $\left\{\mathcal{F} \in \mathbf{M}_{L}: d_{i}(\mathcal{F})=k\right\}$ is finite for every $k \leq n(L)$ and $i=1,2$, it is enough to prove that for any k, the set $\left\{\mathcal{F} \in \mathbf{F}_{\mathbf{S} 5^{2}}: d_{i}(\mathcal{F})=k\right\}$ does not contain an infinite \leq-antichain. Without loss of generality we can consider the case when $i=2$.

Fix $k \in \omega$. For every $n \in \omega$ let \mathcal{M}_{n} denote the set of all $n \times k$ matrices $^{2}\left(m_{i j}\right)$ with coefficients in $\omega(i<n, j<k)$. Let $\mathcal{M}=\bigcup_{n \in \omega} \mathcal{M}_{n}$. Define \preccurlyeq on \mathcal{M} by putting $\left(m_{i j}\right) \preccurlyeq\left(m_{i j}^{\prime}\right)$ if we have $\left(m_{i j}\right) \in \mathcal{M}_{n},\left(m_{i j}^{\prime}\right) \in \mathcal{M}_{n^{\prime}}, n \leq n^{\prime}$, and there is a surjection $f: n^{\prime} \rightarrow n$ such that $m_{f(i) j} \leq m_{i j}^{\prime}$ for all $i<n^{\prime}$ and $j<k$. It is easy

Let $\mathbf{F}_{\mathbf{S} 5^{2}}^{k}=\left\{\mathcal{F} \in \mathbf{F}_{\mathbf{S} 5^{2}}: d_{2}(\mathcal{F})=k\right\}$. For each $\mathcal{F} \in \mathbf{F}_{\mathbf{S} 5^{2}}^{k}$ we fix enumerations F_{0}, \ldots, F_{n-1} of the E_{1}-clusters of \mathcal{F} (where $n=d_{1}(\mathcal{F})$) and F^{0}, \ldots, F^{k-1} of the E_{2}-clusters of \mathcal{F}. Define a map $H: \mathbf{F}_{\mathbf{S 5}^{2}}^{k} \rightarrow \mathcal{M}$ by putting $H(\mathcal{F})=\left(m_{i j}\right)$ if $\left|F_{i} \cap F^{j}\right|=m_{i j}$ for $i<d_{1}(\mathcal{F})$ and $j<k$. As $\mathcal{F} \in \mathbf{F}_{\mathbf{S 5}^{2}}$, it follows that $m_{i j}>0$ for each such i, j. Recall that a map $f: P \rightarrow P^{\prime}$ between ordered sets (P, \leq) and $\left(P^{\prime} \leq^{\prime}\right)$ is order reflecting if $f(w) \leq^{\prime} f(v)$ implies $w \leq v$ for any $w, v \in P$.
8.1.5. Lemma. $H:\left(\mathbf{F}_{\mathbf{S 5}^{2}}^{k}, \leq\right) \rightarrow(\mathcal{M}, \preccurlyeq)$ is an order-reflecting injection.

Proof. Since $\mathbf{F}_{\mathbf{S 5} 5^{2}}$ consists of non-isomorphic frames, H is one-one. Now let $\mathcal{F}=\left(W, E_{1}, E_{2}\right), \mathcal{G}=\left(U, S_{1}, S_{2}\right), \mathcal{F}, \mathcal{G} \in \mathbf{F}_{\mathbf{S} 5^{2}}^{k}$, and $\left(m_{i j}\right),\left(m_{i j}^{\prime}\right) \in \mathcal{M}$ be such that $H(\mathcal{F})=\left(m_{i j}\right), H(\mathcal{G})=\left(m_{i j}^{\prime}\right)$, and $\left(m_{i j}\right) \preccurlyeq\left(m_{i j}^{\prime}\right)$. We need to show that $\mathcal{F} \leq \mathcal{G}$. Suppose $\left(m_{i j}\right) \in \mathcal{M}_{n}$ and $\left(m_{i j}^{\prime}\right) \in \mathcal{M}_{n^{\prime}}$. Then there is surjective $f: n^{\prime} \rightarrow n$ such that $m_{f(i) j} \leq m_{i j}^{\prime}$ for $i<n^{\prime}$ and $j<k$. Then $\left|G_{i} \cap G^{j}\right| \geq\left|F_{f(i)} \cap F^{j}\right|>0$ for any $i<n^{\prime}$ and $j<k$. Hence there exists a surjection $h_{i}^{j}: G_{i} \cap G^{j} \rightarrow F_{f(i)} \cap F^{j}$. Define $h: U \rightarrow W$ by putting $h(u)=h_{i}^{j}(u)$, where $i<n^{\prime}, j<k$, and $u \in G_{i} \cap G^{j}$. It is obvious that h is well defined and onto.

Now we show that h is a p-morphism. If $u S_{1} v$, then $u, v \in G_{i}$ for some $i<n^{\prime}$. Therefore, $h(u), h(v) \in F_{f(i)}$, and so $h(u) E_{1} h(v)$. Analogously, if $u S_{2} v$, then $u, v \in G^{j}$ for some $j<k, h(u), h(v) \in F^{j}$, and so $h(u) E_{2} h(v)$. Now suppose $u \in G_{i} \cap G^{j}$ for some $i<n^{\prime}$ and $j<k$. If $h(u) E_{2} h(v)$, then $h(u), h(v) \in F^{j}$ and $v \in G^{j}$. As both u and v belong to G^{j} it follows that $u S_{2} v$. Finally, if $h(u) E_{1} h(v)$, then $h(u) \in F_{f(i)} \cap F^{j}$ and $h(v) \in F_{f(i)} \cap F^{j^{\prime}}$, for some $j^{\prime}<k$. Therefore, there exists $z \in G_{i} \cap G^{j^{\prime}}$ (since $z \in G_{i}$ we have $u S_{1} z$) such that $h(z)=h(v)$. Thus, h is an onto p-morphism, implying that $\mathcal{F} \leq \mathcal{G}$. Thus, H is order reflecting.
8.1.6. Corollary. If $\Delta \subseteq \mathbf{F}_{\mathbf{S 5}^{2}}^{k}$ is a \leq-antichain, then $H(\Delta) \subseteq \mathcal{M}$ is $a \preccurlyeq$ antichain.

Proof. Immediate.
Now we will show that there are no infinite \preccurlyeq-antichains in \mathcal{M}. For this we define a quasi-order \sqsubseteq on \mathcal{M} included in \preccurlyeq and show that there are no infinite

[^29]\sqsubseteq-antichains in \mathcal{M}. To do so we first introduce two quasi-orders \sqsubseteq_{1} and \sqsubseteq_{2} on \mathcal{M} and then define \sqsubseteq as the intersection of these quasi-orders. For $\left(m_{i j}\right) \in \mathcal{M}_{n}$ and $\left(m_{i j}^{\prime}\right) \in \mathcal{M}_{n^{\prime}}$, we say that:

- $\left(m_{i j}\right) \sqsubseteq_{1}\left(m_{i j}^{\prime}\right)$ if there is a one-one order-preserving map $\varphi: n \rightarrow n^{\prime}$ (i.e., $i<i^{\prime}<n$ implies $\left.\varphi(i)<\varphi\left(i^{\prime}\right)\right)$ such that $m_{i j} \leq m_{\varphi(i) j}^{\prime}$ for all $i<n$ and $j<k$;
- $\left(m_{i j}\right) \sqsubseteq_{2}\left(m_{i j}^{\prime}\right)$ if there is a map $\psi: n^{\prime} \rightarrow n$ such that $m_{\psi(i) j} \leq m_{i j}^{\prime}$ for all $i<n^{\prime}$ and $j<k$.

Let \sqsubseteq be the intersection of \sqsubseteq_{1} and \sqsubseteq_{2}.
8.1.7. Lemma. For any $\left(m_{i j}\right),\left(m_{i j}^{\prime}\right) \in \mathcal{M}$, if $\left(m_{i j}\right) \sqsubseteq\left(m_{i j}^{\prime}\right)$, then $\left(m_{i j}\right) \preccurlyeq\left(m_{i j}^{\prime}\right)$.

Proof. Suppose $\left(m_{i j}\right) \in \mathcal{M}_{n}$ and $\left(m_{i j}^{\prime}\right) \in \mathcal{M}_{n^{\prime}}$. If $\left(m_{i j}\right) \sqsubseteq\left(m_{i j}^{\prime}\right)$, then $\left(m_{i j}\right) \sqsubseteq_{1}$ $\left(m_{i j}^{\prime}\right)$ and $\left(m_{i j}\right) \sqsubseteq_{2}\left(m_{i j}^{\prime}\right)$. By $\left(m_{i j}\right) \sqsubseteq_{1}\left(m_{i j}^{\prime}\right)$ there is a one-one order-preserving map $\varphi: n \rightarrow n^{\prime}$ with $m_{i j} \leq m_{\varphi(i) j}^{\prime}$ for all $i<n$ and $j<k$; and by $\left(m_{i j}\right) \sqsubseteq_{2}\left(m_{i j}^{\prime}\right)$ there is a map $\psi: n^{\prime} \rightarrow n$ such that $m_{\psi(i) j} \leq m_{i j}^{\prime}$ for all $i<n^{\prime}$ and $j<k$. Let $\operatorname{rng}(\varphi)=\{\varphi(i): i<n\}$. Define $f: n^{\prime} \rightarrow n$ by putting

$$
f(i)= \begin{cases}\varphi^{-1}(i), & \text { if } i \in \operatorname{rng}(\varphi) \\ \psi(i), & \text { otherwise }\end{cases}
$$

Then f is a surjection. Moreover, for $i<n^{\prime}$ and $j<k$, if $i \in \operatorname{rng}(\varphi)$, then $m_{f(i) j}=m_{\varphi^{-1}(i) j} \leq m_{i j}^{\prime}$ by the definition of \sqsubseteq_{1}; and if $i \notin \operatorname{rng}(\varphi)$, then $m_{f(i) j}=$ $m_{\psi(i) j} \leq m_{i j}^{\prime}$ by the definition of \sqsubseteq_{2}. Therefore, $m_{f(i) j} \leq m_{i j}^{\prime}$ for all $i<n^{\prime}$ and $j<k$. Thus, $\left(m_{i j}\right) \preccurlyeq\left(m_{i j}^{\prime}\right)$.

Thus, it is left to show that there are no infinite \sqsubseteq-antichains in \mathcal{M}. For this we use the theory of better-quasi-orderings (bqos). Our main source of reference is Laver [85].

For any set $X \subseteq \omega$ let $[X]^{<\omega}=\{Y \subseteq X:|Y|<\omega\}$, and for $n<\omega$ let $[X]^{n}=\{Y \subseteq X:|Y|=n\}$. We say that Y is an initial segment of X if there is $n \in \omega$ such that $Y=\{x \in X: x \leq n\}$.
8.1.8. Definition. Let X be an infinite subset of ω. We say that $\mathcal{B} \subseteq[X]^{<\omega}$ is a barrier on X if $\emptyset \notin \mathcal{B}$ and:

- for every infinite $Y \subseteq X$, there is an initial segment of Y in \mathcal{B};
- \mathcal{B} is an antichain with respect to \subseteq.

A barrier is a barrier on some infinite $X \subseteq \omega$.
Note that for any $n \geq 1,[\omega]^{n}$ is a barrier on ω.

8.1.9. DEfinition.

1. If s, t are finite subsets of ω, we write $s \triangleleft t$ to mean that there are $i_{1}<$ $\ldots<i_{k}$ and $j(1 \leq j<k)$ such that $s=\left\{i_{1}, \ldots, i_{j}\right\}$ and $t=\left\{i_{2}, \ldots, i_{k}\right\}$.
2. Given a barrier \mathcal{B} and a quasi-ordered set (Q, \leq), we say that a map f : $\mathcal{B} \rightarrow Q$ is good if there are $s, t \in \mathcal{B}$ such that $s \triangleleft t$ and $f(s) \leq f(t)$.
3. Let (Q, \leq) be a quasi-order. We call \leq a better-quasi-ordering (bqo) if for every barrier \mathcal{B}, every map $f: \mathcal{B} \rightarrow Q$ is good.

Now we recall basic constructions and properties of bqos.
8.1.10. Proposition. If (Q, \leq) is a bqo, there are no infinite \leq-antichains in Q.

Proof. Let $\left(\xi_{n}\right)_{n \in \omega}$ be an infinite sequence of distinct elements of Q. As we pointed out, $\mathcal{B}=[\omega]^{1}=\{\{n\}: n<\omega\}$ is a barrier. Define a map $\theta: \mathcal{B} \rightarrow Q$ by $\theta(\{n\})=\xi_{n}$. Since (Q, \leq) is a bqo, θ is good. Therefore, there are $\{n\},\{m\} \in \mathcal{B}$ such that $\{n\} \triangleleft\{m\}$ (i.e., $n<m$) and $\xi_{n} \leq \xi_{m}$. So, no infinite subset of Q forms $\mathrm{a} \leq$-antichain.

We write $O n$ for the class of all ordinals. Let (Q, \leq) be a quasi-order. Define \leq^{*} on the class $\bigcup_{\alpha \in O n} Q^{\alpha}$, and on any set contained in it, by $\left(x_{i}\right)_{i<\alpha} \leq^{*}\left(y_{i}\right)_{i<\beta}$ if there is a one-one order-preserving map $\varphi: \alpha \rightarrow \beta$ such that $x_{i} \leq y_{\varphi(i)}$ for all $i<\alpha$.

Let $\mathcal{P}(Q)$ be the power set of Q. The order \leq can be extended to $\mathcal{P}(Q)$ as follows: For $\Gamma, \Delta \in \mathcal{P}(Q)$, we say that $\Gamma \leq \Delta$ if for all $\delta \in \Delta$ there is $\gamma \in \Gamma$ with $\gamma \leq \delta$. Recall that $\left(P, \leq^{\prime}\right)$ is a suborder of (Q, \leq) if $P \subseteq Q$ and $\leq^{\prime}=\leq \cap P^{2}$.

