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Lattices of Scott-closed sets

Weng Kin Ho, Dongsheng Zhao

Abstract. A dcpo P is continuous if and only if the lattice C(P ) of all Scott-
closed subsets of P is completely distributive. However, in the case where P is
a non-continuous dcpo, little is known about the order structure of C(P ). In
this paper, we study the order-theoretic properties of C(P ) for general dcpo’s P .
The main results are: (i) every C(P ) is C-continuous; (ii) a complete lattice L

is isomorphic to C(P ) for a complete semilattice P if and only if L is weak-
stably C-algebraic; (iii) for any two complete semilattices P and Q, P and Q are
isomorphic if and only if C(P ) and C(Q) are isomorphic. In addition, we extend
the function P 7→ C(P ) to a left adjoint functor from the category DCPO of
dcpo’s to the category CPAlg of C-prealgebraic lattices.

Keywords: domain, complete semilattice, Scott-closed set, C-continuous lattice,
C-algebraic lattice

Classification: 06B35, 06A06,06B23, 06D99, 06D10

1. Introduction

Since the 1980s, the relation between domains and their complete lattices of
Scott-open sets has been extensively studied. A basic but important result is a
Characterization Theorem for domains which states that L is a domain if and only
if the lattice of Scott-open sets of L (denoted by σ(L)) is completely distributive
(see Theorem II-1.14 of [7]). The subsequent discovery of the connection between
domains and logic based on the works of Abramsky [1], Vickers [24] and Smyth [22]
provided the mathematical justification for a more general investigation of the
domain-theoretic properties of the open set lattice O(X) for a topological space X .

For closed set lattices of topological spaces, a fundamental result, due to S. Pa-
pert, is that a complete lattice L is isomorphic to the lattice of closed subsets of a
topological space X if and only if the co-primes of L are join-dense in L (see [18]).
For the special case of the Scott topology on a dcpo P , most of what is known
about the order structure of the lattice of Scott-closed subsets of P (denoted by
C(P ) in this paper) is restricted by the assumption that P is continuous (or a do-
main). More precisely, Hoffmann [10] and Lawson [15] independently proved that
a complete lattice L is isomorphic to σ(P ) for a continuous dcpo P if and only if
L is a completely distributive lattice. Since a lattice L is completely distributive
if and only if its dual Lop is, it follows that the Scott-closed set lattices of conti-
nuous dcpo’s are, up to isomorphism, exactly the completely distributive lattices.
In categorical terms, the function (P 7→ C(P )) can be extended to a functor C
(called the Scott functor) which establishes an equivalence between DOM, the
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category of continuous dcpo’s and CDL, the category of completely distributive
lattices. The key property of continuous dcpo’s used to establish this equivalence
is that P can be recovered, up to isomorphism, as the set of all co-primes of the
lattice C(P ). However, for a non-continuous dcpo P , little is known about the
order-theoretic properties of the complete lattice C(P ).

Besides the mathematical systematics we have considered so far, our investi-
gation of the order-theoretic properties of lattices of Scott-closed subsets is moti-
vated by another seemingly unrelated problem. We explain this by first recalling
a definition from [13]. Let C be a category and E be a collection of morphisms in
C. An object A of C is said to be E-projective if for any E-morphism r : B → C
and any f : A → C in C there is at least one morphism f : A → B with r ◦ f = f .
In the special case where E is the collection of all epimorphisms, the E-projective
objects are precisely the projective objects of C. Usually the problem of char-
acterizing the E-projectives can be made more manageable if one restricts to a
more specific collection E. In the presence of categorical adjunctions, the follow-
ing restriction is usually considered. Let F ⊣ G be an adjunction between the
categories D and C. Consider the collection E of all C-morphisms f : A → B such
that Gf has a section, i.e., a right inverse in D.

In [26], the second author solved the problem of characterizing the E-projective
objects for certain categorical adjunctions. When applied to the adjunction1 be-
tween SLat, the category of meet-semilattices (with a top) and Frm, the category
of frames, his result implies that the E-projective frames are precisely the stably
continuous frames. In order to establish this, it is crucial to prove that the frames
of ideals are, up to isomorphism, exactly the stably continuous ones.

One natural question is whether one can characterize the E-projective frames
for the well-known adjunction between PreFrm, the category of preframes and
Frm (see [3] and [8]). Recall that in this adjunction, the left adjoint is the functor
which sends a preframe M to C(M) and the right adjoint is the forgetful functor.
Almost inevitably, one ends up with the problem of characterizing the Scott-closed
subset lattices of preframes. Additionally, Scott-closed set lattices have also been
employed by Mislove to construct the local dcpo-completion of posets (see [17]).

In summary, we do have sufficient motivation for investigating the general
order-theoretic properties of the lattices of Scott-closed sets. In this paper, we
report the following main results.

(1) All lattices of Scott-closed sets enjoy a property (called C-continuity)
analogous to the well studied notion of continuity.

(2) A complete lattice is isomorphic to C(P ) for a complete semilattice P iff
it is weakly C-stable and C-algebraic.

(3) If P and Q are complete semilattices such that C(P ) and C(Q) are iso-
morphic, then P and Q are isomorphic.

1The left adjoint is the ideal functor Id and the right the forgetful functor.
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The layout of the paper is as follows: In Section 2, we give some preliminaries
on continuous dcpo’s and completely distributive lattices. In Section 3, we intro-
duce and study the notion of C-continuous posets. Section 4 is devoted to the
study of general properties of the Scott-closed set lattices. In Section 5, we prove
that if P is a complete semilattice, then P can be recovered from C(P ) as the
set of C-compact elements. In the last section, we extend the Scott functor to
establish an adjunction between DCPO, the category of all dcpo’s, and CAlg,
the category of all C-algebraic lattices. This adjunction restricts to three familiar
categorical equivalences, including the classical Lawson-Hoffmann equivalence. In
what follows we assume that the reader is familiar with domains, categories and
functors. For an introduction to order theory, one may consult [4] and for an
excellent treatment of domain theory, one may consult [2] and [7]. For category
theory, the book [16] is a comprehensive text.

