
LATTICES WITH P-IDEAL TOPOLOGIES

TADAO NAITO

(Received November 24, 1959)

Introduction

The topology of a Euclidean space is usually defined by the concept

of a metric. Its usual metric is defined by various concepts: addition, multipli-

cation, square root and order of real numbers.

On the other hand, the Euclidean space can be considered as a lattice: the

cardinal product of real chains (linearly ordered set), which have the order in

a natural sense. It is natural to inquire whether a topology, which is homeo-

morphic to the usual metric topology, is definable in terms of the order

relation (or lattice operation) alone. More generally, we can ask whether

it is possible or not to introduce a class of topologies on a lattice L which

are compatible, in some sense, with its order.

G. Birkhoff has first discussed the topologies on lattices which are defined

by an order-convergence. Thereafter, various topologies on lattices were intro-

duced by several authors and their properties were discussed by many writers:

O. Frink [8], [9] B.C. Rennie [22] E.S. Northam [19], E.S. Wolk [24] A.J.

Ward [23] T. Naito [15], [16], [17], [18] E.E. Floyd [10].

In ([5] p. 242), G. Birkhoff has proved that the operations of groups

are continuous in the sense of order-convergence. E.E. Floyd has shown a

counter example that the group operations are not continuous with respect to

the order-topology. This example shows that there exists no compatible

topology, in his sense, such that the group operations are continuous with

respect to the topology. (See [10].)

In this paper, I will define several topologies such that the above condition

holds : group-operations are continuous. Of course, these topologies are not

compatible, in Floyd's sense, with the order of a lattice, but it seems to me

that those topologies are rather interesting and useful. It is the purpose of

this paper to give topologies satisfying the following conditions and applications

of these topologies.

1. In the Euclidean space, the topology, which is defined by the usual

metric, is homeomorphic to our topologies.

2. The lattice operations and the group operations are continuous with
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respect to our topologies.

I gave one of topologies satisfying these conditions in a lecture at the

1956 autumn meeting in Kyoto, of the Math. Soc. of Japan; in this paper

this topology is called a CF-ideal topology.

In Chapter 1, we shall present the definitions of P-, CP-, MP- ideal

topology and prove the continuity of lattice operations. This chapter also

contains the study of conditions of topologies in lattices. The main results of

this chapter are described in Theorems 1 -5. As an application of these

topologies, we shall establish here a representation space, smaller than Birk-

hoff's, for distributive lattice making essential use of Birkhoff's proof of his

representation.

In Chapter II, we concern ourselves with properties of our topologies on

conditionally complete lattices. We shall show here that join-, meet-irreducible

elements and CP-ideal topologies have very close connections. These results

are of importance to our later investigation. In a CF-ideal topology, any

bounded closed set is bicompact. As an application of this theorem, I shall

prove that the unit sphere of a Banach space is bicompact.

In Chapter III, we shall show that the group operations of any commuta-

tive Z-group are continuous with respect to the CP-ideal topology.

Moreover, we shall concern ourselves with the structure of l-groups using

CF- and MP-ideal topologies.

The main results of this chapter are several representations which are

described in Theorems 12, 13: any commutative Z-group is isomorphic to a

sublattice of the cardinal product of chains. [12], [13], [14].

Moreover, in Chapter IV, we shall show that under some conditions any

Z-group is isomorphic to a perfect sublattice of the cardinal product of chains.

NOTATIONS. We shall use L to denote a lattice and L', L.", to

denote sublattices of L. I, Ia, I will be used to denote ideals or dual

ideals of a lattice. We shall use lower case Latin letters to denote elements

of a lattice and Latin capitals to denote subsets of a lattice. However families

of sets will usually be denoted by German capitals. We shall denote the join

and the meet of two elements x and y of a lattice by x U y and x f 1 y

respectively, the join and the meet of all elements of a set M by sup M and

inf M. The set of all elements such that a<x<b, will be denoted by

[a, b]. The expressions

A V B and V Xa

will denote the set union of two sets A and B, or of all sets of family {Xa

a E 0}. Similarly we define
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AABand AX.

The complement of a set A will be denoted by AC and the empty set by 4.

Any open set will be denoted by U and any closed set by F.

DEFINITIONS. We shall use the terminologies of G. Birkhoff's "Lattice

theory" [5]. A chain M of a lattice is a subset such that x E M, y E M

imply x y. A lattice L is infinite-distributive if and only if

a n (fl ba)=U(af ba)andaU ((l ba)=n(aUba).

A subset M of a lattice is bounded if and only if there exist elements a and

b, such that a m b for all rn E M. A lattice L is complete if and only

if any subset of L has the least upper bound and the greatest lower bound.

A lattice L is said to be conditionally complete if any bounded subset of L

has the least upper bound and the greatest lower bound. A sublattice L' of a

lattice L is called to be a perfect sublattice if and only if x E L', y c L"

imply [x, y] c L

In this paper, topologies on a set E are defined by a subbase of closed

sets. Thus with any family {of subsets of a set E containing E and the

empty set b, a subset F of E is said to be closed if and only if F can be

obtained as an intersection of the sets which are unions of a finite number

of elements belonging to. The topology is a family of all closed sets. is

called to be a sub-base of the topology. A closed set F is represented by

F=A V Ian where Iap E and na is an integer which corresponds to

α.

It is clear that

1) the intersection of any number of closed sets is closed,

2) the union of any finite number of closed sets is closed,

3) E and are closed.

I have received kind advices from Professor T. Nakayama at Nagoya

University and Professor N. Funayama at Yamagata University to whom I

wish to express here my hearty thanks.

Chapter I Introduction of Topologies on Lattices

In this chapter the ideas of P-, CP-, MP-ideal topology are introduced on

most general lattices. We begin with some notions and definitions concern-

ing ideals.

1. Definitions. Let L be a lattice. A subset I of a lattice L is called to

be an ideal if and only if the following conditions hold:
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i) x<yandyElimplyxEI,

ii) x E I and y E I imply x U y E I.

An ideal I is said to be a prime ideal if and only if

iii) xfyElimpliesxEloryEl.

DEFINITION 1. A prime ideal I is called to be a CP-ideal if and only

if the following condition holds:

iv) if {xa cr E I.} c I and there exists sup xa, then sup xa E I.

The family of all CP-ideals is said to be a CF-family.

For studies of properties of every sub-basis of closed sets, we now intro-

duce the concept of a P-ideal.

DEFINITION 2. A sub-family 13 of the family of all prime ideals, is

called to be a P-family if and only if the following condition holds:

iv)1 L E 13, cb E3.

Each element of a P-family is said to be a P-ideal.

Dually, we shall define the concepts of a dual prime ideal, a dual P-

ideal, a dual CP-ideal, a dual P-family and a dual CF -family. We shall

denote by 3 the union of the P-family and the dual P-family. Analogously,

we shall denote by CJ3 the union of the CF-family and the dual CF-family.

Let be the family of all prime ideals containing a fixed element a of

L. And Il<I2, where Il, I2 are elements of , means that I2 includes Il, as a

set. Suppose now that a family {Ia} is a chain of. Then the intersection

A Ia is an element of . Hence, by Zorn's Lemma there exists a minimal

prime ideal containing a, which is written 1(a). Analogously, there exists a

minimal CF-ideal containing a. Similarly for a E I E there exists a minimal

prime ideal which contains a and is contained in the prime ideal I. In a

similar way there are a minimal dual prime ideal and a minimal dual CP-ideal

having the properties above.

