
Layer Depth Denoising and Completion for Structured-Light RGB-D Cameras

Ju Shen Sen-ching S. Cheung

Center for Visualization and Virtual Environments, University of Kentucky

{jushen.tom, sen-ching.cheung}@uky.edu

Abstract

The recent popularity of structured-light depth sensors

has enabled many new applications from gesture-based us-

er interface to 3D reconstructions. The quality of the depth

measurements of these systems, however, is far from perfect.

Some depth values can have significant errors, while others

can be missing altogether. The uncertainty in depth mea-

surements among these sensors can significantly degrade

the performance of any subsequent vision processing. In

this paper, we propose a novel probabilistic model to cap-

ture various types of uncertainties in the depth measure-

ment process among structured-light systems. The key to

our model is the use of depth layers to account for the dif-

ferences between foreground objects and background scene,

the missing depth value phenomenon, and the correlation

between color and depth channels. The depth layer label-

ing is solved as a maximum a-posteriori estimation prob-

lem, and a Markov Random Field attuned to the uncertain-

ty in measurements is used to spatially smooth the labeling

process. Using the depth-layer labels, we propose a depth

correction and completion algorithm that outperforms oth-

er techniques in the literature.

1. Introduction

A typical structured-light stereo RGB-D system such as

Microsoft Kinect consists of a projector and two camer-

a sensors. Special light patterns, typically in the infra-red

(IR) spectrum, are emitted by the projector and captured

by the IR CMOS camera sensor. Depth information of the

sensing environment can then be inferred based on how the

light patterns are distorted in the IR images [5]. The RGB

camera captures the color information and can be aligned

with the IR camera by estimating the extrinsic parameters

between them.

Depth images obtained by such an imaging system have

two major problems: missing and distorted depth values.

Figure 1 (row 1) shows a pair of typical RGB and depth

images obtained by Kinect. All the black regions in the

depth image contain no depth measurements. Some of these

Figure 1. Depth Denoising and Completion. 1st column: input

depth image; completed depth by Camplani et al. [2] and our

method. 2nd column: input RGB image and two corresponding

reconstructed virtual views

regions occur on object surface, such as the holes on the

front penguin’s belly. This is caused by the short distance

between the object and the depth camera. Missing regions

also present along the object boundaries. This represents a

major source of depth error caused by the disparity between

the projector and the sensor. Sometimes, they can be orders

of magnitude different from their true values.

Missing and erroneous depth values can also be caused

by absorption, poor reflection or even shadow reflection of
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the light patterns. Objects with darker colors, specular sur-

faces, or fine-grained surfaces like human hair are prime

candidates for poor depth measurements [3]. Surface orien-

tation also plays a role in depth measurements – as the sur-

face normal deviates from the principal axis of the IR cam-

era, the accuracy of the depth measurement declines and

becomes unreliable near depth discontinuities [10]. Ran-

dom noise in depth images may also be a result of inade-

quate calibration, sensor noise, and round-off error during

normalization [8]. Generic image denoising and complete

algorithms fail to take into account the unique problems of

structured-light RGB-D systems.

Our technical contribution is the use of depth “layer”

in steering the completion process to produce well-defined

depth edges. We describe a novel stochastic framework that

separates the depth image into multiple layers, and com-

bines multiple RGB-D system noise models to robustly de-

termine the depth layer label. The goal is to denoise and

complete missing values on the depth image that improve

the quality for any subsequent RGB-D applications.

2. Related Work

Most of the works in depth image enhance-

ment can be grouped into two categories: super-

resolution [7] [11] [17] [4] and image in-painting [16]

[15]. A common theme is to rely on information obtained

from the companion color images to predict missing

depth information. The use of color information for depth

enhancement is based on the assumption that certain

correlation exists between depth continuality and color

image consistency [9]. While providing useful cue for

interpolation, this assumption does not always hold as color

edges and depth edges do not necessarily coincide with

each other. In [7], Garro et al. presented an interpolation

scheme for depth super-resolution. A high resolution RGB

camera was used to guide the up-sampling process on the

depth image. To interpolate the missing depth pixel, the

scheme used neighboring depth pixels mapped into the

same color segment as the target pixel. This method relied

strongly on the extrinsic alignment between the color and

depth image. A similar segmentation based method can

also be found in [11] where a non-local means filtering

based approach was used to regularize depth maps and

maintain fine detail and structure. In [16], Wang et al.

proposed a stereoscopic in-painting algorithm to jointly

complete missing texture and depth by using two pairs of

RGB and depth cameras. Regions occluded by foreground

were completed by minimizing an energy function. The

system required an additional pair of color and depth

cameras to achieve the goal.

