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Abstract 

 

Computational cytometry methods are now frequently used in flow and mass cytometric 

data analyses. However, systematic bias-free methodologies to assess inter-sample 

variability have been lacking, thereby hampering efficient data mining from a large set of 

samples. Here, we devised a computational method termed LAVENDER (latent axes 

discovery from multiple cytometry samples with nonparametric divergence estimation and 

multidimensional scaling reconstruction). It measures the Jensen-Shannon distances 

between samples using the k-nearest neighbor density estimation and reconstructs samples 

in a new coordinate space, called the LAVENDER space. The axes of this space can then 

be compared against other omics measurements to obtain biological information. 

Application of LAVENDER to multidimensional flow cytometry datasets of 301 Japanese 

individuals immunized with a seasonal influenza vaccine revealed an axis related to 

baseline immunological characteristics of each individual. This axis correlated with the 

proportion of plasma cells and the neutrophil-to-lymphocyte ratio, a clinical marker of the 

systemic inflammatory response. The same method was also applicable to mass cytometry 

data with more molecular markers. These results demonstrate that LAVENDER is a useful 

tool for identifying critical heterogeneity among similar, yet different, single-cell datasets. 
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Introduction 

 

Single-cell analysis is an essential approach to study heterogeneity in cell populations (1, 

2). Multicolor flow cytometry is a versatile method for measuring single cells. It records 

expression levels of multiple surface and intracellular markers in millions of cells as they 

pass through the flow cell in single file while illuminated by several different lasers. Mass 

cytometry is a more recent technology, allowing simultaneous measurement of ~100 

markers by using heavy metal isotopes. 

 Currently, computational cytometry is the method of choice for analyzing 

high-dimensional cytometry data (3, 4). It replaced traditional analysis based on manual 

gates and introduced objectivity and reproducibility. However, several issues remain to be 

resolved. 

First, the analysis is not free from the concept of gating and finding discrete cell 

types. For example, automatic gating methods use clustering algorithms for distinguishing 

different cell types, or they fit the cell distribution with predefined templates of cell types 

(5). Although convenient for interpretation, they fail to acknowledge quantitative 

variability within particular cell types that may have biological information. In fact, recent 

studies have even challenged the notion of discrete cell types in some cases, in favor of 

continuous cell states (6). In addition, predefined templates such as mixtures of Gaussians 

or  t -distributions may not be adequate for highly heterogeneous cell distributions. 

 Second, few methods, developed so far, address the problem of comparing 

multiple cytometry samples systematically. Many existing approaches attempt to map each 

sample to the global template, which is created by pooling all samples (7–9). However, the 

global template, an average of samples, is both computationally demanding for large 

datasets and prone to neglect rare variations. 
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Third, even when multiple samples can be compared, there is a paucity of 

methods that can analyze their differences and uncover latent factors explaining 

sample-to-sample variability (10–13). 

 To solve these problems, here, we propose LAVENDER (latent axes discovery 

from multiple cytometry samples with nonparametric divergence estimation and 

multidimensional scaling reconstruction), a new, scalable method for comparing different 

cytometry samples and extracting critical axes that govern inter-sample variability. 

LAVENDER quantifies inter-sample differences by measuring distances between cell 

distributions of different samples and embedding all samples in a new coordinate space 

(LAVENDER space). The axes of the LAVENDER space can then be compared with 

other measurements for biological interpretation. It is thus an unsupervised, 

hypothesis-free method that can handle arbitrarily complex distributions of cells. As an 

application, we applied our method to peripheral blood samples from a cohort of Japanese 

subjects and showed that LAVENDER extracts axes of heterogeneity in the immunological 

states in the population. We also demonstrated that our method is applicable to mass 

cytometry datasets. 

 

Results 

 

LAVENDER (Latent axes discovery from multiple cytometry samples with 

nonparametric divergence estimation and MDS reconstruction) 

LAVENDER consists of four steps (Figure 1A)—Step 1: Nonparametric density 

estimation of individual point clouds; Step 2: Distance matrix construction based on a 

distance metric; Step 3: Multidimensional scaling reconstruction of individual samples in a 

coordinate space; Step 4: Comparison of the discovered coordinates with other biological 
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measurements. 

