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1 Introduction

This article is concerned with the nonlinear problem

(1.1)




�u = 0 in R
n
+

∂u

∂ν
= f (u) on ∂R

n
+,

where n ≥ 2, R
n
+ = {(x, y) ∈ R × R

n−1 : x > 0} is a half-space, ∂R
n
+ = {x = 0},

u is real-valued, and ∂u/∂ν = −ux is the exterior normal derivative of u. Points in

R
n−1 are denoted by y = (y1, . . . , yn−1).

Our main goal is to study bounded solutions of (1.1) that are monotone increas-

ing, say from −1 to 1, in one of the y-variables. We call them layer solutions

of (1.1), and we study their existence, uniqueness, symmetry, and variational prop-

erties, as well as their asymptotic behavior.

The interest in such increasing solutions comes from some models of boundary

phase transitions. When the nonlinearity f is given by f (u) = sin(cu) for some

constant c, problem (1.1) in a half-plane is called the Peierls-Nabarro problem, and

it appears as a model of dislocations in crystals (see [21, 36]). The Peierls-Nabarro

problem is also central to the analysis of boundary vortices in the paper [28], which

studies a model for soft thin films in micromagnetism recently derived by Kohn and

Slastikov [26] (see also [27]).

Our main result, Theorem 1.2, characterizes the nonlinearities f for which there

exists a layer solution of (1.1) in dimension n = 2. We prove that the necessary and

sufficient condition is that the potential G (defined by G ′ = − f ) has two, and only

two, absolute minima in the interval [−1, 1], located at ±1. Under the additional

hypothesis G ′′(±1) > 0, we also establish the uniqueness of a layer solution up to

translations in the y-variable.

The proofs of both the necessity and the sufficiency of the condition on G for

existence use new ingredients, which we develop in this article. A first one is

a nonlocal estimate, as well as a conserved or Hamiltonian quantity, satisfied by

every layer solution in dimension 2 (see Theorem 1.3). The estimate can be seen as
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an analogue of the pointwise Modica estimate [30] for entire solutions of equations

with reaction in the interior.

Another important tool throughout the paper consists of establishing relations

between layer solutions and two other classes of solutions: local minimizers and

stable solutions of (1.1). This is in the spirit of similar ideas carried out for inte-

rior reactions by Alberti, Ambrosio, and one of the authors in [1]. We prove that

every layer solution is a local minimizer in any dimension n (see Theorem 1.4).

Another result, Theorem 1.5, establishes that stable solutions (and in particular lo-

cal minimizers) are necessarily monotone functions of y for n = 2. For n = 3,

we prove that stable solutions (and hence also local minimizers and layer solu-

tions) are functions of only two variables: x and a linear combination of y1 and y2.

This statement on two-dimensional symmetry is closely related to a conjecture of

De Giorgi on one-dimensional symmetry for interior reactions, partially proven in

[1, 4, 9, 22, 23] and completely settled by Savin [34].

Problem (1.1) in a half-space appears naturally after blowup when studying

solutions of

(1.2)




�u = 0 in �
∂u

∂ν
= 1

ε
f (z, u) on ∂�.

Here � ⊂ R
n is a smooth, bounded domain, z ∈ ∂�, and ε > 0 is a parameter.

As ε → 0, certain solutions of (1.2) develop sharp transition layers on some parts

of ∂�. In the limit ε → 0, one obtains a discontinuous function on ∂� taking

a finite number of values, while in the interior one still has a smooth function—

the harmonic extension of the discontinuous limit function on ∂�. The transition

profiles for (1.2) near a discontinuity point z0 ∈ ∂� can be studied using the stan-

dard blowup technique. If f (z, u) is continuous in z at z0, this leads naturally to

problem (1.1) in a half-space and to the notion of layer or increasing solution.

One may consider solutions of (1.2) that are local minima of the associated

energy

(1.3) Eε(u) =
∫
�

1

2
|∇u|2 +

∫
∂�

1

ε
G(z, u)

(here Gu = − f ), and solutions of (1.2) that are stable under the associated para-

bolic problem. After blowup, we then obtain the classes of local minimizers and

of stable solutions of (1.1); see Definition 1.1.

Regarding problem (1.2) in bounded domains, the first important question is

whether it admits nonconstant stable solutions. It is a subtle task to study their exis-

tence when f = f (u) does not depend on z and ∂� is connected. In this direction,

Cónsul and one of the authors [19, 20], and also Carvalho and Lozada-Cruz [17],

have proven the existence of nonconstant stable solutions for some nonlinearities

f = f (u) and certain bounded domains, for instance, certain dumbbells. When

enforced by a certain dependence of f (z, u) on the variable z, existence has been
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proven in the articles [6, 7], which also establish estimates and properties for min-

imizers of Eε.

Another approach to study problem (1.2) for ε small is of variational nature.

Alberti, Bouchitté, and Seppecher [2, 3] have found the �-limit of Eε/|log ε| (note

the presence of the factor 1/|log ε| here) for n ≤ 3, when G = G(u) is a double-

well potential. Up to multiplicative universal constants, the �-limit is the counting

measure of the discontinuity points on ∂� for n = 2, and the length of the curve

of discontinuities on ∂� for n = 3. As a consequence, for n = 3 the limit of

local minima as ε → 0 is expected to jump on a geodesic of the surface ∂�. Up

to a great extent, this locates the set of discontinuities of the limiting function.

However, this is not the case in dimension 2, where every couple of points have the

same counting measure.

In a work in progress by Cónsul and one of the authors [15], the next term in

the expansion of Eε as a function of ε is found for bounded domains in R
2 and

with G = G(u) an arbitrary double-well potential in (1.3). This is a nonlocal

renormalized energy in the spirit of the renormalized energy of Bethuel, Brezis,

and Hélein [14] for the complex Ginzburg-Landau equation. The next term in the

expansion of Eε in ε has also been found, independently of [15], by Kurzke [28]

when G(z, u) = sin2(u − g(z)) in (1.3) and eig : ∂� → S
1 is a map of nonzero

degree. The renormalized energy is used in [15] to prove existence of nonconstant

stable solutions of (1.2) for certain convex domains and bistable nonlinearities f =
f (u), as well as to locate the points of jump (or vortices) on the boundary as ε → 0.

The work on bounded domains [15] uses the methods and results developed in the

present article for problem (1.1) in the half-plane. In particular, the uniqueness of a

layer solution in the half-plane, Theorem 1.2(b) below, is crucial when computing

the renormalized energy for (1.2).