Various probabilistic frameworks are often used in mod-

eling depth measurements, fusing depth and color informa-

tion, and predicting missing values. In [4], Diebel et al.

demonstrated the use of Markov Random Field in the super-

resolution of depth data using high-resolution color data.

However, their work provided little insight in modeling the

sources of error in the depth sensor. Similarly, in [17], a

low resolution depth image was iteratively refined through

the use of a high resolution color image. Bilateral filter was

applied to a cost function based on depth probabilities. A

final high resolution image was produced by a winner-takes-

all approach on the cost function. These approaches work

well for the super-resolution problem where missing depth

pixels are uniformly distributed. Depth images obtained by

structured-light sensors often have large contiguous region-

s of missing depth measurements which cannot be handled

by such approaches. In [14], the depth map was refined

through foreground/background separation. Though the ap-

proach could well preserve foreground edges, it may fail

when the captured scene has complex depth variation.

3. Problem Definition

Missing depth can be categorized into two types. The

first type is the randomly distributed “small holes” on ob-

jects’ surfaces. These missing values can usually be in-

ferred by the available depth pixels in the neighboring re-

gions. In addition, the corresponding RGB information can

be used to steer the depth completion by using techniques

such as Joint Bilateral Filter [9].

The second type is the large and contiguous missing

depth patches that often present along the boundary be-

tween close (foreground) and far objects (background). An

example can be found in Figure 2(a), where there are many

missing depth (black) regions around the hand. This is

caused by the disparity between the IR projector and the

IR camera sensor. Part of background regions are visible to

the IR camera but not to the projector and receive no struc-

tured light patterns. Thus, the depth values in those regions

cannot be measured.

Missing and incorrect depth values due to disparity can-

not be easily and correctly inferred by many existing works

including Joint Bilateral Filter based schemes [9] [2] and

probabilistic based schemes [4]. Figure 2 explains why

these methods yield unsatisfactory results. The raw depth

image shown in Figure 2(a) clearly indicates two distinc-

t depth layers: foreground in dark gray and background in

light gray. No depth measurements are obtained in the black

region. In Figure 2(b), we overlay semitransparent green

(foreground) and red (background) layers over the RGB im-

age as an indicator of its corresponding depth information.

There are a number of background pixels wrongly labeled

as foreground along the boundaries of the hand (annotat-

ed as “A”). The missing depth patches (annotated as “B”)

are often adjacent to “A”. Most existing spatial approaches

complete these missing values by using the erroneous depth

in the neighboring areas. Using the color channel provides
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(a) (b) (c)

Figure 2. (a) Depth Image; (b)Labeled Image by depth informa-

tion; (c) Depth Completion by Camplani et al. [2]. The alignment

between the depth and color images is based on the calibration

result from Mircrosft Kinect diver

little to rectify this problem because the RGB values from

“A” are very similar to the ones from “B”, both of which

are from the background color. The depth completion result

using a joint color-depth bilateral [2] shown in Figure 2(c)

is indeed quite poor.

4. Proposed Method

We assume that the dynamic 3D environment can be sep-

arated into a static background and a number of dynamic

foreground objects. This is a configuration typically seen in

a home or office environment with a small number of indi-

viduals moving in front of the device. The RGB and depth

cameras are assumed to be extrinsically aligned and tempo-

rally synchronized.

After an initial step of offline training on background-

only frames, our online algorithm consists of two main

phases: layer labeling followed by depth denoising and

completion. In the first phase, each pixel of the incom-

ing frame is labeled by different layers via a probabilistic

framework that incorporates a data measurement model and

a smoothing neighborhood model based on available obser-

vations. Maximum A Posteriori (MAP) estimation is used

in the labeling to prevent blurring along depth discontinu-

ities.

