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Several topological indices- numerical descriptors encoding topological attributes of a molecular graph have been used 

both in graph discriminating analysis and correlating studies for modeling a variety of physico-chemical properties and 

biological act ivities. However, only few software packages, viz. , CODESSA, MOLCONN Z, DRAGON, TOSS MODE and 

POLL Y, are ava ilable for ca lculating topological indi ces. These incorporate correlating analysis statistics, as well. The 

TOPOCLUJ software package is designed to calculate topological descriptors from topological matrices and/or polynomials. 

Several weighting schemes including group e leclronegalivity. group mass and parlial charges are proposed. Topological 

indices deri ved from the matrices like adjacency, connectivity, di stance, detour, distance-path, detour-path, Cl uj , their 

reciprocal matrices, walk-matrices, walk-operated matrices, layer- and shell-matrices have been successfully used in 

correlating studies and graph discriminating analysis during the las t decade. Several novel topological matrices, like 

distance-path, Cluj (with its variants), layer-matrices, walk mat ri x. walk (triple matrix ) operator, charac teristic and 

"property" polynomials, and the corresponding topolog ical descriptors may be calculated by the TOPOCLUJ software 

package. 

Introduction 

A sequence of numbers at, a2,"" all, representing 

counting quantities of the vertices 1, 2, .. . ,n in a graph 

G, can be presented as a vector. Further, if each entry 

in the above vector is just a vector (of dimension p), 

we have an array of dimensions n x p, which is a non

square matrix for pf:.n. Such arrays are the layer 

matrices , introduced in the literature
l
-
5 

in connection 

with the distance/path sequences in the graph6
-
8 and 

have proved to be a strong ground for devising a 

variety of topological descriptors. 

Another way to express a sequence of graph 

quantities is by a polynomial
9

; the most studied being 

the characteristic polynomial Ch(G,x), calcu lated on 

the adjacency matrix of G (see below). Another 

polynomial, based on the distance sequence in G is 

the Hosoya polynomial
9

. 

In this paper, we present the layer matrices and 

their relationship with some well-known matrices, 

polynomials, and topological indices. The main aim 

of the paper is to illustrate the capabilities of the 

TOPOCLUJ software package
lO 

(written in DELPHI 

4 .0- available on request) . 

Definitions 

Layer matrix LM 

A layer of vertices located at distance k to the 

vertex i is defined as9
.
1

1.12: 

Define the partition of G with respect to i as: 

G(i)={ G(i) k; kE [O,l, .. ,ecci ]} ... (2) 

with eCCi being the eccentricity of i (i.e., the largest 

distance from i to the other vertices of G). The entries 

in the layer matrix (of vertex property) LM, is defined 

as: 

[LM] i.k = Q PI' ... (3) 

Vi (/j. v;:k 

with the most used operation being the summation . 

The zero column is just the column of vertex 

properties [LM L.o = Pi' Any atomic/vertex property 

can be considered as Pi. Moreover, any square matrix 

M can be taken as info matrix, i.e., the matrix 

supplying local/vertex properties as row sum (RS), 
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column sum (CS) or diagonal entries g iven by the 

Walk matrix" ·'2 (see below). 

Layer matrix, a collection of the above-defined 

entries, is defined as 

LM ={[LML;iE V(C);kE [O ,I, .. ,d(C)]} (4) 

with d(C) being the diameter of the graph (i.e., the 

largest distance in C) . 

The layer matrix of vertex label ing LLb (see 

below) is the first layer matrix to be constructed. It 

represents just the graph partitions with respect to all 

its vertices . 

Shell matrix (SM) 

The entries in the shel l/layer matrix (of pair vertex 

property) SM are defined as' 3: 

[SM L = Q [Ml.,. . .. (5) 
lijd;.v=k 

with the most used operation being the summation. 

Shel l matrix is a collection of the above-defined 

entries and is defined as: 

SM ={rSMl u ;iE v (C); k E [O.l .... d(C )]} .. . (6) 

The zero column, [SML.o =1, II1 case of zero 

diagonal square info matrix but any other vertex 

property (written as diagonal entries) can be 

considered . The above definitions hold good in any 

graph and any square matrix . 

Distance extended properties 

Any property can be multiplied by distance 

(topological or genuine one) separating vertices in the 

graph. The method of achieving this "extension" is 

different. Examples are given in the next section . 

The properties of the above-defined matrices are 

exemplified on the graphs C, and C2. 

6 6 

1 l 5 

4 4~ N 

'/~ 3 /~ 5 I/~/ 

t II 
0 7 

C, C2 

The topological descriptors were calcu lated by the 

TOPOCLUJ software package'O on the following 

basic matrices: adjacency, connectivi ty, di stance, 30-

di stance, detour, and four types of Cluj matrices. 

Properties of layer matrices 

Layer matrix LM building 

Let us build first the LLb matrix (Table I) , by 

using an amended distance matrix, DLb=ILb+De, 

where I is the diagonal unity matrix. The partitioning 

of G, with respect to its vertices is obtai ned by 

collecting the labeling of vertices located at distance k 

from the given vertex i (cf (I». Recall that the non

diagonal entries in the distance matrix De count the 

number of edges on the shortest path joining two 

vertices i and), whi le the diagonal entries are zero') . 

