
Launching Generic Attacks on iOS

with Approved Third-Party Applications

Jin Han1, Su Mon Kywe2, Qiang Yan2, Feng Bao1, Robert Deng2,
Debin Gao2, Yingjiu Li2, and Jianying Zhou1

1 Institute for Infocomm Research
2 Singapore Management University

Abstract. iOS is Apple’s mobile operating system, which is used on
iPhone, iPad and iPod touch. Any third-party applications developed for
iOS devices are required to go through Apple’s application vetting pro-
cess and appear on the official iTunes App Store upon approval. When an
application is downloaded from the store and installed on an iOS device,
it is given a limited set of privileges, which are enforced by iOS applica-
tion sandbox. Although details of the vetting process and the sandbox
are kept as black box by Apple, it was generally believed that these iOS
security mechanisms are effective in defending against malwares.

In this paper, we propose a generic attack vector that enables third-
party applications to launch attacks on non-jailbroken iOS devices. Fol-
lowing this generic attack mechanism, we are able to construct multiple
proof-of-concept attacks, such as cracking device PIN and taking snap-
shots without user’s awareness. Our applications embedded with the at-
tack codes have passed Apple’s vetting process and work as intended
on non-jailbroken devices. Our proof-of-concept attacks have shown that
Apple’s vetting process and iOS sandbox have weaknesses which can be
exploited by third-party applications. We further provide corresponding
mitigation strategies for both vetting and sandbox mechanisms, in order
to defend against the proposed attack vector.

1 Introduction

Digital mobile devices, such as smartphones and tablets, have been increasingly
used for personal and business purposes in recent years. iOS from Apple is one
of the most popular mobile operating systems in terms of the number of users.
By Jan 2013, 500 millions of iOS devices had been sold worldwide and Apple’s
iTunes App Store contained over 800,000 iOS third-party applications, which
had been downloaded for more than 40 billion times [1].

Third-party applications are pervasively installed on iOS devices as they pro-
vide various functions that significantly extend the usability of the mobile de-
vices. On the other hand, these third-party applications pose potential threats
to personal and business data stored on the devices. Thus, Apple adopts various
security measures on its iOS platform to protect the device from malicious third-
party applications. Among these security measures, Apple’s application vetting

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 272–289, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Launching Generic Attacks on iOS with Approved Third-Party Applications 273

process and the iOS application sandbox are considered as the fundamental
mechanisms that protect users from security and privacy exploits.

Each iOS third-party application is required to go through a vetting process
before it is published on the official iTunes App Store, which is the only source
of obtaining applications without jailbreaking an iOS device. Although details
of the vetting process are kept secret, it is generally regarded as highly effective
since no harmful malware on non-jailbroken devices has been reported on iTunes
App Store [2,3]. Only graywares, which stealthily collect sensitive user data,
were found on iTunes Store. These graywares were immediately removed from
the store upon discovery [4].

When an application is downloaded and installed on an iOS device, it is given
a limited set of privileges [5], which are enforced by the application sandbox.
With the sandbox restrictions, an application cannot access files and folders of
other applications. In order to access the required user data or control system
hardware (e.g. Bluetooth or WiFi), applications need to call respective iOS APIs
which are hooked by the sandbox so that validations of these API invocations
are performed dynamically. The sandbox mechanism serves as the last line of
defense which restricts malicious applications from accessing privileged system
services, abusing user data or exploiting resources of other applications.

Due to the closed-source nature of iOS platform, the implementation details
of security mechanisms used by iOS (including vetting process and application
sandbox) are not officially documented. As a result, to our best knowledge, there
is no systematic security analysis conducted for iOS platform, which has been
generally believed as one of the most secure commodity operating systems [6].

In this paper, we make the first attempt in constructing generic attacks on
iOS platform. Existing ad hoc attacks usually require root privilege [7,8,9] and
thus work only on jailbroken iOS devices. In contrast, our attacks are intended
to work on non-jailbroken iOS devices, which are protected by both vetting
process and application sandbox. Thus, we propose an attack vector which in-
clude two attack stages: 1) In the first stage, malicious applications which are
embedded with attack codes need to pass Apple’s vetting process in order to
appear in the official iTunes App Store; 2) In the second stage, after users have
downloaded these applications onto their iOS devices, the attack codes need to
bypass the restriction of the iOS sandbox in order to perform malicious function-
alities. We realize both attack stages by exploiting the weaknesses of the vetting
process and the iOS sandbox. With the proposed generic attack vector, we im-
plement seven proof-of-concept attacks, such as cracking device PIN and taking
screenshots without user’s awareness, which impose serious threats to the security
and privacy of iOS users. Most of our attacks implemented work on both iOS 5
and iOS 6. We implement multiple iOS applications and embed our attack codes
into these applications, which are then submitted to the iTunes App Store. These
applications with attack codes have passed the vetting process and all our attacks
work effectively on non-jailbroken iOS devices1. Our proof-of-concept attacks and

1 Due to privacy concerns, we embedded secret triggers in our applications so that pub-
lic users will not be affected by the attack codes in these applications.

274 J. Han et al.

further validation experiments indicate that the current vetting process and iOS
sandbox have vulnerabilities that can be exploited by malicious third-party ap-
plications to escalate their privileges and launch serious attacks on non-jailbroken
iOS devices.

In order to defend against the proposed attacks, we further discuss several
mitigation methods which could enhance both vetting process and iOS applica-
tion sandbox. Some of these methods utilize existing iOS security features, thus
can be conveniently implemented and deployed on the current iOS platform.
We have notified Apple all of our findings and shared all our attack codes with
Apple’s product security team. By the time this paper was accepted, Apple is
still in the progress of addressing the security issues we have discovered.

In summary, this paper makes the following contributions:

– We provide a generic attack vector which exploits the weaknesses of both
vetting process and iOS application sandbox. The attack vector consists of
two attack stages and can be used to construct serious attacks that work on
non-jailbroken iOS devices.