 Each cytometry sample can be treated as a point cloud of cells in an 

m-dimensional space (cytometry space), where each point expresses the values of m 

markers measured in a single cell. We viewed each point as randomly selected from a 

certain probability distribution in the cytometry space. In Step 1, we inferred this 

distribution using the k nearest neighbor (kNN) method. Subsequently, in Step 2, we 

compared different samples by calculating the Jensen-Shannon distance between 

respective probability distributions. The distance reflects the difference in these 

distributions. In Step 3, based on the measured distances between all pairs of samples, we 

placed each sample in a new coordinate space, termed the LAVENDER space, using the 

algorithm of multidimensional scaling. Finally, in Step 4, we compared coordinates of the 

LAVENDER space with other biological measurements to extract biological information. 

Mathematical details of LAVENDER are given in the Materials and Methods section. 

It is crucial not to confuse the LAVENDER space with the cytometry space. 

Each point in the former represents each sample containing a variety of cells, whereas that 

in the latter represents each cell in the sample. 

 

Application of LAVENDER to synthetic flow cytometry dataset 

We tested LAVENDER in a synthetic dataset simulating flow cytometry. The dataset 

consisted of 50 samples, each containing expression levels of six markers in 10,000 cells. 

Every cell in a sample belonged to one of four clusters simulating different cell types. 

Cells in each cluster were distributed (in the cytometry space) according to a multivariate 

normal distribution. Three different explanatory variables, simulating biological factors, 

were assumed to affect the dataset. The first one increased the proportion of the first 
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cluster and decreased that of other clusters. The second one increased the mean expression 

levels of markers in the second cluster. The third one increased the variance of expression 

levels of markers in the third cluster. 

 Figure 1 shows the result of individual sample reconstruction in the 

LAVENDER space. Different values of k in kNN density estimation yielded similar results 

(Figure 1B), showing the robustness of the method. We found that the first axis in the 

LAVENDER space was highly correlated with the mean expression level of the first 

marker in the second cluster and the second explanatory variable (Figure 1C). The second 

axis was well correlated with the proportion of the first cluster and the first explanatory 

variable (Figure 1D). In addition, the fifth axis was well correlated with the variance of the 

first marker expression in the third cluster and the third explanatory variable (Figure 1E). 

The percentage of variance explained by each LAVENDER axis is shown in Figure 1F. 

These results demonstrate that LAVENDER can successfully extract the latent axes 

explaining the variability of a dataset. 

 

Application of LAVENDER to Nagahama flu dataset 

We next applied LAVENDER to B cell samples in the Nagahama flu dataset. The dataset 

was obtained from peripheral blood samples of 301 Japanese participants who received a 

seasonal influenza vaccine (see Materials and Methods). Figure 2 shows the result of 

individual sample reconstruction for Cohort A. The first three LAVENDER coordinates (x, 

y, z) of day 0, 1, 7, and 90 samples (n = 153, 149, 151, 148; differences are due to missing 

data) are shown either in 3D (Figure 2A) or 2D (Figure 2B), in black circles, red triangles, 

green diamonds, and blue squares, respectively. Cluster formation of same-day samples 

having the same color and symbol can be observed; yet, they are widely dispersed, 
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reflecting individual variation in the immunological states. Technical replicates prepared 

from the same blood sample of the same subject were positioned closely in the 

LAVENDER space, suggesting individual variations are larger than technical variations 

(Supplementary Figure 1). LAVENDER reconstruction of Cohort B samples (day 0, 1, 7, 

and 90 samples, n = 148, 143, 147, 134; differences are due to missing data) is shown in 

Figures 2C and 2D. The percentage of variance explained by each LAVENDER axis is 

shown in Figures 2E and 2F. 

 

Individuality axis represents plasma cell proportion 

The appearance of the LAVENDER space of Cohort A (Figures 2A and 2B) suggests that 

intuitively, the x axis represents time differences, whereas a particular direction in the yz 

plane represents individual differences. For Cohort B (Figures 2C and 2D), the xy plane 

represents time differences, and the z axis represents individual differences. To elucidate 

biological components constituting individual variation, we extracted the individuality axis 

by considering the first principal component of day 0 samples in the LAVENDER space of 

each cohort. 

  Since this axis came from our analysis of B cell samples, we hypothesized that 

it would be related to certain B cell subsets. Indeed, we found that, for both cohorts, the 

value of the individuality axis was highly correlated with the proportion of 

antibody-producing plasma cells in B cell samples on days 0, 1, 7 and 90, with large 

correlation coefficients around 0.5 and 0.7 (Figures 3A, 4A). This axis and the plasma cell 

proportion were also well correlated between different days (Figures 3B, 3C, 4B, 4C), 

suggesting they are baseline immunological characteristics inherent in each individual. 