The most simple and essential is the counting 

property (i.e., the existence of a vertex in a given 

position is counted by 1 and absence by zero) . The 

corresponding layer matrix LC is given in Table 2. 

Another example is the layer matrix of partial charges 

LCH (calculated on G2) . 

Note that the rows in LC represen t just the vertex 

distance degree sequences DDSi (i.e., the number of 

vertices located at distance k from i)9, wh ile the 

column sums CS represent the graph DDSk• LC is 

calculated when layer matrix is performed by 

TOPOCLUJ with no property is selected. LCH is 

calculated by clicking on the "atomic charge" in the 

"Properties" second window. 

Table I--Construction of LLb malrix 

DLb(C£2 LLb(C/) 

2 3 4 5 6 7 k 0 I 2 3 4 

1 I 2 3 4 2 3 I {2} {3,6} {4, 7} [5} 

2 1 2 1 2 3 1 2 2 {I , 3, 6} {4,7} {5} 0 

3 2 I 3 2 2 3 {2, 4, 7} {I, 5, 6} 0 0 

4 3 2 I 4 1 3 2 4 {3, 5} {2, 7} { 1, 6} 0 

5 4 3 2 1 5 4 3 5 {4} {3} {2, 7} ( 1, 6) 

6 2 1 2 3 4 6 3 6 {2} {1, 3 } {4, 7} {5} 

7 3 2 1 2 3 3 7 7 {3} {2, 4} {I, 5, 6} 0 
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By multipl yi ng CS by k (or l/k) di stance-extended 

properties are obtained. In the above example, 

Wiener ' 4. ' 6 W and Harary l7-19 H indices are thus 

obtained (twice value, in Table 2). Such indices I are 

calculated as the half sum of the entries in a square 

matrix (i.e., the matrix suppl ying the property p): 

I =(1 /2) ~)M l } =(l /2) .u .M .u T (7) 
i< j 

with u and u T being the unity vector (of dimension N, 

i.e., the number of vertices in G) and its transpose, 

respecti vel/ o. Reciprocal matri ces are calculable by 

the window "Mathematical operations", and next 

"Reci procal" . 

Within TOPOCLUJ program the partial charges are 

calculated as fo llows: 

elIi.} =IOg[ (s) 1 Si) lI{d,., I' ] (8) 

cft. = ~ .eh. . 
I L..J ; I .) 

(9) 

In the above relationships, Sj , Sj represent the 

Sanderson group electronegati viti es SGEs, calculated 

fo r the hydride groups (i.e., the heavy atoms with 

their surrounding hydrogen atoms) in the molecule. 

The log function provides the sign for the partial 

charge chjj , viewed as a di stance decreasing 

perturbation (see also ref. 2 I) of the ith SGE produced 

by the atom j (see the exponent, where d jj IS the 

Euclidean di stance separating atoms i and j). 

The NxN array collecting the entries chi) is the 

charge matri x CH, whose row sums chi, represent the 

total parti al charge on hydride group/atom i in the 

molecule (column k = 0 in LCH-Table 2). 

Distance-extended property sum indicates, in this 

example, the location of the negative parti al charge on 

the more eccentric atoms (e.g ., N and 0 ). 

LM of symmetric square matrices 

The layer matrix of walk degrees L"W is illustrated 

next. The walk degree (of length e) equals the row 

sum in the adj acency matrix A (raised at power e). 

For e=l one recovers the class ical vertex degree (i.e. , 

vertex valency)I\,I2. Recall that the entries in the 

adj acency matrix equal unity when two vertices i and 

.i are connected by an edge and zero otherwise. 

The di stance extended property is now the 

valenc/
2 

and the valency-di stance index was patter

ned by several authors2o.2J.26 (see foo tnote, Table 3). 

In matri x terms, the Cramer product AD, is 

calculated. 

The walk matri x W, running the eWM algorithm 

(patterned by Diudea, Topan and Graovac
l2 

), allows 

to elude the rais ing at a power e of a square matri x. It 

evaluates a (topological) property of a vertex i , by 

iterative summation of the first neighbors contri

butions. The algorithm, called eW M, is ex tended here 

to account fo r general graphs (with loops and multip le 

bonds) : 

M +I=' W . e=O ... (10) 
M' 

[ <+ 1 W M L = 2L; [e W M L + ~ ([ M Ju[ e W M l jj ) 
J ~I 

[e W M l jj =2LX-1 W M l jj + I ([Mljd e
-

1 W M lkk ) 
bj 

f,'+1 W M Jij =[" W M Jij =[MJij 

(1 \ ) 

(12) 

(13) 

Table 2- Layer matrix LC and layer matrix of parti al charges LCH, (calcul ated on Gz) 