– We implement seven proof-of-concept attacks with the attack vector pro-
posed. We embed these attack codes into multiple applications we imple-
mented and all the applications are able to pass the vetting process and
appear on official iTunes Store.

– We suggest several mitigation methods to defend against our attacks. These
methods include improvements on both the vetting process and the applica-
tion sandbox, which can be deployed on the iOS platform conveniently.

2 Background and Threat Model

2.1 iOS Platform Overview

iOS platform follows a closed-source model, where source code of the underlying
architecture and implementation details of its security mechanisms are not avail-
able to the public. Though it is debatable whether such obscurity provides better
security, iOS has been generally believed as one of the most secure commodity
operating systems [6]. Unlike other mobile platforms, third-party applications
on iOS are given a more restricted set of privileges [5]. In addition, any third-
party application developed for iOS must go through Apple’s application vetting
process before it is published on the official iTunes App Store. While some users
and developers favor to have such restrictions for better security, others prefer to
have more controls over the device for additional functionalities, such as allow-
ing to install pirated software and allowing applications to change the themes
of the device. To attain such extended privileges, an iOS device needs to be
jailbroken. Jailbreaking is a process of installing modified kernel patches which
allow a user to have root access of the device so that any unsigned third-party
applications can run on it. Although jailbreaking is legal [10], it violates Apple’s
End User License Agreement and voids the warranties of the purchased devices.
Jailbreaking is also known to expose to potential security attacks [7,8].

Launching Generic Attacks on iOS with Approved Third-Party Applications 275

Application Vetting Process. Without jailbreaking a device, the only way
of installing a third-party application on iOS is via the official iTunes App Store.
Any application that is submitted to iTunes Store needs to be reviewed by Apple
before it is published on the store. This review process is known as Apple’s appli-
cation vetting process. The vetting covers several aspects, including detection of
malware, detection of copyright violations, and quality inspection of submitted
applications. Although the vetting process is kept secret by Apple, it is gener-
ally regarded as highly effective as no harmful malware has been reported on
iTunes Store [3,2]. Only grayware (which stealthily collects user data) had been
reported and was removed from the store upon reporting [4,3].

Application Sandbox. iOS utilizes another security measure – application
sandbox – to restrict privileges of third-party applications running on a device.
The sandbox is implemented as a set of fine-grained access controls, enforced at
the kernel level. Under the sandbox restrictions, an application cannot access files
and folders of other applications. In order to access user data or control system
hardware, applications also need to call respective Application Programming
Interfaces (APIs) provided on iOS. These APIs are hooked by the sandbox so
that validations of API invocations can be performed dynamically. The sandbox
serves as the last line of security defense which limits malicious applications from
accessing system services or exploiting resources of other applications.

iOS Frameworks and APIs. To facilitate development of third-party ap-
plications, a collection of frameworks are provided in Cocoa Touch [11], which
include both public frameworks and private frameworks. Public frameworks are
application libraries officially provided to third-party developers while private
frameworks are intended only for Apple’s internal developers. Each framework
provides a set of APIs with which applications can access required system re-
sources and services. Similar to frameworks, APIs can also be categorized into
public APIs and private APIs.

Public APIs allow third-party applications to access a limited set of user in-
formation and control hardware of iOS devices, such as camera, Bluetooth and
WiFi. In contrast, private APIs are the APIs that are meant to be used by Ap-
ple’s internal developers. Private APIs may exist in both public and private
frameworks. Though not officially documented, private APIs include various
functions which could be used by a third-party application to escalate its re-
stricted privileges. Thus, Apple explicitly forbids third-party developers from
using private APIs and rejects applications once the use of private APIs is de-
tected. On the other hand, private APIs can still be used by applications that are
designed to run on jailbroken devices. Such applications are available through
Cydia [12], which is an unofficial application market built for jailbroken iOS
devices.

2.2 Threat Model

In this paper, we are interested in finding out the possible attacks which can be
performed by third-party applications on non-jailbroken iOS devices, as illus-

276 J. Han et al.

trated in Figure 1. The success of such attacks depends on two major factors:
1) whether the corresponding malicious applications can pass Apple’s vetting
process and appear in the official iTunes App Store; and 2) whether malicious
function calls can bypass the restriction of the iOS sandbox. We embed all our
proof-of-concept attack codes in the applications we develop, which have passed
Apple’s vetting process and have been digitally signed by Apple. Thus, our at-
tacks embedded in these applications are able to work on both jailbroken and
non-jailbroken iOS devices.

A’ A A

A A A

A’

Submit

Approve to appear

Download

A’

?

A’

Fig. 1. Threat model

3 Generic Attack Vector

As introduced in Section 2, iOS private APIs exist in both private frameworks
and part of public frameworks. When used by third-party applications, private
APIs may provide additional privileges to the applications and thus are explicitly
forbidden by the vetting process. We choose to utilize private APIs to construct
our attacks which perform various malicious functionalities. In this section, we
first present two ways of dynamically invoking private APIs which enable the
malicious applications to pass the vetting process without being detected. Such
dynamic loading mechanisms guarantee the success of the first stage in the pro-
posed attack vector. For the second attack stage, in order to identify useful
private APIs that are not restricted by iOS application sandbox, we manually
analyze and test each iOS framework. Utilizing the useful private APIs we iden-
tified, we manage to implement multiple serious attacks that cover a wide range
of privileged functionalities. These attacks can be embedded in any third-party
applications, and they work effectively on non-jailbroken iOS devices.

Although our attack vector includes two stages, these two stages are not
isolated – what private API needs to be utilized decides the way of its dynamic
invocation. Thus, in the following, we first use SMS-sending and PIN-cracking

Launching Generic Attacks on iOS with Approved Third-Party Applications 277

attacks as two examples to explain the underlying mechanisms of the entire
attack vector. We then introduce other attacks we implemented utilizing the
same attack vector and discuss the implications of these attacks.