DEFINITION 3. For any element a of L, a minimal prime ideal containing

a is called to be an MP-ideal. The family of all MP-ideals and L is

said to be an MP-family. And dually, we define a dual MP-ideals and a dual

MP-family. The union of the MP-family and the dual MP-family is denoted

by M3.

As an immediate consequence of the definitions above, the family M 3

is a family 3.

DEFINITION 4. The P-ideal topology of a lattice L is that which results

from taking j3 as a subbasis for the closed sets of the space L. Analogously,

we shall define CF- and MP-ideal topology.

NOTE: These topologies are not intrinsic in the sense that are introduced
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by the authors, G.Birkhoff, O. Frink, B.C. Rennie, E.S. Northam, E.E. Floyd,

E.S. Wolk etc.

A so-called intrinsic (or compatible with <) topology is that which satisfies

some of the following conditions:

1) whenever {xi} is a sequence in L with xl<x2< and Ux,

=x, or 11>x2> and (1 x,=x, then the sequence xi converges to x,

1) whenever {xa} is an up-directed subset of L and y=sup xa or {xa}

is a down-directed subset of L and y=inf xa, then xa converges to y,

2) any interval {x a x<b} is a closed set.

Our topologies, which are introduced above, do not always satisfy the conditions

above. This fact is shown by the following example.

EXAMPLE 1. Let R2 be the Cartesian plane, in which (x, y)<(x, y) if

and only if x c x and y y. Then it is well known that RJ is a conditio-

nally complete infinitely distributive lattice. Let L1 be the sublattice of R

such that {(x, y) 0<x<1, 0<y<1}. Let us denote by L2 the sublattice

consisting of (0, 0), (1, 1) and the points in 1(x, y) 0<x<1, 0<y<1}.

We denote by L3 the sublattice consisting of (1, 1) and the points in {(x, y)

0<x<1, 0<y<1}. And let L4 be the sublattice of R2 which is the union

of {(x, y) 0<x<1, 0<y c 1}, (0, 0) and (1, 1). Sublattices L1i L2, L3 and

L4 are expressed as Fig. 1, Fig. 2, Fig. 3 and Fig. 4.

In Figure 1, an CF-ideal and an MP-ideal are sets of the forms {(x, y) l x

c} A L1 and {(x, y) l y c} A L1.

In Figure 2, every set of the form {(x, y) x c} A L2 or {(x, y) j y<c}

A L2 is an MP-ideal but not a CF-ideal. In this lattice CP-ideals are only

two sets L and c. We can easily prove that the sequence an=(-, 11-L)

converges to all elements of L2 with respect to the interval topology and the

CP- ideal topology on L2. In Figure 3, every set of the form {(x, y) Jx<c} A

Fig 1 Fig 2 Fig 3. Fig 4
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L3 or {(x, y) y c} A L3 is an MP-ideal but not a CP-ideal, but each set of

the form {(x, y) x>c} A L 3 or {(x, y)1 y>c} A L 3 is a dual MP- and a dual

CP-ideal.

In Figure 4, every set of the form {(x, y) x c} A L4 or {(x, y) l y>c}

A L4 is a CP-, MP-ideal, or a dual CP-, MP-ideal. {(x, y) y c} A L4 is an
MP-ideal but not a CP-ideal. {(x, y) x>c} A L4 is a dual MP-ideal but not

a dual CP-ideal.

1) of the conditions above is not satisfied in L2, L3, L4 with its MP-ideal

topology. In fact, (x,y) y A L is an MP-ideal and a sequence ( 1-1,

) has (1, 1) as its least upper bound.

2) of the conditions above is not satisfied in L2 with its CP-ideal topo-

logy, because C3 consists only of L2 and 4). (Also see [A, a] of Ex. 2.)

Sublattices L, L4 of Rj are important as examples to illustrate topologies

of lattices.

2. Properties of P-Ideal Topologies. In this section we attempt to

make a contribution to the properties of P-ideal topologies. We begin with

the proof of the continuity of lattice operations with respect to the P-ideal

topology. Since if a proposition in the P-ideal topology is true, then the

proposition in CP- or MP-ideal topology is always true, we shall not especially

infer the proposition to CP- oz MP-ideal topology.

THEOREM 1. Let L be a lattice. The lattice operations of L are conti-

nuous in its P-ideal topology.

PROOF. Let U (a U b) be any neighborhood of a U b. Then U (a U b)C

can be obtained as an intersection of the sets which are unions of a finite

number of elements belonging to l3:

U(a U b)=V AI, Ia-s EE.

Hence, there exists cr such that a U b E A Ias, which is denoted by cro.

a) If Iac is a prime ideal then by the definition of prime ideal either

a E ICaog or b E ICaog holds.

We now put U (a)=Iaog, U (b)=L for a E Iao3 and

U (a)=L, U (b)=IQog for a Iaog. (then b E Iao3).

b) If Iao3 is a dual prime ideal then we have a E Iaog and b E I.

We put U (a)=U (b)=Ia, In both cases of a) and b), we have U (a)
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U8 (b)=L 6 for all ,S.

Let U (a) and U (b) be A U8 (a) and A U8 (b), then both U (a) and

U (b) are neighborhoods of a and b, respectively. We can easily see the fact

that U (a) U U (b) is contained in U (a U b). Thus, the lattice operation U is

continuous with respect to its P- ideal topology. By duality, the operation (l

is continuous.

NOTE. (1) xa -x (P-ideal topology) implies xa (1 a-+x (1 a (P-ideal

topology), but xa T x does not imply xa (1 a T x (1 a.

(2) xa T x implies xa -x (CP-ideal topology) but not always xa -x

(MP-ideal topology).

Any lattice is a T1-space with respect to its interval topology, its order

topology and its ideal topology, but not always a To-aspce in its P-ideal topo-

logy. We shall now give an example which is not a To-space with respect to

its P-ideal topology.

EXAMPLE 2. Both Fig. 5a and 5b indicated below are not To-spaces with

respect to its P-ideal topology. In fact, since prime ideals of Fig.5a are L, c,

{A, c} and j a, b, A} and dual prime ideals L, {c, V} and {a, b, V} we

have a=b. In Fig.5b, since prime ideals are L and b, we obtain A=V=

a=b=c=L.

3. Elementary Properties of Topological Spaces. To simplify the

statements of theorems, we shall always assume, otherwise specifically stated,

that each topology of lattices is a P-ideal topology.

LEMMA 1. A lattice L is a TO-space if and only if for given any two

elements a<b there exists either an element of sub-basis which contains a

but not b, or an element of sub-basis which contains b but not a.

Fig 5a Fig 5b
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PROOF. We shal mow prove the sufficiency of the condition. For each

pair of distinct elements p and q, we have p U q p or p U q=q. We may
assume that p U q=p, then put p U q=b and p=a. From the condition

there exists an element I of sub-basis which contains a but not b, not or b

but not a. If I contains b but not a, then I is a dual prime ideal. By p U q

=b, we have 13 q. If I contains a but not b, then I is a prime ideal. By

pU q=b, we have I q.