LC(G,) LCH(G2 ) 

i \ k 0 2 3 4 RS 0 2 3 4 RS 

I I 2 2 I 7 0.087 0.186 0.282 -0.333 -0.223 0 

2 3 2 I 0 7 0. 186 0.370 -0.333 -0.223 0 0 

3 3 3 0 0 7 0. 195 -0.1 47 -0.048 0 0 0 

4 2 2 2 0 7 0.Ql 5 -0.028 -0. 162 0.175 0 0 

5 I 2 2 7 -0.223 0.01 5 0. 195 -0. 162 0. 175 0 

6 2 2 I 7 0.087 0. 186 0.282 -0.333 -0.223 0 

7 2 3 0 7 -0.348 0.195 0.20 1 -0.048 0 0 

CS 7 12 14 12 4 0 0.776 0.4 18 -0.924 -0.271 0 

CS· k 12 28 36 16 92" 0.776 0.835 -2.77 1 -1.082 -2.24 1 

CS· lIk 12 7 4 24b 0.776 0.209 -0.308 -0.068 0.610 

(a) 2x Wiener index W; (b) 2x Harary index H 
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Table 3--Layer matrix o f walk degrees UW 

L 1W (G I ) L
2
W (G I ) L

3
W (Gil 

i \ k 0 I 2 3 4 RS 0 2 3 4 RS 0 2 3 4 RS 

I I 3 4 3 I 12 3 5 9 7 2 26 5 12 17 14 4 52 

2 3 5 3 I 0 12 5 12 7 2 0 26 12 22 14 4 0 52 

3 3 6 3 0 0 12 6 12 8 0 0 26 12 26 14 0 0 52 
4 2 4 4 2 0 12 4 8 8 6 0 26 8 16 18 10 0 52 

5 2 3 4 2 12 2 4 6 8 6 26 4 8 12 18 10 52 

6 3 4 3 I 12 3 5 9 7 2 26 5 12 17 14 4 52 

7 3 5 3 0 12 3 6 9 8 0 26 6 12 20 14 0 52 

CS 12 26 26 16 4 26 52 56 38 10 52 108 11 2 74 18 

CH 26 52 48 16 142" 52 11 2 114 40 318 108 224 222 72 626 

CS· llk 26 13 5.33 45.33 52 28 12.67 2.5 95.17 108 56 24.67 4.5 193.17 

2xl (I = Degree-Di stance Index ; Ivanci uc, Dobrynin. Schultz. Estrada - see text) 

T able 4--Walk count in the general graph Gl . 

LIW (CON(G2» 

I I 0 0 0 0 

2 I 3 0 0 I 

3 0 I 4 0 0 

4 0 0 I 4 3 0 

5 0 0 0 3 3 0 

6 0 I 0 0 0 I 

7 0 0 2 0 0 0 

Sum of diagonal elements = 18 

L
2
W (CON(G l » 

I 3 I 0 0 0 0 

2 1 6 0 0 I 

3 0 I II 0 0 

4 0 0 I 13 3 0 

5 0 0 0 3 12 0 

6 0 I 0 0 0 3 

7 0 0 2 0 0 0 

Sum of diagonal elements = 56 

where M is any square matrix, I is the unity diagonal 

matrix and Li is the number of loops attached to the 

atom i. 

The algorithm starts with the diagonal entries 

r W ML equaling unity . In each of the following steps, 

[eW ML become the row sums R5i of the matrix M 

raised at a power e, M e: 

[eW M L= I,[M el ij ='wM•i 
j 

. . . (14) 

These represent walk degrees, eWM.i , weighted by the 

property collected in M . The sum of all diagonal 

entries in "W M is twice the g lobal graph invariant eWM , 

called molecular walk count: 

LIW (CON loop(Gl » 

0 I 0 0 0 0 0 

0 I 3 0 0 I 0 

2 0 I 4 0 0 2 

0 0 0 I 4 3 0 0 

0 0 0 0 3 5 0 0 

0 0 I 0 0 0 I 0 

2 0 0 2 0 0 0 4 

Sum of diagona l elements = 22 

L2W (CON loop(Gl » 
0 3 I 0 0 0 0 0 

0 I 6 0 0 I 0 

2 0 I IS 0 0 2 

0 0 0 I 19 3 0 0 

0 0 0 0 3 22 0 0 

0 0 I 0 0 0 3 0 

8 0 0 2 0 0 0 16 

Sum of diagonal e le ments = 84 

.. . (IS) 

In the above, M = A or CON. When M = D, then eWM 

defines the Wi ener number of rank
27 

e . 

To account fo r the general graphs the algorithm 

needs the specification of the atoms bearing loops. It 

is input as a binary numbers column under the name 

"aproperty aloop" in the file of properties "name.prp" 

provided by the TOPOCLUJ program. In thi s case, 

the proper matrix is the connecti vity matrix CON, 

whose non-diagonal entries are just the conventional 

bond orders: 0, 1, 2, 3 and I.S, for non-bonding, 

single, double, triple and aromatic bonds. If the graph 

has no loops, the classical eW M algorithm is 

recovered. 
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Note that, the actual modification is equivalent to 

an extension of the CON matrix by additional rows 

with entries of value 2 for each loop attached to an 

atom and empty corresponding columns. The walks 

involved by the presence of loops are added to the 

walk counts supplied by the classical algorithm. 