2. Preliminaries

A partially ordered set will be called a poset. In this paper, we shall use ⊑
to denote the order relation, and

⊔
E and

d
E the supremum and infimum of a

subset E, respectively. A nonempty subset D of a poset is said to be directed if
any two elements in D have an upper bound in D. A poset P is a dcpo (short
for directed complete poset) if every directed subset of P has a supremum in P .
Since the empty set is not directed by definition, a dcpo may fail to have a least
element (called the bottom). A dcpo with bottom 0 is said to be pointed .

For any subset A of a poset P , the subset ↑ A is defined by

↑ A = {x ∈ P | ∃ y ∈ A . y ⊑ x}.

A subset A of a poset P is said to be upper if A =↑ A. The lower subsets are
defined dually.

A subset U of a poset P is called Scott-open if (i) U is upper, and (ii) for any
directed set D in P ,

⊔
D ∈ U implies U ∩ D 6= ∅ whenever

⊔
D exists. The

set of all Scott-open sets of P forms a topology (called the Scott topology) on P ,
denoted by σ(P ).

The complements of Scott-open sets are the Scott-closed sets. We use C(P ) to
denote the set of all Scott-closed sets of P . Thus a subset F ⊆ P is Scott closed
if and only if (i′) F is lower, and (ii′) for any directed subset D ⊆ F , if

⊔
D

exists then
⊔

D ∈ F . Both σ(P ) and C(P ) are complete, distributive lattices
with respect to the inclusion relation.

Let P be a poset. The way-below relation ≪ on P is defined by a ≪ b for
a, b ∈ P if for any directed set D for which

⊔
D exists, b ⊑

⊔
D implies a ⊑ d for

some d ∈ D.
A poset P is said to be continuous if for any a ∈ P , the set ↓↓a := {x ∈ P |

x ≪ a} is directed and a =
⊔
↓↓a. A continuous dcpo is also called a domain.

A continuous poset which is also a complete lattice is called a continuous lattice.
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Note that for any directed set D of a dcpo P , ↓↓
⊔

D =
⋃
{↓↓d | d ∈ D} and this

set is again directed if each of the sets ↓↓d is directed.
Another binary relation on a complete lattice L often considered is ⊳, which is

defined as follows: y ⊳ a iff for any subset X ⊆ L, a ⊑
⊔

X implies y ⊑ x for some
x ∈ X .

A complete lattice L is called completely distributive iff for any family {xj,k |
j ∈ J, k ∈ K(j)} in L the equation

l

j∈J

⊔

k∈K(j)

xj,k =
⊔

f∈F

l

j∈J

xj,f(j)

holds where F is the set of choice functions f choosing for each index j of J
some index f(j) in K(j). It is well-known (see [19]) that a complete lattice L is
completely distributive if and only if for each a ∈ L, it holds that a =

⊔
{x ∈ L |

x ⊳ a}.

3. C-continuous posets

Given a poset P , we now define a new auxiliary relation on P which is crucial
for us to formulate the properties of lattices of Scott-closed sets.

Definition 3.1. Let P be a poset and x, y ∈ P . We say that x is beneath y,
denoted by x ≺ y, if for every nonempty Scott-closed set C ⊆ P for which

⊔
C

exists, the relation
⊔

C ⊒ y always implies that x ∈ C.

The following example reveals that ≺ and ≪ can be quite different.

Example 3.2. (1) Let I = [0, 1] be the unit interval with the ordinary or-
der ⊑. It is easy to see that x ≺ y if and only if x ⊑ y. In particular,
x ≺ x for all x ∈ [0, 1]. However, the only element y of I satisfying the
relation y ≪ y is 0. Hence x ≺ y does not imply x ≪ y.

(2) Consider the lattice M3 = {0, a, b, c, 1}, where the order is defined by
0 < a, b, c < 1. Since M3 is a finite lattice, it follows that for any two
elements x and y in M3, x ≪ y if and only if x ⊑ y. In particular,
a ≪ a holds. Notice that the set C = {0, b, c} is Scott-closed with 1 as its
supremum.

⊔
C = 1 ⊒ a but a /∈ C. So, a 6≺ a. Hence a ≪ a does not

imply a ≺ a.
However, it is trivial that in a complete lattice x ⊳ y always implies x ≺ y.

Now it is routine to verify the following properties of the relation ≺.

Proposition 3.3. Let P be a poset and u, v, x, y ∈ P . Then the following

statements hold:

(i) x ≺ y implies x ⊑ y;

(ii) u ⊑ x ≺ y ⊑ v implies u ≺ v; and

(iii) if P is pointed, then 0 ≺ x always holds.
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Proposition 3.4. Let P be a poset and D a directed subset of P such that
⊔

D
exists. If d ≺ x for all d ∈ D, then

⊔
D ≺ x.

Proof: Let F ∈ C(P ) be non-empty such that
⊔

F exists with
⊔

F ⊒ x. Since
d ≺ x for all d ∈ D, it follows that D ⊆ F . Because F is Scott-closed and D is
directed, we have

⊔
D ∈ F . Thus

⊔
D ≺ x. �

Notice that neither the relation ⊳ nor ≪ enjoys such a property.
Propositions 3.3 and 3.4 together imply the following corollary.

Corollary 3.5. For any element a of a poset P , the set

{x ∈ P | x ≺ a}

is a Scott-closed subset of P .

With the relation ≺, we now define a new class of posets.

Definition 3.6. A poset P is said to be C-continuous if it satisfies the following
approximation axiom: For each a ∈ P ,

a =
⊔

{x ∈ P : x ≺ a}.

A C-continuous poset which is also a complete lattice is called a C-continuous

lattice.

Remark 3.7. Notice that one of the requirements of a domain P is that for every
x ∈ P the set {p ∈ P : p ≪ x} is directed. In contrast, for any poset Q, the
set {q ∈ Q : q ≺ a} is automatically Scott-closed for any a ∈ Q by virtue of
Corollary 3.5.

The following proposition has a proof that is similar to that for continuous
lattices (see Theorem I-1.10 of [7]).