Therefore L is a To-space.

LEMMA 2. A lattice L is a T1-space if and only if given for any two

elements a C b there exist an element of the sub-basis which contains a

but not b, and an element of the sub-basis which contains b but not a.

LEMMA 3. A lattice L is a T2-space if and only if for a>b the space

L is covered by a finite number of elements of 13 which contain at most

one of a and b.

PROOF. We shall only prove the sufficiency. Let p, q be arbitrary distinct

elements of L. We put p U q=a and p (1 q=b, then there is a finite

number of elements of 3 such that V Iz=L, where I contains at most one

of a and b. Since I, is an ideal or a dual ideal, I, contains at most one

element of p and q. The union of all Ik which do not contain p is expressed

by F1. And the union of all Ik which contain p is denoted by F2. Then we

have Fi 3 p, F E3 q and Fi A F=.

LEMMA 4. Let S be a T1 -space. The space S is a T,-space if and only

if each pair of an element I E 3 and p I, has neighborhoods U (I) and

U (p) such that U (I) A U (p) 4.

4. Representations and P-Ideal Topologies.

THEOREM 2. If a lattice L is a T-space with respect to its P-ideal

topology, then L is isomorphic to a sublattice of a Boolean lattice 2E where

E is the family of dual prime ideals of L. Therefore L is a distributive

lattice.

PROOF. Let E (x) be the set of all dual prime ideals which contain x.

By Lemma 1 we have x=j=y if and only if E (x) j=E (y). By the definition of

a dual prime ideal we get E (x U y)=E (x) V E (y). I E E (x f l y)*- 13 x

fly -I 3x, Icy-IEE(x)AE(y).

Then we have E (x f1 y)=E (x) A E (y).

Thus the theorem follows.

The converse of the theorem with respect to its CP-ideal topology is not

true in general. To illustrate this fact, we shall give an example:
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EXAMPLE 3. L2 of Ex. 1 is a distributive lattice but not a To-space

with respect to its CP-ideal topology. But this lattice is a T2-space with respect

to its MP-ideal topology.

NOTE. Let a be the closure of a E L with respect to a-ideal topology.

Put L={a 1 a E L}. We shall now define the lattice operations on L such that

a U b=a U b and a f 1 b=a f t b. Then a correspondence a -a of L to L

is a lattice homomorphism. Since L is a TO-space ([21] Th. 6), it is distributive.

This fact makes it possible for many purposes to limit the consideration to

To-spaces and distributive lattices.

THEOREM 2. In a lattice L with its MP-ideal topology, the following

three conditions are equivalent;

1) L is a distributive lattice,

2) L is a To-space,

3) L is a T1-space.

PROOF. By Theorem 2 we need only to prove that if L is distributive

then L is a T1-space in its MP-ideal topology. Suppose that L is a distri-

butive lattice and a C b. Then there exists a maximal prime ideal, which

does not contain b, of [a, b], which is denoted by N (Zorn's Lemma).

We shall now put I={x x f l b<n for some n of N}. Then I is a

prime ideal such that I b and I a. In fact, if (x fl y) f1 b<n for n E N,

then n={(x fl y) fl b} U n={(x n b) U n} n {(y n b) U n} Since N is a

prime ideal of [a, b], we have either x n b (x fl b) U n E N or y n b c

(y fl b) U n E N: x E or y E I. The other condition is clear. This proves the

fact that L is a T1-space with respect to its MP-ideal topology.

If in the well known Birkhoff's representation, we take the dual MP-

family instead of all dual prime ideals, then we obtain a representation smaller

than G. B i rkhoff's.

COROLLARY. Any distributive lattice L is isomorphic to a sublattice of

the lattice of all sub families of a dual MP family.

PROOF. When, in the proof of Theorem 2, we take the dual MP-family

instead of all dual prime ideals, we have by the proof of Theorem 2' that

x=4=y implies E(x) 4 E(y).

And hence the corollary is clear.

THEOREM 3. If a lattice L is a T1-space with respect to its CP-ideal

topology, then L is an infinitely distributive lattice.

PROOF. We shall now prove that if sup xa exists, then there is sup (x,
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n a), and a (1 sup xa=sup (a n xa). To prove this, let a (1 sup xa=b. Then

b is an upper bound of a (1 xa for all a. According to Lemma 2, for b>c

there exists a CP- ideal I such that c E I and b I Since I is a CP-ideal

there is ao such that xao. I. In fact, if xa E I for all a, then sup xa>b

E I which is a contradiction. We have xao (1 a I, then xao (1 a c. There-

fore b is the least upper bound of a (1 xa for all a. Thus we have a n sup

xa=sup (a n xk).

Dually, we can prove that a U inf xa=inf (a U xa).

In the theorem above, we can not take TQ instead of T1. This can be

illustrated by the following example.

EXAMPLE. 4. L3 of Ex. 1 is a To-space with respect to its CP-ideal

topology and a distributive but not an infinitely distributive lattice. In

fact, in Fig. 3 we shall put xn=(-i-, 1-1 and a=(-f-, G Then

we have a n sup x,=a and sup (xn n a)=(-f--, G

THEOREM 4. If a lattice L is a T2-space with respect to its GP-ideal

topology, then L is a T3-space.

PROOF. Suppose that L is a T2-space. By Lemma 4, for any pair I E C9r3

and a I, we need only to prove that there exist neighborhoods U (a) and

U (I) such that U (a) A U (I)=. We assume that I is a CP-ideal. Since a

is an upper bound of {x ix C a} A I, there exists an upper bound b of {x I

x a} A I which is smaller than a. In fact, otherwise a=sup {xx<a} A

I, which contradicts the hypothesis of a. By Lemma 3, for a>b there exists

a finite system {I2}, each element of which contains at most one element of a,

b, and L=V Ii. The union of all Ii, each of which does not contain a, is

denoted by Fl. The union of all Ik, each of which contains a, is written F2.

Then F and F are neighborhoods of a and I, respectively. And Fi A F.=

k. To prove this we need only to show that F I. Suppose that x E F2 A I.

Then x (1 a E I, hence x fl a E{x x a} n I: since b is an upper bound of

{x x a } A I, x (1 a<b. From x E F2 there exists k such that x E Ik. By

Ik a we have x n a E Ik. Since Ik is a dual ideal, we have b E Ik which

is a contradiction. Therefore we have F I.

In a similar way we can prove the case that I is a dual CP-ideal.

5. Topological Products and Cardinal Products. We shall first define

the concepts of topological products and cardinal products. Suppose that for

each member a of an index set 0 there is given a topological space La. The
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topological product of La, written X {La I a E 0}, is defined as the set of all

functions a on L such that a (a) E La for all a E D, and having for each

closed set Ca of a sub-basis of each La, the family of all sets of all functions

a with a (a) E Ca, as a sub-basis of closed sets.

The cardinal product of lattices La, written L=II La, is defined as a

lattice of all functions a such that a (a) E La for all a E 0, where a C b

means that a (a) c b (a), in La, for all a E 0. Then, we can prove the

following theorem.

THEOREM 5. A subset I of H La=L is a CP- ideal if and only i f I is

represented by {a l a(ao) E Iao} for some as of 4, where Iao is a CP-ideal

of Lao. And the dual statement is true.