Examples are given in Table 4 for G2, once for no 

loops and next for loops at atoms 5 and 7 

(representing heteroatoms with unshared electrons in 

the loops) . The parameter e is I and 2, respectively . 

TOPOCLUJ calculates the W matrix on any square 

matrix. 

The next example illustrates the behavior of the 

classical distance matrix De; the property put in 

column k = 0 is the row sum in the distance matrix 

RS(De) and the corresponding LM is called layer of 

distance sum LDeS, Any other square matrix can be 

manipulated in this manner. 

The distance extended property is just the 

(topological) distance. In matrix terms, it means the 

Cramer product DeDe (see footnote b, Table 5). 

Similar calculations can be performed on the detour 

matrix /),.e' Recall that the non-diagonal entries in the 

detour matrix count the number of edges on the 

longest path joining two vertices i and j, while the 

d· I ' 928 lagona entnes are zero' . 

The path-defined distance and detour matrices may 

be calculated by the "Combinatorial matrix" 

command). They are defined as follows
9

: 

{

N C' ,') ;(i.j)E D(C ), if i# j 
[D J - p. ' . 

p ij - 0 :r' . 
IJ 1= J 

[ ~ ] .. -
_{N p .U.j );U, j)Et1(G) , if i#j 

PI, Oif" I 1=) 

... (16) 

... (17) 

(rM 1 +IJ r ' 1 N" ,u.J) =l ,.;, =(l/2)L([M,Jut+IM,.Jij ... (18) 

M = D;~ 

where N".(i.j ) represents the number of all internal 

paths
29 

of length 1 ~1 pl~I(i,j)1 included in the path 

(i,j) . An example is given in Sect. 4. 

LM of ullsymmetric square matrices 

An unsymmetric matrix, say the product matrix 

ADe, can participate either by its RS or CS, thus 

providing two different LMs (Table 6). 

Extension by distance is equivalent to the Cramer 

multiplication to the left by De (of the matrix product 

ADe - see footnote a, Table 5). 

The Walk operator22.27.30 W (MI.M2.M3), provides 

matrices, usually unsymmetric, that can also be used 

in building LM. It is defined as
27

: 

[w ] _IM 210 W [M] 
(M, .M 2.M, ) ij - M,.; · J ij ... (19) 

where WMl.i is the walk degree, of elongation [M2]ij, 

of the vertex i , weighted by the property collected in 

matrix M, (i.e., the i'll row sum of the matrix M " 

raised to power [M2L)' The diagonal entries are zero. 

This matrix, that mixes three square matrices, is a true 

matrix operator (see below). 

Within the W (MI.M2.M3) matrix operator, the 

Hadamard algebra operates. In the case of matrix 

W (MI .I.M3), (with M 2=1, i.e., the matrix having all non

diagonal entries unity), the meaning of their vector 

sums is given in Eqs (20) to (22) (see ref. 22). The 

CS recovers the RS/CS of the corresponding Cramer 

Table 5---Distance matrix D, and layer of distance sum LD,S 

LD,S(G,) De(G,) 

ilk 0 2 3 4 RS 2 3 4 5 6 7 RS 

1 15 10 24 26 17 92" 0 1 2 3 4 2 3 15 
2 10 39 26 17 0 92 1 0 1 2 3 2 10 

3 9 36 47 0 0 92 2 0 1 2 2 9 
4 12 26 24 30 0 92 3 2 1 0 1 3 2 12 
5 17 12 9 24 30 92 4 3 2 1 0 4 3 17 
6 15 10 24 26 17 92 2 1 2 3 4 0 3 15 
7 14 9 22 47 0 92 3 2 2 3 3 0 14 

CS 92" 142 176 170 64 CS 15 10 9 12 17 15 14 92" 

CS·k 142 352 510 256 1260h 

CS·1Ik 142 88 56.67 16 302.67 

(a) 2xW; (b) u(D,.D,.)uT 
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Table 6--Product matri x AD .. and corresponding LADc-RS 

LAD_RS(G 1) AD(G 1) 

i \ k 0 2 3 4 RS 2 3 4 5 6 7 RS 

I 10 39 46 35 12 142 0 2 3 I 2 10 

2 39 56 35 12 0 142 4 3 4 7 10 4 7 39 

3 36 74 32 0 0 142 7 4 3 4 7 7 4 36 

4 26 48 48 20 0 142 6 4 2 2 2 6 4 26 

5 12 26 36 48 20 142 3 2 0 I 3 2 12 

6 10 39 46 35 12 142 I 0 I 2 3 I 2 to 

7 9 36 65 32 0 142 2 0 2 2 9 

CS 142 3 18 308 182 44 CS 24 14 12 18 28 24 22 142 

CS·k 3 18 6 16 546 176 1656" 