To our knowledge, layer or increasing solutions of (1.1) in a half-plane have

been studied only for the Peierls-Nabarro problem, that is, when

f (u) = 1

πa
sin(πu),

and a > 0 is a constant. In an interesting article, Toland [36] has found all bounded

solutions of the Peierls-Nabarro problem when n = 2, establishing that they are

given by the layer solution

(1.4) u = φa(x, y) = 2

π
arctan

y

x + a
, x ≥ 0, y ∈ R,

which is the unique layer (up to translations in the y-variable), and by a family

of periodic (in y) solutions that can all be written explicitly. The proof in [36]

relies in a clever nonlocal transformation relating solutions of the Peierls-Nabarro

problem with solutions of the Benjamin-Ono problem in hydrodynamics, which is

problem (1.1) in R
2
+ with f (u) = −u + u2. Then, [36] uses a complete classifi-

cation of all bounded solutions of the Benjamin-Ono equation due to Amick and

Toland [5]. For this last equation all solutions can also be written explicitly and
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are: a unique solitary (or ground state) solution and a family of periodic solutions.

Such classification is obtained in [5] with the use of a complex variable method that

allows the Benjamin-Ono equation to be integrated. The uniqueness of this solitary

solution is a relevant fact since, for instance, it corresponds to a traveling wave of

a time-dependent problem. In addition, it leads to the uniqueness of the layer solu-

tion (1.4) for the Peierls-Nabarro problem. Theorem 1.2(b) below extends Toland’s

result on uniqueness of the layer solution to the case of general nonlinearities f .

Our proof of uniqueness uses the sliding method of Berestycki and Nirenberg [12].

Notice that up to a multiplicative constant, the layer solution (1.4) is simply the

angle with the horizontal axis, taking the point (−a, 0) as the origin. Each of its

level sets is a straight half-line.

Positive solutions of radial (or ground state) type for problem (1.1) in a half-

space have also been studied in [18, 29], among other papers. They establish re-

sults on existence, nonexistence, uniqueness, and radial symmetry for this type

of solution and certain nonlinearities f , also including certain reaction terms in

the interior R
n
+. This is also the case of the recent work [13], where the reaction

on the boundary is linear (Robin boundary conditions) and deals with spike-type

solutions—see [13, 33] for other references on this class of solutions in the case of

homogeneous Neumann boundary conditions.

Throughout the paper, we assume that the nonlinearity f : R → R is of class

C1,α for some 0 < α < 1. We denote by G the function satisfying

G ′ = − f,

which is uniquely defined up to an additive constant.

Regarding half-balls, we use the notation

B+
R = {(x, y) ∈ R

n : x > 0, |(x, y)| < R},
�0

R = {(0, y) ∈ ∂R
n
+ : |y| < R},

�+
R = {(x, y) ∈ R

n : x ≥ 0, |(x, y)| = R}.
To define the three classes of solutions considered throughout the paper, we

introduce the energy functional

(1.5) EB+
R
(v) =

∫
B+

R

1

2
|∇v|2 +

∫
�0

R

G(v).

DEFINITION 1.1

(a) We say that u is a layer solution of (1.1) if it satisfies (1.1),

(1.6) uy1
> 0 on ∂R

n
+

and

(1.7) lim
y1→±∞

u(0, y) = ±1 for every (y2, . . . , yn−1) ∈ R
n−2.
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(b) Assume that u is a C1 function in R
n
+ satisfying −1 < u < 1 in R

n
+. We say

that u is a local minimizer of problem (1.1) if

EB+
R
(u) ≤ EB+

R
(u + ψ)

for every R > 0 and every C1 function ψ in R
n
+ with compact support in B+

R ∪ �0
R

and such that −1 ≤ u + ψ ≤ 1 in B+
R . To emphasize this last condition, on

some occasions we will say that u is a local minimizer relative to perturbations in

[−1, 1].
(c) We say that u is a stable solution if it satisfies (1.1) and if

(1.8)

∫
R

n
+

|∇ξ |2 −
∫

∂R
n
+

f ′(u) ξ 2 ≥ 0

for every function ξ ∈ C1(Rn
+) with compact support in R

n
+.

A solution u for n = 2 is a layer solution simply if the function u(0, y), of one

real variable, is increasing and has limits ±1 at ±∞. For n ≥ 3, the limits in (1.7)

are taken for (y2, . . . , yn−1) fixed. We do not assume these limits to be uniform in

(y2, . . . , yn−1) ∈ R
n−2.

In Lemma 2.3 we establish regularity, as well as first and second derivative

estimates, for weak solutions of (1.1). There we introduce a useful technique that

allows us to deduce Schauder and Calderón-Zygmund bounds for the Neumann

problem from the corresponding estimates for the Dirichlet case, avoiding in this

way the use of Green’s functions as in other references. These bounds and the

maximum principle give that every layer solution satisfies uy1
> 0 not only on ∂R

n
+

but also in all of R
n
+; see (2.27) in Section 2.4. The bounds also imply that every

layer solution satisfies u(x, y) → ±1 as y1 → ±∞ for every (y2, . . . , yn−1) ∈
R

n−2 and every x ≥ 0; see (2.13) in Lemma 2.4. Note that in the definition of layer

solution, (1.7) only assumes the existence of these limits when x = 0.

Every local minimizer of problem (1.1) is a stable solution. This follows im-

mediately from the fact that the quadratic form in the stability condition (1.8) is the

second variation of energy. Note that in the definition of local minimizer, the func-

tion ψ vanishes on the spherical part �+
R of the boundary of B+

R , but not necessarily

on the flat part �0
R . We also emphasize that, as stated in Definition 1.1(b), from

now on by local minimizer we mean an absolute minimizer u in every half-ball B+
R

among functions taking values in [−1, 1] and agreeing with u on the spherical part

�+
R of ∂ B+

R . Hence, the word local stands for “locally in the half-space” and not

for minimizer under small perturbations.

The following is our main result. It characterizes the nonlinearities f for which

problem (1.1) admits a layer solution in dimension 2. In addition, it contains a

result on the uniqueness of the layer solution. The proof of the theorem exploits

strongly certain relations between layer solutions and local minimizers.
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THEOREM 1.2 Let n = 2 and f be any C1,α function with 0 < α < 1. Let

G ′ = − f . Then:

(a) There exists a layer solution of (1.1) if and only if

(1.9) G ′(−1) = G ′(1) = 0 and G > G(−1) = G(1) in (−1, 1).