Proposition 3.8. For a complete lattice L, the following are equivalent:

(i) L is C-continuous;

(ii) for each a ∈ L, there is a smallest non-empty Scott-closed set C such that⊔
C ⊒ a;

(iii) for any collection {Fi : i ∈ I} of Scott-closed subsets of L, the following

equation holds:
l

i∈I

⊔
Fi =

⊔ ⋂

i∈I

Fi.

Example 3.9. (1) Since for any two elements a and b, a ⊳ b implies a ≺ b, it
is immediate that every completely distributive lattice is C-continuous.

(2) The finite lattice M3 in Example 3.2(2) is continuous but not C-continuous.
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An example of a C-continuous lattice which is not continuous is given in a later
section (see Example 4.10). Meanwhile, the following result implies that every
C-continuous lattice is distributive.

Proposition 3.10. Let L be a C-continuous lattice. Then for any collection

{Fi : i ∈ I} of finite subsets of L the following equation holds:

l

i∈I

⊔
Fi =

⊔

f∈Πi∈IFi

l

i∈I

f(i).

In particular, every C-continuous lattice is distributive.

Proof: Denote the left hand side (respectively, the right hand side) of the equa-
tion by a (respectively, b). It suffices to prove that a ⊑ b. Let a =

d
i∈I

⊔
Fi and

x ≺ a. For each i ∈ I, the set ↓ Fi is a Scott-closed set and x ≺ a ⊑
⊔

Fi, so
there is a di ∈ Fi with x ⊑ di. Let f ∈ Πi∈IFi be defined by f(i) = di, i ∈ I.
Then x ⊑

d
i∈I f(i) ⊑ b. But L is C-continuous so that a =

⊔
{x ∈ L : x ≺ a}

and thus a ⊑ b. �

Theorem 3.11. Let L be a complete lattice. Then the following are equivalent:

(i) L is C-continuous and continuous;

(ii) L is completely distributive.

Proof: It suffices to show that (i) implies (ii). Assume that L is both C-
continuous and continuous. Since L is continuous, for each a ∈ L, a =

⊔
{x ∈ L :

x ≪ a}. Now for each x ≪ a, x =
⊔
{y ∈ L : y ≺ x}. It follows that

a =
⊔

{y ∈ L : ∃x . y ≺ x ≪ a}.

Next, suppose y ≺ x ≪ a, we shall show that y ⊳ a. Let X ⊆ L with
⊔

X ⊒ a.
Construct the set E = {

⊔
A : A is a finite subset of X}. Then E is a directed

set and
⊔

E =
⊔

X ⊒ a. Since x ≪ a, there is a finite subset A ⊆ X such that
x ⊑

⊔
A =

⊔
↓ A. Note that the last set ↓ A is Scott-closed. So it follows from

y ≺ x that y ⊑ d for some d ∈ A ⊆ X . This implies that y ⊳ a. Hence L is
completely distributive. �

Before proceeding to the next section, let us have one more example.

Example 3.12. Consider the unit interval [0, 1] with its usual Hausdorff topology.
Denote by O([0, 1]) the lattice of all such open sets of [0, 1]. It is well-known that
O([0, 1]) is continuous (since [0, 1] is locally compact) and distributive but not
completely distributive. So, by Theorem 3.11, O([0, 1]) cannot be C-continuous.

4. Order properties of lattices of Scott-closed sets

In this section, we reveal some order-theoretic properties of the lattice (C(P ),⊆)
for an arbitrary poset P . In particular, we prove that every lattice of the form
C(P ) is C-continuous.
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The following proposition says that the subset system defined by C(P ) for each
dcpo P is union-complete in the sense of [23].

Proposition 4.1. Let P be a poset and C ∈ C(C(P )). Then
⊔

C(P ) C =
⋃
C.

Proof: Note that each member of C is a Scott-closed subset of P . So to prove
the equation, it suffices to show that

⋃
C ∈ C(P ).

Obviously
⋃
C is a lower subset of P . Now let D be any directed subset of P

contained in
⋃
C such that

⊔
D exists in P . We want to prove that

⊔
D ∈ C for

some C ∈ C. First note that D = {↓ d : d ∈ D} is a directed subset of C(P ).
Moreover, D ⊆ C because C is lower in C(C(P )). Since C is a Scott-closed set
of C(P ), so

⊔
C(P ) D ∈ C. But

⊔
C(P ) D is precisely ↓

⊔
D. Hence

⊔
D ∈ C for

some C ∈ C. �

Definition 4.2. An element x of a poset P is called C-compact if x ≺ x. We use
κ(P ) to denote the set of all the C-compact elements of P .

Recall that an element r 6= 0 of a lattice L is called co-prime if for any x, y ∈ L,
r ⊑ x ⊔ y implies r ⊑ x or r ⊑ y.

Proposition 4.3. Let L be a lattice.

(i) If r ∈ κ(L), then r is co-prime.

(ii) If L is a completely distributive lattice, then every co-prime element is

C-compact.

(iii) If L is a complete lattice and κ(L) 6= ∅, then κ(L) is a pointed dcpo with

respect to the order inherited from L.

Proof: (i) Suppose r is C-compact and r ⊑ x ⊔ y. Let D =↓ {x, y}. Then D
is Scott-closed and

⊔
D = x ⊔ y. Hence r ∈ D, so r ⊑ x or r ⊑ y. Thus r is

co-prime.
(ii) Let L be a completely distributive lattice and r ∈ L be co-prime. Note

that the set β(r) = {x ∈ L : x ⊳ r} is a directed set and
⊔

β(r) = r (cf. [25]).
Since x ⊳ r implies x ≺ r, it then follows from Corollary 3.5 that

⊔
β(r) ≺ r, i.e.,

r ≺ r. Hence r is C-compact.
(iii) Let D be a directed subset in κ(L). It suffices to show that

⊔
D ≺

⊔
D.

So let E ∈ C(L) with
⊔

D ⊑
⊔

E. Thus d ⊑
⊔

E for all d ∈ D. Since D ⊆ κ(L),
it follows that d ≺ d for all d ∈ D and so D ⊆ E. Because E is a Scott-closed
subset of L, this implies that

⊔
D ∈ E and so

⊔
D ≺

⊔
D, i.e.,

⊔
D ∈ κ(L).

