
LavA: Model-Driven Development of Configurable MPSoC
Hardware Structures for Robots

Matthias Meier and Olaf Spinczyk

Technische Universität Dortmund
Embedded System Software — Computer Science 12

Dortmund, Germany

{matthias2.meier, olaf.spinczyk}@tu-dortmund.de

Abstract: Deploying multicore or multiprocessor hardware for robotics applications
is highly beneficial. Parallel hardware structures can be utilized to improve the per-
formance, real-time characteristics, or fault tolerance. Special accelerator components
can boost the performance and energy efficiency even more. However, the optimal
hardware design is application-specific. This is a dilemma especially for modular
general purpose robots, because the application scenario is unknown at design time.
Therefore, more and more robots are being equipped with configurable hardware such
as FPGAs. In this paper we describe the LavA framework, which facilitates the de-
velopment of application-specific MPSoC hardware structures. Our prototype can
interact with Lego Mindstorms NXT sensors and actuators. A DSL is used to describe
the hardware structure. Syntactic and semantic checks are performed on the high-level
hardware model and a resource model quickly provides an estimate of the required
FPGA resources. The hardware synthesis itself is fully automated and requires no
special know how. Optionally, the framework can even statically analyze the C/C++
application code. Based on the hardware access patterns found in the code, a suitable
hardware description is derived automatically.

1 Introduction

Nowadays, the use of multiprocessor systems is a common practice in many areas, for
instance servers or personal computers, but also in the area of embedded systems, multi-
processor systems are an emerging trend. Especially, robotic applications can benefit from
the parallel processing of tasks. These applications are almost always depending on real-
time requirements and have to handle unexpected events very rapidly, for instance a six-
legged robot with environment detection via camera or other sensors. In this case the
hardware structures, or more precisely multiprocessor system in our case, have a major
impact on the quality of how the robot acts. Does the movement of the six legs looks nat-
ural? How quickly and efficiently can the robot spot obstacles or detect objects? Tailored
hardware structures can help to achieve the performance goals. The most simple option
could be to provide two processors, to separate the environment detection from the motion
controll. More sophisticated solutions may result in better performance of the robot, but

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

end up in a time-consuming process when the hardware structures have to be designed
manually.

In this paper we describe our solution to tailor hardware structures to application-specific
requirements. Our LavA framework provides a domain specific language to describe het-
erogeneous multiprocessor systems on a high abstraction level. This high abstraction level
enables a straightforward and less error-prone interface to the hardware design. The out-
put of the LavA toolchain is an entirely configured multiprocessor system implemented
in VHDL (Very High Speed Integrated Circuit Hardware Description Language). Finally,
the synthesized VHDL code can be used to program an FPGA (Field Programmable Gate
Array) to test the configured hardware structure with real world applications. In order to
evaluate our approach we further need a flexible platform that allows a wide variety of
robotic applications. Thus, we have decided to use the sensors and actuators from the
Lego Mindstorms NXT [Leg] platform and connect them to the FPGA.

The following sections describe the LavA approach in greater detail. Section 2 will in-
troduce our domain specific language that describes hardware structures. In Section 3
we present details about the resulting hardware structures of the LavA approach and the
hardware interface to the Lego Mindstorms NXT components. Our current work on the
automated generation of hardware structures by code analysis is presented in Section 4.
After discussing related work in Section 5, the final Section will present our ideas for
future work and summarize this paper.

2 Domain Specific Language

The development of hardware structures is a time-consuming and complex challenge.
Even in the case of hardware description languages such as VHDL or Verilog the time
and effort to design, implement, and test the hardware structures is still very high. LavA
hides these low-level hardware details by the use of a domain specific language developed
with the Eclipse Modeling Framework1 [Ecl]. Our domain specific language is based on
a model-driven approach, which in particular allows us to check the desired hardware
structure for correctness and to estimate the consumption of resources in an early stage
of the design process. First of all this faciliates the specification of hardware structures,
because software developers don’t need to have an in-depth knowledge about the design
of hardware.