In the second phase, the labels estimated in the first phase

are used to steer the removal of outlier and the completion

of missing depth values, from either the background mod-

el or from neighboring depth values with the same labels.

The robust labeling allows us to preserve the shape of ob-

ject boundary and prevent noise propagation across objects

with significant depth differences.

4.1. Layer-driven Stochastic Models of Depth Mea-
surements

The probabilistic graphical model that describes the

multi-layered RGB-D measurement process is shown in

Figure 3. Let G be the support of the 2D color and depth

images. At each pixel location s ∈ G, Xs denotes the

latent random integer variable indicating which layer the

pixel belongs to. Xs can assume any value in the set

{−n′,−n′ + 1, . . . ,−1} ∪ {1, 2, . . . , n}. Negative num-

bers are layers from the static background while positive

numbers refer to layers in the foreground. The larger the

layer number is, the closer it is to the camera. The num-

ber of background layers n′ and the number of foreground

layers n are determined based on the observed data and are

the same for all pixels. The approaches to estimate n and n′

will be described in Section 4.1.1.

Figure 3. RGB-D model: the smoothing term on top specifies the

constraints between neighboring labels while the data term below

describes the measurement process. Darken nodes are actual mea-

surements, white nodes are hidden variables, and square nodes are

factors.

Spatially, a layer pixel is connected to its four closes-

t neighbors, generically referred to as Xt. All the labels

over the entire image thus form a Markov Random Field

(MRF) and the spatial relationship between adjacent labels

is governed by an edge factor ψ(Xs, Xt, fst), where fst is

the measured similarity between the two pixels. Each lay-

er label X also has its evidence potential function φ(Xs)
based on the measurement Bayesian Network (BN) shown

in the lower half of Figure 3. As all the measurements are

made at the same pixel, the subscript s is omitted and φ(X)
is defined as follows:

φ(X) � P (X) · P (Ic|X) · P (M |X) · P (Id|M, θ,X) (1)

where

P (Id|M, θ,X) =
∫

D

P (D|X)

∫

Zd

P (Id|Zd,M)P (Zd|D, θ) (2)

Ic represents the observed color values. D represents the

true but unobserved depth values. D is corrupted by an ad-

ditive Gaussian noise which produces a noisy measurement
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Zd. The noise variance is determined by the closeness mea-

surement θ to the nearest edge. Due to the missing depth

problem, Zd may not be directly observable. We thus in-

troduce an observable depth indicator random variable M
which is 1 if the depth value is observed and 0 otherwise.

Combining these two random variables results in the ob-

servable depth value Id = MZd. Using this probabilistic

model, layer labeling can be formulated as a Maximum a

posteriori or MAP problem:

XMAP
G � arg maxxG

∑

s

log φ(xs)+
∑

(s,t)∈G

logψ(xs, xt, fst)

(3)

Our choice of parametrization allows ψ(xs, xt) and φ(xs)
to be computed. While the complexity of the exact solution

to the MAP problem is exponential in the image size, which

is known to be NP hard. To improve the computation speed,

various approximation algorithms have been proposed for a

global optimization, such as Graph Cuts, or Loopy belief

propagation [6]. In this paper, we used max-product based

loopy belief propagation to approximate the inference. One

major reason of choosing it than graph cuts is that belief

propagation is more efficient in processing video sequence:

the output of previous frame can be used as the initial val-

ue of messages for current frame, which makes the conver-

gence speed improved.

4.1.1 Data Term

In building the data term for the graphical model, the

four layer distributions P (X), P (M |X), P (D|X), and

P (Ic|X) are estimated based on both offline training da-

ta and online data. The depth distribution P (D,X) =
P (X)P (D|X) is modeled as a mixture of Gaussian

(MOG) model while the color distribution P (Ic, X) =
P (X)P (Ic|X) is modeled as multiple color histogram-

s on the quantized HSV space, one for each layer.

The observable depth indicator distribution P (M,X) =
P (X)P (M |X) is based a simple Bernoulli distribution for

each layer. In fact, the parameter estimation for the depth

indicator is a simpler version of the color distribution. As

such, our discussion will focus on the depth and color dis-

tributions. The parameter estimation process is summarized

in Figure 4.