8.1.11. Theorem.

1. (ω, \leq) is a bqo.
2. Any suborder of a bqo is a bqo.
3. If \leq and \leq^{\prime} are bqos on Q, then $\leq \cap \leq^{\prime}$ is also a bqo on Q.
4. If (Q, \leq) is a bqo, then $\left(\bigcup_{\alpha \in O n} Q^{\alpha}, \leq^{*}\right)$ is also a (proper class) bqo. Hence, by (2), its suborders $\left(Q^{k}, \leq^{*}\right)$ and $\left(\bigcup_{n<\omega} Q^{n}, \leq^{*}\right)$ are bqos.
5. If (Q, \leq) is a bqo, then $(\mathcal{P}(Q), \leq)$ is a bqo.

Proof. (1) follows from Lemma 1.2 of [85]. (2) is trivial.
(3): By [85, Lemma 1.8], $\left(Q \times Q, \leq \otimes \leq^{\prime}\right)$ is a bqo, where we define $\left(x, x^{\prime}\right) \leq \Delta^{\prime}$ $\left(y, y^{\prime}\right)$ iff $x \leq y$ and $x^{\prime} \leq^{\prime} y^{\prime}$. By (2), its suborder $\left(\{(q, q): q \in Q\}, \leq \otimes \leq^{\prime}\right)$ is also a bqo, and this is isomorphic to ($Q, \leq \cap \leq^{\prime}$).
(4) See [85, Theorem 1.10].
(5) Finally to show $(\mathcal{P}(Q), \leq)$ is a bqo we adapt the proof of Lemma 1.3 of [85]. Let \mathcal{B} be a barrier and consider $f: \mathcal{B} \rightarrow \mathcal{P}(Q)$. Suppose f is not good. Then for each $s, t \in \mathcal{B}$ with $s \triangleleft t$ we have $f(s) \not \leq f(t)$. Let $\mathcal{B}(2)=\{s \cup t: s, t \in \mathcal{B}$ and $s \triangleleft t\}$. Thus for every element $s \cup t \in \mathcal{B}(2)$ there is an element $\delta_{s t} \in f(t)$ such that for every $\gamma \in f(s)$ we have $\gamma \not \leq \delta_{s t}$.

Define a map $h: \mathcal{B}(2) \rightarrow Q$ by putting $h(s \cup t)=\delta_{s t}$ for every $s \cup t \in \mathcal{B}(2)$. It is easy to see that h is well defined. It is known (see, e.g., [85, p. 35]) that $\mathcal{B}(2)$ is a barrier. Since (Q, \leq) is a bqo, h is good, so there exist $s \cup t, s^{\prime} \cup t^{\prime} \in \mathcal{B}(2)$ with $s \cup t \triangleleft s^{\prime} \cup t^{\prime}$ and $h(s \cup t) \leq h\left(s^{\prime} \cup t^{\prime}\right)$. It is easy to check (see [85, p. 35]) that $t=s^{\prime}$. But now $\delta_{s^{\prime} t^{\prime}}=h\left(s^{\prime} \cup t^{\prime}\right) \geq h(s \cup t) \in f(t)=f\left(s^{\prime}\right)$. This contradicts the definition of $\delta_{s^{\prime} t^{\prime}}$, hence f is good and therefore ($\left.\mathcal{P}(Q), \leq\right)$ is a bqo.
8.1.12. Remark. A quasi-order \leq on a set Q is called a well-quasi-ordering (wqo) if for any sequence $\left(x_{i}\right)_{i<\omega}$ in Q there exist $i<j<\omega$ with $x_{i} \leq x_{j}$. As we said in the introduction to this chapter, wqos have been used to prove finite axiomatizability results in modal logic on many previous occasions. The following facts are known about them (see e.g. [85]):

1. Any bqo is a wqo.
2. If \leq and \leq^{\prime} are wqos on Q, then $\leq \cap \leq^{\prime}$ is also a wqo on Q.
3. (Higman's Lemma, proved in [63]) If (Q, \leq) is a wqo then $\left(\bigcup_{n \in \omega} Q^{n}, \leq^{*}\right)$ is also a wqo.

An example of a wqo (Q, \leq) for which $\left(\bigcup_{\alpha \in O n} Q^{\alpha}, \leq^{*}\right)$ is not a wqo, was constructed by Rado [104]: let $Q=\{(i, j): i<j<\omega\}$, ordered by $(i, j) \leq(k, l)$ iff either $i=k$ and $j \leq l$, or else $i, j<k$. This is a wqo on Q. Now for $i<\omega$ let ξ_{i} be the sequence $((i, i+1),(i, i+2), \ldots)$. Then $\xi_{i} \not \mathbb{Z}^{*} \xi_{j}$ for all $i<j<\omega$. This example can be used to show that for a wqo (Q, \leq), in general $(\mathcal{P}(Q), \leq)$ fails to be a wqo, even if we restrict to finite subsets of Q (see also the discussion on p. 33 of [85]). This failure is why we use bqos and not wqos here.

By Proposition 8.1.10, to show that there are no \sqsubseteq-antichains in \mathcal{M} it suffices to show that $(\mathcal{M}, \sqsubseteq)$ is a bqo. It follows from Theorem 8.1.11(3) that the intersection of two bqos is again a bqo. Hence, it is enough to prove that $\left(\mathcal{M}, \sqsubseteq_{1}\right)$ and $\left(\mathcal{M}, \sqsubseteq_{2}\right)$ are bqos.
8.1.13. Lemma. $\left(\mathcal{M}, \sqsubseteq_{1}\right)$ is a bqo.

Proof. By Theorem 8.1.11(1), (ω, \leq) is a bqo. By Theorem 8.1.11(4), $\left(\omega^{k}, \leq^{*}\right)$ is also a bqo. Note that ω^{k} is the set of all k-tuples of natural numbers. It follows from the definition of \leq^{*} that $\left(m_{1}, \ldots, m_{k}\right) \leq^{*}\left(m_{1}^{\prime}, \ldots, m_{k}^{\prime}\right)$ iff $m_{i} \leq m_{i}^{\prime}$, for every $i \leq k$. Then $\left(\omega^{k}\right)^{n}$ is the set of all matrices with coefficients in ω that have n rows and k columns. Now, by spelling out the definition of $\leq^{* *}$ we obtain that for $(m)_{i j} \in\left(\omega^{k}\right)^{n}$ and $(m)_{i j}^{\prime} \in\left(\omega^{k}\right)^{n^{\prime}}$, we have $(m)_{i j} \leq^{* *}(m)_{i j}^{\prime}$ iff there is a one-one order-preserving map $\varphi: n \rightarrow n^{\prime}$ such that $\left(m_{i 1}, \ldots,,_{i k}\right) \leq^{*}\left(m_{\varphi(i) 1}, \ldots, m_{\varphi(i) k}\right)$, which means that for each $j \leq k$, we have $m_{i j} \leq m_{\varphi(i) j}$. Therefore, $(m)_{i j} \sqsubseteq_{1}(m)_{i j}^{\prime}$ and $\left(\mathcal{M}, \sqsubseteq_{1}\right) \cong\left(\bigcup_{n<\omega}\left(\omega^{k}\right)^{n}, \leq^{* *}\right)$. By Theorem 8.1.11(4), $\left(\bigcup_{n<\omega}\left(\omega^{k}\right)^{n}, \leq^{* *}\right)$ is a bqo, implying that $\left(\mathcal{M}, \sqsubseteq_{1}\right)$ is a bqo as well. ${ }^{3}$

It remains to show that $\left(\mathcal{M}, \sqsubseteq_{2}\right)$ is a bqo.
8.1.14. Lemma. $\left(\mathcal{M}, \sqsubseteq_{2}\right)$ is a bqo.

Proof. For a matrix $\left(m_{i j}\right) \in \mathcal{M}_{n}$ let $m_{i}=\left(m_{i 0}, \ldots, m_{i k-1}\right)$ denote the i-th row of $\left(m_{i j}\right)$. Note that each row of $\left(m_{i j}\right)$ is a $1 \times k$ matrix, and so $m_{i} \in \mathcal{M}_{1}$ for any $i<n$. We write $\operatorname{row}\left(m_{i j}\right)$ for the set $\left\{m_{i}: i<n\right\}$. Obviously, $\operatorname{row}\left(m_{i j}\right) \in$ $\mathcal{P}\left(\mathcal{M}_{1}\right) \subseteq \mathcal{P}(\mathcal{M})$. Consider an arbitrary barrier \mathcal{B} and a map $f: \mathcal{B} \rightarrow \mathcal{M}$. We need to show that f is good with respect to \sqsubseteq_{2}. Define $g: \mathcal{B} \rightarrow \mathcal{P}(\mathcal{M})$ by $g(s)=\operatorname{row}(f(s))$. Since $\left(\mathcal{M}, \sqsubseteq_{1}\right)$ is a bqo, by Theorem 8.1.11(5), $\left(\mathcal{P}(\mathcal{M}), \sqsubseteq_{1}\right)$ is also a bqo. Hence, there are $s, t \in \mathcal{B}$ such that $s \triangleleft t$ and $g(s) \sqsubseteq_{1} g(t)$. Therefore, for each $\delta \in g(t)$ there is $\gamma \in g(s)$ with $\gamma \sqsubseteq_{1} \delta$.

Now we show that $f(s) \sqsubseteq_{2} f(t)$. Write $\left(m_{i j}\right)$ for $f(s)$ and $\left(m_{i j}^{\prime}\right)$ for $f(t)$. Suppose that $\left(m_{i j}\right) \in \mathcal{M}_{n}$ and $\left(m_{i j}^{\prime}\right) \in \mathcal{M}_{n^{\prime}}$. We define $\psi: n^{\prime} \rightarrow n$ as follows. Let $i<n^{\prime}$. Then $m_{i}^{\prime} \in g(t)$. By the above, we may choose $\psi(i)<n$ such that $m_{\psi(i)} \sqsubseteq_{1} m_{i}^{\prime}$. This defines ψ, and we have $m_{\psi(i) j} \leq m_{i j}^{\prime}$ for any $i<n^{\prime}$ and $j<k$. Thus, $f(s) \sqsubseteq_{2} f(t), f$ is a good map, and so $\left(\mathcal{M}, \sqsubseteq_{2}\right)$ is a bqo.

It follows that $(\mathcal{M}, \sqsubseteq)$ is a bqo. Therefore, there are no infinite \sqsubseteq-antichains in \mathcal{M}. Thus, by Lemma 8.1.7, there are no infinite $\preccurlyeq-$ antichains in \mathcal{M}.

Now we are in a position to prove the first main result of this chapter, which was obtained jointly with I. Hodkinson, see [16, Theorem 3.16].

8.1.15. THEOREM. Every normal extension of $\mathbf{S 5}^{2}$ is finitely axiomatizable.

Proof. Clearly, $\mathbf{S 5}^{2}$ is finitely axiomatizable. Suppose L is a proper normal extension of $\mathbf{S} \mathbf{5}^{2}$. Then, by Theorem 8.1.2, L is axiomatizable by the $\mathbf{S} \mathbf{5}^{2}$ axioms plus $\left\{\chi(\mathcal{F}): \mathcal{F} \in \mathbf{M}_{L}\right\}$. Since there are no infinite \preccurlyeq-antichains in \mathcal{M}, by Corollary 8.1.6, there are no infinite antichains in $\mathbf{F}_{\mathbf{S} 5^{2}}^{k}$, for each $k \in \omega$. Therefore, $\left\{\mathcal{F} \in \mathbf{M}_{L}: d_{i}(\mathcal{F})=k\right\}$ is finite for every $k \leq n(L)$ and $i=1,2$. Thus, \mathbf{M}_{L} is finite by Corollary 8.1.4. It follows that L is finitely axiomatizable.

[^30]8.1.16. Corollary. The lattice of normal extensions of $\mathbf{S} 5^{2}$ is countable.

Proof. This immediately follows from Theorem 8.1.15 since there are only countably many finitely axiomatizable normal extensions of $\mathbf{S 5}$.

8.1.17. Corollary.

1. Every subvariety of $\mathbf{D f}_{2}$ is finitely axiomatizable.
2. The lattice of subvarieties of $\mathbf{D f}_{2}$ is countable.
8.1.18. Remark. Note that Theorem 8.1.15 and Corollaries 8.1.16 and 8.1.17 show one more difference between the diagonal free case and the case with the diagonal. As follows from Theorem 7.1.14 $\mathbf{C M L}_{2}$ and $\mathbf{P C M L}_{2}$, (resp. $\mathbf{C A}_{2}$ and $\mathbf{R C A}_{2}$) have continuum many normal extensions (resp. subvarieties) and continuum many of them are not finitely axiomatizable.

8.2 The poly-size model property

In this section we prove that every proper normal extension of $\mathbf{S} 5^{2}$ has the polysize model property. First we introduce some terminology.

Recall from Theorem 6.3.2 that for every proper normal extension L of $\mathbf{S} \mathbf{5}^{2}$, we have that $\mathbf{F}_{L}=\mathbf{F}_{1} \uplus \mathbf{F}_{2} \uplus \mathbf{F}_{3}$, where $d_{1}\left(\mathbf{F}_{2}\right), d_{2}\left(\mathbf{F}_{1}\right), d_{1}\left(\mathbf{F}_{3}\right)$ and $d_{2}\left(\mathbf{F}_{3}\right)$ are bounded by some natural number n. Now we introduce the following parameters: for $i \in\{1,2\}, k \in\{1,2,3\}$, let $p_{i}^{k}=d_{i}\left(\mathbf{F}_{k}\right)$. The parameter p_{i}^{k} gives the E_{i}-depth of the class \mathbf{F}_{k}. We call a parameter finite, if it is not ω. Note that the only parameters which may be infinite are p_{1}^{1} and p_{2}^{2}. Let $b(L)$ denote the maximum between all the finite parameters of L, and call it the bound of L. Note that if p_{1}^{1} and p_{2}^{2} are ω, then $b(L)=n$, where n is the minimal natural number such that $\mathbf{n} \times \mathbf{n} \notin \mathbf{F}_{L}$.