PROOF. Let I be a CP-ideal of If La and Iao the projection of I into Lay.

We first show that Iao is a CP- ideal of Lao. If aao E Lao and bao C aao in Lao

then by the definition of Iao there exists an element a of L such that a(a0)=aao.

Let b be the element of L such that b (ao)=bao and b(a)=a(a) for a+a0.

Since a>b, we have b E I therefore ha.=b (ao) E Iao . Next, let us suppose

that Mao Iao and sup Mao exists. Take one element a belonging to I. For

aao E M o there exists an element b E I such that b (ao)=aao. Then we have

a U b E I. Let cao be an element of L such that cao (a0)=aao and cco (a)=

a (a) for a a0, then we have that

cao c a U b E I implies cao E I.

Therefore if aao E Mao then cao E I. We shall put sup c00=d, then d(a0)

=sup Mao and d(a)=a(a) for all a a0. By d E I, we have sup Mao E Iao.
Now we shall prove that if aao fl bao E Iao then either aao E Iao or bao

E Iao. Then there exists an element c of I such that c (a0)=aao fl bao. Let

a be an element of L such that a(a0)=aao and a(a)=c(a) for a+ao, and

b an element of L such that b(a0)=bao and b (a)=c(a), for a =f=a0. Then

we have a f 1 b=c E I, and then either a E I or b E I. Thus we have aa;,

E Iao or bao E Iao. These show that Iao is a CP- ideal of Lao.

Now we shall see that I is fl Ia. To prove this we need only to show I

11 Ia. Let us suppose that a E I]. Ia, and let bao be an element of I such

that bao (a0)=a(ao). Since a f 1 bao E I and a=U (a f 1 bao) we obtain

a El.

We shall prove that the set {a La *.T} has at most one element. Let us
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suppose that La=Ia and L=4. Then there are two elements as E La-

Ia and b E L, -4. Let d be any element of I. Let a be the element such

that a (a)=as and a(6)=d(6) for a 4, and b the element such that b (9)

=b and b (S)=d(b) for,C9 S. By a (1 b c d, we have a n b E I, hence a

E I or b E I, which contradicts that as Ia and b h. Then we have

I Iao X jj La for some a9 E 0,

where Iao is a CF-ideal of L0.

From the theorem above, we can easily prove the following corollaries.

COROLLARY 1. The topological product X {La I a E L.} of any collection

La i a E 0} of lattices, each with a CF-ideal topology, is homeomorphic to

the cardinal product 11 La, also topologized by its CP-ideal topology, of

these lattices.

PROOF. By Theorem 5 the basis of closed sets of X} La a E 0} and that

of II La are the same. Hence these spaces are homeomorphic.

COROLLARY 2. A Euclidean space Rn, is homeomorphic to the lattice

R'i which is topologized by its CF-ideal topology.

PROOF. The set R, topologized by metric, is homeomorphic to the lattice

with its CF-ideal topology. Hence by Corollary 1 we obtain the proof of

Corollary 2.

COROLI-ARY 3. The weak topology of the set of all functions of any

abstract set X to a lattice, is homeomorphic to the CP-ideal topology of

the set considered as a lattice.

PROOF. In a similar way to Corollary 2, we can prove Corollary 3.

COROLLARY 4. If lattices La, each with its CF-ideal topology, satisfies

a condition 4) then the cardinal product 11 La, with its CF-ideal topology,

satisfies the condition 4), where 4) is one of T2-space, bicompact, T3-space.

PROOF. The proof of Corollary 4 follows from the well known theorems

of topological product space and the theorems above.

Chapter II Conditionally Complete Infinitely Distributive Lattices

In this chapter we shall only consider conditionally complete infinitely

distributive lattices.

The purpose of this chapter is to examine the close relationship between
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irreducible elements and T-spaces, and to prove the compactness (bicompactness)

of the lattice above. Throughout this chapter, unless otherwise stated, the word

topology is used to refer to a CF-ideal topology.

6. Irreducible Elements and Topologies. Let [a, b] be an interval of

a lattice L. An element c of [a, b] is said to be a join-irreducible element in

[a, b] if and only if c=x U y, x E [a, b] and y E [a, b] imply x=c or y=c.
In a similar way we define a meet-irreducible element.

LEMMA 1. If I is a CF-ideal, I a, I b, a<b, then there exists an

element c of [a, b] such that I A [a, b]=[a, c], and c is a meet-irreducible

element in [a, b].

PROOF. Let I be a CF-ideal. Since L is conditionally complete, there is

sup I A [a, b], written c. Then we have [a, c]=I A [a, b]. In fact, by the

definition of I we have c E I and then [a, c] C I A [a, b]. By the definition

of c we have [a, c] I A [a, b]. Thus [a, c]=I A [a, b].

Next, we shall show that c is a meet-irreducible element. Suppose that

x fl y=c, x E [a, b] and y E [a, b]. Then, since I is a prime ideal we have

either x E I or y E I: x E I A [a, b] or y E I A [a, b]. Hence we have x c

or y<c. Thus we have x=c or y=c.

THEOREM 6. L is a To-space if and only if for every a C b there exists

a join-irreducible element in [a, b], different from a, or a meet-irreducible

element in [a, b], different from b.

PROOF. Suppose that L is a To-space. Then for any a C b there exists

an element I of the closed sub-basis which contains either a but not b, or b

but not a. Suppose that a E I and b I, then I is clearly a CF-ideal. By

Lemma 1 we have [a, c]=I A [a, b], where c is a meet-irreducible element in

[a, b]. In exactly the same way we can show that in the case of a I and

b E I there is a join-irreducible element in [a, b].

Conversely, suppose that for any a<b there exists a meet-irreducible

element c, different from b, in [a, b]. Then set x x (1 b<c, written I, is

a CF-ideal. In fact, if x, E I and sup xa exists, then

(sup xa) (1 b=sup (xa (1 b l c.

Hence we have sup xa E I. If x (1 y E I then we have

c=(xflv)flb Uc= (xfb)Uc fl (ynb)Uc#y

a<c<(x (1 b) U c<b and a (y n b) U c<b are clear. Since c is a meet-

irreducible element in [a, b] then we have

c=(x (1 b) U c or c=(y (1 b) U c.
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And hence we obtain x E I or y E I. Thus I is a CF-ideal such that a E I

and b I.

Analogously we can prove the fact that if a join-irreducible element exists,

then there exists a dual CF-ideal I such that a I and b E I. Therefore, by

Lemma 1 of Chapter I, L is a T0-space.

From the proof of the theorem above, we can conclude the theorem

below.

THEOREM 7. A lattice L is a T1-space with respect to its CF-ideal

topology if and only if for every a<b, [a, b] contains both a join-

irreducible element, different from a, in [a, b] and a meet-irreducible element

different from b, in [a, b].

THEOREM 8. A lattice L is a T2-space with respect to its CF-ideal

topology if and only if for a C b there exists a finite number of join-

irreducible elements c different from a and meet-irreducible elements ck

different from b such that

[a, b]=(V [ce, b]) V (V [a, ck]).