During the offline training phase, we estimate the pa-

rameters for the negative (background) depth layers based

on a set of training RGB-D frames of the static background.

There are two phases of the estimation: global estimation

and local adaptation. During the global estimation, al-

l the pixels with both color and depth measurements will

be aggregated to estimate a single pair of P (D,X) and

P (Ic, X) using the Expectation-Maximization (EM) ap-

proach. P (D,X) is initialized by K-means and P (Ic, X)
is initialized as an uniform distribution. It is important to

Figure 4. Parameter estimation for depth and color layer distribu-

tions

note that the concept of layers is based only on depth but

not on color. As such, the EM process is primarily driv-

en by the depth data in the sense that the E-step only esti-

mates the layer posterior P (X|D) for the depth but not the

color. During the M-step, we use the depth data to update

the estimates for the layer prior P (X) and the depth layer

conditional P (D|X), only use the color data to update the

color layer conditional P (Ic|X) using the posterior prob-

ability P (X|D) of the co-located depth pixel. As a result,

two pixels with the same color value can have different con-

tributions to different layers. Different number of layers are

tested and the optimal number n′ is determined by using

the Bayesian Information Criterion (BIC) on the depth da-

ta [1]. The example in Figure 4 shows this first step to have

two separate background layers and obtain the global color

and depth models. In the second phase, the global distribu-

tions are adapted to each individual pixel by using only the

temporal data at that pixel location. Sequential exponential

weighing scheme is used for the adaption. For example, the

local mean for layer Xs = i at location s is updated by a

new depth value dnew as follows:

µ
(t+1)
s,i := λP (t)(Xs = i|Ds = dnew) · dnew

+
(

1− λP (t)(Xs = i|Ds = dnew)
)

· µ
(t)
s,i (4)

t represents the iteration step and λ controls the rate of adap-

tation which is empirically set to 0.3. All the other param-

eters are updated in a similar fashion. Similar to the global

distributions, the two layer conditional probabilities are up-

dated based on the corresponding color or depth data. The

layer prior is updated using the depth data if available, or the

color data if the depth data is missing. After the adaptation,

the parameters can better describe the characteristics of the

local pixel – Figure 4 illustrates this idea where the local
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depth distribution Ps(D) and the color posterior Ps(X|Ic)
clearly indicate that this pixel is more likely to belong to

layer -1.

The foreground layer distributions are estimated online.

To deliver a real-time response and cope with fast moving

objects, the foreground distributions are estimated for every

frame. As no temporal data is maintained, we only estimate

global distributions using an approach identical to that of

the background global distribution. The training data are

obtained based on only those pixels with valid depth mea-

surements and very low background posterior probability,

i.e. maxi=1,...,n′ Ps(Xs = −i|Ds) < ǫ for a small fixed ǫ.
To obtain the full range of P (X), P (D|X), and P (Ic|X),
we also need prior probabilities for foreground and back-

ground. We simply set them to be equally likely for our ex-

periments though better performance may be possible with

more foreground training data. In Figure 4, the foreground

components of the layer distributions are in red color.

Next, the noisy depth measurement Zd is modeled based

on an additive Gaussian model:

Zd � D +N, with N ∼ N (0, σ2
θ) and N ⊥ D. (5)

The noise standard deviation σθ reflects the uncertainty

in the depth measurement. As argued in Section 3, erro-

neous depth measurements occur predominantly near object

boundaries. To model this effect, we apply an edge detector

on the depth map and use the spatial distance θ to the closest

depth edge as a reliability measure. The noise variance σθ

is modeled as a deterministic logistic function given below:

σθ :=
a

1 + e−(bθ−c)
(6)

a and b are constant scaling parameters. c/b is a distance

threshold beyond which the depth value is relatively noise

free. This simple model is easy to compute, though a more

sophisticated one incorporating surface normal, texture, and

color can be used in a similar fashion.