Let $|\phi|$ denote the modal size of the formula ϕ, that is the number of subformulas of ϕ of the form $\nabla_{1} \psi$ and $\nabla_{2} \chi$. Recall that a polynomial $P(n)$ is said to be of degree k if n^{k} occurs in $P(n)$ and n^{m} does not occur in $P(n)$ for any $m>k$.
8.2.1. Theorem. Let L be a proper normal extension of $\mathbf{S 5}^{2}$ with bound $b(L)$. Then every L-satisfiable formula ϕ is satisfiable in an L-frame of size $P(|\phi|)$, for $P(|\phi|)$ a polynomial of degree $b(L)+1$. Moreover, if all the parameters of L are finite, then $P(|\phi|)$ is just linear in $|\phi|$.

In the proof we create small models from large ones taking care that 1) the frame of the small model is still a frame of the logic, and 2) certain formulas are still satisfied in the small model. For this we will need two lemmas proved below. For the first part we use Lemma 8.2.2, for the latter part we use Lemma 8.2.3.
8.2.2. Lemma. Let $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ be a finite $\mathbf{S} 5^{2}$-frame and Q an equivalence relation on W. If either of the following three cases (1), (2a), (2b) holds, then Q is a bisimulation equivalence and $f_{Q}: W \rightarrow W / B$ is a p-morphism from \mathcal{F} onto \mathcal{F} / Q.

1. $Q \subseteq E_{0}$ (that is, Q identifies only points from E_{0}-clusters).
(2a). $Q \subseteq E_{2}$ and $u Q v$ implies that for every $u^{\prime} \in E_{1}(u)$ there exists some $v^{\prime} \in$ $E_{1}(v)$ with $u^{\prime} Q v^{\prime}$.
(2b). $Q \subseteq E_{1}$ and $u Q v$ implies that for every $u^{\prime} \in E_{2}(u)$ there exists some $v^{\prime} \in$ $E_{2}(v)$ with $u^{\prime} Q v^{\prime}$.

Proof. The proof is a routine verification.
8.2.3. Lemma. For any proper normal extension L of $\mathbf{S 5}^{2}$, if ϕ is L-satisfiable, then it is satisfiable in an L-frame $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ such that

$$
|W| \leq d_{1}(\mathcal{F})|\phi|+d_{2}(\mathcal{F})|\phi|+d_{1}(\mathcal{F}) \cdot d_{2}(\mathcal{F})+1
$$

Moreover, the size of any E_{0}-cluster in \mathcal{F} is at most $|\phi|$.
Proof. Let $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$ be an L-frame satisfying formula ϕ. Then there exists a valuation V on \mathcal{F} and a point $w \in W$ such that $(\mathcal{F}, V), w \models \phi$. The next claim is the analogue of what is known as Tarski's test in first-order logic; see, e.g., Chang and Kiesler [25, Proposition 3.1.2]
8.2.4. Claim. Let $\mathfrak{M}=(\mathcal{F}, V)$ be a model based on some $\mathbf{S} 5^{2}$-frame $\mathcal{F}=$ $\left(W, E_{1}, E_{2}\right)$. Let $W^{\prime} \subseteq W$ and let $\mathfrak{M}^{\prime}=\left(W^{\prime}, E_{1}^{\prime}, E_{2}^{\prime}, V^{\prime}\right)$ be a submodel of \mathfrak{M} obtained by restricting E_{1} and E_{2} and V to W^{\prime}. Suppose W^{\prime} satisfies the next two conditions:
(i) For every $\diamond_{1} \psi \in \operatorname{Sub}(\phi)$ and E_{1}-cluster C_{i} of \mathcal{F}, if there exists $x \in C_{i}$ such that $\mathfrak{M}, x \models \psi$, then there exists $y \in C_{i} \cap W^{\prime}$ such that $\mathfrak{M}, y \models \psi$.
(ii) For every $\diamond_{2} \psi \in \operatorname{Sub}(\phi)$ and E_{2}-cluster C^{j} of \mathcal{F}, if there exists $x \in C^{j}$ such that $\mathfrak{M}, x \models \psi$, then there exists $y \in C^{j} \cap W^{\prime}$ such that $\mathfrak{M}, y \models \psi$.

Then for every $v \in W^{\prime}$ and $\psi \in \operatorname{Sub}(\phi)$, we have

$$
\mathfrak{M}, v \models \psi \text { iff } \mathfrak{M}^{\prime}, v \models \psi .
$$

Proof. We prove the claim by induction on the size of $\psi \in \operatorname{Sub}(\phi)$. The Boolean clauses are trivial. Let $\psi=\diamond_{i} \chi, i=1,2$. Then $\mathfrak{M}^{\prime}, v \models \diamond_{i \chi}$ implies that there exists $v^{\prime} \in W^{\prime}$ such that $v E_{i} v^{\prime}$ and $\mathfrak{M}^{\prime}, v^{\prime} \models \chi$. But then by the induction hypothesis $\mathfrak{M}, v^{\prime} \models \chi$, and hence $\mathfrak{M}, v \models \diamond_{i} \chi$. Conversely, $\mathfrak{M}, v \models \diamond_{i} \chi$ implies that χ is satisfied in $E_{i}(v)$. From (i) and (ii) it follows that there exists $y \in W^{\prime}$ such that $v E_{i} y$ and $y \models \chi$. But then by the induction hypothesis $\mathfrak{M}^{\prime}, y \models \chi$, and hence $\mathfrak{M}^{\prime}, v \models \diamond_{i} \chi$.

Now we will create a small satisfying model from \mathcal{F}. For every E_{1}-cluster $C_{i}(1 \leq$ $\left.i \leq d_{1}(\mathcal{F})\right)$ and every $\diamond_{1} \psi \in \operatorname{Sub}(\phi)$, we choose a point $x \in C_{i}$ such that $x \models \psi$ (if such a point exists at all). We do the same for E_{2}-clusters and $\diamond_{2} \psi \in \operatorname{Sub}(\phi)$. Moreover, if there are E_{0}-clusters of W which do not contain any selected points, we choose one point from each of them. Let W^{\prime} denote the set of all selected points plus w. (Note that if \mathcal{F} is a product-frame, then $W=W^{\prime}$.) Define the relation Q on W as follows: By the definition of W^{\prime}, for each E_{0}-cluster C_{i}^{j} of \mathcal{F} we have chosen at least one point witness $\left(C_{i}^{j}\right) \in C_{i}^{j}$ to be in W^{\prime}. Let $\mathcal{F}^{\prime}=\left(W^{\prime}, E_{1}^{\prime}, E_{2}^{\prime}\right)$ be the frame obtained by restricting E_{1} and E_{2} to W^{\prime}. Now let Q be the smallest equivalence relation which identifies the points from $C_{i}^{j} \backslash W^{\prime}$ with witness $\left(C_{i}^{j}\right)$ and define $f_{Q}: \mathcal{F} \rightarrow \mathcal{F} / Q$ by putting $f_{Q}(w)=Q(w)$ for any $w \in W$. Then it is easy to see that \mathcal{F}_{Q} is isomorphic to \mathcal{F}^{\prime}, and $Q \subseteq E_{0}$. Therefore, by Lemma 8.2.2(1), \mathcal{F}^{\prime} is (isomorphic to) a p-morphic image of \mathcal{F}. Thus, \mathcal{F}^{\prime} is also an L-frame.

Finally, consider the model $\mathfrak{M}^{\prime}=\left(\mathcal{F}^{\prime}, V^{\prime}\right)$, where V^{\prime} is the restriction of V to W^{\prime}, i.e., $V(p)=V^{\prime}(p) \cap W^{\prime}$, for every $p \in$ Prop. Then W^{\prime} satisfies the conditions of Claim 8.2.4, and so $\mathfrak{M}^{\prime}, w \models \phi$. Note, that $\left|W^{\prime}\right| \leq d_{1}(\mathcal{F})|\phi|+$ $d_{2}(\mathcal{F})|\phi|+d_{1}(\mathcal{F}) \cdot d_{2}(\mathcal{F})+1$. Indeed, there exist $d_{1}(\mathcal{F})$-many E_{1}-clusters and $d_{2}(\mathcal{F})$-many E_{2}-clusters of W. From every E_{i}-cluster, $i=1,2$, we select at most $|\phi|$ points. So, we select $\left(d_{1}(\mathcal{F})|\phi|+d_{2}(\mathcal{F})|\phi|\right)$-many points, and then from every E_{0}-cluster which does not contain any selected point, we choose an additional point. Obviously there are $d_{1}(\mathcal{F}) \cdot d_{2}(\mathcal{F})$-many E_{0}-clusters in W, hence $\left|W^{\prime}\right| \leq$ $d_{1}(\mathcal{F})|\phi|+d_{2}(\mathcal{F})|\phi|+d_{1}(\mathcal{F}) \cdot d_{2}(\mathcal{F})+1$.

Now we can prove Theorem 8.2.1.
Proof of Theorem 8.2.1. Let L be as in the theorem with bound $b(L)$. Let ϕ be L-satisfiable. Then there exist an L-frame $\mathcal{F}=\left(W, E_{1}, E_{2}\right)$, a valuation V on \mathcal{F} and $w \in W$ such that $(\mathcal{F}, V), w \models \phi$. By Lemma 8.2.3, we may assume that

$$
|W| \leq d_{1}(\mathcal{F})|\phi|+d_{2}(\mathcal{F})|\phi|+d_{1}(\mathcal{F}) \cdot d_{2}(\mathcal{F})+1 .
$$

Moreover, the size of any E_{0}-cluster in \mathcal{F} is at most $|\phi|$. Hence, every E_{1}-cluster of \mathcal{F} contains at most $d_{2}(\mathcal{F})|\phi|$ points and every E_{2}-cluster contains at most $d_{1}(\mathcal{F})|\phi|$ points. We split the proof in three cases.

Case 1: [All parameters are finite or $\mathcal{F} \in \mathbf{F}_{3}$]. In this case, $d_{1}(\mathcal{F})$ and $d_{2}(\mathcal{F})$ are both smaller than $b(L)$, whence ϕ is satisfied in a frame with at most $2 b(L)|\phi|+b(L)^{2}+1$ points, which is a linear function in $|\phi|$.

Case 2: $\left[\mathcal{F} \in \mathbf{F}_{2}\right.$ and $d_{2}(\mathcal{F})$ is unbounded $]$. Because $\mathcal{F} \in \mathbf{F}_{2}, d_{1}(\mathcal{F}) \leq b(L)$, but $d_{2}(\mathcal{F})$ is unbounded, whence the frame might be too large. We make it smaller by defining an equivalence relation Q on W, and factoring \mathcal{F} through it. To this end we say that two E_{2}-clusters C^{p} and C^{q} are equivalent if

$$
\left|C_{i} \cap C^{p}\right|=\left|C_{i} \cap C^{q}\right| \text { for all } i \text { between } 1 \text { and } d_{1}(\mathcal{F})
$$

Because the size of the E_{0}-clusters $C_{i} \cap C^{j}$ is bounded by $|\phi|$, the number of non-equivalent E_{2}-clusters is bounded by $|\phi|^{d_{1}(\mathcal{F})}$. Indeed, to every E_{2}-cluster C^{p} of \mathcal{F} corresponds the sequence of natural numbers $\bar{n}=\left(n_{1}, \ldots, n_{d_{1}(\mathcal{F})}\right)$, where $n_{1}=\left|C_{1}^{p}\right|, \ldots, n_{d_{1}(\mathcal{F})}=\left|C_{d_{1}(\mathcal{F})}^{p}\right|$. Obviously, $n_{j} \leq|\phi|$ for $1 \leq j \leq d_{1}(\mathcal{F})$, and to equivalent E_{2}-clusters correspond the same sequences. Now since there exist only $|\phi|^{d_{1}(\mathcal{F})}$-many different sequences $\bar{n}=\left(n_{1}, \ldots, n_{d_{1}(\mathcal{F})}\right)$, there exist only $|\phi|^{d_{1}(\mathcal{F})}$ many non-equivalent E_{2}-clusters.

Next we define a submodel of $\mathfrak{M}=(\mathcal{F}, V)$ which still satisfies ϕ, its underlying frame is a p-morphic image of \mathcal{F} and it is of the right (small) size.

For every E_{1}-cluster C_{i} of $\mathcal{F}\left(1 \leq i \leq d_{1}(\mathcal{F})\right)$ and every $\diamond_{1} \psi \in \operatorname{Sub}(\phi)$, we choose a point $x \in C_{i}$ such that $\mathfrak{M}, x \models \psi$ (if such a point exists at all). Denote by S the set of selected points plus w. It is easy to see that

$$
\left|E_{2}(S)\right| \leq\left(d_{1}(\mathcal{F})|\phi|+1\right) d_{1}(\mathcal{F})|\phi|
$$

Indeed, from every E_{1}-cluster we select at most $|\phi|$ points. There are $d_{1}(\mathcal{F}) E_{1^{-}}$ clusters in \mathcal{F}. So, we select points from at most $d_{1}(\mathcal{F})|\phi|+1$ different E_{2}-clusters and every E_{2}-cluster of \mathcal{F} contains at most $d_{1}(\mathcal{F})|\phi|$ points.