PROOF. We first show that the condition above is necessary. To prove

this, suppose that L is a T2-space. By 2 Lemma 3, L is covered by a finite

number of elements of C13 which contain at most one of a and b. Then by

Lemma 1 we have the necessity of the condition above.

We shall next prove the sufficiency of the condition above. Let us suppose

that for a C b,

[a, b]=(V (c, b]) V (V [a, ck]).

Now we put Ik=i x x f 1 b=cJ and I1=x I x U a>c}. Then L= (V Ik) V

(V If). In fact, if x E L then a<(x U a) f 1 b<b. Hence there exists a

number k such that (x U a) f 1 b E [a, ck] or (x U a) f 1 b E [ck, b]. If (x U a)

fl b E [a, ck] then (x fl b) U a U ck=ck: x fl b ck hence x E Ik. If (x U a)

f1 b E [ck, b] then x E Ik. Both Ik and I contain at most one of a and b.

On the other hand it is easily shown that Ik is a CF-ideal and I is a dual

CF-ideal. Hence by 2 Lemma 3 L is a T2-space.

EXAMPLE 5. In L4 of 1 Ex. 1 we put a=(0, 0) and b=(1, 1). The set

of all meet-irreducible elements is (x, y) y=1 and the set of all join-

irreducible elements is (x, y) x-0}. Therefore the lattice L4 is not a T2-

space. In fact, no vicinity of (1, 0) is covered by a finite number of CSC.
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COROLLARY. If a lattice L of finite length is distributive then it is a

T3-space with respect to its CP-ideal topology.

PROOF. Suppose that L is distributive, then L is an infinitely distributive

lattice. It is known that every distributive lattice of finite length has at most

a finite number of irreducible elements. (See G. Birkhoff [1] p. 139 Lemma 2)

For a<b, each element, which is covered by b, is a meet-irreducible element,

and each element, which covers a, is a join-irreducible element in [a, b]. Hence

by Theorem 8 L is a T2-space. By Theorem 4 L is a T3-space.

COROLLARY. If a lattice L of finite length is distributive, then L is a

T3-space with respect to its MP-ideal topology.

PROOF. In a lattice L of finite length, CP-ideal and MP-ideal are

equivalent. In fact, every ideal I is expressed by I=[0, a] for some a of L,

and prime ideal [0, a] is a CP-and MP-ideal.

7. Bieompaetness. O. Frink proved in his paper [3] that complete lattices

are bicompact with respect to its "Interval topology". I defined "Ideal topologies

of lattices" in a previous paper and proved that each bounded closed set of a

conditionally complete lattice is bicompact with respect to its "Ideal topology".

But this proposition is not true for the other topologies which are defined by

many writers. This proposition is important on its application.

In this section we shall prove that the proposition above is true for CP-

ideal topologies. The proof of this proposition follows by essentially the same

argument that was given for [8], [18] if we notice that I A [a, b] is represented

as [d, c].

THEOREM 9. Let L be a conditionally complete lattice. If a closed

subset M of L with a CP-ideal topology is bounded, then M is bicompact.

In particular, each complete lattice is bicompact in its CP-ideal topology.

PROOF. To prove this theorem it is sufficient that if is any collection

of closed sets having the finite intersection property and contains AI, then

there exists a common point to all members of.

Since M is a bounded set, there exist two elements a and b such that a

x C b for all x E M. If F, E then it can be expressed by F, A

V Ia, where Ias E C3. We can extend to be maximal by Zor n's lemma

and call the extended callection. From the property of we have V Ias E

for all a. If A V B E, then by the property of we have A E or B
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E. Therefore, for each cY there exists /9 such that Ian E, which is denoted

by Ia. Then we have

FY A Ia, [a, b] M and A FY A A IL

By M E , then [a, b] E, and then Ia A [a, b] E. By 5 Lemma 1

and its dual

Ia n [a, b]-[ca-,, daY]

By the finite intersection properties of, [cay, daY] A [cps, dss]+b. Then

we have

ca-, dgs for all cY, i8, y and S.

Since L is conditionally complete there exists U caY. Therefore we have

n Fy U Cay.

This proves the theorem.

Let be the set of all real valued continuous functions defined on [0, 1]

of R, in which x<y if and only if x(t)<y(t) for all t of [0, 1]. It is well

known that is a vector lattice. Let be the set of linear continuous

f unctionals on, in which f<g if and only if f(x)<g(x) for all x of.

Then it is well known that is a vector lattice and a closed subset of R

with its weak topology: the topology taking sets of type f {f(x0)-9(x0)

<E as a sub-basis for open set (See [15]). Then the following theorem is

established.

COROLLARY. A subset f j {f<1, f E} of is bicompact. More gene-

rally, for any f1 E R and f2 E R a subset f I,f1<f<f2, f E} of is

a bicompact set.

PROOF. By Chapter 1 5 Corollary 3 of Theorem 5, the weak topology

of R and the CP- ideal topology of R are homeomorphic. Now we have

{ff1ff2=A {f1f1(x)f(x)f2(x).

Hence f {fl<f<f2 is a closed set. Therefore f {f1<f<f2 A is a

bounded closed subset of R. Thus f fl<f<f2 n is bicompact. In particular

{f I {f{U A f {-1<f<U A is bicompact (See [1] pp. 61-63).
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Chapter III Commutative L-Groups

We shall be concerned below with lattice ordered group (Z-group), in the

following sense.

DEFINITION. An l-group G is (i) a lattice (ii) a group, in which (iii) the

inclusion relation is invariant under all group-translations x-a+x+b.

A vector lattice is a vector space V with real scalars which an i-group

under addition, and which for any positive scalar X, x -Xx is an automor-

phism.
To simplify the statement of theorems, we shall always assume, unless

specifically stated, operation is commutative. We shall use the additive notation

for group operation, and the notations and term inologies of G. B irkhoff's
"Lattice theory" [pp. 214-258].

8. Formulae. We shall extract following formulae from G. Birkhoff's
"Latti

ce theory" and omit the proofs (See [5] pp. 219 and 231).

In any i-group (not necessary commutative) we have the following basic

algebraic rules.

(0) a-(x fl y)+b=(a-x+b) U (a-y+b);
a-(a fl b)+b=b U a.

(0) a-(x U v)+b=(a-x+b) fl(a-v+b);

a-(a U b)+b=b fl a.

(1) Any l-group is distributive (See [5] p. 219 Th. 5).

(2) If one of sup xa and inf (-xa) exists, then the other one exists and

-sup.x=inf (-.x).

(3) If one of U xa and U (a+xa) exists then the other one exists and

a+sup xa=sup (a+xa). Analogously, a+inf xa=inf (a+xa).

(4) If we put a+=a U 0, a-=a f l 0 then a=a++a-.
In any commutative i-group we have the following formulae.

(5) If sup xa exists then sup (xa f 1 a) exists and

(sup xa) f 1 a=sup (xa f l a). (See [22] Th.7 or [5] p. 231).

(6) x+y=x U y+x fl y. (See [5] p. 21.9).

LEMMA 1. In a commutive i-group G, we have the following formulae,

x U y+x U y=2x U 2y, 2(x fly)=2x fl 2y.

More generally, we have

sup xa=x implies sup 2 xa=2 x,
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inf xa=y implies inf 2xa=2y.

