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Abstract: 

This paper presents both a weak and a strong law of large numbers for weakly 

dependent heterogeneous random variables. The laws presented for near-epoch 

dependent random variables allow for relaxation of the dependence conditions 

that are necessary in nonlinear least squares theory for dependent processes 

in order to ensure strong and weak consistency of the nonlinear least 

squares estimator. 

*) I thank dr. P. Spreij for his helpful comments. 
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1. Introduction 

Laws of large numbers for mixingale sequences are an essential tooi in the 

proof of consistency and asymptotic normality of many parametric and 

nonparametric estimators under data dependence. A mixingale sequence can be 

viewed upon as an asymptotic equivalent of a martingale difference sequence. 

In a recent paper, Andrews [1] extends the mixingale concept and establishes 

some (weak and Li) laws of large numbers (LLN's) for mixingales. Andrews' 

work extends the results of McLeish [6] who introduced the mixingale 

condition. In section 2 of this paper his conditions for convergence in Lx 

of a mixingale sequence will be relaxed by making use of an inequality of 

Azuma [2] for martingale differences. Recently, Hansen [5] proved some new 

strong LLN's for mixingales using Andrews' mixingale concept. Those results 

extend the results of McLeish. In section 3 of this paper the conditions of 

both McLeish and Hansen for a strong LLN to hold will be relaxed 

substantially for the important case of sample averages and bounded indices 

of magnitude of the mixingale sequence. The results obtained here are 

complementary to those obtained by Hansen and McLeish since our result will 

not be powerful in the case of slowly increasing indices of magnitude of the 

mixingale sequence, which is of limited interest in many contexts. In 

section 4 we apply our results to near-epoch dependent sequences. The 

results in this section allow for a substantial relaxation of the conditions 

for strong consistency of (non)linear least squares estimators in the 

dependent case as listed in Gallant and White [4]. 

2. A weak law of large numbers for mixingales 

Let (Ü,F,P) denote a probability space. Let {X,- : t>l} be a sequence 

of random variables on (ft,F,P). Let {F, : i = . . . , 0 , 1 , . . } be any 

nondecreasing sequence of sub er-fields of F. Often one will take 

Fi = <r(X1,...Xi) for i > l and F,= { 0 , f i } for i'<0. £(X,|F,) denotes the 

conditional expectation of Xt given Fj. Whenever E{Xi\Fj) is used we assume 

E\Xi\ to be finite. Let \\X\\p denote (£"|.X]P) . Our law of large numbers 

makes use of the following lemma of Azuma [2]: 
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Lemma 1 (Azuma). 

If {Xi,Fi} is a zero mean martingale difference sequence and 

\Xt\<B a.s. 

then for all e>0 

^(1 f/Xi\>e)<2exV(-e2/{2nB2)). 
t ' = 1 

In order to make this note almost self-contained, a proof of this result 

will be given in section 5. 

Andrews [1] defines a Lp-mixingale as follows: 

Definition 1. 

The sequence {A",-, F,} is called an Lp - mixingale if there exist nonnegative 

constants { c , : i > l } and {ip(m):m>0} such that ip(m)-*0 as rn->oo and for 

all i>0 and m>0, we have 

(a) \\E(Xi\Fi_m)\\p<ciTp(rn) 

(b) | |A- l-£'(A' i |F i+m)| | J ,<Ct^(m+l) 

Note that according to this definition Lp-mixingales are necessarily mean 

zero random variables. The laws of large numbers of Andrews [1] typically 

require 
n 

limsup limsup (l/n) Y ct ip(m) = 0 
« = 1 

for a weak Lx-law of large numbers to hold. The author points out that his 

law of large numbers does not require a rate of decay on the mixingale 

numbers ip(m) to be imposed. On the other hand, he does require 

limsupn {l/n)Yn_ q to be finite for a Lj-LLN to hold. Since the 

mixingale magnitude indices c,- can in many cases be assumed bounded, e.g. by 

sup,£'|A'i| as in Andrews [1]' theorem lb, this in many cases will be a 

reasonable assumption. It can however be shown that only a tradeoff 

condition between a rate of decay for the mixingale numbers and the rate of 

increase of the latter sum is required for a law of large numbers to hold: 
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Theorem 1. 

Suppose the sequence {X^F^} is a Lp-mixingale such that supt-iT|X,-|p<oo, 
1/2 -1/2 

for some p>\. If mn = o(n log(n) ) is a sequence such that 

U m ( l / n ) £ C i
P v ( m n ) p = 0 

i = i 

Then 

i = l »=1 

£" | ( l / r i )£x , | p -0 as n + oo {and therefore |(l/n) £ X j | - > 0 in prob.) 
i = l 

Proof: See section 5. 