However, there were no correlations between this axis and participants’ age or gender 
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(Figures 3D, 4D). Comparison with clinical lab data revealed that the proportion of plasma 

cells was also positively correlated with the percentage of neutrophils in white blood cells 

(WBCs) and negatively correlated with the percentage of lymphocytes in WBCs on days 0 

and 90, albeit with small correlation coefficients around 0.2 (Figures 3E, 3F, 4E, 4F). 

Taken together, the individuality axis unveiled by LAVENDER represents the plasma cell 

proportion, and is also weakly correlated with the neutrophil-to-lymphocyte ratio, a 

well-known clinical marker of systemic inflammation (14). 

 To further gain insight into the individuality axis, we compared against the 

transcriptome data of the peripheral blood. Day 0 samples were divided into two groups 

(Groups I and II) by means of k-means clustering (k = 2) in the LAVENDER space of each 

cohort (Figures 5A, 5B). Group I samples had larger neutrophil-to-lymphocyte ratios than 

Group II samples on day 0 (Figures 5C, 5D). Consistent with this, Gene Set Enrichment 

Analysis (GSEA) using Blood Transcription Modules (BTM) (15) showed that on day 0, 

gene sets related to neutrophils and inflammatory signaling were enriched in Group I 

samples, whereas those related to T cells and their activation were enriched in Group II 

samples (Figure 5E). Detailed analysis of these transcriptome data will be published 

elsewhere. 

 

Plasma cell proportion and HI titers 

Hemagglutination inhibition assay (HI) is one of the established methods to evaluate 

influenza vaccine effectiveness (16, 17). Therefore, we examined the relationship between 

the individuality axis and HI titers. There were no significant differences between Group I 

and II in A/H1N1, A/H3N2, and B titers on all days (Supplementary Figures 2A, 2B). 

This might be because the plasma cell proportion is not the major determining factor of 
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antibody titers (18), or because our titer measurement was only semi-quantitative. 

We noted, however, that A/H1N1 titers on day 0 and 1 were correlated with the 

vaccination history of the participants (Supplementary Figure 2C). Specifically, those 

participants that were vaccinated annually had higher titers than others. Interestingly, after 

vaccination, the former group tended to show less increases in titers over time than others 

(Supplementary Figure 2D). As a result, A/H1N1 titers on days 7 and 90 were no longer 

correlated with the vaccination history, even though they were correlated with titers on 

days 0 and 1 (Supplementary Figure 2E). This trend is consistent with previous literature 

(19) and is possibly related to the concept of original antigenic sin (20). 

 

Application of LAVENDER to mass cytometry dataset 

Finally, we applied LAVENDER to a public mass cytometry (CyTOF) dataset (21, 22). It 

measured the B cell response in peripheral blood before and after immunization with a 

vaccinia-based vaccine in five adult macaque monkeys over three time points (days 0, 8, 

28). The result of LAVENDER construction using all 29 markers is shown in Figure 6. 

The first three LAVENDER coordinates (x, y, z) of day 0, 8, and 28 samples (n = 5, 5, 5) 

are shown either in 3D (Figure 6A) or 2D (Figure 6B), in black circles, green diamonds, 

and blue squares, respectively. The percentage of variance explained by each LAVENDER 

axis is shown in Figure 6C. 

The appearance of the LAVENDER space suggests that the y axis corresponds to 

time differences and the x and z axes correspond to individual differences. When the 

LAVENDER axes were compared with B cell subsets determined by the SPADE 

algorithm, the x axis was correlated with the proportion of CD20+ CD22+ CD27+ 

“memory” B cells (Figure 6D), and the y axis was negatively correlated with the 
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proportion of sIgM+ “immature” B cells (Figure 6E). 
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Discussion 

 

In this study, we developed a novel method of dimensionality reduction for cytometry 

datasets. Individual cytometry samples contain a variety of cells, each with different 

expression levels of surface markers. Our LAVENDER method allows comparison 

between different samples, summarizing them in a low-dimensional LAVENDER space, 

and finding latent axes of variability among the samples, all in a hypothesis-free manner. 