Now from each equivalence class of E_{2}-clusters (see above) let us choose one representative C^{p} and let W^{\prime} be $E_{2}(S)$ plus this set of representatives. For $i=1,2$, let E_{i}^{\prime} and V^{\prime} be the restrictions of E_{i} and V to W^{\prime}. Consider $\mathcal{F}^{\prime}=\left(W^{\prime}, E_{1}^{\prime}, E_{2}^{\prime}\right)$ and $\mathfrak{M}^{\prime}=\left(\mathcal{F}^{\prime}, V^{\prime}\right)$. Then W^{\prime} again satisfies the conditions of Claim 8.2.4. Therefore, $\mathfrak{M}^{\prime}, w \models \phi$. The number of points in W^{\prime} is bounded by

$$
\left|E_{2}(S)\right|+\left(|\phi|^{d_{1}(\mathcal{F})} \cdot d_{1}(\mathcal{F})|\phi|\right) \leq b(L)^{2}|\phi|^{2}+b(L)|\phi|+b(L)|\phi|^{b(L)+1}
$$

Finally, almost the same construction as in Lemma 8.2.3 will provide us with a p-morphism from \mathcal{F} to \mathcal{F}^{\prime}. For every E_{2}-cluster $C^{q} \subseteq W \backslash W^{\prime}$, let $C^{p} \subseteq W^{\prime}$ be a E_{2}-cluster which is equivalent to C^{q}. Then the E_{0}-clusters C_{i}^{p} and C_{i}^{q} contain the same number of points for every $i=1, \ldots, d_{1}(\mathcal{F})$. Suppose $C_{i}^{p}=\left\{w_{i_{1}}, \ldots, w_{i_{n_{i}}}\right\}$ and $C_{i}^{q}=\left\{v_{i_{1}}, \ldots, v_{i_{n_{i}}}\right\}$. Let Q be the smallest equivalence relation such that $w_{i_{r}} Q v_{i_{r}}$ holds for all $r=1, \ldots, n_{i}$ and $i=1, \ldots, d_{1}(\mathcal{F})$. Then Q satisfies condition $(2 b)$ of Lemma 8.2.2. Thus by Lemma 8.2.2, f_{Q} is a p-morphism from \mathcal{F} onto \mathcal{F} / Q. But \mathcal{F} / Q is isomorphic to \mathcal{F}^{\prime}, so the latter is in \mathbf{F}_{L}.

Therefore, ϕ is satisfiable in an L-frame containing at most $P(|\phi|)$-many points, for $P(\cdot)$ a polynomial of degree $b(L)+1$.

Case 3: $\left[\mathcal{F} \in \mathbf{F}_{1}\right.$ and $d_{1}(\mathcal{F})$ is unbounded]. This case is symmetric to Case 2. This finishes the proof of the theorem.

The next corollary is a joint result with M. Marx [17, Corollary 9].
8.2.5. Corollary. Every proper normal extension of $\mathbf{S 5}^{2}$ has the poly-size model property.

Proof. Let L be a proper normal extension of $\mathbf{S} 5^{2}$ and ϕ an L-consistent formula. Then $\neg \phi \notin L$ and by Corollary 6.2.12, there is a finite L-frame \mathcal{F} refuting $\neg \phi$. Thus, \mathcal{F} satisfies ϕ, and by Theorem 8.2.1, there exists an L-frame \mathcal{F}^{\prime} which satisfies ϕ and whose universe is bounded by a polynomial of degree $b(L)+1$ in $|\phi|$. Therefore, L has the poly-size model property.

8.3 Logics without the linear-size model property

In the previous section we showed that all proper normal extensions of $\mathbf{S} 5^{2}$ have the poly-size model property. In this section we show that our bound is indeed optimal by constructing proper normal extensions L_{k} of $\mathbf{S} 5^{2}$ and formulas ϕ_{k}^{n} such that the size of the smallest L_{k}-frame satisfying ϕ_{k}^{n} is a polynomial of degree $b\left(L_{k}\right)+1$ in $\left|\phi_{k}^{n}\right|$. (Of course, the logics L_{k} will have an infinite parameter, namely $p_{2}^{2}\left(L_{k}\right)$ will be ω.)

Let a finite $\mathbf{S} 5^{2}$-frame \mathcal{F} be given and let $\left\{C_{i}\right\}_{i=1}^{n}$ and $\left\{C^{j}\right\}_{j=1}^{m}$ be the sets of E_{1} and E_{2}-clusters of \mathcal{F}, respectively. Recall from the previous section that two distinct E_{2}-clusters C^{p} and C^{q} are equivalent if

$$
\left|C_{i} \cap C^{p}\right|=\left|C_{i} \cap C^{q}\right| \text { for all } i \text { between } 1 \text { and } n .
$$

Fix any natural number $k \geq 2$. For any natural number n, let \mathcal{G}_{k}^{n} be an $\mathbf{S 5}{ }^{2}$-frame of E_{1}-depth k such that every E_{2}-cluster of \mathcal{G}_{k}^{n} contains exactly $k+n$ points and no two distinct E_{2}-clusters of \mathcal{G}_{k}^{n} are equivalent to each other. Note that \mathcal{G}_{k}^{n} is not unique, since there are several (though finitely many) frames with this property. Let \mathcal{F}_{k}^{n} be the maximal one with this property, that is $\left|\mathcal{G}_{k}^{n}\right| \leq\left|\mathcal{F}_{k}^{n}\right|$, for any \mathcal{G}_{k}^{n}. The cases for $k=2$ and $k=3$ are shown in Figure 8.1.

Let $L_{k}=\bigcap_{n \in \omega} \log \left(\mathcal{F}_{k}^{n}\right)$, where $\log \left(\mathcal{F}_{k}^{n}\right)$ is the logic of the frame \mathcal{F}_{k}^{n} for $n \in \omega$. Obviously, $p_{2}^{2}\left(L_{k}\right)=\omega$ and $b\left(L_{k}\right)=k$.
Now for $n>k$, let $\phi_{k}^{n}=Q_{k} \wedge \psi^{n}$, where

$$
\begin{aligned}
Q_{k} & =\bigwedge_{i=1}^{k} \diamond_{1} \diamond_{2} p_{i} \wedge \square_{1} \square_{2}\left[\bigwedge_{i=1}^{k}\left(\diamond_{1} p_{i} \leftrightarrow p_{i}\right) \wedge \bigwedge_{1 \leq i \neq j \leq k} \neg\left(p_{i} \wedge p_{j}\right)\right], \\
\psi^{n} & =\square_{1}\left[\bigwedge_{i=1}^{n} \diamond_{2} q_{i} \wedge \square_{2}\left(\bigwedge_{1 \leq i \neq j \leq n} \neg\left(q_{i} \wedge q_{j}\right)\right)\right] .
\end{aligned}
$$

It is not difficult to show that
Q_{k} is satisfiable in \mathcal{F} iff \mathcal{F} contains at least k-many E_{1}-clusters
ψ^{n} is satisfiable in \mathcal{F} iff all E_{2}-clusters of \mathcal{F} contain at least n points (8.2)
Thus, the formula ϕ_{k}^{n} is satisfiable in the frame \mathcal{F}_{k}^{n-k}. The next claim states that in the logic L_{k} we cannot do better.

$$
\begin{equation*}
\mathcal{F}_{k}^{n-k} \text { is the smallest } L_{k} \text {-frame satisfying } \phi_{k}^{n} . \tag{8.3}
\end{equation*}
$$

\mathcal{F}_{2}^{1}

$$
\mathcal{F}_{2}^{2}
$$

Figure 8.1: \mathcal{F}_{k}^{n} frames for $k=2$ and $k=3$.

In order to prove (8.3), suppose ϕ_{k}^{n} is satisfiable in a finite L_{k}-frame \mathcal{F}. Then \mathcal{F} is a p-morphic image of some $\mathcal{F}_{k}^{i}, i \in \omega$; that is, there is an onto p-morphism $f: \mathcal{F}_{k}^{i} \rightarrow \mathcal{F}$. As ψ^{n} is satisfied in \mathcal{F}, by (8.2), $i \geq n-k$.

Let $i=n-k$. The argument when $i>n-k$ is similar. Since Q_{k} is satisfiable in \mathcal{F}, (8.1) implies that \mathcal{F} contains k-many E_{1}-clusters. Thus, f cannot identify points from different E_{1}-clusters of \mathcal{F}_{k}^{n-k}. Also note that since ψ^{n} is satisfiable in \mathcal{F} and every E_{2}-cluster of \mathcal{F}_{k}^{n-k} contains n points, f cannot identify points from the same E_{2}-cluster. Let us show that f cannot identify points from different E_{2}-clusters either. To see this, suppose there exist $w \in C_{i}^{p}$ and $v \in C_{i}^{q}$ such that $f(w)=f(v)$. Since f is a p-morphism, for any $j=1, \ldots, k$ and $w^{\prime} \in C_{j}^{p}$ there exists $v^{\prime} \in C_{j}^{q}$ such that $f\left(w^{\prime}\right)=f\left(v^{\prime}\right)$. Now since C^{p} is not equivalent to C^{q}, at least two points from some C_{j}^{p} will be identified by f. Hence the number of points of the E_{2}-cluster $f\left(C^{p}\right)$ of \mathcal{F} is strictly less than n, which again contradicts the satisfiability of ψ^{n} in \mathcal{F}. Therefore, f should be the identity map, and so $\mathcal{F}=\mathcal{F}_{k}^{n-k}$.

Now we compute the size of \mathcal{F}_{k}^{n-k}. As in Theorem 8.2.1, to every E_{2}-cluster C^{p} of \mathcal{F}_{k}^{n-k} we correspond the sequence of natural numbers $\left(m_{1}, \ldots, m_{k}\right)$, where $m_{1}=$ $\left|C_{1}^{p}\right|, \ldots, m_{k}=\left|C_{k}^{p}\right|$. From the definition of \mathcal{F}_{k}^{n-k} it follows that $m_{1}+\ldots+m_{k}=n$. But then the number of different sequences $\left(m_{1}, \ldots, m_{k}\right)$ will be

$$
\binom{n-1}{k}=\frac{(n-1)!}{k!(n-(k+1))!}=\frac{(n-1) \ldots(n-k)}{k!} \geq \frac{(n-k)^{k}}{k!} .
$$

Furthermore, every E_{2}-cluster of \mathcal{F}_{k}^{n-k} contains precisely n points. So the size of \mathcal{F}_{k}^{n-k} is at least $\frac{n(n-k)^{k}}{k!}$, hence

The size of \mathcal{F}_{k}^{n-k} is a polynomial of degree $k+1$ in n.
Putting (8.3) and (8.4) together we obtain the following theorem, which is a joint result with M. Marx, see [17, Theorem 10].
8.3.1. Theorem. There exist infinitely many proper normal extensions L_{k} of $\mathbf{S} 5^{2}$ and formulas ϕ_{k}^{n} such that the size of the smallest L_{k}-frame satisfying ϕ_{k}^{n} is a polynomial of degree $b\left(L_{k}\right)+1$ in $\left|\phi_{k}^{n}\right|$.

8.4 NP-completeness

Note that Theorem 8.1.15 and the fact that every normal extension L of $\mathbf{S 5} \mathbf{5}^{2}$ is complete with respect to the class of finite frames \mathbf{F}_{L}, for which the membership is decidable (up to isomorphism), imply that L is decidable. This section will be devoted to showing that if L is a proper normal extension of $\mathbf{S} 5^{2}$, then the satisfiability problem for L is NP-complete. Fix such an L. We will see in Corollary 8.4.3 below that NP-completeness follows from the poly-size model
property if we can decide in time polynomial in $|W|$ whether a finite structure $\mathcal{S}=\left(W, R_{1}, R_{2}\right)$ is in \mathbf{F}_{L} (up to isomorphism). It suffices to decide in polynomial time (1) whether \mathcal{S} is a (rooted $\mathbf{S} 5^{2}$-) frame; (2) whether a given frame is in \mathbf{F}_{L}. The first is easy. We concentrate on the second.

By Lemma 8.1.3(1), there is $n(L) \in \omega$ such that for each frame $\mathcal{G}=\left(U, S_{1}, S_{2}\right)$ in \mathbf{F}_{L} we have $d_{1}(\mathcal{G})<n(L)$ or $d_{2}(\mathcal{G})<n(L)$. So, if both depths of a given frame \mathcal{G} are greater than or equal to $n(L)$ (which obviously can be checked in polynomial time in the size of \mathcal{G}), then $\mathcal{G} \notin \mathbf{F}_{L}$. So, without loss of generality we may assume that $d_{1}(\mathcal{G})<n(L)$.

By Theorem 8.1.1, \mathcal{G} is in \mathbf{F}_{L} iff it has no p-morphic image in \mathbf{M}_{L}. Because \mathbf{M}_{L} is a fixed finite set, it suffices to provide, for an arbitrary fixed frame $\mathcal{F}=$ (W, E_{1}, E_{2}), an algorithm that decides in time polynomial in the size of \mathcal{G} whether there is a p-morphism from \mathcal{G} onto \mathcal{F}. If we considered every map $f: U \rightarrow W$ and checked whether it is a p-morphism, it would take exponential time in the size of \mathcal{G} (since there are $|W|^{|U|}$ different maps from U to W). Now we will give a different algorithm to check in polynomial time in $|U|$ whether the fixed frame \mathcal{F} is a p-morphic image of a given frame $\mathcal{G}=\left(U, S_{1}, S_{2}\right)$ with $d_{1}(\mathcal{G})<n(L)$. We show that \mathcal{F} is a p-morphic image of \mathcal{G} iff there exists a partial map g from \mathcal{G} to \mathcal{F} satisfying conditions that can be checked in polynomial time.
8.4.1. Lemma. \mathcal{F} is a p-morphic image of \mathcal{G} iff there is a partial surjective map $g: U \rightarrow W$ with the following properties:

1. For each $u \in U$, there is $v \in \operatorname{dom}(g)$ such that $u S_{1} v$.
2. For each $v \in \operatorname{dom}(g)$, the restriction $g \upharpoonright\left(\operatorname{dom}(g) \cap S_{1}(v)\right)$ is one-one and has range $E_{1}(g(v))$.
3. For each $u \in U$ there is $w \in W$ such that
(a) $g(v) E_{2} w$ for all $v \in \operatorname{dom}(g) \cap S_{2}(u)$,
(b) for each E_{0}-cluster $Y \subseteq E_{2}(w)$,

$$
\text { if } X_{Y}=S_{1}\left(g^{-1}(Y)\right) \cap S_{2}(u) \text {, then }\left|Y \backslash g\left(X_{Y}\right)\right| \leq\left|X_{Y} \backslash \operatorname{dom}(g)\right|
$$

Proof. It is easy to see that a map $f: U \rightarrow W$ is a p-morphism iff the f-image of every S_{i}-cluster of \mathcal{G} is an E_{i}-cluster of \mathcal{F}, for $i=1,2$.