3.1 Attacks via Dynamically Loaded Frameworks

When implementing a third-party iOS application that uses private APIs, the
normal process is to link the corresponding framework statically (in the applica-
tion’s Xcode [13] project), and import the framework headers in the application’s
source code. For example, if a developer wants to send SMS programmatically
in his application, CoreTelephony.framework needs to be linked, and CTMessage-

Center.h needs to be imported in the application code. After preparing those
preconditions, the SMS-sending private API can then be called as follows:

[[CTMessageCenter sharedMessageCenter]

sendSMSWithText:@"A testing SMS"

serviceCenter:nil

toAddress:@"+19876543210"];

In the above code, the static method sharedMessageCenter returns an instance of
CTMessageCenter class, and then invokes the private API call “sendSMSWithText:

serviceCenter:toAddress:”, which performs the SMS-sending functionality on iOS
5. Third-party application can utilize this method to send premium-rate SMS,
and the sent SMS will not even appear in the SMS outbox (more precisely, it
does not appear in the default iOS Message application2). Thus, a user would
be totally unaware of such malicious behavior until the user receives his next
phone bill.

However, this standard way of invoking private APIs can be easily detected
by the vetting process, even though only the executable binary of the compiled
application is submitted for vetting. One way of detecting this API call is to sim-
ply use string matching (e.g., “grep”) on the binary, as the name of the function
call appears in the binary’s objc methname segment (and also other segments).
Moreover, the framework name and class name also appear in the binary as im-
ported symbols. In this example SMS-sending code, although CoreTelephony is a
public framework, CTMessageCenter.h is a private header (i.e., CTMessageCenter is
a private class); thus, importing it in the source code can be detected by per-
forming static analysis on the application’s binary file. In order to pass Apple’s
vetting process, the application cannot link the framework statically.

To avoid being detected, the framework has to be loaded dynamically and the
required classes and methods need to be located dynamically. In our attacks,
we utilize Objective-C runtime classes and methods to achieve this goal. The
example SMS attack code that illustrates the dynamic loading mechanism is
given as follows:

2 Another way of sending SMS programmatically on iOS 5 is to utilize MFMessageCom-

poseViewController. However, this method is easy to be noticed as the SMS sent would
appear in the default Message application.

278 J. Han et al.

1: NSBundle *b = [NSBundle bundleWithPath:@"/System/Library

/Frameworks/CoreTelephony.framework"];

2: [b load];

3: Class c = NSClassFromString(@"CTMessageCenter");

4: id mc = [c performSelector:NSSelectorFromString(@"sharedMessage

Center")];

5: // call "sendSMSWithText:serviceCenter:toAddress:" dynamically

by utilizing NSInvocation

...

In the above code, the first two lines are used to load the CoreTelephony frame-
work dynamically, without linking this framework in the application’s source
code. The path of this library is fixed on every iOS device, which is under the
/System/Library/Frameworks/ folder. Note that not only public frameworks can be
loaded dynamically, private frameworks (which is under /System/Library/Private-

Frameworks/) can also be loaded dynamically using the same method. According
to our experiments, Apple’s sandbox does not check the parameter of [NSBundle
load] to forbid accessing these frameworks under /System/Library folder.

NSClassFromString at the third line is a function which can locate the corre-
sponding class in memory by passing it the class name, which is similar to the
“Class.forName()” method in Java reflection. At the fourth line, the sharedMessage-

Center method is called via “performSelector:”. At last, in order to call a method
with more than 2 parameters (which is “sendSMSWithText:serviceCenter:toAddress:”
in this case), the NSInvocation class is utilized.

Although the above code dynamically invokes the private API call, it may
need certain obfuscation in order to avoid the detection from static analysis dur-
ing the vetting process3. The last step of generating the actual attack code is to
obfuscate all the strings appearing in the above example code. There are various
ways of obfuscating strings in the source code. One simple technique is to create
a constant string which includes all 52 letters (both upper and lower cases), 10
digits and common symbols. Then all the strings appeared in the above code can
be generated dynamically at runtime by selecting corresponding positions from
this constant string. Some of our applications utilize this method to obfuscate
strings in the attack codes, and some others adopt a complex obfuscation mech-
anism, which involves bitwise operations and certain memory stack operations
that are more difficult to be detected.

3.2 Attacks via Private C Functions

Information about private Objective-C classes and methods in the Cocoa Touch
frameworks can be obtained from the iOS runtime headers [14], which are gener-
ated using runtime introspection tool such as RuntimeBrowser [15]. An example

3 Actually according to our experiments, obfuscation may not be necessary, as the
vetting process does not seem to check all text segments in the binary. In our ex-
periments, we have tried to embed this SMS-sending code in one application which
does not utilize obfuscation, and the application passed the vetting process.

Launching Generic Attacks on iOS with Approved Third-Party Applications 279

of directly utilizing these Objective-C private APIs has been introduced in the
previous subsection. However, Objective-C private classes and methods are not
the only private APIs we are able to use in third-party applications.

When we reverse engineer the binary files of each framework, we find that
there are a number of C functions in these frameworks that can be invoked
by our application, which do not appear in the iOS runtime headers [14] and
cannot be found with RuntimeBrowser [15]. In order to invoke these C functions,
we need to dynamically load the framework binary and locate the function at
runtime. The following code segment is part of our PIN-cracking code, which
illustrates how we realize the dynamic invocation for private C functions.

void *b = dlopen("/System/Library/PrivateFrameworks

/MobileKeyBag.framework/MobileKeyBag", 1);

int (*f)(id, id, id) = dlsym(b, "MKBKeyBagChangeSystemSecret");

...

int r = f(oldpwd, newpwd, pubdict);

...

In the above code segment, we use dlopen() to load the binary file of the pri-
vate framework MobileKeyBag, which returns an opaque handle for this dynamic
library. Utilizing this handle and dlsym(), we are then able to locate the address
where the given symbol MKBKeyBagChangeSystemSecret is loaded into memory.
This address is then casted into a function pointer so that it can be directly
invoked later on in our attack code.