When applied to the Nagahama flu dataset, it uncovered an individuality axis and 

time-dependent axes. The former axis was correlated with the plasma cell proportion and 

the neutrophil-to-lymphocyte ratio, and our analysis suggested variability in baseline 

immunological states intrinsic to each individual. It was also shown that LAVENDER can 

be applied to mass cytometry datasets. 

 

Use of MDS for determination of latent axes of variability 

We used a distance metric (the Jensen-Shannon distance) to quantify the difference 

between cell distributions of different samples. A distance metric is a distance function 

satisfying the triangle inequality. This facilitated the use of MDS (i.e. embedding in a 

Euclidean space) to visualize the result. 

 MDS has been utilized in a variety of biological systems as a method of 

clustering multiple samples (23–25). Notably, a previous study (26, 27) made use of the 

Gaussian kernel density estimation, the Jeffreys' divergence (symmetrized 

Kullback-Leibler divergence, not a distance metric), and MDS to cluster different flow 

cytometry samples. They termed this method FINE (Fisher Information Nonparametric 

Embedding). Our LAVENDER approach, in contrast with theirs, permits the use of any 
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distance metric not limited to approximations of the Fisher information distance. More 

importantly, we also demonstrated that our method can be used to discover latent axes 

governing the variability among samples. The discovered axes can then be compared with 

other multiomics data to further elucidate their biological significance. 

  In some choice of the distance metric, it may not be appropriate to use MDS. 

For example, it is known that for 
  p ≠ 2 , the  L

p  metric is not embeddable into the 

Euclidean space (28), so that the use of MDS would lead to an inexact approximation. In 

such cases, embedding into Riemannian manifolds (29) is a possible approach. 

 

Application of LAVENDER to other datasets 

Although we showcased our method using flow and mass cytometry datasets, the same 

analysis can be extended to datasets obtained via single-cell RNA-seq (scRNA-seq) in a 

straightforward manner. As the number of markers (or genes) increases, the divergence 

estimation of cell distributions becomes more computationally demanding, mainly 

dependent on kNN algorithms in higher dimensional spaces. This problem can be managed 

using initial dimensionality reduction and/or downsampling. Initial dimensionality 

reduction with principal component analysis (PCA) is standard practice in the analysis of 

scRNA-seq data with tSNE (t-distributed Stochastic Neighborhood Embedding) (30, 31). 

 One conceptual pitfall when applying LAVENDER to scRNA-seq datasets is 

that in the field of single-cell biology, a sample typically means a single cell (32, 33). 

However, we use the same term in a different way. In our definition, a sample is a 

collection of cells representing a certain tissue in an individual. Currently, tissue-level 

scRNA-seq samples in our sense are scarce, but comparison of multiple tissue-level 

scRNA-seq samples, either among different individuals, tissues, or developmental stages, 
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will become an important topic in the next several years. 
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Materials and Methods 

 

Cytometry data 

Numerical data obtained in a typical flow or mass cytometry experiment is a matrix , 

whose rows and columns correspond to individual cells and different markers. If we have 

 cells and  markers,  is an  matrix and its  entry shows the 

expression level of marker  in cell . We can display this matrix as  points in an 

-dimensional Euclidean space ℝ
m. The coordinates of each point show measurement 

results of each cell in a sample, and hereafter we identify points with cells. 

 We consider these measured cells to be representative of the tissue they are 

originally from (such as peripheral blood) and try to infer properties of the tissue from the 

measurement. Mathematically, we associate measured cells (points) in ℝ
m as random 

selections from a probability density  of cells in the tissue and attempt to estimate 

. If cells in the tissue show some meaningful tendency in terms of markers, they are 

expected to lie on a low-dimensional surface (manifold) embedded in ℝ
m. This idea is 

known as the manifold hypothesis (34). 

 

LAVENDER (Latent axes discovery from multiple cytometry samples with 

nonparametric divergence estimation and MDS reconstruction) 

LAVENDER consists of four steps (Figure 1A): (1) Nonparametric density estimation of 

individual point clouds; (2) Distance matrix construction based on a distance metric; (3) 

Multidimensional scaling reconstruction of individual samples in a coordinate space; and 

(4) Comparison of the discovered coordinates with other biological measurements. 

 M

 n  m  M  n× m
  (i, j)

 j  i  n  m

  p(x)

  p(x)
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 Step 1: Each cytometry sample can be treated as a point cloud of cells in a 

multidimensional space (cytometry space) ℝ
m, where each point ℝ

m expresses 

-channel ( -marker) measurement of a single cell. We view each point (cell) as a random 

selection from a certain probability density  of cells. However, it is difficult in 

general to infer this probability density, because points are only sparsely positioned in the 

multidimensional cytometry space—a well-known phenomenon called the curse of 

dimensionality (35).  