PROOF. We need only prove that sup xa=x implies sup 2xa=2x. 2xa

2 x is clear. For any c such that 2 xa<c for all cL, we shall show 2 x C c.

By (3) we have

2 x=sup xa+sup xp=sup (xa+sup x)=sup sup (xp+xp).

By (6), (3) we have

x+y=(x Uy)+(x fly)={x+(x fly)} U {y+(x fly)

2 x U 2y.

Hence we get xa+x c 2xa U 2 x c c. Therefore we obtain 2 x C c. Thus,

sup 2xa=2x.

9. Continuity of Group Operations. In this section we shall prove that

operations are continuous in the CP-ideal topology. To prove this, in an 1-

group it is sufficient to show that for any neighborhood U (a b) of a b

there exist a neighborhood U (a) of a and a neighborhood U (b) of b such

that U (a b)=U (a) U (b).

In a vector lattice, we shall show that for U (Xa) there are U (x), U (a)

such that U (Xa) U (X) U (a). Any neighborhood U is represented by

U=(A V Iag)c=V A Iae, where I A E 3.

By 0) and 3) we can easily show the following lemma.

LEMMA 2. a) In any l-group, if I is an element of CI3 or M13 then

each of I-+-a and-I is an element of CJ,3 or M13, respectively.

b) In a vector lattice, if I is an element of Cl3, M1j3 or 3 then for a

real number X, XI is an element of C3, M3 or 3, respectively.

DEFINITION. A P-ideal topology is said to be a PG-ideal topology if and

only if

(G) i) I E 3 implies I+a E and-I E.
ii) If {Ia} is a chain in 1J3 and each of Ia} is an ideal, then

A Ia E 3.

Similarly, we define the concepts of PG-ideal, PG-family.

By this definition and Lemma 2, each of CP- and MP- ideal topology is a

PG-ideal topology.

LEMMA 3. In an 1-group G with its PG-ideal topology,

a) any neighborhood of an element a of G can be written in the

form U+a where U is a neighborhood of zero element 0 of G,
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b) -U is a neighborhood of 0.

THEOREM 10. In any commutative l-group, the group operations are

continuous with respect to its CF-ideal topology.

PROOF. By Lemma 3, it is sufficient to show that for U+x-y there

exist U 1+x, U2-+-: y such that

U+(x-y) (U1+x)-(U2+y): U U1-U2,

where U, U1 and U2 are neighborhoods of 0. Since U2 is a neighborhood

of 0, we shall show that for any neighborhood U of 0 there exists a neighbor-

hood U1 of 0 such that U 2 U1.

Case 1) UC is a dual CF-ideal I. Let I1 be the set of all x such that

2 x E Uc: I1={x 2 x E UC}. If x E Il and x<y, then 2 x E UC and 2 x

2y. Hence we have 2 y E Uc: y E I1. If xa E Ii and inf xa=x, then 2xa

E Uc. By Lemma 1 inf 2 xa=2 x. Since Ur is a dual CF-ideal, we have

2 x E UC: x E I1. If x U y E I1, then 2 (x U y) E Uc. By Lemma 1, 2 x U

2 y E Uc. Hence, we have 2x E U or 2 y E U: x E I1 or y E I1. Thus we

conclude that h is a dual CF-ideal.

Now put Ii=U1i then U1 is a neighborhood of 0. If x E U1, y E U1, then,

from the fact that 2 x n 2 y C x+y c 2 x U 2y (See Lemma 1) 2 x E U and

2 y E U, we have x+y E U. Therefore we obtain 2 U1 c U.

Case 2) UC is a CF-ideal. This case is dual of case 1).

Case 3) U is any neighborhood of 0. UC can be written in the form UC

A VI;; U=V

Since U is a neighborhood of 0, then there exists cY such that A Iao 3 0.

y case 1) and 2) for each Iao,g there exists a neighborhood U1 of 0 such

that 2 U1g c Iaog. We put U1=/ U1 then U1 is a neighborhood of 0 and

2 U1 U.

This proves the theorem.

THEOREM 11. In any vector lattice with its CF-ideal topology,

a) for fixed X0, X0 x is continuous,

b) if a>0, En, 0, imply aS, 0, then Ax is continuous, where E, A

are real numbers.

PROOF. Suppose that U is a neighborhood of 0 and Ao a real number.

We can easily prove that X0 U is a neighborhood of 0. Let us denote U1=
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1 U, the
n Xo (U1-+-x) c U+-Xo x, completing the proof of a).

Next we shall prove b). Let U+Xoa be a neighborhood of Xo a. Suppose

that UC is a dual CP-ideal I. By case 1) of Theorem 10 there exists a dual

CP-ideal Il such that 3 I; c IC. From the hypothesis of b), there exists a

positive real number E such that

Ea+ E I; and S(-a)+ E Ii.

Now put U1=-4 -if A 1-If n, 1 Ii A and V=(-, E).

Then U1 is a neighborhood of 0, and if x E U1 then-x E U1. Moreover,

we have x+E U1 and x-E U1.

 If 0 c X C iS, then we have

x c, x+Cx+E U,: x+E Ii: a,x E h.

If-iS<X<0, then we have

Xx=(-X) (-x) C E(-x)+E I,: X x E Ii.

Thus we have that if x E U1 and X E V then Xx E Ii. Similarly, by (a+) iS E

Ii and (-a)+iS E Ii we have aX E Ii for all X E V. By x E U1, we have Xo

x E Ii. Therefore if x E U1 and X E V, then we have (x+a) (X+X0)=xX

+xXo+aX+aXoE Ii+Il+ Ti+aXoI+aX0.

Thus we have (U1+a) (V+-X0) U+aXo.

Dually, the case such that UC is a CP-ideal, can be proved. In the same way

as the proof of Theorem 10, we can prove the case such that U is any neigh-

borhood of 0.

10. Structure of L-Groups; Representation. In this section we shall

be concerned with the representation of a commutative i-group and the study of

its properties.

LEMMA 1. The family of all minimal PG-ideals containing a fixed

element a is represented by {Ia+a a E D}, where {I, a E D} is the family

of all minimal PG-ideals containing 0.

PROOF. Ia+a is a PG-ideal containing a. Let 1(a) be a minimal PG-ideal

containing a and contained in Ia+a. Then we have 0 E 1(a)-a<Ia. Since

Ia is a minimal PG-ideal containing 0, then we have I (a)-a=Ia: 1(a)=I a

+a. Conversely, let I be any minimal PG-ideal containing a. There exists

a such that Ia T I-a, then we have Ia-+-a I. By the hypothesis of Ia

we have Ia+a=I.

LEMMA 2. In any 1-group with its PG-ideal topology we have
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a) a b implies Ia+-a Ia+-b, where Ia is a PG-ideal,

b) a family {Ia+a a E G} is a chain in set inclusion.

PROOF. We shall only prove b). Let a and b be two elements of G. We

put c=a n b. By a) we get Ia+c Ia+a and Ia+-c-Ia+b. Since Ia

+c is a prime-ideal and includes c, hence we have a E Ia+c or b E Ia+c.

If a E Ia+c then we have Ia-+c=Ia-+-a, because Ia+a is a minimal PG

ideal containing a. In a similar way, if b E Ia-+-c then we have Ia+c=Ia

+b. Thus we obtain Ia+a-Ia+b or Ia+-b Ia+a. We can easily

show the following lemma.