2.1 Hardware Meta Model

The basic structure of the multiprocessor system and the various options of configura-
tion are defined in the LavA meta model (Figure 1). On the top level the MPSoC (multi-
processor system-on-chip) is composed from SoCs (systems-on-chip), connections, shared

1formerly known as openArchitectureWare

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

Figure 1: Excerpt from the LavA meta model

memory, and transactional memory [MASS11]. In this context a SoC signifies one pro-
cessor of the MPSoC with its local peripherals and communication interfaces. The SoCs,
or rather the processors, can be associated with connections in order to communicate by
a message-based mechanism with any number of processors. LavA offers three connec-
tion types for the message-based communication: bus, ring, and point-to-point connection.
The shared memory can be used to exchange large amounts of data between exactly two
processors, whereas the transactional memory supports any number of processors and lots
of parameters for adjustment. Additionally, all hardware components provide a minimal
required set of attributes, for instance the size of the message queue for a message-based
connection, or the width of a timer register.

By means of the meta model we can easily configure a model representing a specific
hardware structure. Therefore, the Eclipse Modeling Framework provides a comfortable
graphical user interface to select the desired components and to set their attributes. The
configured multiprocessor system, presented by the model, can then be transformed by the
text manipulation language Xpand of the Eclipse Modeling Framework to the final VHDL
code.

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

2.2 Plausibility Check

Not all checks for correctness of the specified multiprocessor system can directly be de-
rived from LavA’s meta model. These checks, however, can be performed using the Check
language of the Eclipse Modeling Framework, which is provided to specify constraints
that have to be fulfilled by the created model. These checks reduce the number of possible
errors in the configuration process and identify misconfigurations of the multiprocessor
system in an early stage of the design process, reducing the necessity of time consuming
hardware synthesis and debugging.

In the example below, our constraints force an error during validation of the model, when
no interrupt controller is configured for the associated processor, but interrupts are required
for one or more UART2 devices.

context mmMPSoC::SoC if (UARTList.size > 0) ERROR
"Interrupt-Controller missing in SoC" + Id :

(UARTList.forAll(e|e.IRQ==false)) || (InterruptCtrl!=null);

Initially, the context of a constraint has to be described. In this case, the constraint only
has to be checked for SoC components. The if statement in line 1 of the code binds the
constraint to SoCs with one or more UARTs. At the end of line 1, the action type for
this constraint is defined. In this example, failing of this constraint leads to a stop of all
processing due to the error statement. It is also possible to only generate a warning during
the check process, which does not abort further processing. The second line describes a
message which is displayed when an error or a warning occurs. Finally, the condition is
defined by an expression. If this expression is evaluated as true, the constraint is fulfilled
and the check is successful. The expression in this example can be summarized as follows:
“either all UARTs of this SoC have the option IRQ disabled, or if at least one UART does
not, an Interrupt controller has to be instantiated for this SoC”.

There are many more capabilities to use plausibility checks to ensure a reliable multi-
processor system configuration or to reduce the waste of FPGA resources, such as fre-
quency dependent baud rate check for the UART, constraints for unnecessary components,
like a CPU with no connections to other cores, and checking for FPGA resources, e.g.
LUTs3 (Look-Up Tables) or Block RAMs. The Eclipse Modeling Framework also offers
the opportunity to enable use case dependent check rules, for instance to limit the number
of PWM (pulse-width modulation) devices in the case of a Lego robot application. This
could be useful if only a limited set of motor drivers is available.

2.3 Resource Model

For an efficient calculation of the resource consumption on an FPGA we define resource
models. However, these models strongly depend on the FPGA vendor and the FPGA

2Universal Asynchronous Receiver Transmitter (RS-232)
3Small logic units on Xilinx FPGAs that implement boolean functions.

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

itself, and are therefore only useable for a small family of similar FPGA types. For LavA
we created models for two FPGA families from Xilinx, which are used very frequently—
the Spartan-3E and Virtex-5 series. The Spartan-3E family is a low-cost series with 4-
input LUTs, whereas the Virtex-5 series offers high-end FPGAs with more resources and
a 6-input LUTs design. Furthermore, it should be taken into account that the required
resources of the specified hardware design depend on the synthesis software that is used
and their settings. For the LavA resource models we use the Xilinx ISE Design Suite 10.1
with default settings.