 Nonparametric density estimation, as exemplified by the k nearest neighbor 

method (kNN), solves this problem. In kNN, a probability density  around a point 

 is determined as follows. For a fixed positive integer , we find a point  whose 

distance from  is the -th smallest. We also assume that there are  n  points in total. 

Then,  is given by 

 

  

p(x) =
k / n

π
m/2

Γ(m / 2+1)
|| y − x ||m

, 

where the denominator is the -dimensional volume of a sphere with radius  in 

ℝ
m. || || denotes the Euclidean distance. 

 The benefit of using nonparametric density estimation is that we do not need to 

assume a particular type of distribution beforehand (as happens in parametric density 

estimation) and thus can flexibly express a wider variety of probability densities. 

 Step 2: After estimating probability densities for all samples in Step 1, we can 

quantify differences between individual samples by measuring the distance between those 

probability densities. From an information-theoretic point of view, the Kullback-Leibler 

divergence , defined by 

 x ∈  m

 m

  p(x)

  p(x)

 x  k  y

 x  k

  p(x)

 m   || y − x ||

  KL( p || q)
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KL( p || q) = p
!

m∫ (x) log
p(x)

q(x)
dx , 

Is a natural choice for measuring the difference between probability densities  and . 

For our purpose (to be described in Step 3), however, this divergence is not convenient, 

because it is neither symmetric 

  , 

nor does it satisfy the triangle inequality 

  . 

Instead, we chose the Jensen-Shannon distance, which is known to satisfy the above two 

conditions and is a distance metric (36): 

  

JS( p || q) =
1

2
KL( p ||

p + q

2
)+ KL(q ||

p + q

2
)

⎛
⎝⎜

⎞
⎠⎟

. 

(The square of the Jensen-Shannon distance is usually called the Jensen-Shannon 

divergence, but to avoid confusion we do not use the latter term.) A detailed method of 

estimating this distance is described in the next section. It is advantageous with its close 

link to the Kullback-Leibler divergence, but in theory, any distance metric can be used. 

Intuitively,   p(x)  in 
  

p(x) log
p(x)

q(x)
 gives more weight to dense areas than sparse areas in 

the cytometry space, rendering it suitable for detecting biologically important differences. 

We also note that the Jensen-Shannon distance  is bounded from above by 

, unlike the Kullback-Leibler divergence, which is not bounded from above. 

 Step 3: Based on the measured distances  between all pairs of samples

 
 in Step 2, we can reconstruct (ordinate) all samples in a new 

 p  q

  KL( p || q) ≠ KL(q || p)

   
KL( p || q)+ KL(q || r)! KL( p || r)

  JS( p || q)

 
log2

 
d

ij

  (i, j)   (1≤ i ≤ n,1≤ j ≤ n)
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Euclidean space ℝ  (LAVENDER space), in a process called classical multidimensional 

scaling (MDS).  

 Classical MDS (also known as Torgerson MDS) is well documented (37), but we 

briefly explain the process below, as it is essential for understanding LAVENDER. Let 

 be the element-wise square of the distance matrix. We denote by ℝ
K the 

position vector of each sample in the LAVENDER space and set . (The 

dimension  of the LAVENDER space will be determined later.) We would like to find 

 with  as close to  as possible.  

 By the law of cosines, we see that 

  . 

In matrix form, 

 , 

where 

  and . 

We now apply the "double centering" operation by multiplying the above by 
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 . 

Therefore,  satisfies 

 . 

Because centering does not change the distance between samples, we can treat  as the 

final coordinates of samples in the LAVENDER space. To find , we perform 

eigendecomposition of the right-hand side (symmetric matrix) 

 , 

where  is a diagonal matrix and  is an orthogonal matrix. Let  be a matrix in 

which all negative diagonal entries of  (if any) are replaced by . Subsequently, if we 

set 

  , 

we get 

  . 

The dimension  of the LAVENDER space is equal to the number of positive entries in 

. Practically, we use the space spanned by two or three eigenvectors corresponding to 

the two or three largest eigenvalues for visualization and later analysis. 

 Step 4: Coordinates of the LAVENDER space constructed in Step 3 can be 

compared with other biological measurements to extract biological information. 