Although the above code segment may look simple, it is actually not easy
to identify which C functions we should invoke to serve for our attack purpose,
especially when only framework binary is given. Even after the C functions are
identified and located, it takes further tedious work to figure out the correct
parameter types and values to pass to the C functions. And in many cases, even
all parameters are correct, these functions may be restricted by iOS sandbox
and thus will not function correctly within third-party applications. To speed
up the manual reverse engineering process when analyzing the given framework
binaries, we build our own static analysis tool (which is based on IDA Pro.[16])
to disassemble the framework binary and obtain assembly instructions that are
relatively easy to read.

By manually analyzing the private framework ManagedConfiguration, we find
out that the changePasscodeFrom:to:outError: method of MCPasscodeManager is used
to reset the password of the iOS device. However, we are not able to directly
invoke this Objective-C method because the device needs to be “unlocked” first
with current device password (possibly due to sandbox restrictions). Thus, we
need to find a way of bypassing such restriction. Digging into the assembly code
of the changePasscodeFrom:to:outError: method, we find out that it eventually in-
vokes the MKBKeyBagChangeSystemSecret C function in MobileKeyBag to reset the
password, which is allowed to be directly invoked under the sandbox restrictions.
Further analysis and experiments are then conducted to figure out the correct
parameters used to invoke MKBKeyBagChangeSystemSecret.

280 J. Han et al.

Our analysis reveals that the MKBKeyBagChangeSystemSecret function accepts
three parameters, all of which have the type of (NSData*). The first param-
eter is the data of the old password, which can be converted from password
string. The second parameter is the data of the new password. The third param-
eter, however, is an NSDictionary containing the “keyboard type” of the current
password, which must be converted into NSData with [NSPropertyListSerialization

dataFromPropertyList:format:errorDescription:]. One simple way of obtaining this NS-
Dictionary data is to utilize the private framework ManagedConfiguration. However,
in our attack code, to minimize the number of frameworks loaded, we utilize
another private C function MKBKeyBagCopySytemSecretBlob4 in MobileKeyBag to
obtain this NSDictionary, which is then passed to MKBKeyBagChangeSystemSecret

as the third parameter.
After this MKBKeyBagChangeSystemSecret function is successfully invoked, the

rest of the attack code is straight forward – we simply use brute force to crack
the password. 4-digit PIN has been widely used to lock iOS devices and has a
password space of 104. When using our application to crack a device PIN on
iPhone 5, it takes 18.2 minutes on the average (of 16 trials on two iPhone 5
devices) to check the whole PIN space (104). This gives an average speed of 9.2
PINs per second. To further speed up the cracking, we build a PIN dictionary
so that common PINs are checked first. If the given PIN is in birthday format
(mmdd/ddmm), it takes about 40 seconds to crack the PIN on average. Note
that since our PIN-cracking attack uses the low level C functions, it will not
trigger the “wrong password” event on the iOS device which is implemented at
higher level (Objective-C functions) in the framework code. Thus, there is no
limit on the number of attempts for our brute force attacks when cracking the
device PIN. It is the same procedure to crack 4-digit PIN and complex password
using our method, but the latter will take much longer time than PIN due to its
large password space.

3.3 Other Implemented Attacks and Implications

The SMS-sending attack and the PIN-cracking attack introduced above explain
how the entire attack vector is constructed. The former uses private Objective-C
functions (Section 3.1), while the latter uses private C functions (Section 3.2).
With the same dynamic invocation mechanisms which are able to bypass the
vetting process, other attacks can also be implemented, as long as we can identify
sensitive private APIs that are overlooked by the iOS sandbox.

We manually analyze the 180+ public and private iOS frameworks and man-
age to identify seven sets of sensitive APIs that are not restricted by iOS sand-
box. Utilizing these APIs and the dynamic invocation mechanisms, we implement
seven attacks, which are listed in Table 1. The corresponding frameworks and

4 Note that it is not a spelling error in this MKBKeyBagCopySytemSecretBlob function. The
key word “System” in this function name is spelled as “Sytem” by Apple’s program-
mers. This detail further shows that in this attack, we utilize a function which Apple
programmers may not expect to be used by third-party applications.

Launching Generic Attacks on iOS with Approved Third-Party Applications 281

Table 1. The seven attacks implemented and their applicability

Attack Name Description iOS 5 iOS 6 iPhone iPad*

1 PIN-cracking Crack and retrieve the PIN of the device. � � � �
2 Call-blocking Block all incoming calls or the calls from � � � –

specified numbers.

3 Snapshot-taking Continuously take snapshots for current � � – �
screen (even the app is at background).

4 Secret-filming** Open camera secretly and take photos or � � � �
videos without the user’s awareness.

5 Tweet-posting Post tweets on Twitter without user’s � � � �
interaction.

6 SMS-sending Send SMS to specified numbers without � – � –

the user’s awareness.

7 Email-sending Send emails using user’s system email � – � �
accounts without the user’s awareness.

* The call-blocking and SMS-sending attacks do not work on iPad, simply because iPad does not
have corresponding functionalities since it is not a phone device.

** This secret-filming attack can be implemented purely with iOS public APIs.

key APIs utilized are listed in Table 2 in the appendix. We embed our attack
codes in multiple applications we develop, and all those applications have passed
Apple’s vetting process and appeared in the official iTunes App Store.

Most of the attacks in Table 1 work on both iOS 5 and iOS 6 (which is the
default iOS version on iPhone 5). The last two attacks (SMS-sending and email-
sending) currently only work on iOS 5, but not iOS 6. The APIs of sending SMS
and emails on iOS 6 have been substantially changed to prevent such attacks
(which will be further analyzed in Section 4).

The severity of most of our attacks would be significantly increased when the
attack code is embedded in an application that can keep running at the back-
ground. Take the snapshot attack as an example. By calling the private API
[UIWindow createScreenIOSurface], an application can capture the current screen
content of the device. When continuously running at the background, this ap-
plication can take snapshots of the device periodically, and send these snapshots
back to the developer’s server for further analysis5. Such snapshot-taking attack
may reveal user’s email content, photos and even bank account information, thus
it should be avoided on any mobile devices.