Also, 0 ≺ 0 implies that 0 ∈ κ(L). Hence κ(L) is a pointed dcpo with respect to
the order inherited from L. �

From the proof of (iii) it is seen that for a complete lattice L, κ(L) is a sub-dcpo
of L, i.e. it is closed under the supremum of directed sets.
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Example 4.4. (1) Let F ([0, 1]) be the lattice of all closed subsets (with re-
spect to the Euclidean metric) of the unit interval [0, 1]. Then each sin-
gleton is co-prime, but not C-compact. For instance, let A = { 1

2} and

C = {{x} : x 6= 1
2}∪{∅}. Then obviously C is a Scott-closed set of F ([0, 1])

and
⊔
C = [0, 1] ⊇ A, but A /∈ C.

From the above proof, one sees easily that if X is a T1 space, then for
any x ∈ X , {x} ≺F (X) {x} in the lattice F (x) of all closed subsets of X
iff {x} is isolated.

(2) Recall that an element a of a dcpo is called compact if a ≪ a. In a finite
lattice, every element is compact. Thus it is easy to construct a compact
element that is not C-compact.

Proposition 4.5. Let P be a poset and X be a non-empty Scott-closed subset

of P . Then for each x ∈ X , ↓ x ≺ X holds in C(P ).

Proof: Let x ∈ X . Suppose C ∈ C(C(P )) with
⊔

C(P ) C ⊇ X . Then, by

Proposition 4.1, X ⊆
⋃
C. Hence there exists C ∈ C such that x ∈ C. So

↓ x ⊆ C, and thus ↓ x ∈ C. �

Corollary 4.6. Let P be a poset. Then for each x ∈ P , it holds that ↓ x ∈
κ(C(P )).

Definition 4.7. A poset P is said to be C-prealgebraic if for each a ∈ P ,

a =
⊔

{x ∈ κ(P ) : x ⊑ a}.

A C-prealgebraic poset P is C-algebraic if for any a ∈ P ,

↓ {x ∈ κ(P ) : x ⊑ a} ∈ C(P ).

Obviously every C-prealgebraic poset is C-continuous. Again, we call a C-
(pre)algebraic poset which is also a complete lattice a C-(pre)algebraic lattice.

Proposition 4.8. For any poset P , the lattice C(P ) is C-prealgebraic.

Proof: This follows from Corollary 4.5 and the fact that F =
⊔

C(P ){↓ x : x ∈

F} holds for every F ∈ C(P ). �

It is well-known that a poset P is continuous if and only if C(P ) is completely
distributive ([6]). From Theorem 3.11, we obtain the following:

Corollary 4.9. For any poset P , the following statements are equivalent:

(i) P is a continuous poset;

(ii) C(P ) is a continuous lattice;

(iii) C(P ) is a completely distributive lattice.

Note that in Theorem II-1.14 of [7], an equivalence condition for P to be
continuous is that both C(P ) and σ(P ) are continuous. Our result here shows
that σ(P ) being continuous is surplus.
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Example 4.10. Take a non-continuous dcpo P . Since P is not continuous, C(P )
cannot be completely distributive. But C(P ) is C-continuous, so by Corollary 4.9,
C(P ) cannot be continuous.

5. Scott-closed set lattices of complete semilattices

Recall that a complete semilattice is a dcpo in which every nonempty subset
has an infimum. It is well known that a dcpo is a complete semilattice if and only
if every subset that is bounded above has a supremum (see [7]).

At this moment of time, we are still unable to give a complete characterization
of the Scott-closed set lattice C(P ) for an arbitrary dcpo P . However we can do
this for a complete semilattice P .

Lemma 5.1. Let P be a complete semilattice. For any X ∈ C(P ), the set

CX := {F ∈ C(P ) : F ⊆↓ x for some x ∈ X} is a Scott-closed subset of C(P ).

Proof: Since CX is clearly a lower subset of C(P ), it remains to show that for
any directed subset E of CX ,

⊔
C(P ) E ∈ CX . Now for each Scott-closed set E ∈ E ,

E ⊆↓ x for some x ∈ X and, since P is a complete semilattice,
⊔

E exists. Clearly
the set {

⊔
E : E ∈ E} is a directed subset of P . Let e =

⊔
{
⊔

E : E ∈ E}. In
addition, as X is a lower set in P , it holds that

⊔
E ∈ X for each E ∈ E . So

e =
⊔
{
⊔

E : E ∈ E} ∈ X . We claim that
⊔

C(P ) E ⊆↓ e. From the way e is

defined, it is clear that e ⊒
⊔

Y for any Y ∈ E . This implies that Y ⊆↓
⊔

Y ⊆↓ e
for each Y ∈ E . Consequently

⋃
E ⊆↓ e. But

⊔
C(P ) E is the smallest Scott-

closed set of C(P ) containing
⋃
E , it follows that

⊔
C(P ) E ⊆↓ e. Since e ∈ X , it

follows that ↓ e ∈ CX . Consequently because CX is a lower set with respect to
the inclusion order, it must be that

⊔
C(P ) E ∈ CX . �

Theorem 5.2. Let P be a complete semilattice. Then X ∈ κ(C(P )) if and only

if X is a principal ideal, i.e. X =↓ a for some a ∈ P .