 

Nonparametric estimation of the Jensen-Shannon distance 

We now show in detail how to estimate the Jensen-Shannon distance between sample i and 
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sample j. We first assume that sample i is a collection of random (i.i.d.) selections from a 

probability density   p(x) , and sample j is from   q(x) . We can then estimate the 

Kullback-Leibler divergence 
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If the value of the above formula is negative, it is replaced with 0. 

 Note that this estimation method readily applies to other types of distance 
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metrics, if they can be expressed as an integration of a formula containing   p(x)  and 

  q(x) . 

 

Implementation of LAVENDER with Python and R 

Flow cytometry data were preprocessed using the R package flowCore. Nonparametric 

density estimation using the k nearest neighbor method was performed either in R (using 

TDA and pforeach) or Python (using sklearn.neighbors and multiprocessing). Classical 

multidimensional scaling was carried out using the R function cmdscale. All other 

calculations were performed with R. 

 

Synthetic flow cytometry dataset 

A synthetic dataset simulating flow cytometry was created to test the usefulness of 

LAVENDER. The dataset contained 50 samples, in which six markers were measured with 

six fluorescence channels. Each sample consisted of four clusters of cells,  10
4  in total. 

First, the number of cells in each cluster was determined by a multinomial distribution, 

specified by the pre-determined proportion of each cluster. Subsequently, cells in each 

cluster were selected from a multivariate normal distribution in ℝ , specified by its mean 

vector and variance-covariance matrix. We further assumed five (unobserved) explanatory 

variables , three of which influenced the dataset in the following way:  

multiplied the proportion of the first cluster by ,  multiplied the mean 

vector of the second cluster by , and  multiplied the variance-covariance 

matrix of the third cluster by .  followed a multivariate normal 

distribution and were mutually independent. 
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Nagahama flu dataset 

The Nagahama flu dataset was obtained from a cohort of 301 Japanese volunteers 

challenged with a seasonal influenza vaccine. The cohort consisted of two groups (Cohorts 

A and B) recruited separately in Nagahama city, Shiga prefecture in western Japan. Cohort 

A included 100 males and 53 females, aged 32–66. Cohort B included 98 males and 50 

females, aged 32–66. In winter 2011 (December 3 in Cohort A, December 17 in Cohort B), 

each participant had an injection of the same trivalent inactivated influenza vaccine 

containing three types of HA antigens from A/California/7/2009 (H1N1) pdm09, 

A/Victoria/210/2009 (H3N2), and B/Brisbane/60/2008. Peripheral blood samples of 

participants were collected before vaccination (day 0 samples), and one day, one week, 

three months after vaccination (day 1, 7, and 90 samples). B cell marker sets (CD19, IgM, 

IgD, CD21, CD27, CD138) were measured in single cells using BD FACSCanto II. 

Clinical lab tests were performed for the same blood samples. Hemagglutination Inhibition 

Assay (HI) titers for H1N1, H3N2, and B were measured according to the protocol of

National Institute of Infectious Diseases, Japan. We also obtained transcriptome data for 

day 0 and 7 samples by extracting total RNA from the above samples and using SurePrint 

G3 Human GE 8x60K microarrays (Agilent #28004).  

 Prior to the application of LAVENDER, each cytometry sample was preprocessed by 

fluorescence compensation and Arcsinh transformation, followed by a B cell filter using 

CD19 (B cell marker) and CD138 (plasma cell marker) fluorescence levels. For each 

sample, a threshold value was determined by fitting the distribution of CD19 or CD138 

fluorescence levels with a bimodal distribution, and all cells with lower CD19 and CD138 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 18, 2019. ; https://doi.org/10.1101/673434doi: bioRxiv preprint 

https://doi.org/10.1101/673434


 22 

levels than the respective threshold were rejected. The plasma cell ratio was defined as the 

proportion of B cells with higher CD138 levels than the threshold. 

 

Public mass cytometry dataset 

Raw FCS files in the mass cytometry dataset of a macaque vaccine study (22) as well as 

the result of the SPADE analysis were downloaded from the accompanying website of 

SPADEVizR (21) and analyzed according to the provided instructions. The 29 markers 

used were: CD20, CD69, CD3, CD38, CD197, HLADR, CD14, IgM, CD40, CD62L, 

CD27, CD22, Bcl-6, CD45RA, CD80, Bcl2, Ki67, CD279, IgD, B5R, CD21, CD195, 

CD23, CD138, IgG, CD95, CD127, TNFα, and IL10. Values in each channel were 

preprocessed beforehand to remove mean and unit variance. 
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Figure legends 

 

Figure 1.  Application of LAVENDER to a synthetic flow cytometry dataset. 