(b) If f ′(±1) < 0, then a layer solution of (1.1) is unique up to translations in

the y-variable.

(c) If f is odd and f ′(±1) < 0, then every layer solution u of (1.1) is odd in

y with respect to some half-axis. That is, u(x, y + b) = −u(x,−y + b) for some

b ∈ R.

Note that the equality G(−1) = G(1) in (1.9) is equivalent to∫ 1

−1

f (s)ds = 0,

which is usually rephrased as saying that f is balanced in (−1, 1).

Notice that while part (a) of the theorem applies to general f , parts (b) and (c)

require the additional hypothesis f ′(±1) < 0. In fact, as will be seen along the

proof, Theorem 1.2(b,c) also hold if, instead of f ′(±1) < 0, we make the weaker

hypothesis

f is nonincreasing in (−1,−τ) ∪ (τ, 1) for some τ ∈ (0, 1).

Note that G may have one or several local minima in (−1, 1) with higher energy

than −1 and 1 and still satisfy condition (1.9). Such G will therefore admit a layer

solution, and hence a solution with limits −1 and 1 at infinity. Instead, such a

layer solution will not exist if G has a minimum at some point in (−1, 1) with

the same height as −1 and 1. In particular, when G is periodic (as in the Peierls-

Nabarro problem f (u) = sin(cu)), there is no increasing solution connecting two

nonconsecutive absolute minima of G.

It is worth noting that (1.9) is also a necessary and sufficient condition for the

existence of an increasing solution of the interior reaction equation −u′′ = f (u) in

all of R with limits −1 and 1 at infinity. This fact can easily be seen by integrating

the equation. At the same time, we recall that −u′′ = f (u) may admit only three

types of nonconstant bounded solutions in all of R: monotone solutions (increasing

or decreasing), radially increasing or decreasing solutions (these are even functions

with respect to a point), and periodic solutions. By integrating the equation, one

can easily characterize the nonlinearities that admit a solution of any of these types.

We do not know if, for every bounded solution u of problem (1.1) in dimension

n = 2 (whatever the nonlinearity f is), u(0, · ) must be of one of the three types

above.

The necessity of the conditions on G in (1.9) for the existence of a layer solution

is a consequence of the following result:
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THEOREM 1.3 Let n = 2 and u be a layer solution of (1.1). Then G(−1) = G(1)

and

(1.10)

∫ x

0

1

2

{
u2

y(t, y) − u2
x(t, y)

}
dt < G(u(0, y)) − G(1)

for all x ≥ 0 and y ∈ R. In addition,
∫ +∞

0
|∇u(t, y)|2 dt < ∞ and

(1.11)

∫ +∞

0

1

2

{
u2

y(t, y) − u2
x(t, y)

}
dt = G(u(0, y)) − G(1) for all y ∈ R.

The proof of (1.10) is based on the maximum principle. The estimate is rem-

iniscent of the pointwise Modica inequality |∇u|2/2 ≤ G(u) if G ≥ 0, satisfied

by every bounded entire solution of the equation −�u = f (u) in R
n (see [30]).

The main difference is, of course, the nonlocal character of (1.10). Indeed, this is

a common fact throughout the paper: there are strong analogies between problem

(1.1) and the one just mentioned on interior reactions, while an important difference

is the nonlocal character of (1.1)—which often makes it more delicate. Problem

(1.1) could also be set in a precise way as a nonlocal or integrodifferential problem

in all of R
n−1 looking at it as an equation for the trace of u, or of uν , on ∂R

n
+. In

this paper we do not follow this approach.

The quantity appearing in (1.11) arises naturally when looking at problem (1.1)

for n = 2 in a formal way as a Hamiltonian system in infinite dimensions. Here

the time variable is τ = y, the position q is the function u( · , y) = u( · , τ ) in

the half-line {x ≥ 0}, and the momentum p = q ′ = uy( · , τ ). From the action

(that is, the energy functional (1.5) in PDE terminology), which we already know,

one finds the Lagrangian 1
2
‖p‖2

2 + W (q), with W (q) = 1
2
‖∂xq‖2

2 + G(q(0)). Its

Legendre transform with respect to p gives the Hamiltonian 1
2
‖p‖2

2 − W (q), which

is precisely the quantity involved in (1.11). One can easily check that its associated

Hamiltonian system {
q ′ = p

p′ = Wq

is formally problem (1.1). In this paper we do not use a possible rigorous Hamil-

tonian setting. However, (1.11) establishes that the Hamiltonian is a well-defined

and conserved quantity for every layer solution.

The proof of existence of a layer solution, as stated in Theorem 1.2(a), is rather

nontrivial and uses variational techniques. Only in the case of some odd nonlin-

earities f have we found a simpler proof, based on sub- and supersolutions. The

reason is that, by the expected odd symmetry of the solution, we can take the zero

level set of u to be a half-line. We then construct the solution in a quarter-plane

using a barrier, and finally we reflect it in odd manner. Note that, if f is not odd,

the zero level set of a solution is a nontrivial curve in the half-plane.

To prove existence of a layer solution (for f not necessarily odd), we construct

a sequence of local minimizers, each one increasing in y and defined in a half-

ball. The first difficulty is to take all the minimizers vanishing at the origin and, at



LAYER SOLUTIONS FOR BOUNDARY REACTIONS 1685

the same time, such that their corresponding half-balls fill in the whole half-plane.

Once this is accomplished, the limit is a local minimizer u of (1.1) vanishing at the

origin. The crucial point is then to deduce that the limits of u at infinity are ±1.

For this, we use the local minimality of u and the hypothesis in (1.9) stating that

every value in (−1, 1) has a higher potential energy than ±1 (see Proposition 3.2

for the precise variational result used to guarantee the limits ±1).

The following result states that every layer solution in R
n
+ is a local minimizer

and, in particular, a stable solution. This holds in any dimension n. Among other

necessary conditions on the nonlinearity f , the result also establishes that f must

be balanced for a layer solution in R
n
+ to exist.

THEOREM 1.4 Assume that problem (1.1) admits a layer solution u in R
n
+. Then

(a) u is a local minimizer of problem (1.1), and

(b) the potential G satisfies

(1.12) G ′(−1) = G ′(1) = 0 and G ≥ G(−1) = G(1) in (−1, 1).

It is an open question whether the strict inequality G > G(±1) in (−1, 1)

necessarily holds whenever a layer solution exists in R
n
+. We recall that this is the

case for n = 2, by Theorem 1.2(a).