CS· l/k 3 18 154 60.67 II 543.67 

(a) u(D,.(ADe)u T 

Table 7- W(A.I. De) matri x operator and LW(A. I.DeLRS 

LW(A. I.De)_RS(G1) WCA.I. De/ G I) 

i\k 0 I 2 3 4 RS 2 3 4 5 6 7 RSc 

I 15 30 42 38 17 142 0 I 2 3 4 2 3 15 

2 30 57 38 17 0 142 3 0 3 6 9 3 6 30 

3 27 68 47 0 0 142 6 3 0 3 6 6 3 27 

4 24 44 44 30 0 142 6 4 2 0 2 6 4 24 

5 17 24 27 44 30 142 4 3 2 I 0 4 3 17 

6 15 30 42 38 17 142 2 I 2 3 4 0 3 15 

7 14 27 54 47 0 142 3 2 2 3 3 0 14 

CS 142 280 294 2 14 64 CS
h 

24 14 12 18 28 24 22 142 

CS·k 280 588 642 256 1766" 

CS· llk 280 147 71.33 16 5 14.33 

T 
(a) u (Di W (AI .Dej»U : (b) CS(W (A. I.D,,» = CS(ADe); (c) RS(W CA.l.Dc) = RS(A) eRS(De) 

Table 8--W(De. I.A) matrix ope rator and LW(A. I.DeL CS 

LW(A. I.Del_CS(G 1) WCDe. I.AlG I) 
i \ k 0 I 2 3 4 RS I 2 3 4 5 6 7 RS 

I 24 14 36 40 28 142 0 15 0 0 0 0 0 IS 

2 14 60 40 28 0 142 10 0 10 0 0 to 0 30 

3 12 54 76 0 0 142 0 9 0 9 0 0 9 27 

4 18 40 36 48 0 142 0 0 12 0 12 0 0 24 

5 28 18 12 36 48 142 0 0 0 17 0 0 0 17 

6 24 14 36 40 28 142 0 15 0 0 0 0 0 15 

7 22 12 32 76 0 142 0 0 14 0 0 0 0 14 

CS
c 

142 2 12 268 268 104 CS
J 

LO 39 36 26 12 10 9 142 

CS·k 2 12 536 804 4 16 1968" 

CS· l /k 2 12 134 89.33 26 461.33 

(a) u(D, (DeA)u
T

; (b) CS(W {De I Al) = RS(A De); (c) CS(LW{A I Del) = CS(L(ADe» 
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matrix product M)M3 while the RS equals the 

pairwise (Hadamard) product of the two properties 

collected in M) and M2. The last resu lt has no 

correspondence in Cramer algebra. Examples are 

given for M) = A and M3 = De in Tables 7 and 8 (see 

also footnote a, Table 3). 

(20) 

(21) 

RS(W(MI.I.M3)) = RS(W(M3. I.M) )) = RS(M)) eRS(M3) 

. .. (22) 

As a general property of LMs, RS in any row IS 

constant and equal to CS (k = 0). 

Shell matrices 
The novel proposed shell matrix)3 provides a 

partitioning of the entries in a square matrix according 

to the vertex (distance) partitions in the graph. It 

means a true decomposition of the property collected 

in the square matrix in contributions brought by 

vertices pertaining to shells located at distance k 

around each vertex. But the property now depends on 

the vertex pair relationship. 

SM of basic square matrices 

Let us consider the behavior of the basic symmetric 

adjacency A, distance De and W e matrices. Since the 

first and the last matrices are based on the 

connectivity relation, the corresponding SM will have 

only one column, at k = 1 (excepting the non-related 

k = 0 column) (Table 9) . 

In case of SDe, the distance extended property is 

again the distance but now the extension is equivalent 

to the Hadamard product De e De . Recall that this 

kind of matrix product
3

): [M" e M b]ij = [Ma]ij [Mb]ij, 

operating within SM matrices, is basically different 

from the Cramer algebra working in case of LM 

matrices (see above). 

The Wiener matrices W e and W p are defined only 

on trees. 32
.
33 They are calculable as the symmetric 

Cluj matrices (see the next section). 

SM of Cluj matrices 

Let now consider the unsymmetric Cluj matrix 

UCJ, defined on the distance concepe4,35 (for other 

extensions see refs. 36-39). In trees, its non-diagonal 

entries count the paths going to j through i , the 

number of which equals that of vertices located closer 

to i than to j. It is just the cardinality of the set of 

vertices/atoms obeying such condition; since in cycle

containing graphs more than one path could join i and 

j (and thus providing different sets V i. p (i,j)k of vertices, 

referred to i, with respect to the path P(i .j)k )' the 

entries will be the maximal cardinality value, over all 

the paths p(i , j)k : 

Vi.p (i.jlk ={v IVE V (G); d iv <d jv ; 

P(i,V)h I P(i,j)k ={i}; }, h,k=I,2, ... 