(A) LAVENDER procedures. (B) Different values of k (k = 30, 60, 90, 120) in kNN 

density estimation provide similar results. (C) The first LAVENDER axis is correlated 

with the second explanatory variable. (D) The third LAVENDER axis is correlated with 

the first explanatory variable. (E) The fifth LAVENDER axis is correlated with the third 

explanatory variable. (F) The percentage of variance explained by each LAVENDER axis. 

 

Figure 2.  Application of LAVENDER to the Nagahama flu dataset. 

(A)(B) Individual sample reconstruction for Cohort A, shown in 3D (A) or 2D (B). (C)(D) 

Individual sample reconstruction for Cohort B, shown in 3D (C) or 2D (D). The first three 

LAVENDER axes are shown as x, y, and z. (E)(F) The percentage of variance explained by 

each LAVENDER axis. E, Cohort A; F, Cohort B. 

 

Figure 3.  Correlation of the individuality axis with the plasma cell proportion in Cohort 

A. 

(A) The individuality axis is correlated with the plasma cell proportion. (B) The 

individuality axis is correlated between different days. (C) The plasma cell proportion is 

correlated between different days. (D) The individuality axis is not correlated with age or 

gender. (E) The plasma cell proportion is positively correlated with the neutrophil 

percentage. (F) The plasma cell proportion is negatively correlated with the lymphocyte 

percentage. 
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Figure 4.  Correlation of the individuality axis with the plasma cell proportion in Cohort 

B. 

(A) The individuality axis is correlated with the plasma cell proportion. (B) The 

individuality axis is correlated between different days. (C) The plasma cell proportion is 

correlated between different days. (D) The individuality axis is not correlated with age or 

gender. (E) The plasma cell proportion is positively correlated with the neutrophil 

percentage. (F) The plasma cell proportion is negatively correlated with the lymphocyte 

percentage. 

 

Figure 5.  Relation of the individuality axis to the neutrophil-to-lymphocyte ratio. 

(A)(B) Day 0 samples are divided into Groups I and II. A, Cohort A; B, Cohort B. (C)(D) 

Group I samples have larger neutrophil-to-lymphocyte ratios than Group II. C, Cohort A; 

D, Cohort B. (E) Gene Set Enrichment Analysis using Blood Transcription Modules of 

Group I vs. II in both cohorts. Normalized Enrichment Scores are shown as a heatmap. 

 

Figure 6.  Application of LAVENDER to a public mass cytometry dataset. 

(A)(B) Individual sample reconstruction for Cohort A, shown in 3D (A) or 2D (B). (C) The 

percentage of variance explained by each LAVENDER axis. (D) The first LAVENDER 

axis is correlated with the proportion of CD20+ CD22+ CD27+ “memory” B cells. (E) The 

second axis is correlated with the proportion of sIgM+ “immature” B cells. 

 

Supplementary Figure 1.  Individual variations are larger than technical variations. 

 

Supplementary Figure 2.  Correlation of antibody titers with vaccination history. 
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(A)(B) A/H1N1 titers on day 0 and day 90, shown as violin plots, exhibited no differences 

between Group I and II. A, Cohort A; B, Cohort B. (C) A/H1N1 titers on days 0 and 1 are 

correlated with the vaccination history based on the participants’ questionnaire. 1, 

vaccinated annually; 2, vaccinated, not annually; 3, never vaccinated. (D) Change in 

A/H1N1 titers from day 0 to 7 or from day 0 to 90, depending on the vaccination history. 

(E) Correlation of A/H1N1 titers between different days. 
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Figure 1 (cont’d)
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Figure 3
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Figure 3 (cont’d)
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Figure 4 (cont’d)
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Figure 5
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Figure 6
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Supplementary Figure 1

0.0 0.2 0.4 0.6 0.8

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

Distances between  

different samples

0.128 0.258 0.321

lower 5%

Distances between  

technical replicates 

(same-day, same- 

individual)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 18, 2019. ; https://doi.org/10.1101/673434doi: bioRxiv preprint 

https://doi.org/10.1101/673434


Supplementary Figure 2
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Supplementary Figure 2 (cont’d)
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