The following result establishes the monotonicity of every stable solution in

R
2
+ and the two-dimensional symmetry of every stable solution in R

3
+. Since the

result holds for stable solutions, it also applies to local minimizers and, by Theo-

rem 1.4(a), to layer solutions.

THEOREM 1.5 Let u be a bounded stable solution of (1.1) in R
n
+.

(a) If n = 2, then either uy > 0 in R
2
+, uy < 0 in R

2
+, or u is identically

constant.

(b) If n = 3, then u is a function of two variables. More precisely,

u(x, y1, y2) = u0(x, (cos θ)y1 + (sin θ)y2) in R
3
+

for some angle θ and some solution u0(x, y) of the two-dimensional problem with

the same nonlinearity f , and with either ∂yu0 > 0 everywhere or u0 identically

constant.

A solution u in R
n
+ depending only on two variables (the x-variable and a

linear combination of the y-variables, as in Theorem 1.5(b)), is what we call a

two-dimensional solution. Theorem 1.5(b) is the analogue of the one-dimensional

symmetry result proven in [4] concerning a conjecture of De Giorgi for interior

reactions. Their proofs use the same method.

A simpler task consists of studying solutions u of (1.1) with |u| ≤ 1 and sat-

isfying the limits (1.7) uniformly in (y2, . . . , yn−1) ∈ R
n−2. Under the hypothesis

f ′(±1) < 0 and in every dimension n, we establish that these solutions depend

only on the x- and y1-variables and are monotone in y1 (see Theorem 5.1). Here,
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by the uniform limits hypothesis, the y-variable on which the solution finally de-

pends is known a priori, in contrast with the situation of Theorem 1.5(b). Our

result on uniform limits is the exact analogue of a result for interior reactions due

to Berestycki, Hamel, and Monneau [11]. Its proof uses the sliding method and

also leads to the uniqueness of the two-dimensional layer solution as stated in The-

orem 1.2(b).

For interior reactions, Barlow, Bass, and Gui [8] have used probabilistic tools

to prove a difficult one-dimensional symmetry result. Instead of the uniform lim-

its hypothesis, they make the weaker assumption that one level set is a globally

Lipschitz graph.

Theorem 1.5(a) is a partial converse in dimension two of Theorem 1.4(a) in the

sense that it establishes the monotonicity of stable solutions and, in particular, of

local minimizers. The remaining property for being a layer solution (i.e., having

limits ±1 at infinity) requires additional hypotheses on G. In Proposition 6.1 we

have collected several assumptions on G to guarantee that a stable solution, or a

local minimizer, is necessarily a layer solution.

The following result states the precise behavior at infinity of every two-dimen-

sional layer solution as well as of its kinetic and potential energies. Such decay

rates are nonlinear phenomena; that is, they are consequences of the boundary

condition uν = f (u) under hypothesis f ′(±1) < 0.

THEOREM 1.6 Assume that n = 2, f ′(±1) < 0, and that u is a layer solution of

(1.1). Then,

(1.13) 0 <
c

1 + y2
≤ uy(0, y) ≤ C

1 + y2
for all y ∈ R

and

(1.14) |∇u(x, y)| ≤ C

1 + |(x, y)| for all x ≥ 0, y ∈ R,

for some constants 0 < c ≤ C. Consequently, we have |±1 − u(0, y)| ≤ C/|y| as

y → ±∞,

(1.15)

∫
B+

R

|∇u|2 dH2 ≤ C log R for all R > 2

and

(1.16)

∫ +∞

−∞
{G(u(0, y)) − G(1)}dy < ∞.

In addition, for all real numbers m and p, we have

(1.17) lim
x→+∞

u(x, mx + p) = 2

π
arctan m.
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Moreover, for each s ∈ (−1, 1), the s-level set of u is a globally Lipschitz graph

{u = s} = {y = ϕs(x), x ≥ 0} with

(1.18) lim
x→+∞

ϕs(x)

x
= ms,

where ms is defined by s = (2/π) arctan ms.

All the previous decay and energy bounds for two-dimensional layer solutions

are optimal in the sense that they give the exact rates for the explicit solutions (1.4)

(see Section 2.1).

The different behavior of the kinetic and potential energies for large radii cre-

ates a technical difficulty in the study of (1.1) that is not present when studying

layer solutions for interior reactions

(1.19) −�u = f (u) in R
n.

The kinetic and potential energies in BR of any one-dimensional increasing solu-

tion of (1.19) coincide and behave as cRn−1 for large R, where c is a constant. In

addition, every layer solution u of (1.19) has total energy IBR
(u) in BR bounded

above and below by constants times Rn−1 for R > 1. This fact holds in every

dimension n. The upper bound has been proven by two different methods: a quite

elementary one in [4] and a variational one in [1] that uses the local minimality

property of layer solutions. The lower bound is a consequence of Modica’s mono-

tonicity formula [31] for IBR
(u)/Rn−1. It is an open question whether some type

of monotonicity formula concerning the energy of layer solutions of problem (1.1)

may hold.

It is also an open problem whether

(1.20)

∫
B+

R

|∇u|2 ≤ C Rn−2 log R

and

(1.21)

∫
�0

R

{G(u(0, y)) − G(1)}dy ≤ C Rn−2

for all R > 2, or the weaker estimate EB+
R
(u) ≤ C Rn−2 log R, holds for every

layer solution u of (1.1) in R
n
+ when n ≥ 4. Note that (1.20) and (1.21) hold

when n = 3 as a consequence of Theorems 1.5(b) and 1.6. Obviously, the bounds

also hold for any two-dimensional solution placed in R
n
+. In the present paper we

simply use the nonoptimal bound
∫

B+
R

|∇u|2 = ∫
∂ B+

R
uuν ≤ C Rn−1 (since uuν is

bounded), which allows us to prove two-dimensional symmetry up to n ≤ 3. Any

further development on two-dimensional symmetry of layer solutions of (1.1) will

probably need estimates (1.20) and (1.21) or close versions of them. One would

think that at least one of the proofs in [1] or [4] mentioned in the previous paragraph
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could be adapted to reactions on the boundary (see the proof of Proposition 3.2 for

a nonoptimal energy bound using the minimality property of u, as in [1]).

As a final remark, we note that if (1.20) were true for layer solutions in R
4
+, then

every layer solution for n = 4 would necessarily be a two-dimensional solution.