Suppose there is a surjective p-morphism $f: U \rightarrow W$. Then for each $S_{1^{-}}$ cluster $C \subseteq U$, the map $f \upharpoonright C$ is a surjection from C onto $E_{1}(f(u))$ for any $u \in C$, so we may choose $C^{\prime} \subseteq C$ such that $f \upharpoonright C^{\prime}$ is a bijection from C^{\prime} onto $E_{1}(f(u))$. Let $U^{\prime}=\bigcup\left\{C^{\prime}: C\right.$ is an S_{1}-cluster of $\left.\mathcal{G}\right\}$. Then it is easy to check that $g=f \upharpoonright U^{\prime}$ satisfies Conditions $1-2$ of the lemma. To check Condition 3, take any $u \in U$, and put $w=f(u)$. Fix any E_{0}-cluster $Y \subseteq E_{2}(w)$. Pick any $x \in S_{2}(u)$. Note that $f(x) \in E_{2}(w)$. Define X_{Y} as in the lemma. Then $x \in X_{Y}$
iff $x \in S_{1}\left(g^{-1}(Y)\right)$, iff there is $z \in U^{\prime}$ such that $x S_{1} z$ and $g(z) \in Y$, iff $f(x) E_{1} f(z)$ and $f(z) \in Y$, iff $f(x) \in Y$. Now f maps $S_{2}(u)$ onto $E_{2}(w)$. Therefore, f maps X_{Y} onto Y. Thus, f must map a subset of $X_{Y} \backslash U^{\prime}$ onto $Y \backslash g\left(X_{Y} \cap U^{\prime}\right)$, so we have $\left|X_{Y} \backslash U^{\prime}\right| \geq\left|Y \backslash g\left(X_{Y} \cap U^{\prime}\right)\right|$ as required.

Conversely, let g be as stated. By Condition 2 of the lemma, g is surjective. We will extend g to a p-morphism $f: U \rightarrow W$. Since U is a disjoint union of S_{2}-clusters, it is enough to define f on an arbitrary S_{2}-cluster of \mathcal{G}. Pick $u \in U$. We will extend $g \upharpoonright S_{2}(u)$ to the whole of $S_{2}(u)$. Pick $w \in W$ according to Condition 3 of the lemma. By Condition 3a, $g\left(S_{2}(u)\right) \subseteq E_{2}(w)$. Now we extend g to f such that $f\left(S_{2}(u)\right)=E_{2}(w)$ and $f(x) E_{1} g(v)$ whenever $v \in \operatorname{dom}(g)$ and $x \in S_{2}(u) \cap S_{1}(v)$.

For each E_{0}-cluster $Y \in E_{2}(w)$, define X_{Y} as in the lemma. By Conditions 1 and $2, S_{2}(u)=\bigcup\left\{X_{Y}: E_{0}(Y)=Y\right.$ and $\left.Y \subseteq E_{2}(w)\right\}$, and $X_{Y} \cap X_{Y^{\prime}}=\emptyset$ whenever $E_{0}(Y)=Y, E_{0}\left(Y^{\prime}\right)=Y^{\prime}$ and $Y \cap Y^{\prime}=\emptyset$. For each E_{0}-cluster $Y \subseteq E_{2}(w)$, we consider the restriction of g to X_{Y} (this restriction may be empty), observe that its image is a subset of Y. We extend $g \upharpoonright X_{Y}$ to a surjection from X_{Y} onto Y. By Condition 3, $\left|X_{Y} \backslash \operatorname{dom}(g)\right| \geq\left|Y \backslash g\left(X_{Y}\right)\right|$. So, there exists a surjection $f_{X_{Y}}: X_{Y} \rightarrow Y$ extending g. Repeating this for every $Y \subseteq E_{2}(w)$ in turn yields an extension of g to $S_{2}(u)$. Repeating for a representative u of each S_{2}-cluster in turn yields an extension of g to U as required.

It is left to show that f is a p-morphism. But it follows immediately from the construction of f that $f \upharpoonright S_{i}(u): S_{i}(u) \rightarrow E_{i}(f(u))$ is surjective for each $u \in U$ and $i=1,2$. As we pointed out above, this implies that f is a p-morphism.
8.4.2. Corollary. It is decidable in polynomial time in the size of \mathcal{G} whether \mathcal{F} is a p-morphic image of \mathcal{G}.

Proof. By Lemma 8.4.1, it is enough to check whether there exists a partial map $g: U \rightarrow W$ satisfying Conditions $1-3$ of the lemma. There are at most $n(L)$ S_{1}-clusters in \mathcal{G}, and the restriction of g to each S_{1}-cluster is one-one; hence, $d=|\operatorname{dom}(g)| \leq n(L) \cdot|W|$, and this is independent of \mathcal{G}. There are at most $d^{|W|}$ maps from a set of size at most d into W. Obviously, there are $\binom{|U|}{d} \leq|U|^{d}$ subsets of U of size d. Hence there are at most $d^{|W|}|U|^{d}$ partial maps which may satisfy Conditions 1 and 2 of the lemma. Our algorithm enumerates all partial maps from U to W with domain of size at most d, and for each one, checks whether it satisfies Conditions 1-3 or not. It is not hard to see that this check can be done in P-time; indeed, it is clear that Conditions 1 and 2 can be checked in time polynomial in $|U|$ and there is a first-order sentence $\sigma_{\mathcal{F}}$ such that $\mathcal{G} \models \sigma_{\mathcal{F}}$ iff \mathcal{G} satisfies Condition 3. The algorithm states that \mathcal{F} is a p-morphic image of \mathcal{G} if and only if it finds a map satisfying the conditions. Therefore, this is a P-time algorithm checking whether \mathcal{F} is a p-morphic image of \mathcal{G}.

The next corollary is a joint result with I. Hodkinson, see [16, Corollary 4.3].
8.4.3. Corollary. Let L be a proper normal extension of $\mathbf{S 5}^{2}$.

1. It can be checked in polynomial time in $|U|$ whether a finite $\mathbf{S} 5^{2}$-frame $\mathcal{G}=$ $\left(U, S_{1}, S_{2}\right)$ is an L-frame.
2. The satisfiability problem for L is NP-complete.
3. The validity problem for L is co-NP-complete.

Proof.

1. Follows directly from Theorem 8.1.1, Corollary 8.4.2, and the fact (shown in the proof of Theorem 8.1.15) that \mathbf{M}_{L} is finite.
2. It is a well-known result of modal logic (see, e.g., [18, Lemma 6.35]) that if L is a consistent normal modal logic having the poly-size model property, and the problem of whether a finite structure \mathcal{A} is an L-frame is decidable in time polynomial in the size of \mathcal{A}, then the satisfiability problem of L is NP-complete. The poly-size model property of every $L \supsetneq \mathbf{S} 5^{2}$ is proved in Corollary 8.2.5. (1) implies that the problem $\mathcal{G} \in \mathbf{F}_{L}$ can be decided in polynomial time in the size of \mathcal{G}. The result follows.
3. Follows directly from (2).

Summary

In this thesis we study classes of intermediate and cylindric modal logics. Intermediate logics are the logics that contain the intuitionistic propositional calculus IPC and are contained in the classical propositional calculus CPC. Cylindric modal logics are finite variable fragments of the classical first-order logic FOL. They are also closely related to n-dimensional products of the well-known modal logic S5. In this thesis we investigate:

1. The lattice of extensions of the intermediate logic $\mathbf{R N}$ of the Rieger-Nishimura ladder.
2. Lattices of two-dimensional cylindric modal logics. In particular, we study:
(a) The lattice of normal extensions of the two-dimensional cylindric modal logic $\mathbf{S 5}{ }^{2}$ (without the diagonal).
(b) The lattice of normal extensions of the two-dimensional cylindric modal $\operatorname{logic} \mathbf{C M L}_{2}$ (with the diagonal).

Our methods are a mixture of algebraic, frame-theoretic and order-topological techniques. In Part I of the thesis we give an overview of Kripke, algebraic and general-frame semantics for intuitionistic logic and we study in detail the structure of finitely generated Heyting algebras and their dual descriptive frames. We also discuss what we call frame-based formulas. In particular, we look at the Jankovde Jongh formulas, subframe formulas and cofinal subframe formulas and we construct a unified framework for these formulas.

After that we investigate the logic $\mathbf{R N}$ of the Rieger-Nishimura ladder. The Rieger-Nishimura ladder is the dual frame of the one-generated free Heyting algebra described by Rieger [106] and Nishimura [102]. Its logic is the greatest 1-conservative extension of IPC. It was studied earlier by Kuznetsov and Gerciu [83], Gerciu [48] and Kracht [73]. We describe the finitely generated and finite
descriptive frames of RN and provide a systematic analysis of its extensions. We also study a slightly weaker intermediate logic KG, introduced by Kuznetsov and Gerciu. KG is closely related to $\mathbf{R N}$ and plays an important role in our investigations. While studying extensions of KG and $\mathbf{R N}$ we introduce some general techniques. For example, we give a systematic method for constructing intermediate logics without the finite model property, we give a method for constructing infinite antichains of finite Kripke frames that implies the existence of a continuum of logics with and without the finite model property. We also introduce a gluing technique for proving the finite model property for large classes of logics. In particular, we show that every extension of $\mathbf{R N}$ has the finite model property. Finally, we give a criterion of local tabularity in extensions of RN and KG.

In Part II of the thesis we investigate in detail lattices of two-dimensional cylindric modal logics. The lattice of extensions of one-dimensional cylindric modal logic, is very simple: it is an $(\omega+1)$-chain, Scroggs [111]. In contrast to this, the lattice of extensions of the three-dimensional cylindric modal logic is too complicated to describe. In this thesis we concentrate on two-dimensional cylindric modal logics. We consider two similarity types: two-dimensional cylindric modal logics with and without diagonal. Cylindric modal logic with the diagonal corresponds to the full two-variable fragment of FOL and the cylindric modal logic without the diagonal corresponds to the two-variable substitution-free fragment of FOL.

Cylindric modal logic without the diagonal is the two-dimensional product of $\mathbf{S 5}$, which we denote by $\mathbf{S 5}{ }^{2}$. It had been shown that the logic $\mathbf{S} \mathbf{5}^{2}$ is finitely axiomatizable, has the finite model property, is decidable Henkin et al. [60], Segerberg [113], Scott [110] and has a NEXPTIME-complete satisfiability problem Marx [93]. We show that every proper normal extension of $\mathbf{S 5}{ }^{2}$ is also finitely axiomatizable, has the finite model property, and is decidable. Moreover, we prove that in contrast to $\mathbf{S} 5^{2}$ itself, each of its proper normal extensions has an NP-complete satisfiability problem. We also show that the situation for cylindric modal logics with the diagonal is different. There are continuum many nonfinitely axiomatizable extensions of the cylindric modal $\operatorname{logic} \mathbf{C M L}_{2}$. We leave it as an open problem whether all of them have the finite model property. Finally, we give a criterion of local tabularity for two-dimensional cylindric modal logics with and without diagonal and characterize the pre-tabular cylindric modal logics.

Samenvatting

In dit proefschrift bestuderen we klassen van intermediaire en cylindrische modale logica's. Intermediaire logica's zijn die logica's die de intuitionistische propositielogica IPC omvatten en bevat zijn in de klassieke propostielogica CPC. Cylindrische modale logica's zijn eindige-variabele fragmenten van de klassieke eersteorde logica FOL. Ze zijn ook sterk gerelateerd aan de n-dimensionale producten van de bekende modale logica $\mathbf{S 5}$. In dit proefschrift bestuderen we:

1. De tralie van uitbreidingen van de intermediaire logica $\mathbf{R N}$ van de RiegerNishimuraladder.
2. Tralies van twee-dimensionale cylindrische modale logica's. In het bijzonder bestuderen we:
(a) De tralie van de normale uitbreidingen van de twee-dimensionale cylindrische modale logica $\mathbf{S} 5^{2}$ (zonder de diagonaal).
(b) De tralie van de normale uitbreidingen van de twee-dimensionale cylindrische modale logica $\mathbf{C M L}^{2}$ (met de diagonaal).

Onze methoden zijn een mengsel van algebraische, orde-topologische en gegenera-liseerde-frametechnieken. In Deel I van het proefschrift geven we een overzicht van de algebraische, Kripke- and gegeneraliseerde-framesemantiek voor de intuitionistische logica en bestuderen we in detail de structuur van de eindig gegenereerde Heytingalgebra's en hun duale descriptieve frames. We bediscussieren ook wat we frame-gebaseerde formules zullen noemen. In het bijzonder bekijken we de Jankov-deJongh-formules, subframeformules en cofinale-subframeformules en construeren we een algemeen kader voor dergelijke formules.

Hierna onderzoeken we de logica RN van de Rieger-Nishimuraladder. De Rieger-Nishimuraladder is het duale frame van de vrije Heytingalgebra op 1 generator zoals beschreven door Rieger [106] en Nishimura [102]. De logica van dit
tralie is de sterkste 1-conservatieve uitbreiding van IPC. RN is eerder bestudeerd door Kuznetsov en Gerciu [83], Gerciu [48] en Kracht [73]. We geven een systematische analyse van dit systeem en zijn uitbreidingen. We bestuderen ook een iets zwakkere intermediaire logica KG, geintroduceerd door Kuznetsov and Gerciu. KG is sterk gerelateerd aan RN en speelt een belangrijke rol in ons onderzoek. Bij het bestuderen van de uitbreidingen van KG en RN introduceren we enkele algemene technieken. Bijvoorbeeld geven we een systematische methode voor de constructie van intermediaire logica's zonder de eindige modeleigenschap, en verder een methode voor de constructie van oneindige antiketens van eindige Kripkeframes die het bestaan impliceert van een continuum van logica's met en zonder de eindige modeleigenschap. We introduceren ook een lijmtechniek voor het bewijzen van de eindige modeleigenschap voor grote klassen van logica's. In het bijzonder laten we zien dat iedere uitbreiding van $\mathbf{R N}$ de eindige modeleigenschap heeft. Tenslotte geven we een criterium voor locale tabulariteit in uitbreidingen van $\mathbf{R N}$ en $\mathbf{K G}$.