LEMMA 3. If we define and>, in the following sense, (Ia+a)

(Ia+b)=Ia(a+b), Ia+a>Ia+b if and only if Ia+a2Ia+b, then
a family {Ia+a l a E G} is a chain l-group with respect to and>.

In this chain l-group, it is clear that

(Ia+a)U(Ia+b)=I+aUb, (I+a)fl(I+b)=I+ aa a(1 b.

By Lemma 3 the cardinal product (direct product) II {Ia -I- a a E G} is a com-

mutative i-group. Now if we put

f(a)=(Ia+aJcrED)Eli+ajaE G},

then we have

f(a U b)=f(a) U 1(b), f(a n b)=f(a) n f(b)

and f(a-I-b)=f(a) f(b).

From this fact we can conclude the following theorem.

THEOREM 12. Every commutative i-group G is homomorphic with a

sub-group of cardinal product (direct product) II {1+a I a E G} of all

chain i-groups {Ia-+-a a E G l, where Ia is a minimal PG-ideal containing 0.

We can easily prove the following lemma with respect to the kernel of f.

LEMMA 4. u) {x J Ia +-x=Il is a sub-group of G, which is denoted

by Ga

b) x E Ga and y E Ga imply [x f1 y, x U y] Ga.

c) Ga=Ia A-Ia.

d) A Ga is a sub-group of G, which is written G*, andG*=f-1 (0).

THEOREM 12'. Every commutative l-group is isomorphic with a sub-

group of the cardinal product (direct products) fl {Ia a 1 a E G} of chain
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l-groups. (See [12], [13], [14]).

PROOF. Since an l-group G is a distributive lattice, by Theorem 2' G is

a T1-space with respect to its MP-ideal topology. Therefore by Lemma 4c),

kernel G* has only one element 0.

THEOREM 13. a) The kernel G* is a minimal closed set in the PG

ideal topology.

b) M is a minimal closed set if and only if there exists x such that

M=G*+x.

c) {G-+-a a E G} is a partition of G.

PROOF. Since a) and c) is clear, we shall only show b). It is clear that

the minimal closed set containing a is set A (Ia -{-a). Hence we have

A(Ia+a) (AIa)+a=G*+x.

Chapter I V Conditionally Complete L-Groups

In this chapter we shall confine ourselves to the case such that l-groups

are conditionally complete and topologies are CP-ideal topologies. A conditio-

nally complete 1-group is infinitely distributive and commutative (See [11],

[14], [22]). To study this 1-groups we shall introduce the concept of coordinate
axes. In Chapter III we have defined the notion of { Ia I cr E D} of CP-(MP-)

ideal topologies. In this chapter we shall be concerned with the connection

between the coordinate system and the family {Ia cr E D}. Using those properties

we shall give a representation of a T1-space with respect to its CP-ideal

topology.

11. Introduction of Coordinate Systems.

DEFINITION. An interval [a, b] of a lattice is called a chain-interval if

and only if [a, b] is a chain. More generally, a chain M of a lattice is called

a chain-interval if and only if for any pair of x E M, y E M and x<y, [x y]

is a chain and [x, y] M.

In any 1-group G, we shall denote by C the family of all chain-intervals

Ca containing 0 which are contained in G+ {x; x> 03, and C1<C2 means

that C2 includes C1, as a set. Then C is a non-empty family (For 303 E C).

Suppose now that a sub-family {Ca} of C is a chain. Then, the set union

V Ca is an element of C. Hence, by Zorn's lemma there exists a maximal

chain-interval in G+. Similarly, there exists a maximal chain-interval contain-

ing given chain-interval.
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DEFINITION. We shall denote by A+any maximal chain-interval containing

0 which contains at least two elements. Let us denote by A- the set of a such

that-a E A+. The set union of A+ and A- is called a coordinate axis, and

denoted by A.

The family of all coordinate axes Aa i called a coordinate system, and

written !t={Aa, a E D} (S2{ may be).

It is clear that Aa is a chain-interval. Now we shall prove the following

lemma.

LEMMA 1. Every coordinate axis A is a chain-interval.

PROOF. To prove this, it is sufficient to show that for any a>0, [-a, a]

c A. Let x be an element of [-a, a]. Then we have x=x++x a>x+

0 and a>-(x)0.

Since [0, a] is a chain-interval, we have x+c-x-or x+>-x. Hence

we get-a x<0 or a>x>0. Thus we have x E A, which proves a).

LEMMA 2. If both Al and A2 are coordinate axes such that Al+A2,

then the set intersection Al A A2 contains only 0.

PROOF. If Al A2 then since both At and At are maximal elements

of Z, there are two elements a1 and a2 such that a, E Ai, a, At, a2 E At

and a2 E At. We put b=a1 (1 a2, then b E At A At, and 0<a1-b C a1,

0 b<al. Since Al is a chain-interval we have a1-bC b or a1-b>b:

a1>2 b or a1>2 b. Similarly, we have a2 C 2 b or a2>2 b. From the four

possible cases we have b=0.

Thus we have A 1 A A2=0.

LEMMA 3. A coordinate axis A is a subgroup of G.

PROOF. By Lemma 2 we can prove that if a is an element of A then 2 a

is contained in A. Now, since a E A implies-a E A, we shall show that

the sum b+c of elements b and c, both of which are contained in A, is also

an element of A. To show this we put max [b, c,-b, - c]=a. Then a E A,

hence b+-c E[- 2 a, 2 a] C A. Thus A i s a subgroup of G.

12. Properties of {I. a E D}. In Lemmas 2 and 3 Chapter III we have

discussed the properties of {I a E D}. We can easily prove the following

lemmas.

LEMMA 4. If [b, c] is a chain and b<c, then I={x x n c<b} is

a minimal CF-ideal containing b and a minimal MP-ideal containing b.

LEMMA 5. a) Let I be a CF-ideal. If a E I, b I, a<b and sup {[a,

b] A I}= c, then [c, b] is a chain-interval.
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b) If c is the cross element of a CF-ideal I and a chain-interval [c,b],

then we have I={x l x (1 b c}.

LEMMA 6. If [a, c] is a chain-interval and a<b <c, then there exists

y such that I2=h+y, where Il={x x (1 c a} and I2={x x (1 c C b}.

LEMMA 7. If 4+a 4 then cY=9, where both 4 and Is are elem-

ents of {Ia j cr E D} (See 10 Lemma 2).

13. Axes and {Ia. I a E D}. In this section we shall be concerned with

connection between the coordinate system t and the family {4 a E D} of

all minimal CF-ideals containing 0.

THEOREM 14. Let G be a conditionally complete 1-group. Then we

have

a) if A is a coordinate axis, then for any a there exists only one cr

such that A and 4+a intersect,

b) if Ic.+-a== G then there exists only one $ such that Ic.+a and

A intersect,where A E 1t.

PROOF. We shall first prove a). Let b be an elenle:zt of A such that

b>0.

We put 4={xlx(1 b<0}. Then

4+a={x+al(b+a)n(x+a)ca} {xl(b+a)nxCa}.