3. A strong law of large numbers for mixingale sequences 

Strong laws of large numbers for mixingales are elaborated upon by 

McLeish [6] and Hansen [5]. Their approach is proving 

a.s. convergence of 
n 

E * 
i = l 

under some conditions, and they obtain an almost sure law by imposing those 
conditions on Xrfi and conclude that 

n 

t = i 
converges almost surely to some random variable. The almost sure law now 

follows by the Kronecker lemma, i.e. if a^ is a sequence of positive real 

numbers and a,--»oo if i->oo, 

jrX,-/a,-<oo =* (l/an) ^ Xt -» 0. 
j = l i = l 

See for example Chung [3]. This approach typically results in conditions on 

the c,- sequence of the type 
>2 

<00 . I (Ci/if 
« = 1 

As we argued before, in many important cases ĉ  can be assumed to be bounded 

over all i by some constant C. The above condition on the other hand would 

for example allow for ct- sequences of order i , for some cv>0, leaving 

some room for improvement. Our approach only works for sample averages, 

which might also be a reason why we succeeded in improving the conditions 

that have to be imposed. McLeish [6] assumes the above condition on the c,-

and requires the ip(m) sequence to be of size -1/2. A sequence tp(m) is said 
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to be of size -fi, /?>0, if ip(m) = 0(m~^~e) for some e>0. McLeish [6] restricts 

attention to L2-mixingales. However, if we wish to restrict attention to the 

case of indices of magnitude that are bounded or increasing very slowly we 

can improve upon those results by means of the corollaries to the following 

theorem: 

Theorem 2. 

Suppose the sequence {X,-,F,} is a uniformly Lp-integrable Lp-mixingale for 

some p>l. Suppose we can find nonnegative monotonously increasing sequences 

Bi and mt- such that the following conditions hold: 
oo 

-1 D 1-p 
" <00 (A) ir1 B^ 

00 

(B) £ q «"V(n»i) < oo 
« = i 

*® c ~\ 

(C) for all <5>0, £ [mn] exp -no/([mn] Bn) <oo 
n= 1 *- -* 

Then 

(l/n) Y Xj -> 0 almost surely. 

Remark: Note the refinement of the strong LLN of Hansen [5] that has taken 

place. The following corollary is now easily established: 

Corollary 1: 

Suppose the sequence {X^Fi} is a Lp-mixingale such that supj£' |^ |p<oo, 

for some p>l. Suppose the indices of magnitude et of the mixingale sequence 

are uniformly bounded. Suppose ip(m) is of order 0(1/log (ra)) as m ->• oo, 

for some cv>0. Then 
n 

(l/n) T̂ Xi -*• 0 almost surely. 
« = i 

Pr oo f: See section 5. 

The following simple corollary to theorem 2 now shows that sample averages 

of mixingale sequences converge for sequences ^(m) of arbitrary size if the 

magnitude indices c,- are uniformly bounded: 
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Coroilary 2: 

Under the same conditions as coroilary 1 except for the condition on the 
n 

ip{m) sequence, (l/n)YXi -» O almost surely if ij>(m) converges to zero at a 

polynomial rate, i.e. ij>(m) = 0(m ) for some oc<0. 

4. Near epoch dependence 

In the theory of consistency and asymptotic normality of (non)parametric 

estimators for dependent samples use is made of the near epoch dependence 

concept. The introduction of the concept of near epoch dependence is 

motivated by two problems that occur when merely mixing sequences are 

considered. Firstly, as is well-known, functions of mixing processes are 

again mixing, but this is not necessarily the case if a function of the 

entire history of the mixing process is considered. Further, even simple 

AR(1) processes can fail to be either <p- or a-mixing. Gallant and White [4] 

define the near epoch dependence concept as follows: 

Definition 2. 

Let {Xiiü-*R} be a sequence of random variables with EX,<oo, i = l , . . . . 

Then { Aj} is near epoch dependent on {Vt} of size -a if and only if 

vm = suPi \\Xi-E(Xi\Vi_m,...,Vi+m)\\2 

is of size -a. 

An inequality can now be used to show that near epoch dependent random 

variables on some mixing sequence are mixingales. An application of theorem 

2 establishes the following theorem: 

Theorem 3. 

Suppose Xi is near epoch dependent on {F,}, where {Vt} is mixing with 

coefficients o^ in the strong mixing case and coefficients <pm in the uniform 

mixing case. Suppose both the mixing nvmbers o ^ or <pm and the NED numbers vm 

decrease at a polynomial rate. Suppose supj-EIX,! <oo for some <5>0. Then 
n 

(l/n)£*,--»0 a.s. 