Similar to the snapshot-taking attack, the call-blocking and PIN-cracking at-
tacks also become more serious when they are used in an application that can
continuously run at the background, which have been verified in our experi-

5 The snapshot attack code is embedded into one of our applications which can keep
running at background utilizing audio playing feature. This application also passed
Apple’s vetting process and it sends out snapshots every 5 seconds once triggered.

282 J. Han et al.

ments. However, the secret-filming attack does not work when in background.
The current implementation of the iOS camera service requires that an applica-
tion utilizing this service be not in the background status. Nevertheless, even if
the secret-filming attack works only when the application is in the foreground, it
is still a serious threat to user privacy. Considering that when a user is playing
a game on the iOS device, and the game secretly opens the cameras and takes
photos periodically without the user’s notice. In our experiments, we have veri-
fied that both front and back cameras can be used, and the sound can be muted
when taking videos or photos programmatically in our applications.

We emphasize that all these attacks are implemented with secret triggers
in the applications that are submitted to iTunes Store. The attacks are only
launched on our testing devices after certain sequences of secret buttons have
been pressed in the applications. However, note that in the application codes,
such triggers are just “if-else” statements. Thus, if the trigger conditions were
replaced with an “if-true” condition, these attacks could be launched on any user
device with such applications. Therefore, the secret triggers used in our proof-of-
concept applications do not affect the conclusions drawn from our experiments.

Besides the seven attacks we have implemented, our attack vector can be used
to construct other attacks as long as there are security sensitive functions on iOS
that are not restricted by iOS sandbox. As each iOS version will include new
functionalities to the platform, each iOS update may introduce new attacks from
malicious third-party applications based on our attack vector.

4 Attack Mitigation

Our proof-of-concept attacks have shown that Apple’s current vetting and sand-
box mechanisms have weaknesses which can be exploited by third-party appli-
cations to escalate their privileges and perform serious attacks on iOS users. In
this section, we first suggest improvements on the vetting process to mitigate the
security threats caused by dynamic invocations. We then propose enhancements
on the iOS sandbox to further defend against our attacks utilizing private APIs.

4.1 Improving Application Vetting Process

Static analysis can be used to determine all the API calls which are not invoked
with reflection (i.e., dynamic invocations), and it can provide the list of frame-
works that are statically linked in the application. Thus, an automated static
analysis is able to detect the standard way of invoking private APIs, as what is
probably being used by Apple in its current vetting process. In addition, we sug-
gest to improve the existing static analysis to detect suspicious applications based
on certain code signatures. For example, one suspicious code signature could be
applications containing any dlopen() or [NSBundle load] invocations whose param-
eters are not constant strings (which match the cases of our attacks). However,
as the static analysis alone is not sufficient to determine whether a suspicious ap-
plication is indeed a malware or not, manual examination and dynamic analysis
should be utilized to examine such suspicious applications.

Launching Generic Attacks on iOS with Approved Third-Party Applications 283

In many cases, manual examination may not be able to find malicious behav-
iors of the examined applications, because the malicious functions may not be
preformed for every execution. Instead, they can be designed in the way that
such functions are only triggered when certain conditions have been satisfied.
Examples of such conditions include time triggers or button triggers (as what
have been used in our applications). When a malicious application uses such
trigger strategy, the manual inspection may not find any suspicious behaviors
during the vetting process. Such malicious applications can only be detected by
utilizing fuzz testing [16] (or in the extreme case, using symbolic execution [17]),
where different inputs are used to satisfy every condition of the application code.
Furthermore, in order to determine whether sensitive user data are transferred
out of the device, dynamic taint analysis [18] is an effective approach to serve
this purpose. However, since it is expensive to apply fuzz testing and dynamic
taint analysis on every application, the vetting process may choose to run such
examinations only on selected suspicious applications.

4.2 Enhancement on iOS Sandbox

Dynamic Parameter Inspection. From the perspective of iOS sandbox, a
straightforward defense to our attacks that utilize the dynamic loading functions
(such as [NSBundle load] and dlopen()) is to forbid third-party applications to
invoke these functions. However, it is not practical to completely forbid the
invocation of dynamic loading functions, since frameworks, libraries and many
other resources need to be dynamically loaded for benign purposes at runtime.
Even Apple’s official code, including both framework code and application code
(which is automatically generated by Xcode), utilizes dynamic loading functions
extensively to load resources at runtime. On the other hand, since sensitive APIs
can be hooked by utilizing the application sandbox, the parameters of these APIs
can be checked at runtime. Thus, it is useful if Apple’s sandbox is modified in
the way that the parameter values passed to dynamic loading functions are
examined, and accessing files under a specific folder is forbidden.

One way of implementing this approach is to forbid the third-party applica-
tions to dynamically load any frameworks under “/System/Library/” folder. How-
ever, a sophisticated attacker may be able to completely reverse engineer a given
framework binary, locate all the code regions in the binary that are needed for
launching his attack, and then copy only the needed code regions from the bi-
nary and insert into his application code. In this way, he does not need to
dynamically load framework binaries in his malicious applications. Therefore,
this parameter-inspection approach is not able to completely defend against the
proposed attacks, though it can increase the complexity for the adversary to
construct these attacks.

Privileged IPC Verification. Another technique of enhancing the sandbox is
to dynamically check the privilege of the identity which makes sensitive API calls.
For example, a third-party application should not have the privilege to invoke

284 J. Han et al.

MKBKeyBagChangeSystemSecret API, which is used in our PIN-cracking attack.
Such private APIs should only be invoked by processes or services with the sys-
tem privilege. However, directly restricting the access to private APIs may not
effectively prevent the attacks. By analyzing the implementation of several pri-
vate APIs (in assembly code), we find that the private APIs eventually use inter-
process communication (IPC) methods, which communicate with the system ser-
vice process, to complete the functionalities of the private APIs. For example,
MKBKeyBagChangeSystemSecret API uses perform command() method to communi-
cate with the system service (with service bundle id = “com.apple.mobile.keybagd”).
This means that instead of invoking private APIs, an application can also use
such IPC method to directly send command to the system service process to
perform the same functionality.