The proof of this would proceed as the proof for Theorem 1.5(b) for n = 3 (see

the end of Section 4 and Lemma 4.2). Now, (ϕσ)2 ≤ |∇u|2 would not satisfy

hypothesis (2.20) of the Liouville property of Lemma 2.6. However, one could

apply an improved Liouville theorem due to Moschini [32], in which hypothesis

(2.20) is replaced by the optimal growth condition
∫

B+
R
(ϕσ)2 ≤ C R2 log R.

The paper is organized as follows:

• In Section 2 we present the useful family of explicit layer solutions and

their corresponding nonlinearities. We also establish the C2,α regularity of weak

solutions of (1.1), a Harnack inequality, a Liouville theorem, some maximum prin-

ciples, and the existence of minimizers in bounded domains. All of these results

are related to problem (1.1).

• In Section 3 we prove the local minimality property of layer solutions and

its consequences, as stated in Theorem 1.4.

• In Section 4 we consider stable solutions and prove their monotonicity in

R
2
+ and their two-dimensional symmetry in R

3
+ (Theorem 1.5).

• Section 5 studies solutions that have uniform limits at infinity and estab-

lishes their monotonicity and two-dimensional symmetry (see Theorem 5.1). In

that section, we also prove the uniqueness of layer solution in R
2
+, Theorem 1.2(b).

• Section 6, where we always have n = 2, deals with the Modica-type esti-

mate and the Hamiltonian quantity of Theorem 1.3, the existence result in Theo-

rem 1.2, and the decay estimates of Theorem 1.6. This last section also contains

a result, Proposition 6.1, where we collect different hypotheses on G to guarantee

that every local minimizer, or every stable solution, is necessarily a layer solution.

2 Explicit Solutions and Preliminary Results

After Section 2.1, the reader may proceed to Section 3, since Sections 2.2

through 2.5 contain auxiliary results that can be read when needed in future sec-

tions.

2.1 Explicit Layer Solutions

Here we give the family of explicit layer solutions corresponding to the Peierls-

Nabarro nonlinearities; see [36]. Besides providing us with a useful initial guide

in the study of layer solutions, they will be used in the proof of the decay esti-

mate (1.13) for other nonlinearities f .

LEMMA 2.1 For a > 0, the functions

φa(x, y) = 2

π
arctan

y

x + a
, x ≥ 0, y ∈ R,
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are explicit solutions of (1.1) with n = 2 and

f (s) = fa(s) = 1

πa
sin(πs),

and they satisfy (1.6) and (1.7). Their y-derivatives

(2.1) φa
y (x, y) = 2

π

x + a

(x + a)2 + y2

satisfy

(2.2)




�φa
y = 0 in R

2
+

∂φa
y

∂ν
+ 1

a
φa

y ≥ 0 on ∂R
2
+.

The proof of this lemma is just a simple calculation. Note that φa is the imagi-

nary part of the analytic function (2/π) log(x + a + iy), and hence we have that

(2.3) |∇φa| = 2

π

1

|(x + a, y)| .

In particular,

(2.4)

∫
B+

R

|∇φa|2 dH2 � C log R for R  1

in the sense that, for some constant C , the difference of the right- and left-hand

sides is of smaller order than log R for R large. For the potential energy we have

(2.5)

∫ R

−R

Ga(φ
a(0, y))dy � C̃ for R  1

in the sense that Ga(φ
a(0, y)) is in fact integrable in all R.

Note that (2.1), (2.3), (2.4), and (2.5) show that estimates (1.13), (1.14), (1.15),

and (1.16) for an arbitrary layer solution and nonlinearity f are optimal.

2.2 Regularity of Weak Solutions

Lemma 2.3 below establishes that bounded weak solutions of (1.1) are C2,α

up to the boundary ∂R
n
+, and that ∇u and D2u belong to L∞(Rn

+). In addition,

statement (c) of the lemma applied with d(y) = − f ′(u(0, y)) states that bounded

weak solutions of the linearized problem are C1,α up to the boundary ∂R
n
+.

In this subsection we also consider solutions with limits in one direction y1

on ∂R
n
+. Lemma 2.4 establishes the existence of limits in the whole R

n
+ and the

convergence towards 0 as y1 → ±∞ for the gradient. In addition, we show that,

in the presence of such a solution, its limits must be zeroes of f .

Lemma 2.3 is concerned with Calderón-Zygmund and Schauder estimates for

linear Neumann boundary value problems. These estimates have been established

in the existing literature in different ways, such as from integral representations
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with the Green’s function for the Neumann problem—see, for example, theo-

rem 4.1 of [18] and section 6.7 of [24]—or from a Hilbert transform represen-

tation [35]. Here we deduce these bounds in a simple and fast way from the

well-known corresponding estimates for the Dirichlet problem that we apply to

the auxiliary function

(2.6) v(x, y) =
∫ x

0

u(t, y)dt.

To describe this in more detail, let us first give the following definition:

DEFINITION 2.2 Given R > 0 and a function h ∈ L1(�0
R), we say that u is a weak

solution of

(2.7)




�u = 0 in B+
R ⊂ R

n
+

∂u

∂ν
= h(y) on �0

R

if u ∈ H 1(B+
R ) and

(2.8)

∫
B+

R

∇u∇ξ −
∫
�0

R

h(y)ξ = 0

for all ξ ∈ C1(B+
R ) such that ξ ≡ 0 on �+

R .

Define now v by (2.6) for (x, y) ∈ B+
R . Assume first that u is a classical solution

of (2.7). Then, since (�v)x = 0, we have that �v is a function of y alone. Hence,

it is enough to compute it on {x = 0}. On {x = 0} we have �v = vxx = ux , and

hence v is a solution of the Dirichlet problem

(2.9)

{
�v(x, y) = −h(y) in B+

R

v(0, y) = 0 on �0
R.

It is easy to see that if u is a weak solution of (2.7), then v is a weak solution

of (2.9). The weak meaning of the Dirichlet condition on (2.9) is that v ∈ H 1(B+
R )

can be approximated in H 1(B+
R ) by a sequence of C1 functions vanishing in a

neighborhood of �0
R in B+

R ∪ �0
R . This is easily verified for the function v defined

by (2.6). To prove that the equation in (2.9) holds in the weak sense, we take a

C1 function η with compact support in B+
R . For every t > 0, we write (2.8) for

ξ(x, y) = η(x + t, y). Integrating these equalities with respect to t , we obtain the

weak sense for problem (2.9).

LEMMA 2.3 Let α ∈ (0, 1).