In Deel II van het proefschrift onderzoeken we in detail tralies van de tweedimensionale cylindrische modale logica's. De tralie van de uitbreidingen van de één-dimensionale cylindrische modale logica is erg eenvoudig: het is een $(\omega+1)$ keten; [111]. Daarentegen is de tralie van uitbreidingen van de drie-dimensionale cylindrische modale logica te gecompliceerd om te beschrijven. In dit proefschrift concentreren we ons op twee-dimensionale cylindrische modale logica's. We beschouwen twee similariteitstypen: twee-dimensionale cylindrische modale logica's met en zonder diagonaal. Cylindrische modale logica met diagonaal correspondeert met het volledige twee-variabele fragment van FOL en de cylindrische modale logica zonder diagonaal correspondeert met het substitutievrije twee-variabele fragment van FOL.

Cylindrische modale logica zonder diagonaal is het twee-dimensionale product van $\mathbf{S 5}$, dat we aanduiden met $\mathbf{S 5} \mathbf{5}^{2}$. Het was al bewezen dat de logica $\mathbf{S} \mathbf{5}^{2}$ eindig axiomatiseerbaar is, de eindige modeleigenschap heeft, beslisbaar is Henkin et al. [60], Segerberg [113], Scott [110] en een NEXPTIME-volledig satisfactieprobleem heeft Marx [93]. We laten zien dat iedere echte normale uitbreiding van $\mathbf{S 5}^{2}$ ook eindig axiomatiseerbaar is, de eindige modeleigenschap heeft en beslisbaar is. Bovendien bewijzen we dat, in tegenstelling tot $\mathbf{S 5}{ }^{2}$, iedere echte normale uitbreiding van $\mathbf{S} 5^{2}$ een NP-volledig satisfactieprobleem heeft. We tonen tevens aan dat de situatie bij cylindrische modale logica's met diagonaal anders is. Er zijn continuum veel niet eindig axiomatiseerbare uitbreidingen van de cylindrische modale logica $\mathbf{C M L}_{2}$. We laten het probleem open of al deze uitbreidingen de eindige modeleigenschap hebben. Tenslotte geven we een criterium voor locale tabulariteit van twee-dimensionale cylindrische modale logica's met en zonder diagonaal en karakteriseren we de pretabulaire cylindrische modale logica's.

Bibliography

[1] H. Andréka and I. Nemeti. Simple proof of decidability of the universal theory of cylindric set algebras of dimension 2. In Algebraic Logic and the Methodology of Applying it, TEMPUS Summer School. Budapest, Hungary, 1994.
[2] R. Balbes and P. Dwinger. Distributive Lattices. University of Missouri Press, 1974.
[3] H. Bass. Finite monadic algebras. Proceedings of the American Mathematical Society, 9:258-268, 1958.
[4] F. Bellissima. Finitely generated free Heyting algebras. Journal of Symbolic Logic, 51:152-165, 1986.
[5] J. van Benthem. Two simple incomplete modal logics. Theoria, 44:25-37, 1978.
[6] G. Bezhanishvili. Varieties of monadic Heyting algebras. Part II: Duality theory. Studia Logica, 62:21-48, 1999.
[7] G. Bezhanishvili. Locally finite varieties. Algebra Universalis, 46:531-548, 2001.
[8] G. Bezhanishvili, N. Bezhanishvili, and D. de Jongh. The logic of the Rieger-Nishimura ladder. manuscript, 2005.
[9] G. Bezhanishvili and S. Ghilardi. An algebraic approach to subframe logics. Part I. manuscript, 2005.
[10] G. Bezhanishvili and R. Grigolia. Subalgebras and homomorphic images of the Rieger-Nishimura lattice. In Proceedings of the Institute of Cybernetics, volume 1, pages 9-16. Georgian Academy of Sciences, Tbilisi, 2000.
[11] G. Bezhanishvili and R. Grigolia. Locally finite varieties of Heyting algebras. Algebra Universalis, 2005. to appear.
[12] N. Bezhanishvili. Varieties of two-dimensional cylindric algebras. Part I: Diagonal-free case. Algebra Universalis, 48:11-42, 2002.
[13] N. Bezhanishvili. De Jongh's characterization of intuitionistic propositional calculus. In J. van Benthem, A. Troelstra, F. Veltman, and A. Visser, editors, Liber Amicorum Dick de Jongh. University of Amsterdam, 2004.
[14] N. Bezhanishvili. Varieties of two-dimensional cylindric algebras II. Algebra Universalis, 51:177-206, 2004.
[15] N. Bezhanishvili and D. de Jongh. Intuitionistic logic. ESSLLI course notes, 2005.
[16] N. Bezhanishvili and I. Hodkinson. All normal extensions of S5-squared are finitely axiomatizable. Studia Logica, 78:443-457, 2004.
[17] N. Bezhanishvili and M. Marx. All proper normal extensions of S5-square have the polynomial size model property. Studia Logica, 73:367-382, 2003.
[18] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2001.
[19] W. Blok. Varieties of interior algebras. PhD thesis, University of Amsterdam, 1976.
[20] W. Blok. On the degree of incompleteness in modal logics and the covering relation on the lattice of modal logics. Technical Report 78-07, Department of Mathematics, University of Amsterdam, 1978.
[21] W. Blok. The lattice of modal logics: an algebraic investigation. Journal of Symbolic Logic, 45:221-236, 1980.
[22] R. Bull. That all normal extensions of S4.3 have the finite model property. Zeitschrift für mathematische Logic und Grundlagen der Mathematik, 12:341-344, 1966.
[23] R. Burris and H. Sankappanavar. A Course in Universal Algebra. Springer, 1981.
[24] A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford University Press, 1997.
[25] C.C. Chang and H.J. Kiesler. Model Theory. North-Holland, Amsterdam, 1990. 3rd edition.
[26] A. Citkin. On admissible rules of intuitionistic propositional calculus. Math. USSR Sbornik, 31:279-288, 1977.
[27] S. Comer. Classes without the amalgamation property. Pacific Journal of Mathematics, 28:309-318, 1969.
[28] D. van Dalen. Intuitionistic Logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 3, pages 225-339. Kluwer, Reidel, Dordrecht, 1986.
[29] B. Davey. On the lattice of subvarieties. Houston Journal of Mathematics, 5:183-192, 1979.
[30] B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge University Press, 1990.
[31] M. Dummett and E. Lemmon. Modal logics between S4 and S5. Zeitschrift für mathematische Logic und Grundlagen der Mathematik, 5:250-264, 1959.
[32] R. Engelking. General Topology. Heldermann Verlag, 1989.
[33] P. Erdős, V. Faber, and J. Larson. Sets of natural numbers of positive density and cylindric set algebras of dimension 2. Algebra Universalis, 12:81-92, 1981.
[34] L. Esakia. To the theory of modal and superintuitionistic systems. In Proceedings of the USSR symposium on the theory of the logical inferences, pages 147-172. Nauka, Moscow, 1979.
[35] L. Esakia. Heyting Algebras I, Duality Theory. Metsniereba Press, Tbilisi, 1985. (in Russian).
[36] L. Esakia. Gödel-Löb modal system - addendum. In Proceedings of the third International Conference, Smirnov's Readings, pages 77-79, Moscow, 2001. Russian Academy of Sciences.
[37] L. Esakia and R. Grigolia. The criterion of Brouwerian and closure algebras to be finitely generated. Bull. of Sect. of Log., 6:46-52, 1977.
[38] L. L. Esakia. Topological Kripke models. Soviet Mathematics Doklady, 15:147-151, 1974.
[39] K. Fine. The logics containing S4.3. Zeitschrift für mathematische Logic und Grundlagen der Mathematik, 17:371-376, 1971.
[40] K. Fine. An incomplete logic containing S4. Theoria, 40:110-116, 1974.
[41] K. Fine. Logics containing K4, Part I. Journal of Symbolic Logic, 39:229237, 1974.
[42] K. Fine. Logics containing K4, Part II. Journal of Symbolic Logic, 50:619651, 1985.
[43] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Manydimensional modal logics: theory and applications. North-Holland Publishing Company, 2004.
[44] D.M. Gabbay and V.B. Shehtman. Products of modal logics, Part I. Logic Journal of the IGPL, 6:73-146, 1998.
[45] M. Gehrke, J. Harding, and Y. Venema. MacNeille completions and canonical extensions. Transactions of the $A M S, 358(2): 573-590,2006$.
[46] M. Gehrke and B. Jónsson. Bounded distributive lattices with operators. Mathematica Japonica, 40:207-215, 1994.
[47] M. Gehrke and B. Jónsson. Bounded distributive lattice expansions. Mathematica Scandibavica, 94:13-45, 2004.
[48] V. Gerciu. The finite approximability of superintuitionistic logics. Mat. Issled., 7(1(23)):186-192, 1972. (Russian).
[49] S. Ghilardi and G. Meloni. Constructive canonicity in non-classical logics. Annals of Pure and Applied Logic, 86:1-32, 1997.
[50] K. Gödel. Zum Entscheidungsproblem des logischen Funktionenkalküls. Monatshefte für Mathematik und Physik, 40:433-443, 1933.
[51] R. Goldblatt. Metamathematics of modal logic, Part I. Reports on Mathematical Logic, 6:41-78, 1976.
[52] R. Goldblatt. Metamathematics of modal logic, Part II. Reports on Mathematical Logic, 7:21-52, 1976.
[53] R. Goldblatt. Varieties of complex algebras. Annals of Pure and Applied Logic, 38:173-241, 1989.
[54] R. Goldblatt, I. Hodkinson, and Y. Venema. Erdős graphs resolve Fine's canonicity problem. Bull. Symbolic Logic, 10:186-208, 2004.
[55] E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for twovariable first order logic. Bulletin of Symbolic Logic, 3:53-69, 1997.
[56] G. Grätzer. Universal Algebra. Springer-Verlag, 1978. Second Edition.
[57] R. Grigolia. Free Algebras of Non-Classical Logics. "Metsniereba", Tbilisi, 1987. (Russian).
[58] P. Halmos. Algebraic Logic. Chelsea Publishing Company, 1962.
[59] A. Hendriks. Computations in Propositional Logic. PhD thesis, ILLC, University of Amsterdam, 1996.
[60] L. Henkin, D. Monk, and A. Tarski. Cylindric Algebras. Parts I 8 II. North-Holland, 1971 \& 1985.
[61] A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungberichte der preussischen Akademie der Wissenschaften, 31:42-56, 1930.
[62] A. Heyting. Intuitionism, an Introduction. North-Holland, Amsterdam, 1956. 3rd rev. ed. (1971).
[63] G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc., 2:326-336, 1952.
[64] V.A. Jankov. The relationship between deducibility in the intuitionistic propositional calculus and finite implicational structures. Soviet Mathematics Doklady, 4:1203-1204, 1963.
[65] V.A. Jankov. The construction of a sequence of strongly independent superintuitionistic propositional calculi. Soviet Mathematics Doklady, 9:806-807, 1968.
[66] S. Jaśkowski. Recherches sur lesystème de lalogique intuitioniste. In Actes Du Congrès Intern. De Phil. Scientifique. VI. Phil. Des Mathèmatiques, Act. Sc. Et Ind 393, pages 58-61. Paris, 1936.
[67] J. Johnson. Nonfinitizability of classes of representable polyadic algebras. Journal of Symbolic Logic, 34:344-352, 1969.
[68] P. Johnstone. Stone Spaces. Cambridge University Press, 1982.
[69] D. de Jongh. Investigations on the Intuitionistic Propositional Calculus. PhD thesis, University of Wisconsin, 1968.
[70] D. de Jongh and A. Troelstra. On the connection of partially ordered sets with some pseudo-Boolean algebras. Indagationes Mathematicae, 28:317329, 1966.
[71] B. Jónsson and A. Tarski. Boolean algebras with operators, Part I. American Journal of Mathematics, 73:891-939, 1951.
[72] J. Kagan and R. Quackenbush. Monadic algebras. Reports on Mathematical Logic, 7:53-62, 1976.
[73] M. Kracht. Prefinitely axiomatizable modal and intermediate logics. Mathematical Logic Quarterly, 39:301-322, 1993.
[74] M. Kracht. Splittings and the finite model property. Journal of Symbolic Logic, 58:139-157, 1993.
[75] M. Kracht. Tools and Techniques in Modal Logic. North-Holland, 1999.
[76] S.A. Kripke. Semantical analysis of modal logic, Part I. Zeitschrift für mathematische Logic und Grundlagen der Mathematik, 9:67-96, 1963.
[77] S.A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica, 16:83-94, 1963.
[78] S.A. Kripke. Semantical analysis of intuitionistic logic. I. In Formal Systems and Recursive Functions, Proceeedings of the 8th Logic Colloquium, pages 92-130. North-Holland, 1965.
[79] A. Kurucz. $\mathbf{S 5} \times \mathbf{S} 5 \times \mathbf{S} 5$ lacks the finite model property. In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, editors, Advances in Modal Logic, volume 3 of CSLI Lecture Notes, pages 321-328. CSLI Publications, Stanford, 2002.
[80] A. Kuznetsov. On finitely generated pseudo-Boolean algebras and finitely approximable varieties. In Proceedings of the 12nd USSR Algebraic Colloquium, page 281, Sverdlovsk, 1973. in Russian.
[81] A. Kuznetsov. On superintuitionistic logics. In Proceedings of the International Congress of Mathematicians, volume 1, pages 243-249, Vancouver, 1974.
[82] A. Kuznetsov. Some classification problems for superintuitionistic logics. In Proceedings of the 3rd USSR Conference in Mathematical Logic, pages 119-122, Novosibirsk, 1974. in Russian.
[83] A. Kuznetsov and V. Gerciu. Superintuitionistic logics and finite approximability. Soviet Mathematics Doklady, 11(6):1614-1619, 1970.
[84] R. Ladner. The computational complexity of provability in systems of modal propositional logic. SIAM journal of computing, 6(3):467-480, 1977.
[85] R. Laver. Better-quasi-orderings and a class of trees. In Gian-Carlo Rota, editor, Studies in Foundations and Combinatorics, volume 1 of Advances in Mathematics Supplementary Studies, pages 31-48. Academic Press, 1978.
[86] C.I. Lewis. A Survey in Symbolic Logic. University of California Press, Berkeley, 1918.
[87] S. MacLane. Category Theory for the Working Mathematician. Springer, Berlin, 1971.
[88] R. Maddux. The equational theory of CA_{3} is undecidable. Journal of Symbolic Logic, 45:311-317, 1980.
[89] L. Maksimova. Craig's theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras. Algebra and Logic, 16:427-455, 1977.
[90] L. Maksimova. Interpolation properties of superintuitionistic logics. Studia Logica, 38:419-428, 1979.
[91] L. Maksimova. Interpolation theorems in modal logic and amalgamable varieties of topological Boolean algebras. Algebra and Logic, 18:348-370, 1979.
[92] M. Marx. Mosaics and cylindric modal logic of dimension two. In M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev, editors, Advances in Modal Logic, number 87 in CSLI Lecture Notes, pages 141-157. CSLI Publications, Stanford, 1997.
[93] M. Marx. Complexity of products of modal logics. Journal of Logic and Computation, 92:221-238, 1999.
[94] M. Marx and Sz. Mikulás. Decidability of cylindric set algebras of dimension two and first-order logic with two variables. Journal of Symbolic Logic, 64:1563-1572, 1999.
[95] M. Marx and Y. Venema. Multi-dimensional Modal Logic. Applied Logic Series. Kluwer Academic Publisher, 1997.
[96] J.C.C. McKinsey and A. Tarski. The algebra of topology. Annals of Mathematics, 45:141-191, 1944.
[97] J.C.C. McKinsey and A. Tarski. On closed elements of closure algebras. Annals of Mathematics, 47:122-162, 1946.
[98] J.C.C. McKinsey and A. Tarski. Some theorems about the sentential calculi of Lewis and Heyting. Journal of Symbolic Logic, pages 1-15, 1948.
[99] D. Monk. Nonfinitizability of classes of representable cylindric algebras. Journal of Symbolic Logic, 34:331-343, 1969.
[100] D. Monk. On equational classes of algebraic versions of logic I. Mathematica Scandinavica, 27:53-71, 1970.
[101] M. Mortimer. On languages with two variables. Zeitchrift für mathematische Logik und Grundlagen der Mathematik, 21:135-140, 1975.
[102] I. Nishimura. On formulas of one variable in intuitionistic propositional calculus. Journal of Symbolic Logic, 25:327-331, 1960.
[103] H. Priestley. Ordered topological spaces and the representation of distributive lattices. Proceedings of the London Mathematical Society, 24:507-530, 1972.
[104] R. Rado. Partial well ordering of sets of vectors. Mathematica, 1:89-95, 1954.
[105] W. Rautenberg. Splitting lattices of logics. Archiv für Mathematische Logik, 20:155-159, 1980.
[106] L. Rieger. On the lattice theory of Brouwerian propositional logic. Acta fac. rerum nat. Univ. Car., 189:1-40, 1949.
[107] V. V. Rybakov. Admissibility of Logical Inference Rules. Elsevier, 1997.
[108] V.V. Rybakov. Rules of inference with parameters for intuitionistic logic. Journal of Symbolic Logic, 57:33-52, 1992.
[109] H. Sahlqvist. Completeness and correspondence in the first and second order semantics for modal logic. In S. Kanger, editor, Proceedings of the Third Scandinavian Logic Symposium, pages 110-143, Amsterdam, 1975. North-Holland.
[110] D. Scott. A decision method for validity of sentences in two variables. Journal of Symbolic Logic, 27:477, 1962.
[111] S. G. Scroggs. Extensions of the Lewis system S5. Journal of Symbolic Logic, 16:111-120, 1951.
[112] K. Segerberg. An essay in classical modal logic, volume 13 of Philosophical Studies. Uppsala, 1971.
[113] S. Segerberg. Two-dimensional modal logic. Journal of Philosophical logic, 2:77-96, 1973.
[114] V. Shehtman. On incomplete propositional logic. Soviet Mathematics Doklady, 18:985-989, 1977.
[115] V. Shehtman. Two-dimensional modal logics. Mathematical Notes, 5:759772, 1978. (in Russian).
[116] V.B. Shehtman. Rieger-Nishimura lattices. Soviet Mathematics Doklady, 19:1014-1018, 1978.
[117] S.K. Sobolev. On the finite approximability of superintuitionistic logics. Mathematics of the USSR, Sbornik, 31:257-268, 1977.
[118] E. Spaan. Complexity of Modal Logics. PhD thesis, ILLC, University of Amsterdam, 1993.
[119] A Tarski. Der Aussagenkalkül und die Topologie. Fund. Math., 31:103-134, 1938.
[120] S. K. Thomason. An incompleteness theorem in modal logic. Theoria, 40:30-34, 1974.
[121] E. Tomaszewski. On Sufficiently Rich Sets of Formulas. PhD thesis, Institute of Philosophy, Jagiellonian University, Kraków, 2003.
[122] A. Troelstra. On intermediate propositional logics. Indagationes Mathematicae, 27:141-152, 1965.
[123] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, an Introduction. North-Holland, Amsterdam, 1988. two volumes.
[124] Y. Venema. Many-Dimensional Modal Logic. PhD thesis, ILLC, University of Amsterdam, 1992.
[125] Y. Venema. Cylindric modal logic. Journal of Symbolic Logic, 60:591-663, 1995.
[126] Y. Venema. Algebras and coalgebras. In P. Blackburn, J. van Benthem, and F. Wolter, editors, Handbook of Modal Logic. Elsevier, 2006. To appear.
[127] A. Visser, D. de Jongh, J. van Benthem, and G. Renardel de Lavalette. NNIL a study in intuitionistic logic. In A. Ponse, M. de Rijke, and Y. Venema, editors, Modal logics and Process Algebra: a bisimulation perspective, pages 289-326, 1995.
[128] M. Wajsberg. Ein erweiterter Klassenkalkül. Monatshefte für Mathematik und Physik, 40:113-126, 1933.
[129] F. Wolter. The finite model property of tense logics. Journal of Symbolic Logic, 60:757-774, 1995.
[130] F. Wolter. The structure of lattices of subframe logics. Annals of Pure and Applied Logic, 86:545-551, 1997.
[131] F. Wolter and M. Zakharyaschev. Modal decision problems. In P. Blackburn, J. van Benthem, and F. Wolter, editors, Handbook of Modal Logic. Elsevier, 2006. To appear.
[132] M. Zakharyaschev. Syntax and semantics of modal logics containing S4. Algebra and Logic, 27:408-428, 1988.
[133] M. Zakharyaschev. Syntax and semantics of intermediate logics. Algebra and Logic, 28:262-282, 1989.
[134] M. Zakharyaschev. Canonical formulas for K4. Part I : Basic results. Journal of Symbolic Logic, 57:1377-1402, 1992.
[135] M. Zakharyaschev. Canonical formulas for K4. Part II : Cofinal subframe logics. Journal of Symbolic Logic, 61:421-449, 1996.