In order to defend against such attacks, for each privileged system service,
the recipient of the command (which is the service process itself) needs to check
the sender of the command to verify whether the sender has the valid privilege
to make such IPC. To enable this IPC verification, the system service process
needs to maintain a list of privileged IPC commands which are checked dynami-
cally when an IPC is received. Compared to the parameter-inspection approach,
privileged IPC verification provides better defense against the PIN-cracking, call-
blocking and snapshot-taking attacks as the corresponding privileged functional-
ities should not be used by any third-party applications. However, this approach
alone is not sufficient to mitigate the other four attacks listed in Table 1. For
these four attacks, the corresponding functionalities should be provided to ap-
plications due to usability reasons, but at the same time, it needs to be ensured
that user interactions are involved when these functionalities are performed.

Service Delegation Enhancement. On iOS 6, Apple starts using the XPC
Service, which allows processes to communicate with each other asynchronously
so that it can be used for privilege separation. Originally on iOS 5, the SMS
and email APIs are implemented as “View Controller” classes that are created
and used within a third-party application process. Therefore, applications can
manipulate these view controller classes to send out SMSes and emails program-
matically without users’ interaction. However, on iOS 6, the SMS and email
functionalities are now delegated to another system process utilizing XPC Ser-
vice, which is completely out of the process space of third-party applications.
Thus, a third-party application on iOS 6 is no longer able to send SMSes or
emails programmatically without user’s interaction.

Although currently iOS 6 has not implemented the service delegation mech-
anism for the Twitter service, the tweet-posting attack can be prevented using
this mechanism, as it follows exactly the same service model as SMS and email.
The secret-filming attack, however, cannot be easily mitigated using such ser-
vice delegation. Instead of using a unified user interface, iOS enables third-party
applications to create their own customized user interfaces for taking photos or
videos. If the same service delegation mechanism is applied, then the camera in-
terface will be identical across different applications as it is provided by system

Launching Generic Attacks on iOS with Approved Third-Party Applications 285

service. Thus, more precisely, service delegation is able to defend against camera
device abuse, but its implementation may greatly impact user experience.

System Notifiers for Sensitive Functionalities. In order to mitigate the
threat of secret filming, while preserving the functionality and flexibility of using
camera in third-party applications on iOS, one possible solution is to add a
half-transparent system notifier on the screen (e.g., at the upper-right corner),
whenever the camera device is being used. This notifier can be shown using the
XPC mechanism so that the notifier is handled by a system daemon process,
which is outside of the control of third-party applications. In this way, whenever
the camera is being used (either taking photos or taking videos), the system
notifier is shown on the screen to alert the user.

By enhancing the current iOS platform with the 1) privileged IPC verification,
2) comprehensive service delegation, and 3) extended system notifiers, it will be
able to defend against all the seven attacks we construct. Note that since iOS
is a close-source platform, it is extremely difficult (if not impossible) for us to
implement these mitigation methods we proposed, and thus it is one of the
limitations in our work. However, we have shared all our mitigation suggestions
with Apple so that Apple’s product security team may choose some of these
methods to fix the sandbox. From the partial knowledge that is revealed by
our attacks and the mitigation analysis, it may be inferred that the current iOS
sandbox implementation is quite complex and its privilege check is not complete.
Due to its complexity and also its trade-off nature against usability, it may not
be easy to completely fix the iOS sandbox to prevent future attacks.

5 Discussions

On the current iOS platform, when an application plays an audio file (e.g.,
.mp3), normally a music-playing notifier (i.e., the � symbol) is shown in the
status bar on top of the screen. However, this only happens when the applica-
tion is implemented following the standard programming rules, which require
the application code to call [[UIApplication sharedApplication] beginReceivingRemote-

ControlEvents]. This API call registers the application in the system service so
as to receive remote events, such as when a user presses the control buttons on
earphone. In the background running application we implement, however, this
API is not invoked and our application simply calls the basic audio playing APIs
to play a silent music in an infinite loop. As a result, no notifier is shown on the
status bar when our application is running at the background, thus the iOS user
may be totally unaware of the existence of this security threat. In addition to
playing audio, there are other means of enabling background running, such as
VOIP and tracking locations. Thus, besides the system notifier for the camera
functionality (Section 4.2), we suggest to add another system notifier specifically
designed to indicate that an application is running at the background. Upon see-
ing this notifier, a user can force close any background applications that are not
being used. This will not only enhance security but also save device battery.

286 J. Han et al.

The PIN-cracking attack code introduced in Section 3.2 not only can be used
to steal device PIN and send it to an external server, but can also be used to
reset the current PIN to another value so that the legitimate user is not able
to unlock the device. In iOS settings, there is an option to “erase all data on
this device after 10 failed passcode attempts”. If this option is enabled on a
device and our PIN-cracking code resets the PIN, it could make a user panic
if he is unable to unlock the device after several trials of inputting his original
password. Again note that our PIN-cracking attack itself will not trigger the
“wrong password” event on the iOS device and thus, there is no limit on the
number of brute forcing trials for our attack code when cracking the device PIN.

With the attack codes we shared with Apple’s product security team, the
PIN-cracking vulnerability has been fixed in the newly released iOS 6.1 (Jan-
uary 2013). However, other security issues we discovered are still in the process
of being addressed. Note that the conclusions about the vetting process and
sandbox given in this paper are inferences based on observations from our ex-
periments, as the details of the vetting process and sandbox are kept as black
box by Apple. The ground truth may become available to the public when Apple
decides to turn major components of iOS into open source in the future, as what
has been done for Mac OS X [19].

6 Related Work

Spyphone [20] is a prototype application, developed for iOS 3.1.2, which illus-
trates that a wide list of user data can be accessed on iOS by third-party ap-
plications. However, Spyphone does not use any private APIs – it only invokes
public APIs and reads public files to access user data in order to enable itself
to appear in iTunes Store [20], which is completely different from our malicious
applications implemented. In addition, the security enforcement of iOS has been
significantly improved since then so that a large portion of user data that can
be accessed by Spyphone on iOS 3 is forbidden to access since iOS 5.