Proof: By Corollary 4.6, it suffices to prove the “only if” part. Suppose X ∈
κ(C(P )). By Lemma 5.1, CX = {F ∈ C(P ) : F ⊆↓ x for some x ∈ X} is a Scott-
closed subset of C(P ). It is clear that

⊔
C(P ) CX = X . Since X ≺ X , it follows

that X ∈ CX . Thus X ⊆↓ x for some x ∈ X . But this means that X =↓ x. �

Remark 5.3. (1) A closed set F of a topological space X is said to be ir-

reducible if it is a co-prime element of the lattice of all closed subsets
of X . Recall that a topological space X is called a sober space if every
irreducible closed set is the closure of a unique singleton set ([7]). For
an arbitrary dcpo P , the Scott space Σ P = (P, σ(P )) need not be sober
([12]). Even if P is a complete lattice, ΣP may not be sober ([11]). In-
deed, for the complete lattice P constructed by Isbell in [11] there exists
an irreducible Scott-closed set F such that F 6=↓ x for any x ∈ L. How-
ever, by Theorem 5.2, the C-compact elements of C(L) are exactly the
principal ideals of L. Hence the above-mentioned F is not C-compact.
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(2) We call a topological space X pre-sober if for every C-compact closed set
C of X , there is a unique element x such that C = {x}−, the closure of
{x}. By Proposition 4.3(i), every C-compact element in C(P ) is co-prime
and thus every sober space is pre-sober. By Theorem 5.2, for any complete
lattice L, the Scott space ΣL is pre-sober. So the example constructed
by Isbell in [11] yields a pre-sober space which is not sober.

(3) It is then natural to ask: Is the Scott space ΣP of every dcpo pre-sober?
The answer is negative. One such counterexample is the one constructed
by Johnstone in [12]. We now explain this. Let X = N× (N∪{∞}), with
the partial order defined by

(m, n) ⊑ (m′, n′) ⇐⇒ either m = m′ and n ⊑ n′

or n′ = ∞ and n ⊑ m′.

Then (X,⊑) is a dcpo and there is no x ∈ X such that X = {x}− =↓ x.
We now show that the set X is C-compact. Suppose that there is a
collection F = {Fi : i ∈ I} of Scott-closed subsets Fi’s of X such that F
itself is a Scott-closed subset of C(X), and

⊔
C(X) F = X , which means⋃

F = X because of Proposition 4.1. For each k ∈ N, let Ek = {(m, n) :
m ∈ N, n ⊑ k}, which is clearly a Scott-closed subset of X . For each
k, there exists Fi such that (k,∞) ∈ Fi, hence Ek ⊆↓ (k,∞) ⊆ Fi,
which implies that Ek ∈ F . Clearly {Ek : k ∈ N} is a directed set.
Now as F ∈ C(C(X)), we have

⊔
C(X){Ek : k ∈ N} ∈ F . But trivially⊔

C(X){Ek : k ∈ N} = X , so X ∈ F . Hence X is C-compact.

By Proposition 4.8, Theorem 5.2 and Lemma 5.1, we obtain the following.

Corollary 5.4. For any complete semilattice P , the lattice C(P ) is C-algebraic.

Since for every completely distributive lattice L there is a continuous dcpo P
such that L is isomorphic to C(P ) ([15]), we have:

Corollary 5.5. Every completely distributive lattice is C-prealgebraic.

Theorem 5.2 reveals that we can recover P , up to isomorphism, from C(P ) as
the set of all C-compact elements if P is a complete semilattice.

Corollary 5.6. Let P be a complete semilattice. Then the principal ideal map-

ping ↓: P → κ(C(P )), x 7→↓ x is an order-isomorphism.

Corollary 5.7. For complete semilattices P and Q, the following statements are

equivalent:

(i) P ∼= Q.

(ii) σ(P ) ∼= σ(Q).
(iii) C(P ) ∼= C(Q).

Remark 5.8. At the moment, we do not know whether the implication (iii) =⇒ (i)
in the above corollary holds for any two dcpo’s. Of course, if P is a domain, then
Σ(P ) is sober and C(P ) is a completely distributive lattice. Thus if C(Q) ∼= C(P ),
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then Q must be continuous, thus Σ(Q) is sober. Hence we have that P and Q are
isomorphic.

At this juncture, the curious reader may wonder if a C-continuous poset ex-
hibits the well-known interpolation property ([7]). More precisely, if P is a C-
continuous poset and x ≺ z holds in P , is there a y ∈ P such that x ≺ y ≺ z?
Although we do not have the answer to this at the moment, the following coun-
terexample does show that a C-continuous lattice need not exhibit the strong
interpolation property ([7]).

Example 5.9. Let M3 be the standard non-distributive lattice as in Example 3.2.
By Proposition 4.8, the lattice C(P ) is C-prealgebraic. Note that in C(P ), ↓ a ≺↓
{a, b, c} but there is no element C ∈ C(P ) for which C 6=↓ a and C 6=↓ {a, b, c}
such that ↓ a ≺ C ≺↓ {a, b, c}.

Definition 5.10. Let L be a complete lattice. We say that L is C-stable if the
following conditions hold:

(i) for any x ∈ L and for any nonempty set D of L with x ≺ D (i.e., x ≺ d
for all d ∈ D), it holds that x ≺

d
L D;

(ii) 1L ≺ 1L, where 1L is the top element of L.

If L satisfies only condition (i), we say that L is weakly C-stable.

Proposition 5.11. For any C-algebraic lattice L. the following are equivalent:

(i) L is C-stable;

(ii) κ(L) is a complete lattice with respect to the order inherited from L.

Proof: (i) =⇒ (ii): Assume L is C-stable. Then 1L ∈ κ(L). It suffices to prove
that the infimum of an arbitrary non-empty subset of κ(L), say {xi : i ∈ I},
exists. Denote

d
L{xi : i ∈ I} by x. Clearly, by Proposition 3.3, x ≺ xi for each

i ∈ I. Thus, x ≺ x by the C-stability of L. Hence x =
d

κ(L){xi : i ∈ I}. So κ(L)

is a complete lattice with respect to the order inherited from L.
(ii) =⇒ (i): Assume that κ(L) is a complete lattice. Since L is C-algebraic,

the top element 1κ(L) of κ(L) must coincide with the top element 1L of L, so
1L ∈ κ(L), i.e. 1L ≺ 1L. Now suppose that x ∈ L and D ⊆ L is a nonempty set
such that x ≺ D. The C-algebraicity of L ensures that for each d ∈ D there exists
d′ ∈ κ(L) such that x ⊑ d′ ⊑ d. Define D′ = {d′ ∈ κ(L) : x ⊑ d′ ⊑ d for some d ∈
D}. Since κ(L) is complete, the element e =:

d
κ(L) D′ ∈ κ(L) exists. If we can

prove x ⊑ e, then x ⊑ e ≺ e ⊑
d

L D′ ⊑
d

L D would imply that x ≺
d

L D. So it
remains to verify that indeed x ⊑ e.