(a) Let R > 0 and u ∈ L∞(B+
4R) ∩ H 1(B+

4R) be a weak solution of


�u = 0 in B+
4R ⊂ R

n
+

∂u

∂ν
= f (u) on �0

4R.
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If f is bounded, then u ∈ W 1,p(B+
R ) for all p < ∞.

If f is Lipschitz, then u ∈ C1,β(B+
R ) for all β ∈ (0, 1).

If f is C1,α, then u ∈ C2,α(B+
R ) and

‖u‖
C2,α(B+

R )
≤ CR

for a constant CR depending only on n, α, and R and on upper bounds for ‖ f ‖C1,α

and ‖u‖L∞(B+
4R).

(b) If f is C1,α and u ∈ L∞(Rn
+) is weak solution of (1.1), then |∇u| ∈

L∞(Rn
+) and ‖D2u‖ ∈ L∞(Rn

+).

(c) Let R > 0 and ϕ ∈ L∞(B+
4R) ∩ H 1(B+

4R) be a weak solution of


�ϕ = 0 in B+
4R ⊂ R

n
+

∂ϕ

∂ν
+ d(y)ϕ = 0 on �0

4R.

If d ∈ Cα(�0
4R), then ϕ ∈ C1,α(B+

R ) and

‖ϕ‖
C1,α(B+

R )
≤ CR

for some constant CR that depends only on n, α, and R and on upper bounds for

‖ϕ‖L∞(B+
4R) and ‖d‖Cα(�0

4R).

PROOF: To prove statement (a), define v by (2.6) for (x, y) ∈ B+
4R . We know

that v is a weak solution of

(2.10)

{
�v(x, y) = − f (u(0, y)) in B+

4R

v(0, y) = 0 on �0
4R.

For every p < ∞, we use W 2,p boundary regularity for problem (2.10), which

follows easily from W 2,p interior regularity after considering the odd reflection of v

across {x = 0} (see the proof of lemma 9.12 of [24]). Since v(x, y) and f (u(0, y))

belong to L∞(B+
4R) ⊂ L p(B+

4R), we obtain that v ∈ W 2,p(B+
3R) ⊂ C1,β(B+

3R) (here,

given β ∈ (0, 1), we have chosen p large enough to have W 2,p(B+
3R) ⊂ C1,β(B+

3R)).

Hence, using vx = u, we get u ∈ W 1,p(B+
3R) ⊂ Cβ(B+

3R) and ‖u‖
Cβ(B+

3R)
≤ CR ,

for some constant CR depending only on n, β, R, ‖u‖L∞ , and ‖ f ‖L∞ .

Next, if f is Lipschitz, since v ∈ C1,β ⊂ Cβ in B+
3R and

‖ f (u(0, y))‖Cβ ≤ ‖ f ′‖L∞‖u‖Cβ ≤ CR,

boundary C2,β regularity for (2.10) (see [24, theorem 4.11]) leads to v ∈ C2,β(B+
2R)

and a corresponding estimate. In particular, ‖u‖
C1,β (B+

2R)
≤ CR , for some con-

stant CR depending only on n, β, R, ‖u‖L∞ , ‖ f ‖L∞ , and ‖ f ′‖L∞ .
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Let now f ∈ C1,α and consider the problem satisfied in the weak sense by

vyi
∈ C1,α(B+

2R), 1 ≤ i ≤ n − 1:

(2.11)

{
�vyi

(x, y) = − f ′(u(0, y))uyi
(0, y) in B+

2R

vyi
(0, y) = 0 on �0

2R.

Since

‖ f ′(u(0, y))uyi
(0, y)‖

Cα(B+
2R)

≤ ‖ f ‖C1 ‖u‖C1,α + ‖ f ‖C1,α ‖u‖1+α

C1 ≤ CR

and ‖vyi
‖

C1,α(B+
2R)

≤ CR , C2,α regularity for (2.11) along the boundary leads to

vyi
∈ C2,α(B+

R ) and a corresponding estimate. Hence uyi
= vxyi

∈ C1,α and

−uxx =
n−1∑
i=1

uyi yi
=

n−1∑
i=1

(vyi
)xyi

∈ Cα.

We conclude that u ∈ C2,α(B+
R ) and ‖u‖

C2,α(B+
R )

≤ CR for some constant CR

depending only on n, α, R, ‖u‖L∞ , and ‖ f ‖C1,α .

Next, to establish part (b), we use the previous estimates in every half-ball

B+
4 (0, b) centered at a point b ∈ R

n−1. We obtain uniform bounds (independent of

b); note that here R = 1. Therefore ∇u and D2u are bounded in R
n
+ ∩{0 ≤ x ≤ 1}.

These bounds, together with interior estimates for harmonic functions, give that ∇u

and D2u belong to L∞(Rn
+).

Finally, to prove part (c), we proceed as in the first two steps of part (a), applying

W 2,p and C2,α estimates to problem (2.9), where now u is replaced by ϕ in the

definition (2.6) of v, and −h(y) = d(y)ϕ(0, y). �

We now consider solutions with limits in one direction y1 on ∂R
n
+. We use

the previous estimates to prove the existence of limits in the whole R
n
+ and the

convergence towards 0 as y1 → ±∞ for the gradient. This will be useful in

several of our future arguments, for instance, to obtain energy estimates. We use

the notation B+
R (0, y) = (0, y) + B+

R = (0, y) + B+
R (0, 0), where y ∈ R

n−1.

LEMMA 2.4 Let u be a bounded solution of (1.1) such that

(2.12) lim
y1→±∞

u(0, y) = L± for every (y2, . . . , yn−1) ∈ R
n−2

for some constants L±. Then

f (L−) = f (L+) = 0.

Moreover, for every fixed R > 0 and (y2, . . . , yn−1) ∈ R
n−2, we have

(2.13) ‖u − L±‖L∞(B+
R (0,y)) → 0 as y1 → ±∞

and

(2.14) ‖∇u‖L∞(B+
R (0,y)) → 0 as y1 → ±∞.
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PROOF: Let η be a nonnegative C∞ function with compact support in B+
1 ∪�0

1

and with
∫
�0

1
η > 0. For R > 0, let ηR(x, y) = η(x/R, y/R). For t ∈ R, consider

ut(x, y) = u(x, y1 + t, y2, . . . , yn),

which is also a solution of (1.1). We multiply the problem for ut by ηR and integrate

by parts in B+
R . We get

0 =
∫

B+
R

�ut ηR =
∫
�0

R

f (ut)ηR −
∫

B+
R

∇ut∇ηR

=
∫
�0

R

f (ut)ηR +
∫
�0

R

ut∂xηR +
∫

B+
R

ut�ηR.