Malwares, such as iKee [7] and Dutch 5 ransom [8] worms, have been found on
iOS. However, these worms only work on jailbroken iOS devices where an SSH
server is installed with the default root password unchanged. Other iOS malwares
known to the public, such as iSAM created by Damopoulos et al. [9] (which
focuses more on malware propagation methods), also exploit vulnerabilities exist
only on jailbroken iOS devices, which are different from our work.

Felt et al. [3] conduct a survey on the modern mobile malware in the wild,
which encompasses all known iOS, Symbian, and Android malwares that spread
between January 2009 and June 2011. They find that (i) all the 4 iOS malwares
they identified work only on jailbroken iOS devices, and none were listed in the
iTunes App Store; and (ii) only graywares are found on iTunes App Store which
are then removed by Apple. These findings are confirmed by Egele et al. [21],
in which they develop a static analysis tool, PiOS, to detect privacy leakages in
iOS applications. They perform static analysis on more than one thousand third-
party iOS applications and find out that only a few applications are graywares
which stealthily access user data without user’s awareness.

Launching Generic Attacks on iOS with Approved Third-Party Applications 287

Extensive researches have been conducted on the other popular mobile plat-
form – Android. Privilege escalation attacks on Android are proposed by [22],
and the defense mechanisms for such attacks are introduced by Bugiel et al. [23].
Enck et al. [24] performs static analysis of Android applications using the decom-
piler they developed. Dynamic taint analysis on third-party Android applications
is performed by TaintDroid [25]. Comprehensive surveys on mobile security are
provided by Becher et al. [26] and Egners et al. [27].

The closest work to our research is the work by Miller [28]. By exploiting the
security flaw he found, he managed to get iOS devices to run unsigned codes
which are dynamically downloaded by his proof-of-concept malicious applica-
tion. Miller’s attack mechanism provides an alternative for the first stage of our
proposed attack vector. However, Apple has removed his application from the
iTunes App Store and released a fix for the security flaw. Thus, our dynamic
invocation used in the first stage, to our best knowledge, is the only way of
bypassing the vetting process. Although our mechanism is not complex, it is a
very effective way of allowing malicious applications appear in the official appli-
cation store. Furthermore, by performing sophisticated analysis on all existing
iOS frameworks, we identify seven sets of sensitive APIs which are not restricted
by iOS sandbox and thus can be utilized by any malicious applications.

7 Conclusion

The original goal of this work is to answer a simple (but not easy) research
question: is there a generic attack vector which enables third-party applications
to launch attacks on non-jailbroken iOS devices? Two pre-conditions need to
be satisfied in answering this question: (i) the third-party application has to
pass the vetting process and appear on the official application store; and (ii) the
corresponding attack codes must break through the restrictions of iOS sandbox
in order to work on non-jailbroken iOS devices.

In this paper, we constructed effective mechanisms which allow any third-
party application to invoke private APIs without being detected by the vetting
process. By utilizing such mechanisms and exploiting the vulnerabilities in the
application sandbox, we implemented seven proof-of-concept attacks which can
cause serious damages to iOS users. Finally, we suggested mitigation mechanisms
to enhance the current vetting process and iOS sandbox. Our paper fills the
gap in the current mobile security literature where most research efforts are
conducted on Android platform. We have shared all our findings with Apple’s
product security team. In January 2013, Apple released iOS 6.1 and fixed the
PIN-cracking vulnerability we discovered in iOS 6.0, while other security issues
presented in this paper still remain unsolved.

Acknowledgments. This work was partially supported by project SecSG-
EPD090005RFP(D) funded by Energy Market Authority, Singapore. We also
thank the anonymous reviewers for their valuable insights and comments.

288 J. Han et al.

References

1. Apple Press Info: App Store Tops 40 Billion Downloads with Almost Half
in 2012 (January 2013), http://www.apple.com/pr/library/2013/01/07App-

Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html

2. Safe and Savvy: How secure is your iPhone (June 2012),
http://safeandsavvy.f-secure.com/2012/06/29/how-secure-is-your-iphone/

3. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile
malware in the wild. In: Proceedings of the ACMWorkshop on Security and Privacy
in Smartphones and Mobile Devices, pp. 3–14 (2011)

4. TrendLabs: Malware for iOS? Not Really (June 2012),
http://blog.trendmicro.com/trendlabs-security-intelligence/

malware-for-ios-not-really/

5. Han, J., Yan, Q., Gao, D., Zhou, J., Deng, R.H.: Comparing Mobile Privacy Pro-
tection through Cross-Platform Applications. In: Proceedings of the Network and
Distributed System Security Symposium (February 2013)

6. macgasm.net: IT Professionals Rank iOS As Most Secure Mobile OS
(August 2012), http://www.macgasm.net/2012/08/17/it-professionals-rank-

ios-as-most-secure-mobile-os/

7. NakedSecurity: First iphone worm discovered - ikee changes wallpaper to rick
astley photo (November 2009), http://nakedsecurity.sophos.com/2009/11/08/
iphone-worm-discovered-wallpaper-rick-astley-photo/

8. NakedSecurity: Hacked iphones held hostage for 5 euros,
http://nakedsecurity.sophos.com/2009/11/03/hacked-iphones-

held-hostage-5-euros/

9. Damopoulos, D., Kambourakis, G., Gritzalis, S.: iSAM: An iPhone Stealth Air-
borne Malware. In: Camenisch, J., Fischer-Hübner, S., Murayama, Y., Portmann,
A., Rieder, C. (eds.) SEC 2011. IFIP AICT, vol. 354, pp. 17–28. Springer, Heidel-
berg (2011)

10. Kravets, D.: ABCNews: Jailbreaking iPhone Legal, U.S. Government Says,
http://abcnews.go.com/Technology/story?id=11254253