Due to the high variety of potential hardware configurations it is only possible to measure a
selection of multiprocessor systems to identify trends in the resource consumption. For the
LavA resource models we focus on the LUTs consumption and the occupied Block RAMs.
The required measurement results can easily be extracted from the ISE Design Suite. It
provides a hierarchical, itemized list of the resource consumption for each hardware com-
ponent in the design. The resource estimations for the MPSoC and SoC components are
the most difficult of all because they implement virtually no logic, but instead they inter-
connect all the other components, like processors or peripherals. However, to take these
resources into account for our estimation, we only use a simple approximiation for the
MPSoC and SoC components.

The functions below exemplarily show the calculations of the LUTs for the IPC4, CAN5

and UART peripheral devices. Like the other attributes, used to configure the components
of the multiprocessor system, also the cost functions are annotated to each device in the
meta model (not shown in Figure 1). The calculation of the total costs for each resource is
realized by the Xtend language of the Eclipse Modeling Framework. The cost calculation
is embedded into the plausibility check and reports an error in the case of a mismatch
between the chosen FPGA and the calculated resources. This enables the developer in an
early stage of the design process to change the multiprocessor system or to replace the
FPGA with a more suitable one.

LUT4IPC = (
Connection.Width

8
× 90) + 230

LUT4CAN = 933 + (47× Filters) + (90×Buffer)

LUT4UART =

{
82 , Baud ≤ 38400

68 , Baud > 38400

Table 1 shows the estimated and the measured LUT consumption for three configured
multiprocessor systems on a Spartan-3E FPGA. The difference between the estimation
and the measurement is quiet low with a maximum of 2.08 percent in our tests.

4device for inter-processor communication
5controller-area network device (basically used in the automotive sector to connect control units)

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

System Prediction Synthesis Results Difference
MBLite (Timer 32; UART 19200) 1651 1681 -2.08 %
MIPS (UART 57600; IPC 16)
MIPS (CAN with Filter; IPC 16) 8872 8861 0.12 %
MIPS (CAN with Filter; IPC 16)
MBLite (CAN with Filter; IPC 32)
MIPS (CAN with Filter; IPC 32) 9581 9632 -0.53 %
ZPU (UART 115200; Timer 64; IPC 32)

Table 1: Ressource estimation for Spartan-3E (4-input LUTs)

3 LavA Hardware

LavA currently supports three different types of processors (MB-Lite [MBL], Plasma
MIPS [Pla], and ZPU [Har]) providing different characteristics in speed of computation,
size or frequency. Each processor can be combined with peripherals, like a UART, timer
or CAN bus controller, connected via a Wishbone [WB] bus. To communicate with the
Lego Mindstorms NXT components we integrated two new peripherals into LavA (Figure
2). The I2C peripheral is used to read the values from the sensors whereby some Lego
sensors don’t support I2C, and instead output the data by means of an analog voltage. To
avoid a further peripheral device for the input of analog signals, we extend those analog
sensors with a Philips A/D Converter that is equipped with an I2C interface. The second
new peripheral is a PWM device that controls the servo motors via a full bridge driver.
Additionally, our circuits, for the connection between the sensors/actuators and the FPGA,
provide level shifter to level out different voltages of the FPGA and the Lego components.

4 Automated Hardware Design

Our current work deals with an even more comfortable way to design and to work with
application-specific hardware structures. For this purpose we designed a hardware API,
an adaptable software representation of our hardware components. This API consists basi-
cally of C++ class templates which have to be instantiated as global objects. The template
mechanism allows to configure these components at compile time, whereas the global
instantiation makes sure that firstly, they are amenable to static analysis and secondly, nec-
essary boot-time initialization is performed. Figure 3 shows the shared memory template
that is used to communicate between two processors. A shared memory instance can be
configured by the use of three attributes: First, it has to be defined which processor is
coupled with the shared memory, then an identification number and the size of the shared
memory have to be specified.

To automatically generate an instance of the meta model, that is, a hardware model for
a concrete MPSoC, we use an extended version of the parser library PUMA [ULS11] (C,
C++, and AspectC++). The parser analyzes the software by searching for global instances

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

Figure 2: Multiprocessor system with connected Lego Mindstorms NXT sensors and actuators

of hardware API classes. Based on the information collected by the PUMA parser we
manipulate the source code, as it may be necessary to allocate memory addresses and IRQ
numbers to the devices of each SoC. The result of this step is the manipulated source code
and an automatically generated model representing the hardware.