[UCJ] .. = max IV C) I 
'J k ~ ) , 2 , ... I , p I . j k 

. . . (23) 

... (24) 

The diagonal entries are zero. The Cluj matrices are 

defined for any connected graph and it is worth noting 

Table 9------SM of some basic square matrices 

SA(G,) SDi G, ) SWe(G,) 

ilk 0 2 3 4 l: ~~ 0 2 3 4 l: ~~ 0 2 3 4 l: ~ ~ 

I 0 0 0 I I 4 6 4 15 6 0 0 0 6 

2 3 0 0 0 3 3 4 3 0 10 24 0 0 0 24 

3 3 0 0 0 3 3 6 0 0 9 28 0 0 0 28 

4 2 0 0 0 2 2 4 6 0 12 16 0 0 0 16 

5 0 0 0 2 6 8 17 6 0 0 0 6 

6 0 0 0 4 6 4 15 6 0 0 0 6 

7 0 0 0 4 9 0 14 6 0 0 0 6 

CS 7 12 12" 7 12 28 36 16 92b 7 92 92
b 

CS·k 12 12 12 56 108 64 240c 
92 92 

CS·lIk 12 12 12 14 12 4 42 92 92 

(a) 2x e; (b) 2x W; (c) u(De • De)u T 
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that they were designed as an extension of the Wiener 

matrices (see below) . 

Any other property (e. g., a property specifying the 

chemical nature of vertices) and any mathematical 

operation (other than summation) can be considered 

in view of defining the entries in the Cluj matrices of 

property9.39. We limit here to the cardinality, so that 

the entries will be integers (see below). The graph

theoretical Cluj matrices may be calculated as "basic 

matrices" by TOPOCLUl (Table 10). 

The column sums in the shell matrix SUCJ 

represent just the distance-based decomposition of the 

Cluj property . 

The distance-extended property represents Cluj 

fragments and the involved equivalent matrix 

operation is UCJ • De. Note that the Hadamard 

product is symmetric (i.e., the same matrix product is 

obtained by operating both to the left and to right 

side). The extension by the reciprocal distance is 

important in modeling intra- or intermolecular 

phenomena, which show decreasing values as 

distance between the involving partners increases. In 

trees, the distance extended Cluj fragments are equal 

to the hyper-Wiener index contributions (see footnote 

b). Also note that the product UCJ • 3DDe leads to a 

property extended by the Euclidian distance. 

The row sum RS and column sum CS in UCl are 

related to those in the basic matrices as: 

RS(UCJ) = RS(We ) 

CS(UCJ)=CS(D e ) 

(25) 

(26) 

The RS and CS in distance extended matrix D_UCJ 

are related to the above basic matrices. defined for all 

vertex pairs: 

RS(D _ UCJ )= RS(W p ) 

CS (D _ UCJ )= CS( D ") 

(27) 

(28) 

Table IQ.-Unsy mmetric Cluj matrix UCJ and corresponding shell matrix SUCJ 

SUCJ(G,) UCJ(G /) 

ilk 0 2 3 4 L : ~~) 2 3 4 5 6 7 RS 

I 1 2 2 1 6 0 1 1 1 1 1 1 6 

2 15 6 3 0 24 6 0 3 3 3 6 3 24 

3 15 13 0 0 28 4 4 0 5 5 4 6 28 

4 8 4 4 0 16 2 2 2 0 6 2 2 16 

5 2 2 6 0 1 6 
6 2 2 I 6 0 1 6 

7 2 3 0 6 0 6 

CS 7 42 30 16 4 92' CS 15 10 9 12 17 IS 14 92 

CS·k 42 60 48 16 166
b 

CS·1/k 42 15 5.33 63.33 

(a) 2x Wiener index W; (b) 2x hyper-Wiener index WW 

Table II- Distance extended matrix D_UCJ and Dp. 

D_UCJ (G I ) Dp (G I ) 

2 3 4 5 6 7 RS 2 3 4 5 6 7 RS 

1 0 1 2 3 4 2 3 15 0 I 3 6 10 3 6 29 

2 6 0 3 6 9 6 6 36 I 0 I 3 6 I 3 I" J 

3 8 4 0 5 10 8 6 41 3 I 0 I 3 3 I 12 

4 6 4 2 0 6 6 4 28 6 3 1 0 I 6 3 20 

5 4 3 2 I 0 4 3 17 10 6 3 I 0 10 6 36 

6 2 I 2 3 4 0 3 15 3 I 3 6 10 0 6 29 

7 3 2 2 3 3 0 14 6 3 1 3 6 .(j 0 25 

CS 29 IS 12 20 36 29 25 166' CS 29 15 12 20 36 29 25 166' 

(a) 2x h~Qer-Wiener index WW 
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In Eqs (25) and (27) W e and W p represent the Wiener 

matrices defined on edge and path, respectively . 

Matrices D_UCJ and Dp are illustrated in Table II. 

Despite the different distribution of numbers (due 

to the reversed meaning: each entry counts the paths 

going to i through j), the CS in the shell matrix 

SUCJ
T 

of the transpose of the Cluj matrix (Table 12) 

are identical to those in SUCJ matrix (which is an 

expected result). 

Let's now take a look on the symmetric Cluj matrix 

CJ. In trees, the following relationships hold good: 

(29) 

CJ , =W,. =CJ I, . A (30) 

The symmetric matrix can be obtained from UCJ 

matrix by the Hadamard product with its transpose: 

CJ = UCJ • UCJ
T 

... (3 1) 

The CS in the shell matrix SCJ represent 

contributions to the hyper-Wiener global index (see 

footnote a -Table \3) . The corresponding extension 

by distance is equivalent to CJp • De (and Wp • De). 
In cycle-containing graphs, no relation exists between 

the Cluj matrices and Wiener matrices (the last ones 

being not defined in such graphs) . 