Note that the last two integrals are bounded by C Rn−2 uniformly in t . On the

other hand, by hypothesis (2.12) and the dominated convergence theorem, the

first integral
∫
�0

R
f (ut)ηR converges as t → +∞ to f (L+)Rn−1

∫
�0

1
η. Hence

| f (L+)| ≤ C/R for every R. Letting R → +∞, we conclude f (L+) = 0.

Similarly, one shows that f (L−) = 0.

To prove (2.13) and (2.14), which is equivalent to proving that

‖ut − L±‖L∞(B+
R (0,y)) + ‖∇ut‖L∞(B+

R (0,y)) → 0

as t → ±∞ for every fixed R and y ∈ R
n−1, we use a simple compactness

argument. Arguing by contradiction, assume that there exist R > 0, y ∈ R
n−1,

ε > 0, and a sequence tm → +∞ such that

(2.15) ‖utm − L+‖L∞(B+
R (0,y)) + ‖∇utm ‖L∞(B+

R (0,y)) ≥ ε

for every m. Since utm are all solutions of (1.1) uniformly bounded in all the half-

space independently of tm , Lemma 2.3 gives C2,α(B+
S ) estimates for utm uniform

in m for every S > 0. Hence, for a subsequence that we still denote by (utm ), we

have that utm converges as m → ∞ in C2
loc(R

n
+) to a bounded harmonic function

v ∈ C
2,α
loc (Rn

+). By hypothesis (2.12), we have that v ≡ L+ on ∂R
n
+. By the

maximum principle—see (2.26) in Section 2.4—we deduce that v ≡ L+ in all of

R
n
+. This contradicts (2.15), by the C1 convergence in compact sets of utm towards

v ≡ L+.

As a final remark, note that the previous compactness argument gives an alter-

native proof of the fact that f (L+) = 0, since the limit v ≡ L+ is a solution of

(1.1). �

2.3 A Harnack Inequality and a Liouville Theorem

The following Harnack inequality for linear Neumann problems will be useful

in the study of stable solutions of (1.1).
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LEMMA 2.5 Let ϕ ∈ C1(B+
4R) ∩ C2(B+

4R) be a nonnegative solution of


�ϕ = 0 in B+
4R ⊂ R

n
+

∂ϕ

∂ν
+ d(y)ϕ = 0 on �0

4R

where d is a bounded function in �0
4R. Then

(2.16) sup
B+

R

ϕ ≤ CR inf
B+

R

ϕ

for some constant CR depending only on n and R‖d‖L∞(�0
4R).

We give a short proof of this result using a reflection argument and a strong

tool: the De Giorgi–Nash–Moser Harnack inequality for elliptic equations with

bounded, measurable coefficients.

PROOF OF LEMMA 2.5: By scaling the variables (x, y), we may assume that

R = 1. Let

A = ‖d‖L∞(�0
4).

Throughout the rest of the proof, C will denote a positive constant depending only

on n and A.

Consider the function

ϕa(x, y) = eaxϕ(x, y)

for (x, y) ∈ B+
4 ∪ �0

4, where a is a given real number. A direct calculation gives

that ϕa is a nonnegative solution of{
−�ϕa + 2aϕa

x − a2ϕa = 0 in B+
4

−ϕa
x = −(a + d(y))ϕa on �0

4 .

We consider the even extension of ϕa across �0
4, defined by

ϕ̃a(x, y) = ϕa(−x, y) for (x, y) ∈ B4, x ≤ 0.

Note that ϕ̃a is a W 1,∞ function (that is, a Lipschitz function) in B4. Taking a =
A = ‖d‖L∞ , we have that ϕA

x ≥ 0 in �0
4, and hence ϕ̃A satisfies

(2.17) −�ϕ̃A + 2As(x)ϕ̃A
x − A2ϕ̃A ≤ 0 in B4

in the weak sense. Here s(x) is the bounded discontinuous function

s(x) =
{

−1 for x < 0

1 for x > 0.

Recall that the weak sense in which ϕ̃A is a subsolution of (2.17) is that∫
B4

∇ϕ̃A∇ξ + 2As(x)ϕ̃A
x ξ − A2ϕ̃Aξ ≤ 0
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for all C1 nonnegative function ξ with compact support in B4. The previous in-

equality holds since, for every such function ξ and every a ∈ R, we have∫
B4

∇ϕ̃a∇ξ + 2as(x)ϕ̃a
x ξ − a2ϕ̃aξ =

∫
�0

4

−2ϕa
x ξ,

and the last integral is nonpositive when a = A, since ϕA
x ≥ 0 in �0

4.

Next, taking a = −A we obtain ϕ−A
x ≤ 0 in �0

4, and arguing as before, we

deduce that ϕ̃−A ≥ 0 satisfies

(2.18) −�ϕ̃−A − 2As(x)ϕ̃−A
x − A2ϕ̃−A ≥ 0 in B4

in the weak sense.

Note that the two elliptic operators in (2.17) and (2.18) have bounded mea-

surable coefficients, and therefore we may use the De Giorgi–Nash–Moser theory.

The L∞ norms of the coefficients are controlled by the constant A2+2A, and hence

all constants from now on will depend only on n and A.

We choose an exponent p ∈ (1, n/(n − 2)). We first apply the local maximum

principle (see [24, theorem 8.17]) to ϕ̃A in B4, a subsolution of (2.17). We obtain

sup
B1

ϕ̃A ≤ C‖ϕ̃A‖L p(B2).

Next, we apply the weak Harnack inequality (see [24, theorem 8.18]) to ϕ̃−A in B4,

a nonnegative supersolution of (2.18). We get

‖ϕ̃−A‖L p(B2) ≤ C inf
B1

ϕ̃−A.

Since ϕ̃A ≤ e4Aϕ̃−A in B2, we can put together the last two displayed inequali-

ties. Using also that ϕ̃−A ≤ ϕ ≤ ϕ̃A in B+
1 , we conclude that (2.16) holds. �

The following Liouville theorem will be a key tool to establish the monotonicity

of stable solutions in R
2
+ and their two-dimensional symmetry in R

3
+. It is an

analogue of a Liouville theorem from [4], used in that paper to prove a conjecture

of De Giorgi for reactions in the interior when n = 3.