Finally, we present a simple approach to evaluate the in-

tegrals in Equation 2. Note that the actual depth measure-

ment Id = MZd implies that P (Id = id|Zd = z,M =
m) = δmid(z), the dirac delta function with the only non-

zero value at z = mid. Substituting this into (2) results in

the following simplification:

P (Id = id|M = m, θ,X = x)

=

∫

e

P (D = e|X = x)P (Zd = mid|D = e, θ) de

= P (Zd = mid|θ,X = x) (7)

Given X = x, Zd and D are multivariate Gaussian with the

following distribution:

[

Zd

D

]∣

∣

∣

∣

X = x ∼ N

([

µx

µx

]

,

[

σ2
x + σ2

θ σ2
x

σ2
x σ2

x

])

(8)

Thus, Zd|X = x ∼ N (µx, σ
2
x + σ2

θ) and (7) can be

numerically evaluated.

4.1.2 Smoothing Term

For the spatial MRF, the edge potential ψ(Xs, Xt) is de-

fined based on the similarity in color and depth between the

neighboring pixels:

ψ(Xs, Xt, fst) �

{

fst for Xs = Xt,
1

n+n′
[1− fst] otherwise

(9)

The similarity strength fst is a feature based on how close

the color and depth of the neighboring pixels are. It is mod-

eled using the following equation:

fst = max{α exp(−Cst)+(1−α) exp(−Dst), nf} (10)

The color similarity ratio Cst and the depth similarity ratio

Dst are defined in a similar fashion [13]:

Cst =
‖ Ic(s)− Ic(t) ‖

2

kc
〈

‖ Ic(s)− Ic(t̃) ‖2
〉 (11)

Dst =
|Id(s)− Id(t)|

2

kd
〈

|Id(s)− Id(t̃)|2
〉 (12)

〈·〉 denotes the average operator. t̃ represents any one of

the eight neighboring pixels of s (including pixel t). kc and

kd are normalization constants so that the two terms are of

the same range. nf is the minimum similarity to prevent

the potential function from becoming zero. If either depth

measurement is not present, nf will be used.

The parameter α ∈ [0, 1] is a trade-off between depth

and color information. If the depth measurements are reli-

able, most of the weight should be assigned to depth values

as they are more reliable for foreground/background label-

ing; if the depth measurements are unreliable, they should

not be used at all in computing the edge potential. Simi-

lar to the approach used in Section 4.1.1, α is defined as

the logistic function of the distances θs and θt of the two

neighboring pixels to the closest edge:

α � f
(

θs+θt
2

)

with f(θ) � 1
1+e−(bθ−c) (13)

4.2. Depth Image Completion

After assigning each pixel with a layer label, we need to

identify erroneous depth measurements and complete miss-

ing depth values. The erroneous depth values are essentially

outliers that are significantly different from other depth val-

ues in the neighborhood. However, as most measurement

errors occur around object boundaries, it is imperative not

to mistake true depth discontinuities as wrong depth values.

The layer labels allow us to separate pixels that are likely to

have come from objects at completely different depths. To
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Component Time (seconds)

Data Term 0.115

Smoothing Term 0.032

EM Iteration 0.095

LBP Iteration 0.641

Table 1. Time Performance Evaluation

determine if a depth pixel is an outlier, we robustly estimate

the depth distribution in the neighborhood around the pix-

el via a RANSAC-like procedure. First, we only consider

depth values in the neighborhood that share the same label

as the target pixel. Then, multiple small sets of random sam-

ple pixels are drawn and a Gaussian distribution is estimat-

ed for each set. If only a small fraction of the neighborhood

can be fit within two standard deviations from the mean of

a sample distribution, this distribution is likely to contain

outlier samples and is thus discarded. Among those that sur-

vive the robustness test, the one with the smallest variance

is used and the target depth pixel is declared an outlier if it is

beyond two standard deviations from the mean. The outlier

depth pixel will join the rest of the missing depth pixels and

will be completing using a joint color-depth bilateral filter-

ing scheme similar to that in [9]. The only difference is that

we only consider the contributions from neighboring depth

pixels that have the same layer label as the center pixel.