Now for each y ∈ κ(L) with y ≺ x, we have y ⊑ e. Thus
⊔

κ(L){y ∈ κ(L) : y ⊑

x} ⊑ e. Since L is C-algebraic, x =
⊔

L{y ∈ κ(L) : y ⊑ x}. Since
⊔

L{y ∈ κ(L) :
y ⊑ x} ⊑

⊔
κ(L){y ∈ κ(L) : y ⊑ x}, by the transitivity of ⊑, it follows that x ⊑ e

and the proof is complete. �

The following proposition can be proved in a similar way.



308 W.K.Ho, D. Zhao

Proposition 5.12. The following statements are equivalent for a C-algebraic

lattice L:

(i) L is weakly C-stable;

(ii) κ(L) is a complete semilattice.

Now we can prove one of the main results in this paper.

Theorem 5.13. In the following, a (weakly) C-stable and C-algebraic lattice will

be called a (weak-) stably C-algebraic lattice.

(i) A complete lattice M is isomorphic to the lattice C(L) for a complete

lattice L if and only if M is stably C-algebraic.

(ii) A complete lattice M is isomorphic to the lattice C(P ) for a complete

semilattice P if and only if M is weak-stably C-algebraic.

Proof: Since the proofs for (i) and (ii) are very similar, we prove only (ii).
Assume that P is a complete semilattice and M ∼= C(P ). By Corollary 5.4,

M is C-algebraic. By Corollary 5.6, κ(M) is isomorphic to P . Thus κ(M) is a
complete semilattice. Since M is a C-algebraic lattice, by Proposition 5.12, M is
weakly C-stable.

Now assume that M is a weak-stably C-algebraic lattice. Let P = κ(M)
and {xi : i ∈ i} ⊆ P be a nonempty subset. Then for all i ∈ I, we haved

M{xi : i ∈ I} ⊑ xi ≺ xi. As M is weakly-stable, it follows that
d

M{xi : i ∈
I} ≺

d
M{xi : i ∈ I}. Consequently

d
M{xi : i ∈ I} ∈ P and thus

d
M{xi : i ∈

I} =
d

P {xi : i ∈ I}. Thus, P is a complete semilattice.
We now show that M is isomorphic to C(P ). We claim that the mapping

ζ : M → C(P ), x 7→ (↓ x) ∩ P , is an order-isomorphism of complete lattices. By
Proposition 4.3, P is a dcpo with respect to the order inherited from M . So it
follows that ζ(x) ∈ C(P ) for every x ∈ M . Trivially, ζ is order-preserving. In
order to show that ζ is an order-isomorphism, it suffices to show that the mapping⊔

M : C(P ) −→ M is an inverse of ζ. For each x ∈ M ,
⊔

ζ(x) =
⊔

M (↓ x∩P ) = x
holds because M is C-algebraic. Now for any C ∈ C(P ), let

⊔
M C = a. We

claim that (↓ a) ∩ P = C. Since (↓ a) ∩ P ⊇ C is trivial, we only need to show
that (↓ a) ∩ P ⊆ C. Let x ∈ (↓ a) ∩ P , i.e., x ≺ x and x ⊑ a. This implies that
x ≺ a =

⊔
M C. Let Q =↓ C = {y ∈ M : ∃ c ∈ C, y ⊑ c}, then

⊔
M C =

⊔
M Q.

If we can show Q is a Scott-closed set of M , then x ≺ a =
⊔

M C =
⊔

M Q will
imply that x ∈ Q and thus x ⊑ c for some c ∈ C, whence x ∈ C. It then follows
that (↓ a) ∩ P ⊆ C.

To show that ↓ C is a Scott-closed set of M , let D ⊆ ↓ C be a directed subset
of M . For each d ∈ D, let d =

d
P {y ∈ C : d ⊑ y}. Note that each d ∈ C,

and obviously the set D = {d : d ∈ D} is a directed subset of P . Since C is
a Scott-closed set of P , we have

⊔
P D ∈ C. However it is clear that

⊔
M D ⊑⊔

M D ⊑
⊔

P D, and hence
⊔

M D ∈ ↓ C. Since ↓ C is obviously a lower set, it is
thus a Scott-closed set of M . The proof is then complete. �

From the proof of Theorem 5.13 we have the following:
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Corollary 5.14. Let M be a weak-stably C-algebraic lattice.

(i) The mapping ζ : M −→ C(P ), x 7→ (↓ x) ∩ P is an order isomorphism,

where P = κ(M).
(ii) The mapping

⊔
M : C(P ) −→ M is an order isomorphism, which is the

inverse of ζ.

6. Some categorical equivalences

After proving Theorem 5.13, it is natural to conjecture that there exists an
equivalence between the category of complete semilattices and the category of
weak-stably C-algebraic lattices. In this section, we first establish an adjunction
between the category of dcpo’s and the category of C-prealgebraic lattices. The
restriction of this adjunction will give the desired equivalence.

Let DCPO be the category whose objects are dcpos and whose morphisms are
the Scott-continuous maps (i.e. monotone maps preserving sups of directed sets).

Let L and M be posets. A pair (g, d) of mappings d : L −→ M and g : M −→ L
is called a Galois connection if both d and g are monotone, and for any x ∈ L
and y ∈ M , d(x) ⊑ y holds if and only if x ⊑ g(y) holds. In a Galois connection
(g, d), the mapping d is called the lower adjoint and g the upper adjoint .

Let (g, d) be a Galois connection between complete lattices L and M . It is well-
known that if L and M are both complete lattices then a mapping d : L −→ M
is a lower adjoint if and only if it preserves arbitrary suprema ([4]). Likewise, a
mapping g : M −→ L is an upper adjoint if and only if it preserves arbitrary
infima. Moreover, if M and L are complete lattices, then

∀m ∈ M . g(m) =
⊔

{l ∈ L : d(l) ⊑ m},

∀ l ∈ L . d(l) =
l

{m ∈ M : l ⊑ g(m)}.