The great advantage of this approach is the opportunity to completely hide the hardware
details behind the HW API, and thus it offers the possibilty to generate application-specific
hardware structures in a very short period of time.

5 Related Work

A number of robotics projects are already utilizing configurable hardware. Many of them
use special-purpose hardware components in order to boost the performance of specific
tasks suchs as servo control [SS07], impedance control in a robotic hand [CLW+09], or
image processing [GH08]. The paper by Leong et al. [LT05] gives a nice overview about
the different promising application areas. Besides this, the authors argue that one barrier
for adoption of FPGAs has been “the large amount of specialized knowledge required
to use them”. The LavA project aims at improving this situation by providing common
framework, into which robotics hardware components can be integrated easily.

There is also work that discusses robotics platforms from an architectural point of view.

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

template<typename SoCLis t = NullType , i n t Id = 0 , i n t S i z e = 4096>
s t r u c t SharedMemory : p u b l i c A b s t r a c t D e v i c e {

enum { C l a s s T y p e = I n t e r n a l D e v i c e } ;
enum { Base = 0xD0000000 } ;
enum { S i z e = 0 x10000 } ;

template<i n t I> void i n s t a n c e () {
s e t A d d r e s s (CPU : : IO Base + Base + I ∗ S i z e) ;

}
} ;

SharedMemory<P a i r <1 ,2> ,0 ,4096> sharedmem0 ;

Figure 3: Shared Memory Template

For instance, D’Souza et al. argue for application-specific static configuration of hardware
structures. Their paper presents “morphing” bus structures [DKV07], which are realized
with FPGAs. However, a convenient language that would facilitate the design of such
systems has not been presented. Brandt et al. describe a hardware architecture for flexible
robot modules [BLC+08]. The modules are equipped with a MicroBlaze soft core and
a communication controller. Peripheral interconnects such as UARTs are added in an
application-specific manner. Once again proper tool and language support seems to be
missing.

In the embedded systems domain Thompson et al. have presented a framework for the
automated generation of MPSoCs [TNS+07]. They use Kahn Process Networks [Kah74]
as model to describe the application and map the processes to hardware resources based on
a design space exploration. However, this framework limits developers to Kahn Process
Networks, which are more common for streaming-based multimedia applications. Lukovic
and Fiorin describe an automated design flow for a network-on-chip based MPSoC [LF08].
This approach is only suitable for Xilinx FPGAs because they extend the design flow
offered by the Xilinx EDK.

With LavA, we provide a flexible solution to design application-specific multiprocessor
systems based on a common model-driven software development (MDSD) platform. Fur-
thermore, to the best of our knowledge, LavA is the first framework that combines the
automated generation of multiprocessor systems with the domain of robotic applications.

6 Conclusion and Future Work

In this paper we introduced our domain specific language to describe multiprocessor sys-
tems on a high abstraction level for robotic applications. Due to the model-driven ap-
proach, the LavA framework enables a straightforward and less error-prone interface to

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

the hardware design. Therefore, syntactic and semantic checks are performed on the
high-level hardware model. Furthermore, LavA provides a resource model to estimate
the required FPGA resources in an early stage of the design process. Additionally, we
have presented how to generate multiprocessor systems by analyzing the hardware access
patterns in the C/C++ application code.

For the near future we plan to integrate our CiAO [LHSP+09] operating system into the
LavA framework. CiAO is a highly-configurable, aspect-oriented operating system for
embedded systems. The integration of CiAO into the LavA framework will shift devel-
oper’s view from the HW API to the OS API and thus to a higher abstraction level. Our
goal is the co-configuration of the operating system and the hardware structures with a
single framework.

Acknowledgment

This work is supported by the German Research Council (DFG) under grant no. SP 968/4-1
and by the German Research Council within the Collaborative Research Center SFB 876
”Providing Information by Resource-Constrained Data Analysis”, project ”Resource Effi-
cient and Distributed Platforms for Integrative Data Analysis”6.