Note that, in trees, the sum of the distance extended 

contributions (summation going from k = 1 to k = 
d(C)) give a number that is equal to the Tratch 

number (i.e., the number obtained from the authors' 

distance extended matrix E - see Table 13, footnote 

b). 

The shell matrix of the walk operator W (A.I ,D,o) is 

illustrated in Table 14. Relations to the Cramer matrix 

operations are given as footnotes. 

Table 12--Cluj matrix transpose UCJ
T 

and corresponding shell matrix SUCJ
T 

S(UCJ)T,(G,) (UCJ)T (G,) 

ilk 0 2 3 4 'Ltl(GJ 2 3 4 5 6 7 RS 
l =1 

I 6 5 3 I 15 0 6 4 2 15 

2 6 3 I 0 10 0 4 2 10 

3 6 3 0 0 9 3 0 2 9 

4 6 4 2 0 12 3 5 0 I I 12 

5 6 5 4 2 17 3 5 6 0 I 17 

6 6 5 3 I 15 6 4 2 0 I 15 

7 6 5 3 0 14 3 6 2 0 14 

CS 7 42 30 16 4 92' CS 6 24 28 16 6 6 6 92a 

CS·k 42 60 48 16 166
b 

CS· l!k 42 15 5.33 63.33 

(a) 2x W; (b) 2xWW 

Table 13--Cluj sy mmetric matri x CJ and corresponding shell matrix SCJ 

SCJ(G,) CJ(G,) 

ilk 0 2 3 4 ~ : ~ ~) 2 3 4 5 6 7 RS 

I 6 5 3 I 15 0 6 4 2 1 1 I 15 

2 24 9 3 0 36 6 0 12 6 3 6 3 36 

3 28 13 0 0 41 4 12 0 10 5 4 6 41 

4 16 8 4 0 28 2 6 10 0 6 2 2 28 

5 6 5 4 2 17 3 5 6 0 1 17 

6 6 5 3 1 15 6 4 2 0 1 15 

7 6 5 3 0 14 3 6 2 0 14 

CS 7 92 50 20 4 166
a 

CS 15 36 41 28 17 15 14 166 

CS·k 92 100 60 16 268b 

CS· l!k 92 25 6.67 124.67 

(a) 2x hypcr Wiener index WW: (b) 2x Tratch index Tr 
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Table l4--Shell matrix of the walk operator W (A. I .De) 

SW(A. I.De)(G,) 
i / k 0 2 3 4 L d •C ) 

,1; ", 1 

I 4 6 4 15 

2 9 12 9 0 30 

3 9 18 0 0 27 

4 4 8 12 0 24 

5 2 6 8 17 

6 4 6 4 15 

7 4 9 0 14 

CS 7 26 52 48 16 142" 

CS·k 26 104 144 64 338
b 

CS·I/k 26 26 16 4 72
c 

As a general property of SMs, RS vector equals RS 

in the info matrix M. 

Indices calculated on the layer matrices 

Layer matrices are used to derive two topological 

indices : (i) indices of centrality CCLM) and (ii) indices 

of centrocomplexity X(LM). 

Indices of centrality 

Indices of centrality C(LM) look for the center of a 

graph and are defined as 

. .. (32) 

C(LM)=w"iC(LM)i (33) 

where ecc is the maximal distance In G (i.e., max 

d(i,k)) and w is a weighting factor. 

Indices of centrocomplexity 

These indices express the location versus a vertex 

of high complexity (e.g., a vertex of high degree or a 

heteroatom). They are defined as: 

ecc 

X(LM);= ~)LMh LO-
k 

k=O 

X(LM)=w"iX(LM)i 

... (34) 

... (35) 

An example of index calculation is given in Table 15, 

for the layer matrix LCON (with Pi being the row sum 

RS in the connectivity matrix CON and w = 1). 

W (A. I .De)(G,) 

2 3 4 5 6 7 RS 

0 I 2 3 4 2 3 15 

3 0 3 6 9 3 6 30 

6 3 0 3 6 6 3 27 

6 4 2 0 2 6 4 24 

4 3 2 I 0 4 3 17 

2 I 2 3 4 0 3 15 

3 2 2 3 3 0 14 

CS 24 14 12 18 28 24 22 142 

Table I5--Index calcu lat ion for the layer matrix LCON 

LCON RS(G2) ; w = .I 

ilk 0 2 3 4 C; Xi 

I I 3 5 6 3 0. [579 1.3563 

2 3 6 6 3 0 0.23 12 3.6630 

3 4 9 5 0 0 0.3557 4.9500 

4 4 7 5 2 0 0.2458 4.7520 

5 3 4 4 5 2 0.1 711 3.4452 

6 3 5 6 3 0.1579 1.3563 

7 2 4 7 5 0 0.2153 2.4750 

1.5349 2 1.9978 

Polynomials calculated on the layer matrices 

The characteristic polynomjal of a matrix 1S 

defined9
,40 by the relation: 

Ch(G, M, x) = det[xI - M(G)] ... (36) 

with I being the unit matrix of a pertinent order and M 

is a square matrix. The polynomial roots are just the 

eigenvalues of the matrix M . The string of the 

decreasing va lues of the eigenvalues is called the 

spectrum of the respective matrix. 