Proof: See section 5. 
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Gallant and White [4], in order to establish that near epoch dependent 

sequences are mixingales of size -1/2, need to impose sizes on the mixing 

coefficients and on the near epoch dependence numbers um. Our theorem allows 

us to simply assume a polynomial decay of both sequences. A theorem like 

Gallant and White's theorem 3.18 involving functions of near epoch dependent 

processes is very complicated since taking functions of near epoch dependent 

processes in general does not keep near epoch dependence numbers in tact. In 

order to establish that a particular function of the near epoch dependent 

process is of size -1/2 (and, as a consequence, satisfies a strong LLN) a 

lot of conditions are imposed. Our result allows the observation that such 

functions of near epoch dependent sequences keep the mixingale numbers at a 

polynomial rate of decay, and as a consequence, a strong law of large 

numbers will hold. The price that has to be paid for this result is a slight 

strengthening of the moment conditions on the X,- sequence. This observation 

allows for relaxation of all conditions involving strong consistency 

throughout the Gallant and White [4] book and, since no provisions for near 

epoch dependence numbers need to be made once they have been assumed to 

decay at polynomial rate, could lead to considerable simplification of the 

theory of nonlinear least squares estimation for the case of dependent 

datagenerating processes. 

5. Proofs 

This section contains the proofs of the various theorems and lemma's. We 

will start with a proof of Azuma's inequality for martingale difference 

sequences. The proof is nearly identical to the proof of Hoeffding's 

inequality given in Pollard [7]. 

Proof of lemma 1: 

Consider E (exp(«Xi)|Fi_1). By convexity, 

exp{tXi)<exp{-tB){B-Xi)/(2B) + exp(tB)(Xi + B)/(2B) 

so 

E(exp(tXi)\Fi_1)^exp{-tB)/2 + exp(tB)/2 

since 

E(Xi\Fi.1) = Q. 

7 



Analogously to [7, Appendix B], it can now be shown that 

log[E(exp(«X,)|F,-.1)j <(l/2)t2B2. 

We will use the successive conditioning strategy that is employed also in 

proofs of central limit theorems for martingale differences (e. g. 

Pollard[7]). Then it easily follows that 
n 

E exp(* £ Xi) < exp(nf2B2/2). 

Since, by Chebishev,s inequality, for all f>0, 
r n -\ n 

P\ £ * , > £ <exp(-eï) E expltJ^XjKexpi-et+nfEfffl 
w = i -* «=i 

2 

the resxdt now follows by setting t=*e/nB and applying the same result to 

i-Xi). • 

Azuma's inequality is central to the proof of the following weak law of 

large numbers. 

Proof of theorem 1: 

We will demonstrate the proof for the case that Xf is Fi-measurable, which 

implies Xi = E(Xi\Fi+m) a.s. .The proof of the theorem in its f uil generality 

does not pose any additional problems, but does mess up the proof 

substantially. 

Note that, for all B>0 and all integer - valued m>0, 

(l/n) ï/Xi = (l/n)ïiE(Xi\Fi.m) + (l/n)ÏXiI(\Xi\ < S ) - £ W ( | A 7 I <B)|Fi_m) 
t = i « = i « = i 

+ (l/n)lXiI(\Xi\ >B)-(l/n)liE(XiIi\Xi\ >B)\Fi_m) 
i = l »' = 1 

=r1+r2+r3+r4 (5.1) 

We will take m = m(n) = mn. By uniform integrability of \Xf\p we can piek B so 

large that 

suPi E\Xi\pI(\Xi\>B)<e. 

In that case E\Tz\
p<e and £'|T'4|P<e. Clearly by the mixingale definition 

EWMmt^nnf-
t = i 
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We have by Azuma's inequality, for all <5>0 

n 
P 

»' = ! 
\(l/n)f/XiI(\Xi\<B)-E(XiI{\Xi\<B)\FHmn])\ > 6 

f m n ] - l 

< £ P[ \(mlE(XiWi\ <B)\FH)-E(XiI(\Xi\ <5)|F i . i .1)| >«5/[mn] ] 

i-o 

[ • • n l - l 

< £ exp( -2n6 2 / ( [m n ] 2 (2B) 2 ) ) < [mn] exp(-2n62 / ([rr l n]2(2B)2)) 

i»=o 

l / 2 —1/2 

i / m n = o(n (log(n)) ). Because T2 is bounded (by 2B), it also converges 

to zero in Lp. So if we are able to find some sequence mn that is 

o(n log(n)~ ) for which 
n 

( l /n ) y c\ ip(mn)
p-> 0 as n •* 00 

ïfte LLN for the sample average will hold since e was arbitrary. • 

The following proof shows that Azuma's inequality can be useful also in 

proving a strong law of large numbers: 

Proof of theorem 2: 

Again, we will demonstrate the proof for the case that Xj is Fi-measurable. 