Index

$D_{i}^{n}, 156$
E-saturated set, 40
$E_{0}, 134$
E_{i}-clusters, 134
E_{i}-depth
of $\mathbf{D f}_{2}$-algebra, 155
L-frame, 65
$L_{1} \otimes L_{2}, 131$
$L_{1} \times L_{2}, 132$
$L_{\mathbf{U}}, 178$
$L_{\mathbf{V}}, 25$
$\log (\mathfrak{F}), 15$
$\log (\mathrm{K}), 15$
Lower(F), 44
$M_{5}, 20$
$M_{V}(\phi), 101$
$N_{5}, 20$
$R(U), 26$
$R(w), 26$
$R^{-1}(U), 26$
$R^{-1}(w), 26$
$U p(\mathfrak{F}), 26$
$\operatorname{Upper}(\mathfrak{F}), 44$
$\mathbf{D f}_{2}, 140$
$\mathbf{D f}_{2}$-algebra, 140
Df $_{2}$-filter, 140
$\unlhd, 67$
$4_{*}, 90$
$\mathbf{2}_{*}, 90$
$\Lambda(L), 19$
$\Lambda\left(\mathbf{C M L}_{2}\right), 167,173$
$\Lambda\left(\mathbf{P C M L}_{2}\right), 172$
$\Lambda(\mathbf{V}), 25$
α-reduction, 41
$\alpha(\mathfrak{F}), 67$
β-reduction, 41
$\beta(\mathfrak{F}), 61$
$\bigoplus, 87$
$\mathcal{M}, 190$
$\mathcal{M}_{n}, 190$
$\chi(\mathfrak{F}), 58,59$
$\chi(\mathcal{F}), 170$
$\chi_{d}(\mathcal{F}), 171$
$\mathcal{B} \mathcal{A}, 25$
$\mathcal{B}, 140$
$\mathcal{C P}(X), 129$
$\mathcal{F} \times \mathcal{F}^{\prime}, 132$
$\mathcal{H} \mathcal{A}, 24$
$\mathcal{H}(n), 50$
$\mathcal{H}_{L}(n), 51$
$\mathcal{K G}, 93$
$\mathcal{M L}, 124$
$\mathcal{M L}_{2}, 131$
$\mathcal{M L}_{2}^{d}, 135$
$\mathcal{M} \mathcal{L}_{n}, 130$
$\mathcal{R N}, 83$
$\delta(\mathcal{F}), 170$
$\delta_{d}(\mathcal{F}), 171$
$\mathbb{F} \mathbb{G}(L), 65$
$\mathfrak{A}_{*}, 29$
$\mathfrak{F}^{*}, 29$
$\mathfrak{F}_{w}, 15$
$\mathfrak{K}_{i}, 93,114$
$\mathfrak{L}, 80$
$\mathfrak{L}_{0}, 80$
$\mathfrak{L}_{f_{k}}, 82$
$\mathfrak{L}_{g_{k}}, 82$
$\mathfrak{M}_{w}, 15$
$\mathfrak{N}, 80$
$\mathfrak{N}_{f_{k}}, 82$
$\mathfrak{N}_{g_{k}}, 82$
$\gamma(\mathfrak{F}), 64$
$\leq^{*}, 192$
$\mathbb{C S Q}, 145$
$\mathbb{H}(n), 49$
$\mathbb{R E C T}, 145$
SQ, 145
$\mathbb{U}(n), 48$
$\mathcal{U}(n), 47$
SI(V), 156
S(V), 156
$\mathbf{M}_{L}, 188$
$\mu(\mathfrak{F}), 64$
$\oplus, 85$
$\bar{\oplus}, 86$
$\bar{\oplus}, 85$
$\phi_{K G}, 93$
$p_{i}^{k}, 195$
$\sqsubseteq, 191$
$\sqsubseteq_{1}, 191$
$\sqsubseteq_{2}, 191$
$\operatorname{Form}(\mathcal{L}), 11$
$\operatorname{Form}(\mathcal{M L}), 124$
$\operatorname{FORM}\left(\mathcal{M L}_{2}^{d}\right), 135$
$\operatorname{FORM}\left(\mathcal{M} \mathcal{L}_{n}\right), 130$
$\mathrm{Form}_{n}, 52$
Prop, 11
$\mathrm{Prop}_{n}, 40$
$\widehat{\oplus}, 100$
$b(L), 195$
$c(\phi), 101$
$\operatorname{col}(w), 40$
d, 143
$d(U), 101$
$d(\mathfrak{F}), 44$
$d(w), 44$
$d_{I}(L), 120$
$d_{I}(\mathfrak{F}), 120$
$f_{k}(p), 81$
$g(L), 163$
$g(\mathcal{F}), 163$
$g(w), 163$
$g_{k}(p), 81$
$\max (\mathcal{X}), 36$
$\max (\mathfrak{F}), 36$
$\min (\mathcal{X}), 36$
$\min (\mathfrak{F}), 36$
p-morphism
of descriptive frames, 29
of descriptive models, 29
of Esakia spaces, 35
of Kripke frames, 15
of Kripke models, 15
$\operatorname{rank}(V), 101$
$\mathbf{C M L}_{2}, 135$
CML_{2}-frame, 135
$\operatorname{Fr}(L), 15$
$\mathbf{F}_{\mathbf{S} 5^{2}}^{k}, 190$
$\mathbf{F}_{L}, 66$
$\mathbf{M}(L, \unlhd), 68$
$\mathbf{P C M L}_{2}, 137$
$\mathbf{R C A}_{2}, 146$
$\mathbf{R D f}_{2}, 146$
$\mathbf{S 5} \times \mathbf{S 5}, 133$
$\mathbf{V}_{L}, 25$
chr, 131
com ${ }^{1}, 131$
com $^{\mathbf{r}}, 131$
$\mathbf{n} \times \mathbf{m}, 135$
$\mathbf{n} \times \mathbf{n}, 135$
(*)-condition, 137
(H), 137
(V), 137

2, 89
4, 89
$\mathbf{C A}_{2}, 143$

CA $_{2}$-algebra, 143
CPC, 12
CSq, 137
DF, 36
Df $_{1}$-algebra, 141
ES, 36
IPC, 12
K4, 125
KG, 93
K, 124
$\mathbf{K}_{n}, 130$
LC, 18
RN.KC, 117
RN, 83
Rect, 135
S4, 125
S5, 126
Sq, 135
U, 174
com, 132
admissible set, 28
algebra
finitely generated, 40
free, 49
simple, 140
subdirectly irreducible, 32
BAO, 126
barrier, 191
basic modal logic K, 124
better-quasi-ordering, 191
bicluster, 152
bisimulation equivalence
of $\mathbf{D f}_{2}$-spaces, 142
of intuitionistic descriptive frames, 31
of modal descriptive frames, 129
of modal spaces, 130
Boolean algebra, 23
Boolean algebra with an operator, 126
bounded morphism, 15
bqo, 191
chain, 17
Church-Rosser axiom, 131
closed set, 33
cofinal subframe
formula, 64
logic, 70
of a descriptive frame, 61
of a Kripke frame, 61
color, 40
Coloring Theorem, 40
complexity
of a formula, 101
of a logic, 187
cylindric
p-morphism, 169
algebra, 144
bisimulation equivalence, 169
partition, 144
quasi-square, 144
space, 144
square, 137
square algebra, 145
definable set, 55
depth
of a frame, 44
of a point, 44
diagonal E_{0}-cluster, 137
diagonal point, 137
disjoint union
of descriptive frames, 29
of descriptive models, 29
of Esakia spaces, 35
of Kripke frames, 16
of Kripke models, 16
disjunction property, 51
Esakia space, 34
extension, 13
n-conservative, 83
filter, 26
prime, 26
finite intersection property, 28
finite model property, 17
finite tree, 17
fmp, 17
formula
canonical, 78
de Jongh, 57
frame-based, 67
Jankov, 56, 58
Jankov-de Jongh, 59
Jankov-Fine, 170
NNIL, 64
frame
α-generated, 40
n-Henkin, 49
n-universal, 48
cyclic, 95
finitely generated, 40
regular, 152
frame order, 67
fusion of modal logics, 131
general frame, 28
generated
subframe, 15
submodel, 15
generated subframe
of a descriptive frame, 29
generated submodel
of a descriptive model, 30
generated subspace, 35
generators of an algebra, 40
girth
diagonal, 181
non-diagonal, 181
of $\mathcal{F}, 163$
of $L, 163$
of $w, 163$
gluing sum, 100
Halmos monadic algebra, 141
Henkin
axiom, 137
inequality, 146