5. Experimental Results

We use a Microsoft Kinect (model LPF-00004) with the

PrimseSense driver [12] to capture depth and RGB images

at a resolution of 640 × 480. The proposed algorithm is

implemented in C++ with the OpenCV library. The ex-

periment is conducted on a computer with the following

hardware settings: Intel Core(TM) i7-2820QM CPU at 2.30

GHz and 8.0Gb of RAM. For the static background training,

we captured 100 images for each scene to obtain the back-

ground color and depth statistics. The speed performance

for each component of our system is shown in table 1.

Figure 5 shows a simple example with one foreground

and one background layer. We can see that the background

wall is clearly visible between the foreground leaves and

the rapid spatial changes of depth layers lead to significant

measurement error shown in the original depth image in the

top right. Our algorithm correctly identifies the number of

layers and produces an accurate segmentation mask in the

bottom left. Guided by this segmentation mask, our algo-

rithm corrects and completes the depth values in the bottom

right.

Figure 6 presents a more complex example with two

foreground and two background layers. The two foreground

layers are the head model (layer 2) as well as the books and

the ball (layer 1). The two background layers are the white

board and the table (layer -1) as well as the rest of the re-

Figure 5. Scene with Two Layers: input RGB and depth images

(top); layer labeling result and completed depth steered by layers

(bottom).

gion (layer -2). Notice that each layer can have objects of

varying depths. The curves and straight lines from different

objects are well preserved in the output result shown in the

bottom right.

Figure 6. Scene with Multiple Foreground and Background Lay-

ers: input RGB and depth images (top); layer labeling result and

completed depth steered by layers (bottom).

We have also compared our scheme with other works.

In particular, we have chosen [2] which represents one of

the most recent efforts in using joint color-depth bilateral

filtering for depth completion, and [4] which uses a simi-

lar MRF as ours in providing spatial smoothing. Figure 7

presents a side-by-side comparison between these methods

and ours. We have selected two sequences for comparison.

Except for the last row, the original data is shown in the first

column, results from [2] in second, [4] in third, and ours in
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the last column. Two scenes are used in the experiments.

The depth maps of the two scenes are shown in the first and

third rows. To highlight the differences in depth completion,

we generate a set of arbitrary views based on the produced

depth image and the RGB image, which are presented in the

second and fourth rows. In the last row, we zoom in on the

rendered views and add pre-captured static background to

fill the occluded regions.

The results from [2] are shown in the second column. As

shown in the depth maps, this approach enlarges the fore-

ground shape by attaching unrelated pixels around objects’

boundaries. The wrongly assigned depth values move some

of the background pixels to the foreground or vice versa.

This error is clearly noticeable in the rendered virtual views

– in the second row, a significant number of wall pixels

present around the boundaries of the person’s hair and ar-

m. In the fourth row, the contours of the fingers are poorly

inferred. Small gaps between fingers are naively wiped out

due to erroneous color similarity or depth. Results from [4]

in the third column have better contour than [2]. Howev-

er, the MRF blurs the boundaries between foreground and

background by generating intermediate depth values. From

the virtual views, these intermediate depth values can be

seen spreading across the space between the foreground and

background. In contrast with these two schemes, our pro-

posed method produces superior results. The depth comple-

tion steered by layers can better preserve the shape of object

boundary and prevent noise propagation across objects with

significant depth differences.

6. Conclusions

In this paper, we have proposed a novel depth denoising

and completion scheme by combining color-depth correla-

tion, background modeling, spatial smoothness, and mea-

surement error models pertinent to structured-light system-

s. A probabilistic graphical model is used to fuse all these

different factors together with the key latent variable being

the depth layer at each pixel. The depth layer labeling is

formulated as a MAP problem and a MRF attuned to the

uncertainty in depth measurements is used to spatially s-

mooth the labeling process. Driven by the obtained depth

layer labels, depth noise is removed and depth interpola-

tion is performed using a bilateral filter. There are some

weaknesses to our proposed design. For example, addition-

al depth features such as surface normal and texture may

provide a more accurate uncertainty model in depth mea-

surements. We are currently investigating more computa-

tionally efficient approaches for depth layer labeling, and

extending our model to support multiple Kinects which can

provide more complete 3D scanning but may introduce new

errors due to interference.
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Figure 7. Comparison with other schemes. From left to right: input images together with our layer labeling, results from Camplani et al.

[2], results from Diebel. et al. [4], and our results.
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