A mapping h : L −→ M between complete lattices is said to preserve the
relation ≺ if for any x, y ∈ L, x ≺ y implies h(x) ≺ h(y). Now let CPAlg be the
category whose objects are the C-prealgebraic lattices and morphisms the lower
adjoints which preserve the relation ≺.

Lemma 6.1. Let (g, d) be a Galois connection between two posets M and N ,

where d : M −→ N and g : N −→ M . Then for any Scott-closed subset C of N ,

↓ g(C) is a Scott-closed subset of M .

Proof: Let D ⊆↓ g(C) be directed such that
⊔

D exists. Then for each x ∈ D,
there exists c ∈ C such that x ⊑ g(c), and so d(x) ⊑ c. Since C is lower in N ,
d(x) ∈ C, and so d(D) is a directed subset contained in C. Because C is Scott-
closed in N and lower adjoints preserve arbitrary sups, it follows that

⊔
d(D) =

d(
⊔

D) ∈ C. Since (g, d) is a Galois connection, we have that
⊔

D ∈↓ g(C) as
desired. �

Lemma 6.2. Let (g, d) be a Galois connection between complete lattices L and

M , where d : L −→ M and g : M −→ L. If g preserves the sups of Scott-closed
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subsets, then d preserves the relation ≺. If L is C-continuous, then the converse

conclusion is also true.

Proof: Assume that g preserves the supremum of Scott-closed sets and x ≺ y
holds in L. Let C be a Scott-closed subset of M satisfying

⊔
C ⊒ d(y). It

follows that g(
⊔

C) ⊒ g(d(y)) ⊒ y since g is the upper adjoint of d. Thus⊔
↓ g(C) =

⊔
g(C) = g(

⊔
C) ⊒ y. By Lemma 6.1, ↓ g(C) is Scott closed. Now

it follows from the definition of x ≺ y that x ⊑ g(c) holds for some c ∈ C. But d
is the lower adjoint so that d(x) ⊑ c. Hence d(x) ∈ C and so d(x) ≺ d(y).

Now assume that L is C-continuous and d preserves the relation ≺. For any
Scott-closed subset C of L, we show that g(

⊔
C) ⊑

⊔
g(C) which then implies

g(
⊔

C) =
⊔

g(C). Since L is C-continuous, in order to show g(
⊔

C) ⊑
⊔

g(C)
it suffices to prove that for every x ≺ g(

⊔
C), x ⊑

⊔
g(C) holds. For this, let

x ≺ g(
⊔

C), then d(x) ≺ d(g(
⊔

C)) ⊑
⊔

C. Thus as C is Scott-closed, there
exists c ∈ C such that d(x) ⊑ c. Hence x ⊑ g(c) ⊑

⊔
g(C) and thus the proof is

complete. �

It is well-known that if f : P −→ Q is a morphism in DCPO then f is a
(topologically) continuous mapping from the Scott space ΣP to Σ Q ([4] and [7]).
Hence for each E ∈ C(Q), f−1(E) ∈ C(P ). Thus the mapping f−1 : C(Q) −→
C(P ) is well-defined and preserves arbitrary meets, so it is an upper adjoint. We
now show that the lower adjoint of f−1 preserves the relation ≺.

Lemma 6.3. Let f : P −→ Q be a morphism in DCPO and let h : C(P ) −→
C(Q) be the lower adjoint of f−1. Then h preserves ≺.

Proof: By virtue of Lemma 6.2, it suffices to show that f−1 preserves sups of
Scott-closed sets of C(Q). For any C ∈ C(C(Q)),

⊔
C(Q) C =

⋃
C by Lemma 4.1.

Then f−1(
⊔

C(Q) C) = f−1(
⋃
C). Thus

⋃
f−1(C) = f−1(

⋃
C) ∈ C(P ), so it

follows that ⊔

C(P )

f−1(C) =
⋃

f−1(C) = f−1(
⊔

C(Q)

C).

Thus f−1 preserves sups of Scott-closed subsets. �

It follows from the above lemma that the function P −→ C(P ) can be extended
to a functor C : DCPO −→ CPAlg, where for each dcpo P , C sends P to the
complete lattice C(P ) and sends every morphism f : P −→ Q in DCPO to the
mapping C(f) : C(P ) −→ C(Q) which is the lower adjoint of f−1.

On the other hand, for each C-prealgebraic A, recall that κ(A) is the dcpo of all
C-compact elements of A and it is a subset of A closed under the sups of directed
sets. If f : A −→ B is a morphism in CPAlg then f restricts to a morphism
κ(f) : κ(A) −→ κ(B) in DCPO. Thus we have a functor κ : CPAlg −→ DCPO.

Theorem 6.4. The functor κ is right adjoint to the functor C.

Proof: For each dcpo P , let ηP : P −→ κ(C(P )) be the mapping defined by
ηP (x) =↓ x for all x ∈ P . It is clear that ηP is a morphism in DCPO. Suppose
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that L is a C-prealgebraic lattice and h : P −→ κ(L) is a morphism in DCPO.
Define h : C(P ) −→ L by

h(E) =
⊔

h(E) for each E ∈ C(P ).

Then h(x) = h(ηP (x)) = κ(h) ◦ ηP (x) holds for every x ∈ P , so h = κ(h) ◦ ηP .

It remains to prove that h is a lower adjoint that preserves the relation ≺. Since
both C(P ) and L are complete lattices, to prove h is a lower adjoint, it is enough
to show that it preserves sups of arbitrary sets.

For this purpose, let D = {Ai : i ∈ I} ∈ C(P ). Then, as h is a continuous
mapping between the spaces (P, σ(P )) and (L, σ(L)), we have

h(cl(
⋃

D)) ⊆ cl(h(
⋃

D)).

Note that cl(
⋃
D) =

⊔
C(P ) D and cl(h(

⋃
D))⊆↓ (

⊔
i∈I

⊔
h(Ai)) =↓ (

⊔
i∈I h(Ai)).