References

[BLC+08] D. Brandt, J.C. Larsen, D.J. Christensen, R.F.M. Garcia, D. Shaikh, U.P. Schultz, and
K. Stoy. Flexible, FPGA-Based Electronics for Modular Robots. In Proceedings of the
IROS Workshop on Self-Reconfigurable Robots, Systems and Applications, pages 9–13,
2008.

[CLW+09] Z.P. Chen, N.Y. Lii, K. Wu, H. Liu, Z.X. Xue, M.H. Jin, Y.W. Liu, S.W. Fan, and
T. Lan. Flexible FPGA-based controller architecture for five-fingered dexterous robot
hand with effective impedance control. In Robotics and Biomimetics (ROBIO), 2009
IEEE International Conference on, pages 1063 –1068, dec. 2009.

[DKV07] C. D’Souza, Byung Hwa Kim, and R. Voyles. Morphing Bus: A rapid deployment
computing architecture for high performance, resource-constrained robots. In Robotics
and Automation, 2007 IEEE International Conference on, pages 311 –316, april 2007.

[Ecl] Eclipse Modeling Project. http://www.eclipse.org/modeling/.

[GH08] H. GholamHosseini and Shuying Hu. A High Speed Vision System for Robots Using
FPGA Technology. In Mechatronics and Machine Vision in Practice, 2008. M2VIP
2008. 15th International Conference on, pages 81 –84, dec. 2008.

[Har] Øyvind Harboe. ZPU: http://opensource.zylin.com/zpu.htm.

[Kah74] Gilles Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information processing, pages 471–475, Stockholm, Sweden, Aug
1974. North Holland, Amsterdam.

6http://sfb876.tu-dortmund.de/

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

[Leg] Lego Mindstorms NXT. http://mindstorms.lego.com.

[LF08] Slobodan Lukovic and Leandro Fiorin. An Automated Design Flow for NoC-based
MPSoCs on FPGA. In The 19th IEEE/IFIP Intl. Symposium on Rapid System Proto-
typing (RSP ’08), pages 58–64, June 2008.

[LHSP+09] D. Lohmann, W. Hofer, W. Schröder-Preikschat, J. Streicher, and O. Spinczyk. CiAO:
An Aspect-Oriented Operating-System Family for Resource-Constrained Embedded
Systems. In Proc. USENIX, pages 215–228, 2009.

[LT05] P.H.W. Leong and K.H. Tsoi. Field programmable gate array technology for robotics
applications. In Robotics and Biomimetics (ROBIO). 2005 IEEE International Confer-
ence on, pages 295 –298, 0-0 2005.

[MASS11] Matthias Meier, David Austin, Horst Schirmeier, and Olaf Spinczyk. TMPL: A Hard-
ware Transactional Memory Product Line. In Proceedings of the Workshop on Multi-
processor Systems on (Programmable) Chips (MPSoC 2011), Istanbul, Turkey, July
2011. IEEE Computer Society Press. to appear.

[MBL] MB-Lite Microprocessor: http://www.opencores.org/project,mblite.

[Pla] Plasma MIPS: http://www.opencores.org/project,plasma.

[SS07] Xiaoyin Shao and Dong Sun. Development of a New Robot Controller Architecture
with FPGA-Based IC Design for Improved High-Speed Performance. Industrial Infor-
matics, IEEE Transactions on, 3(4):312 –321, nov. 2007.

[TNS+07] Mark Thompson, Hristo Nikolov, Todor Stefanov, Andy D. Pimentel, Cagkan Erbas,
Simon Polstra, and Ed F. Deprettere. A framework for rapid system-level exploration,
synthesis, and programming of multimedia MP-SoCs. In The 5th IEEE/ACM Intl. Conf.
on Hardware/software codesign and system synthesis (CODES+ISSS ’07), pages 9–14,
New York, NY, USA, 2007. ACM.

[ULS11] Matthias Urban, Daniel Lohmann, and Olaf Spinczyk. PUMA: An Aspect-Oriented
Code Analysis and Manipulation Framework for C and C++. No. 6580. Berlin, 2011.

[WB] Wishbone: http://www.opencores.org/opencores,wishbone.

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