Heyting
algebra, 21
algebra with a valuation, 29
homomorphism, 23
implication, 21
subalgebra, 24
valuation, 25
Higman's Lemma, 193
homomorphism, 23
initial segment
of $X, 191$
of a frame, 120
internal depth
of a frame, 120
of a logic, 120
intuitionistic
descriptive
valuation, 29
general frame, 28
compact, 28
descriptive, 28
refined, 28
Kripke frame, 14
Kripke model, 14
propositional calculus, 11
valuation, 14
lattice, 20
bounded, 20
complete, 20
distributive, 20
non-distributive, 20
of extensions, 19
of varieties, 26
left commutativity axiom, 131
logic
n-normal modal, 131
n-scheme, 83
consistent, 13
decidable, 19
finitely axiomatizable, 19
finitely axiomatized, 19
inconsistent, 13
intermediate, 12
locally tabular, 18, 155
pre-locally tabular, 117
pre-tabular, 161, 178
superintuitionistic, 12
tabular, 18, 161, 178
Kripke complete, 15
map
good, 192
modal
filter, 127
general frame, 127
compact, 128
descriptive, 128
differentiated, 128
refined, 128
tight, 128
Kripke frame, 124
Kripke model, 125
space, 129
model
n-Henkin, 50
n-universal, 47
monotone map, 15
non-diagonal E_{0}-cluster, 137
non-diagonal point, 137
normal modal logic, 124
open set, 33
point
maximal, 36
minimal, 36
point-generated
subframe, 15
submodel, 15
pre-finite model property, 111
Priestley separation axiom, 34
product cylindric modal logic, 137
product frame, 132
product of
algebras, 24
Heyting algebras, 24
propositional language, 11
quasi-square, 135
quotient frame, 30
rank of $V, 101$
rectangle, 135
rectangular algebra, 145
reduction, 15
relation
clopen, 34
point-closed, 34
representable algebra, 145
Rieger-Nishimura
ladder, 48, 80
lattice, 80
polynomials, 81
right commutativity axiom, 131
rooted
S5 ${ }^{2}$-frame, 133
descriptive frame, 33
Kripke frame, 17
many-dimensional Kripke-frame, 131
rule
of Modus Ponens (MP), 12
of Necessitation (N), 124
of Necessitation (N) $i_{i}, 131$
of substitution (Subst), 12
square, 135
square algebra, 145
Stone space, 34
subalgebra, 24
subframe
formula, 61
logic, 70
of a descriptive frame, 60
of a Kripke frame, 60
of an Esakia space, 60
sum
linear, 85,87
vertical, 85,86
topo-subframe condition, 60
topological space, 33
0-dimensional, 34
compact, 34
Hausdorff, 34
Stone, 34
two-dimensional cylindric modal logic, 135
two-dimensional diagonal-free cylindric algebra, 140
ultrafilter, 127
uniform quasi-square, 174
upset, 26
valuation, 25
variety, 24
finitely approximable, 37
finitely axiomatizable, 37
finitely generated, 37
locally finite, $37,155,174$
pre-locally finite, 117, 174
uniformly locally finite, 156
Venema
axiom, 137
inequality, 146
well-quasi-ordering, 193
wqo, 193

Titles in the ILLC Dissertation Series:

ILLC DS-2001-01: Maria Aloni

Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch

Rationality in Discovery - a study of Logic, Cognition, Computation and Neuropharmacology

ILLC DS-2001-03: Erik de Haas

Logics For OO Information Systems: a Semantic Study of Object Orientation from a Categorial Substructural Perspective

ILLC DS-2001-04: Rosalie Iemhoff

Provability Logic and Admissible Rules

ILLC DS-2001-05: Eva Hoogland

Definability and Interpolation: Model-theoretic investigations
ILLC DS-2001-06: Ronald de Wolf
Quantum Computing and Communication Complexity

ILLC DS-2001-07: Katsumi Sasaki

Logics and Provability

ILLC DS-2001-08: Allard Tamminga

Belief Dynamics. (Epistemo)logical Investigations
ILLC DS-2001-09: Gwen Kerdiles
Saying It with Pictures: a Logical Landscape of Conceptual Graphs
ILLC DS-2001-10: Marc Pauly
Logic for Social Software
ILLC DS-2002-01: Nikos Massios
Decision-Theoretic Robotic Surveillance
ILLC DS-2002-02: Marco Aiello
Spatial Reasoning: Theory and Practice
ILLC DS-2002-03: Yuri Engelhardt
The Language of Graphics
ILLC DS-2002-04: Willem Klaas van Dam
On Quantum Computation Theory
ILLC DS-2002-05: Rosella Gennari
Mapping Inferences: Constraint Propagation and Diamond Satisfaction

ILLC DS-2002-06: Ivar Vermeulen

A Logical Approach to Competition in Industries

ILLC DS-2003-01: Barteld Kooi

Knowledge, chance, and change
ILLC DS-2003-02: Elisabeth Catherine Brouwer
Imagining Metaphors: Cognitive Representation in Interpretation and Understanding

ILLC DS-2003-03: Juan Heguiabehere

Building Logic Toolboxes

ILLC DS-2003-04: Christof Monz

 From Document Retrieval to Question Answering
ILLC DS-2004-01: Hein Philipp Röhrig

 Quantum Query Complexity and Distributed Computing
ILLC DS-2004-02: Sebastian Brand

Rule-based Constraint Propagation: Theory and Applications

ILLC DS-2004-03: Boudewijn de Bruin

Explaining Games. On the Logic of Game Theoretic Explanations

ILLC DS-2005-01: Balder David ten Cate

Model theory for extended modal languages
ILLC DS-2005-02: Willem-Jan van Hoeve
Operations Research Techniques in Constraint Programming

ILLC DS-2005-03: Rosja Mastop

What can you do? Imperative mood in Semantic Theory

ILLC DS-2005-04: Anna Pilatova

A User's Guide to Proper names: Their Pragmatics and Semanics
ILLC DS-2006-01: Troy Lee
Kolmogorov complexity and formula size lower bounds

ILLC DS-2006-02: Nick Bezhanishvili

Lattices of intermediate and cylindric modal logics

ILLC DS-2006-03: Clemens Kupke

Finitary coalgebraic logics

[^0]: ${ }^{1}$ In fact, McKinsey and Tarski studied the Brouwerian algebras that are the order duals of Heyting algebras.

[^1]: ${ }^{1} \mathrm{By} \mathcal{P}(W)$ we denote the powerset of W.

[^2]: ${ }^{2}$ Some authors define the finite model property in the following way: L has the fmp iff there is a class \mathbf{M} of finite models such that for every formula ϕ, we have $\phi \in L \Leftrightarrow \mathfrak{M} \models \phi$ for every $\mathfrak{M} \in \mathbf{M}$. The property defined in Definition 6.1.1 is then called the finite frame property. It can be shown that for intermediate logics these two properties coincide; see, e.g., [24, Theorem 8.47].
 ${ }^{3}$ This result can be improved by considering the so-called Jas̀kowski frames, which are a special kind of finite trees [24, p.56].

[^3]: ${ }^{4}$ Clearly, we can substitute for $\phi_{1}+\ldots+\phi_{n}$ one formula $\phi=\bigwedge_{i=1}^{n} \phi_{i}$. Therefore, if an intermediate logic is finitely axiomatizable, then it is axiomatizable by adding one extra axiom to IPC.
 ${ }^{5}$ For a definition of a complete lattice and a Heyting algebra consult the next section.

[^4]: ${ }^{6}$ In fact, each of these two axioms implies the other. Nevertheless, we list them both.

[^5]: ${ }^{7}$ In fact, it is not necessary to state that \mathfrak{A} is distributive. Every lattice satisfying conditions $1-4$ of Theorem 2.2.6 is automatically distributive [68, Lemma 1.11(i)].

[^6]: ${ }^{8}$ The motivation for this definition is to make sure that p-morphisms preserve the validity of formulas. Moreover, this definition guarantees that f^{-1} is a Heyting algebra homomorphism between \mathcal{P}^{\prime} and \mathcal{P}, see Theorems 2.3.7 and 2.3.25.
 ${ }^{9}$ The disjoint union of infinitely many descriptive frames is not a descriptive frame (it is not compact). This is the reason why we define disjoint unions only for finitely many descriptive frames.

[^7]: ${ }^{10}$ Some authors call such equivalence relations correct partitions [35], [6].

[^8]: ${ }^{11}$ In fact, there is a lattice anti-isomorphism between the lattice of subalgebras of \mathfrak{A} and the lattice of bisimulation equivalences of \mathfrak{A}_{*}.
 ${ }^{12}$ Note that in contrast to Boolean algebras, for Heyting algebras there is no one-to-one correspondence between congruences and ideals.

[^9]: ${ }^{13}$ Note that the representation theorem for Heyting algebras was first proved in [38] and formulated in topological terms as in Theorem 2.3.22. The representation of distributive lattices in terms of Priestley spaces was proved in [103].

[^10]: ${ }^{14}$ Recall that Zorn's lemma is equivalent to the axiom of choice and states that if in a partially ordered set every chain has an upper bound, then this partial order has a maximal element.
 ${ }^{15}$ We assume that the reader is familiar with the very basic notions of category theory, such as a category and (covariant and contravariant) functor. For basic facts about category theory the reader is referred to [87].

[^11]: ${ }^{16}$ Finitely axiomatizable varieties are also called finitely based; see, e.g., [56].

[^12]: ${ }^{1}$ The simplest argument for this claim is topological. Since $D_{\leq m}$ is admissible, it is a clopen subset of an Esakia space. Therefore, W_{m} is also clopen, and thus an Esakia space, see [35].

[^13]: ${ }^{2}$ This claim was first proved by Kuznetsov using an algebraic technique [80]; see also [26] and [11, Lemma 2.2(3)]. Our proof uses the Coloring Theorem.

[^14]: ${ }^{3}$ As we mentioned above Henkin frames and Henkin models are also called canonical frames and canonical models.

[^15]: ${ }^{4}$ However, in most cases n may be taken much smaller than $|\mathfrak{F}|$.

[^16]: ${ }^{5}$ Since a compact subset of a Hausdorff space is closed (see e.g., [32]) every subframe of an Esakia space is topologically closed.

[^17]: ${ }^{6}$ By Lemma 3.3.4, this is equivalent to saying that \mathfrak{F} is a generated subframe of a p-morphic image of \mathfrak{G}.

[^18]: ${ }^{1}$ Note that in this case it is essential that we take the de Jongh formula and not the Jankov formula. This ensures us that this formula is in n propositional variables.

[^19]: ${ }^{2}$ In topological terminology we take the linear sum of the Kripke frames and the topological sum of the corresponding topologies.

[^20]: ${ }^{3}$ Recall that n-generated frames were defined in Definition 3.1.3.

[^21]: ${ }^{4}$ Recall that an element a of a lattice λ is called completely meet irreducible if $\bigwedge_{i \in I} b_{i} \leq a$ implies that there is $i_{0} \in I$ such that $b_{i_{0}} \leq a$.

[^22]: ${ }^{5}$ For proving the theorem it is of course sufficient to find one (cofinal) subframe of \mathfrak{L} that is not an RN-frame. However, both frames \mathfrak{K}_{4} and \mathfrak{K}_{6} play an important role in our investigations and it is useful to know that, in fact, both of them are subframes of \mathfrak{L}.

[^23]: ${ }^{6}$ In terms of the previous chapter, this means that for every $\mathfrak{F} \in \mathbb{F} \mathbb{G}(\mathbf{K G}) \backslash \mathbb{F} \mathbb{G}(\mathbf{R N})$ there exists some $i=4,5,6$ such that $\mathfrak{K}_{i} \leq \mathfrak{F}$.

[^24]: ${ }^{1}$ Therefore, \mathcal{P} is a Boolean subalgebra of the powerset algebra $\mathcal{P}(W)$.

[^25]: ${ }^{2}$ Note that the concept of a "rectangular algebra" is different from the one of a "rectangular element" defined in [60, Definition 1.10.6].
 ${ }^{3}$ The rectangular and square algebras are defined in [60, Definitions 3.1.1(v) and 5.1.33(iii)], where they are called "two-dimensional (diagonal-free) cylindric set and uniform cylindric set algebras". However, since we only work with two-dimensional cylindric algebras, we find the terms "rectangular algebra" and "square algebra" more convenient.

[^26]: ${ }^{4}$ The definition of representability is not quite the same as the original one from [60] but is equivalent to it.

[^27]: ${ }^{1}$ If A^{\prime} is not finitely generated then we consider a finitely generated subalgebra of A^{\prime} generated by the elements of A^{\prime} that are mapped to the generators of A.

[^28]: ${ }^{1}$ This result also follows immediately from Theorem 6.3.2.

[^29]: ${ }^{2}$ By an $n \times k$ matrix we mean a matrix with n rows and k columns.

[^30]: ${ }^{3}$ To apply this theorem, we needed to require in the definition of \sqsubseteq_{1} on \mathcal{M} that φ is order preserving.