Now

h(
⊔

C(P ) D) =
⊔

L h(cl(
⋃
D))

≤
⊔

L cl(h(
⋃
D))

≤
⊔

i∈I h(Ai).

But clearly h(
⊔

C(P ) D) ≥
⊔

i∈I h(Ai), thus

h(
⊔

C(P )

D) =
⊔

i∈I

h(Ai).

Next we show that h preserves ≺. By Lemma 6.2, we only need to prove
that the right adjoint g : L −→ C(P ) preserves sups of Scott-closed sets. Let
C ∈ C(L). It suffices to prove that g(

⊔
C) ⊆

⊔
g(C). Because g is the upper

adjoint of h, we have the following:

g(
⊔

C) =
⊔
{A ∈ C(P ) : h(A) ⊑

⊔
C}

=
⊔
{↓ x : x ∈ P, h(↓ x) ⊑

⊔
C}

=
⊔
{↓ x : x ∈ P, h(x) ⊑

⊔
C}.

But for each x ∈ P, h(x) ∈ κ(L), so h(x) ≺ h(x). Hence if h(x) ⊑
⊔

C then

h(x) ∈ C. Let c = h(x). Then h(↓ x) = h(x) = c implies ↓ x ⊆ g(c) because g is
right adjoint to h. Therefore g(

⊔
C) ⊆

⊔
g(C). �

Let CL be the full subcategory of DCPO consisting of all complete lattices and
let CSlat be the full subcategory of DCPO consisting of all complete semilat-
tices. Denote by SCAlg (respectively, WSCAlg) the full subcategory of CPAlg

consisting of all stably C-algebraic (respectively, weak-stably C-algebraic) lattices.
By Theorem 5.13, for any object P in CSlat, C(P ) is an object in WSCAlg.

Thus C restricts to a functor from CSlat to WSCAlg. For any morphism f :
P −→ Q in CSlat, C(f) : C(P ) −→ C(Q) is the lower adjoint of f−1. It
follows immediately that C(f)(↓ x) =↓ f(x) for each x ∈ P . Thus the functor
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C is faithful. Now if s : C(P ) −→ C(Q) is a morphism in WSCAlg, then s
restricts to a morphism f : P −→ Q, where for each x ∈ P , f(x) ∈ Q such that
↓ f(x) = s(↓ x). It is straightforward to verify that C(f) = s. Hence the functor
C : CSlat −→ WSCAlg is also full. At last, for each object M in WSCAlg, let
P = κ(M), then M is isomorphic to C(P ).

Also, P is an object of CL iff C(P ) is an object of SCAlg.
By Theorem IV.4.1(iii) of [16], we have the following:

Proposition 6.5. The functor C : DCPO −→ CPAlg restricts to an equiva-

lence between CSlat (respectively, CL) and WSCAlg (respectively, SCAlg).

Let DOM denote the full subcategory of DCPO consisting of all domains and
let CDL denote the full subcategory of CPAlg consisting of all completely dis-
tributive lattices. From a classical result of [7], one has: a dcpo P is continuous if
and only if C(P ) is completely distributive. And for every completely distributive
lattice L, C(Cospec(L)) ∼= L holds, where Cospec(L) is the set of all co-prime
elements of L, which is the same as the set of all the C-compact elements of L by
Proposition 4.3.

By a similar argument to the one before we deduce the following:

Corollary 6.6. The category DOM is equivalent to the category CDL.

Classically one considers the category CDL∗ of all completely distributive lat-
tices and lower adjoints which preserve the long way-below relation ⊳. Similarly,
one consider the category DOM∗ of domains and Scott-continuous maps which
preserve the way-below relation ≪. The Lawson-Hoffmann duality states that
the category DOM∗ is equivalent to the category CDL∗ ([15]).

Corollary 6.6 reveals how one can extend the category CDL∗ by including more
morphisms so that the new category CDL is equivalent to the category DOM

which has the same objects as DOM∗ but more morphisms.
The following example illustrates how the category CDL is indeed “larger”

than the category CDL∗.

Example 6.7. Let L = [0, 1] be the usual complete chain of real numbers in the
unit interval. Then L is a completely distributive lattice. Let f : L −→ L be the
mapping defined by f(0) = 0 and f(x) = 1 for x 6= 0. Then f is a left adjoint
preserving the relation ≺ (note that x ≺ y holds in L if and only if x ⊑ y). But
f does not preserve the relation ⊳. For instance 1/2 ⊳ 1 but f(1/2) 6 ⊳f(1).

7. Concluding remarks and future development

This paper is an improvement of some work [9] which started in 2002. Amaz-
ingly, at about the same time, an independent work of Martin Escardó [5] showed
that the injective locales over perfect sublocale embeddings coincide with the un-
derlying objects of the algebras of the upper powerlocale monad, and these are
characterized as those frames of opens enjoying stably C-continuity. However,
the results developed there have a different motivation, and, interestingly, many
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of these are forced upon us by the fact that the monad under consideration is of
Kock-Zöberlein type [14].

The problem of characterizing the lattice C(P ) for an arbitrary dcpo P remains
open. Thus we still do not know whether the isomorphism of complete lattices
C(P ) and C(Q) implies that of the dcpo’s P and Q. Clearly, further work must
be done (i) to achieve a better understanding of the lattices of Scott-closed sets,
and (ii) to look for suitable applications of the results in this paper.

One possible research direction, with regards to (i), is to study the order-
theoretic properties of Scott-closed set lattices by passing to the Hoare power-
domain. This idea is motivated by a result in [21] which states that the Hoare
powerdomain of a dcpo D is isomorphic to the lattice of non-empty Scott-closed
subsets of D.

Regarding (ii), for instance, one might be able to apply the technical results
herein to characterize the E-projective frames for the adjunction between PreFrm

and Frm.

Acknowledgement. We thank the referee for various excellent suggestions and
comments. In particular, the remark in Example 4.4(1) (i.e., for a T1 space, the
singleton is C-compact in the complete lattice F (X) of all closed subsets of X if
and only if it is isolated) is due to the referee.
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