Case 1) a 5 0. Let c be the least upper bound of [0, a] A A, which

exists. By Lemma 3, we have b+-c c A. If b+c E 4+a then (b+c) U

a E 4+a. By a<(b+c) U a c b+a, we have (b+c) U a=a: b+c a

which contradicts the definition of c. Hence b+c Ic.+a.

Case 2) a j 0. Let d be the greatest lower bound of [a, 0] n A. By

Lemma 3, we have -b+dE A. By -b+da U (-b+d) d, we

get a U (-b+d)=d, hence (a-d) U (-b)=0:(d-a) (1b=0:d (1 (b
-+- a)=a. Thus d E 4+a.

Case 3) a is any element of G. By 10 Lemma 2, we have

Ic+a CIa+aCI+a+.

By Case 1) and 2) Ic.+ a and A intersect.

We shall next prove b). Since Ia+a G, 4+a+G. Hence there

exists b such that b>0 and Ia+a+b. We put sup {[a-, b] A (Ia+a)}
=c and sup {[a-,b] A (Ic.+a)}=d. By Lemma 5, [d, b] is a chain-interval

and

Ia+a+= {xx fl b<c}, 4+a-=1xx fl b<d}.

Let B be a maximal chain-interval containing [d, b]. We put e=sup {(B-c)
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A [0, c]}. Also it is clear that B-c is an axis. Let in be any element of

B-c such that m>0. Then m+e Ia-+-a and m-+-e E B-c.

By Ia+a-Ia+a C Ia+ a+, we have (4+a) A (B-c) (d-c)

and (4+-a)C A (B-c) (m+e). Therefore Ia+a and B-c intersect.

Suppose that both coordinate axes Al and A2 intersect with Ia+a whose

cross elements are denoted by rn1 and m2, respectively. Let (4+a)C A Al E

ml, (4+a)c A A2 mz. If 0 E Ia+a then by Lemma 2 mi n m=0 which

is a contradiction to Ia+a m; mIa-+-a. If 0 Ia+a then m1 U m2
=0 which is a contradiction to Ia+a m1 and Ia+a m2. This proves b).

COROLLARY, a) If Aa and Ia+a intersect, then for any b, Ad and

Ia+b intersect.

b) If Aa and Ia+a intersect, then for any b, Aa+b and Ia+a

intersect.

PROOF. Suppose that Aa and Ia+-a intersect and the cross element is c.

By Theorem 14 there exists /9 such that Aa and 4+b intersect. Let c be

the cross element of Aa and 4+b. By Lemma 6 if c c then Ia+a 4

+b. By Lemma 7 we have cr=9, hence Aa and Ia+b intersect.

Next we shall show that b) is true. By a) A, and Ia+a-b intersect,

therefore it is clear that Aa+b and Ia+a intersect.

NOTE. From theorems above, a CP-ideal Ia corresponds to only one coor-

dinate axis A, which is written Aa. Then the family {Ia Ia=+L} of all

CF-ideals containing 0 and the family {Aa} of all coordinate axes have a

one-to-one correspondence. Therefore we may denote Ia a E DI and } Aa c E D}.

From this convension, Ia and Aa having the same index necessarily intersect.

14. Conditions of Topologies.

THEOREM 15. In a conditionally complete l-group G with its CF-ideal

topology, TO-, T,-, 72- and T3-space are equivalent.

PROOF. By Theorem 4 it is sufficient to show that any TO-space is a

T,-space. Let a<b. We may suppose that there exists a join-irreducible

element c in [a, b] (See Th.6). We can easily show that [a, c] is a chain.

Case 1) there exists e such that a C e<c. Let us denote sets x x (1

c<e} and {xI x U a>e; by Il and I2, respectively.

Case 2) there exists no e such that a C e<c. Let us denote sets x x

n c< a I and x l x U a>c I by L and I2, respectively. Then, Il is a CP-

ideal containing no b and I2 a dual CF-ideal containing no a. And we have

h/I2=L.

Dually, we can prove the case such that there exists a meet-irreducible

element c in [a, b]. By 2 Lemma 3, G is a T2-space, completing the proof.
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From the proof of the theorem above we obtain the following corollary.

COROLLARY. In any conditionally complete 1-group G with its CP-ideal

topology, G is a T- (T3-) space if and only if for a<b there exist

elements c and d such that [c, d] is a chain-interval and a<c<d<b.

15. Representation. Let llAa be the cardinal (direct) product of all

coordinate axes. By Theorem 14, a coordinate axis Aa and the CF-ideal Ia +-

a intersect. Let as be the cross element of Aa and Ia -I- a. Define a mapping

f as follows; for any element of G such that a>0, f(a) (aa j a E D).

THEOREM 16. If a conditionally complete i-group G is a Tl -space with
respect to its CF-ideal topology then G is isomorphic with a perfect sublattice

of the cardinal (direct) product ]I Aa of conditionally complete chain Z-

groups.

PROOF. By 10 Lemma 2 we have either Ia+a Ia+b or Ia+a C Ia

+b. We may suppose that Ia+a-Ia+b. Then we have Ia+a a U b.

Hence by 10 Lemma 2, Ia+a=Ia+ (a U b). Thus we obtain as=(a U

b)a; (a U b)a=as U ba. Then we have

f(a U b) ((a U b)a I a E L)-(aa U ba I Q' E D)

(aa a E D) fl (ba I a E D) f(a) U f(b)

In a similar way we have f(a f1 b)=f(a) fl f (b) and f (a+b)=f(a)+-

f (b)
We shall now show that the mapping f is one-to-one. From the hypo-

thesis that G is a T1-space, for any pair of elements a and b of G there is a

minimal CP-ideal I such that I a and I b. There exists sup [a n b,b]

A I, which is denoted by c. Then [c,b] is a chain-interval. By Lemma 6 and

10 Lemma 1 there is a such that I=4+- c, where 4 is a minimal CP-

ideal containing 0. Therefore as A ba:

a =b f-l a)=j=f(b); sup as=a.

We shall show that the set (aa a E D) a E G is a perfect sublattice

of llA. aTo prove this it is sufficient to show that if as<g (a)<ba for all

a E D then there exists an element c of G such that ca=g (a) for all a E

D. By the hypothesis there exists sup g(a), which is written c. Then by Lemma

8 we have a <c < b. Also g(a) ca for all a E D. By Lemma 2 as fl a,=
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0 for all cr $, hence we have

g (cro) fl (U g (ci))=U g(a0) f1 g(c)=0=cap, fl (U fl g(a)),

g (c0) U (U g (B))=c=c, U (U g (a))=sup ca.

Since G is distributive, we have g (ca)=ca0. Thus G+ is lattice-isomorphic

with a perfect sublattice of 11 Aa. By [5] p. 214 Th. 1, our theorem is true.

THEOREM 17. A conditionally complete l-group is a T1-space if and

only if G is isomorphic with a perfect sublattice of iT Aa.

PROOF. By the above note, the condition is necessary. Conversely, suppose

that the condition is fulfilled. By Theorem 5 Cor. 4, [1 Aa is a T2-space. By

Theorem 15 Cor., for any (aa cX E D) (ba E cr E D) there is a chain-interval.

By the Theorem 15 Cor., f(G) is a T1-space with respect to its CF-ideal top-

ology.

NOTE. This theorem can be proved from Th. 12.
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