Once again, for all B>0 and integer-valued m>0, consider equation (5.1). For 

proving a strong LLN we will make both B and m depend on i. In order to 

obtain the result we prove the following three lemma's: 

Lemma 5.1: If 

^B)-p<oo 
t = i 

then T3 -*• 0 and T4 -*• 0 almost surely. 

Proof: 
n 

Let Sn = Y, xiH\xi\ZBi)/i. Then, for any 6>0, 
i = 1 
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00 

P ( m a x \ S M j - S n \ > S ) < ( l / S ) £ £1X,|/(|X,| > W 
» = n + l 

< £ (l/*<5) EIX,^ B\'P -* 0 as n+oo 
i » n + l 

co 

if T i" fi,"p < oo toWcft is imposed. So we conclude by the Cauchy critenon that 
i = 1 

Sn converges almost surely, so by the Kronecker lemma, T3 •* O almost surely. 

The same argument holds for T4. • 

Lemma 5.2: If 

£cjfV(»7lj)<00 
oo 

- 1 

t = l 

then Ti -*• O almost surely. 

Proof: Let S^= £ £ ( ^ | F ^ ) / i . TAen 
i = l 

P ( m a x i s m | 5 ; + i - 5 ; | ><5) < (1/6) £ f | J F ( ^ | F ^ ) | / i 
« = n + l 

< (1/6) £ c,^(ro,)/i -* O 
t = n + l 

oo 

as n->oo i/ V q i~ V(mi) converges, which is imposed. So S^ converges almost 

surely to some random variable, by the Cauchy criterion. So Tx -*• O almost 

surely by the Kronecker lemma. • 

Lemma 5.3. Let m,- and B,- 6e sfn'ct/y positive monotonously increasing 

sequences such that, for all 6>0, 
00 f 

£ [mn] exp -n62/([™n]2#n) 
n = l 

< 0 0 

Suppose m(l) = l. Then T2 -*• O almost surely. 

Proof: In this proof we use Azuma's lemma, together with the Borel-Cantelli 

lemma. Let 

Note that 

p\ |(l/n) IXJdXil KBJ-EiXiHlXil <Bt)\FHm])]>6 
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n t»»t ] 

P[\(W £ YE{X^Xi^<Bi)^i*l)-E{XiI{^<B^Fi-^>6 

[ m n ] n 

ld/») £ £ f(^/(|Xi|<5i)|Fi_i)-£'(^/(|Xi|<ö,)|Fl-.i.1)|>6 
j = l » = g ( j ) 

[ m n ] n 

V pf |(l/n) £ £(*«/( |*«| <Bi)|F,-.J)-£(X</(|X<i <fii)|Fi.i.1)| ><5/[ro„] 1 < 

[ m n l 

V Pf |(l/n) l E(XiI(\Xi\<Bi)\FH)-E(XiI(\Xi\<Bi)\Fi.j_1)\>6/2[mn] + 

|(l/n) £ £ W ( l * i l <5 i) |F,-. i)-£(X i7(|X i | <B i)|P i_ i_1)| ><5/2[mn] 

tmnl 

[mn]exp(-n62/(32[mn]25^)) + £ exp(-rï
2<52/(32g(i) [mn]

2B^ ) < 

0([mn]exp(-n<52/(32[mn]2B2)) 

T/w's implies that, by virtue of the Borel - cantelli lemma, T2 -> O almost 

surely. 

Corollary 1 noiü follows by taking mi = 0(i ) , for some 0 < e < l / 2 and setting 

Bi~p = 0(l/log (i)). Without loss of generality we can assume m,- and Bj 

satisfy the restrictions of lemma 5.3. If the sequences are taken in the way 

described above, the condition of lemma 5.3 is satisfied too. • 

Finally, we will prove our result regarding near epoch dependent sequences. 

Proof of theorem 3: 

Andrews(1988) shows that near epoch dependent sequences are mixingales with 

coefficients ci = 2+||Xl||2+« and ^(m) = i/([m/2]) + 6a([m/2])1 /2 -1 / (2+6) . Noting 

that et is uniformly bounded by construction and that ip(m) decreases 

polynomially if both v and <x do, the theorem follows by an application of 

corollary 2 to theorem 2. • 
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