The coefficients ak of the characteristic polynorrual 

(M = A, in which case the matrix symbol is omjtted) 

of order N are calculable from the graph G on N 

vertices via: 

N 

Ch(G,x)= L ak(G) 'x
N

-
k .. . (37) 

k;Q 

More efficient are the numerical methods of linear 

algebra, such as the well-known recursive algorithms 

of Le Verier, Frame, or Fadeev40
-42 . 
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The polynomial description of a molecular graph 

was used in the early Huckel theory, the eigenvalues 

of the Hiickel matrix (a weighted, normalized 

adjacency matrix) evaluating the 1t-electron energy 

levels of the molecular orbitals in conjugated 

hydrocarbons. Other related topics using such 

description are Topological Resonance Energy TRE, 

Topological Effect on Molecular Orbitals, TEMO, the 

Aromatic Sextet Theory, AST, the Kekule Structure 

Count, KSC, etc9
.
40. 

A different polynomial description of a graph is 

based on finite sequences
9 

of some graph invariants, 

such as the distance degree sequence or the sequence 

of the number of k-independent edge sets. The 

polynomial corresponding to the latter sequence was 

introduced by Hosoya and named the Z-counting 

polynomial
43

. 

A distance property polynomial was defined' 3 as: 

d (G) 

P(G,M ,p,x)= L p(G,M ,k) ·x
k ... (38) 

k ~ O 

with p(G,M ,O)=P(G)= L iPi and Pi being a vertex 

property. In relation (3), p(G,M,k) is twice the 

contribution to the global (molecular) property P(G) 

of the vertex pairs located at distance k to each other, 

in the graph G. The summation runs from zero to 

d(G), which is the diameter of G or the longest 

distance in G. 

When the local property Pi = 1 (i .e., the vertex 

count), p(G, k) denotes the number of pair vertices 

separated by di stance k in G, and the classical Hosoya 

polynomial
44 

(more exactly twice this polynomial) is 

recovered. In thi s case, p(G,O)=N, where N stands 

for the number of vertices in the hydrogen depleted 

molecular graph. 

The polynomial coefficients p(G,M,k) may be 

calculated as the column sums in the layer matrices 

LM and SM. Thus, P(G, M ,p,x) is written as 

P(G,LM ,p ,x) or P(G,SM ,p,x). For example, 

P(G,SUC] ,ch,x) reads: the polynomial of the shell 

of unsymmetric Cluj matrix, calculated by partial 

charges. When Pi is 1, it can be omitted. 

A distance-extended property can be calculated by 

evaluating the first derivative of the polynomial, for 

x = 1: 

d(G) 

P'(G,M , p,I)= L,k . p(G,M ,k)= D _ peG) ... (39) 
k=1 

In the case of Pi = 1, P'(G,LC,l) is just the Wiener 

index. The property Pi can be taken either as a crude 

property (i.e., the column zero in LM) or within some 

weighting scheme (i.e., transformed by the sequence: 

W-operator W (MI.M2.M3), W(M) matrix, LMlSM), as 

shown above. Any square matrix can be used as an 

info matrix for the layer matrices, thus resulting an 

unlimited number of property polynomials. 

Several global descriptors can be derived from the 

above polynomials: 

1. The sum of absolute values of the polynomial 

coefficients (see Hosoya's Z-counting polynomial
43 

and als0
45 

): 

SumP(G,x) = L iak (G,x)i ... (40) 
k 

Table 16--Distance Matrix D, Shell of Distance Matrix SD, Polynomial s, roots, MaxSpP(G,x) and 

MinSpP(G,x) and SumP(G,x) (in bold) 

D, SD, 

Xi k 0 2 3 4 Real Xi 

1 0 I 2 3 4 2 3 13.635 1 4 6 4 -0.044 

2 1 0 1 2 3 1 2 -0.432 3 4 3 0 -0.044 

3 2 1 0 1 2 2 1 -0.665 3 6 0 0 -0.813 

4 3 2 1 0 1 3 2 -1.309 2 4 6 0 -0.813 

5 4 3 2 1 0 4 3 -2.000 2 6 8 

6 2 1 2 3 4 0 3 -3 .006 4 6 4 

7 3 2 2 3 3 0 -6.223 1 1 4 9 0 

SumP(G,x) 6041 7 12 28 36 16 99 

Ch(G. D.x)=x7 - 120x5 -752x4 -I 840x3 -2080x2 -1056x-192 

P(G.SD,x)=16x
4 

+36x3 +28x2 +12x+ 7 



1294 INDI AN J C HEM. SEC. A, JUN E 2003 

2. The maximal and minimal values of a spectrum 

(see the first eigenvalue of A, proposed by Cvetkov iD 

& Gutman
46 

for characterizing the branching of a 

graph , and also
47

): 

MaxSpP(G,X); MinSpP(G,x) ... (41 ) 

Examples are given in Tabl e 16. 
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