11. iOS Technology Overview: Cocoa Touch,
https://developer.apple.com/technologies/ios/cocoa-touch.html

12. Freeman, J.: Cydia, an alternative to Apple’s App Store for jailbroken iOS devices,
http://cydia.saurik.com/

13. Apple Developer: Xcode, Apple’s integrated development environment for creating
apps for Mac and iOS, https://developer.apple.com/xcode/

14. Seriot, N.: iOS 6 runtime headers, https://github.com/nst/iOS-Runtime-Headers
15. Seriot, N.: Objective-C Runtime Browser, for Mac OS X and iOS,

https://github.com/nst/RuntimeBrowser/

16. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated Whitebox Fuzz Testing. In:
Proceedings of the Network and Distributed System Security Symposium (2008)

17. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed incremental symbolic ex-
ecution. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 504–515 (2011)

18. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: Dynamic Taint
Analysis with Targeted Control-Flow Propagation. In: Proceedings of the Network
and Distributed System Security Symposium (2011)

19. apple.com: Apple Open Source Projects, http://www.apple.com/opensource/
20. Seriot, N.: iPhone Privacy. In: Black Hat DC (2010)

http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html
http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html
http://safeandsavvy.f-secure.com/2012/06/29/how-secure-is-your-iphone/
http://blog.trendmicro.com/trendlabs-security-intelligence/malware-for-ios-not-really/
http://blog.trendmicro.com/trendlabs-security-intelligence/malware-for-ios-not-really/
http://www.macgasm.net/2012/08/17/it-professionals-rank-ios-as-most-secure-mobile-os/
http://www.macgasm.net/2012/08/17/it-professionals-rank-ios-as-most-secure-mobile-os/
http://nakedsecurity.sophos.com/2009/11/08/iphone-worm-discovered-wallpaper-rick-astley-photo/
http://nakedsecurity.sophos.com/2009/11/08/iphone-worm-discovered-wallpaper-rick-astley-photo/
http://nakedsecurity.sophos.com/2009/11/03/hacked-iphones-held-hostage-5-euros/
http://nakedsecurity.sophos.com/2009/11/03/hacked-iphones-held-hostage-5-euros/
http://abcnews.go.com/Technology/story?id=11254253
https://developer.apple.com/technologies/ios/cocoa-touch.html
http://cydia.saurik.com/
https://developer.apple.com/xcode/
https://github.com/nst/iOS-Runtime-Headers
https://github.com/nst/RuntimeBrowser/
http://www.apple.com/opensource/

Launching Generic Attacks on iOS with Approved Third-Party Applications 289

21. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting Privacy Leaks in
iOS Applications. In: Proceedings of the Network and Distributed System Security
Symposium (2011)

22. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: attacks and defenses. In: Proceedings of the 20th USENIX Security
Symposium (2011)

23. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: To-
wards taming privilege-escalation attacks on android. In: Annual Network & Dis-
tributed System Security Symposium (February 2012)

24. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: USENIX Security Symposium (2011)

25. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: OSDI (2010)

26. Becher, M., Freiling, F.C., Hoffmann, J., Holz, T., Uellenbeck, S., Wolf, C.: Mobile
Security Catching Up? Revealing the Nuts and Bolts of the Security of Mobile
Devices. In: Proceedings of the IEEE Symposium on Security and Privacy (2011)

27. Egners, A., Marschollek, B., Meyer, U.: Hackers in Your Pocket: A Survey of Smart-
phone Security Across Platforms, Technical Report (2012)

28. Miller, C.: Apple lets malware into App Store (2011),
http://nakedsecurity.sophos.com/2011/11/08/apples-app-store-security-

compromised/

A Details in Attack Implementations

The frameworks and key APIs utilized in our attacks are given in Table 2.

Table 2. The frameworks and key APIs utilized for the seven attacks
implemented

Attack Frameworks Classes* Functions

1
PIN-

cracking
MobileKeyBag —

MKBKeyBagChangeSystemSecret

MKBKeyBagCopySytemSecretBlob

2
Call-

blocking
CoreTelephony —

CTTelephonyCenterGetDefault

CTTelephonyCenterAddObserver

CTCallCopyAddress

CTCallDisconnect

3
Snapshot

-taking
UIKit

UIWindow

UIImage

createScreenIOSurface

initWithIOSurface:

4
Secret-

filming

AVFoundation

CoreMedia

CoreVideo

AVCaptureDevice

AVCaptureDeviceInput

AVCaptureVideoDataOutput

AVCaptureSession

devices

deviceInputWithDevice:error:

setSampleBufferDelegate:queue:

startRunning

5
Tweet-

posting
Twitter TWTweetComposeViewController

setCompletionHandler:

setInitialText:

send:

6
SMS-

sending
CoreTelephony CTMessageCenter

sharedMessageCenter

sendSMSWithText:serviceCenter:-

toAddress:

7
Email-

sending

Message

AppSupport

MailAccount

CPDistributedMessagingCenter

defaultMailAccountForDelivery

uniqueId

centerNamed:

sendMessageAndReceiveReplyNam-

e:userInfo:error:

* The symbol of “—” in the Class field indicates that the corresponding attack does
not utilize any Objective-C classes, but only utilizes private C functions.

http://nakedsecurity.sophos.com/2011/11/08/apples-app-store-security-compromised/
http://nakedsecurity.sophos.com/2011/11/08/apples-app-store-security-compromised/

	Launching Generic Attacks on iOS
with Approved Third-Party Applications
	1 Introduction
	2 Background and Threat Model
	2.1 iOS Platform Overview
	2.2 Threat Model

	3 Generic Attack Vector
	3.1 Attacks via Dynamically Loaded Frameworks
	3.2 Attacks via Private C Functions
	3.3 Other Implemented Attacks and Implications

	4 Attack Mitigation
	4.1 Improving Application Vetting Process
	4.2 Enhancement on iOS Sandbox

	5 Discussions
	6 Related Work
	7 Conclusion
	References