LEMMA 2.6 Let ϕ ∈ L∞
loc(R

n
+) be a positive function, not necessarily bounded in

all of R
n
+. Suppose that σ ∈ H 1

loc(R
n
+) satisfies

(2.19)




−σ div(ϕ2∇σ) ≤ 0 in R
n
+

σ
∂σ

∂ν
≤ 0 on ∂R

n
+

in the weak sense. Assume that, for every R > 1,

(2.20)

∫
B+

R

(ϕσ)2 ≤ C R2

for some constant C independent of R. Then σ is constant.
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PROOF: Let ζ be a C∞ function on R
+ such that 0 ≤ ζ ≤ 1 and

ζ =
{

1 for 0 ≤ t ≤ 1

0 for t ≥ 2.

For R > 1, let ζR(x, y) = ζ (|(x, y)|/R).

Multiplying (2.19) by ζ 2
R and integrating by parts in R

n
+, we obtain∫

R
n
+

ζ 2
Rϕ2|∇σ |2 ≤ −2

∫
R

n
+

ζRϕ2σ∇ζR∇σ

≤ 2

[ ∫
R

n
+∩{R<r<2R}

ζ 2
Rϕ2|∇σ |2

]1/2[ ∫
R

n
+

ϕ2σ 2|∇ζR|2
]1/2

≤ C

[ ∫
R

n
+∩{R<r<2R}

ζ 2
Rϕ2|∇σ |2

]1/2[
1

R2

∫
B+

2R

(ϕσ)2

]1/2

,

for some constant C independent of R. Using hypothesis (2.20), we infer that

(2.21)

∫
R

n
+

ζ 2
Rϕ2|∇σ |2 ≤ C

[ ∫
R

n
+∩{R<r<2R}

ζ 2
Rϕ2|∇σ |2

]1/2

,

again with C independent of R. This implies that
∫

R
n
+

ζ 2
R ϕ2|∇σ |2 ≤ C and, letting

R → ∞, we deduce
∫

R
n
+

ϕ2|∇σ |2 ≤ C . It follows that the right-hand side of (2.21)

tends to 0 as R → ∞, and therefore
∫

R
n
+

ϕ2|∇σ |2 = 0 by (2.21). We conclude that

σ is constant. �

2.4 Maximum Principles

Here we present several maximum principles related to problem (1.1). We as-

sume that v is a bounded function in R
n
+ satisfying

(2.22)




−�v ≥ 0 in R
n
+

∂v

∂ν
+ d(y)v ≥ 0 on ∂R

n
+.

For simplicity, we suppose that v is C2 in R
n
+ and C1 up to the boundary ∂R

n
+, and

that d is a bounded function.

We use a standard procedure in maximum principles and consider the new func-

tion

w = v

ψ
,
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where ψ is a certain harmonic function in R
n
+, continuous up to the boundary ∂R

n
+,

and with ψ > 0 in R
n
+. It is simple to verify that w satisfies

(2.23)




−�w − 2
∇ψ

ψ
· ∇w ≥ 0 in R

n
+

∂w

∂ν
+

(
d − ψx

ψ

)
w ≥ 0 on ∂R

n
+.

The following classical choice of ψ will be useful in several arguments. For a

given constant a > 1, let

ρ =
√

(x + a)2 + |y|2, r =
√

x2 + |y|2,
S = {(x, y) ∈ R

n : ρ = 1} be a unit sphere, µ > 0, and ϕ((x + a)/ρ, y/ρ) > 0

be the first eigenvalue and eigenfunction of the Laplace-Beltrami operator, with

Dirichlet boundary conditions, on the subset{
(x, y) ∈ R

n : ρ = 1, x + a > −1

2

}
of S. Choosing α > 0 to be the solution of µ = α(n − 2 + α), the function

(2.24) ψ(x, y) = ραϕ

(
x + a

ρ
,

y

ρ

)

is harmonic and positive in {(x + a)/ρ > − 1
2
}. In particular, ψ is a positive

harmonic function in R
n
+. Note that if x ≥ 0, then (x + a)/ρ ≥ 0. In addition,

ϕ ≥ c > 0 in the hemisphere {(x +a)/ρ ≥ 0} for a positive constant c independent

of a. Hence, we have that

(2.25) ψ ≥ cρα ≥ crα in R
n
+

for a positive constant c independent of a.

We can now recall and prove a simple Phragmen-Lindelöf-type result. If v is a

bounded superharmonic function in R
n
+ that is continuous up to the boundary ∂R

n
+,

then

(2.26) inf
R

n
+

v = inf
∂R

n
+
v.

Indeed, subtracting a constant from v, we may assume that v is nonnegative on

∂R
n
+, and we need to show that v ≥ 0 in R

n
+. For this, consider w = v/ψ , where

ψ is given by (2.24) with, for instance, a = 2. Note that w has the same sign as v.

In addition, by (2.25), w(x, y) → 0 as r = |(x, y)| → ∞, (x, y) ∈ R
n
+. Hence, if

w were negative at some point in R
n
+, its negative minimum would be achieved at

some point of R
n
+. This contradicts the first inequality in (2.23) satisfied by w.

If u is a layer solution of (1.1), we can apply the previous maximum princi-

ple to uy1
, which is bounded, harmonic, and continuous up to the boundary by

Lemma 2.3. We conclude that every layer solution satisfies

(2.27) uy1
> 0 in R

n
+.
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The following maximum principle is extremely simple:

LEMMA 2.7 Let n = 2, and v be a bounded function in R
2
+ satisfying (2.22) and

(2.28) v(0, y) → 0 as |y| → ∞.

Assume that there exists a nonempty set H ⊂ R such that v(0, y) > 0 for y ∈ H

and d(y) ≥ 0 for y �∈ H. Then, v > 0 in R
2
+.

PROOF: Suppose that inf
R

2+ v = infy∈R v(0, y) < 0. Then, by assumption

(2.28), this infimum must be achieved at some point (0, y0). We necessarily have

y0 �∈ H . Since v is not constant (v is positive in H and negative in (0, y0)),

Hopf’s boundary lemma gives −vx(0, y0) < 0, a contradiction with the boundary

inequality since d(y0) ≥ 0 and v(0, y0) < 0.

Hence, v ≥ 0 in R
2
+. Now, since v �≡ 0, Hopf’s boundary lemma gives v > 0

in R
2
+. �

Next, we present two maximum principles where we assume that the coefficient

d(y) is greater than a positive constant in all or part of the boundary ∂R
n
+.

LEMMA 2.8 Let n = 2, and v be a bounded function in R
2
+ satisfying (2.22).

Assume that for some ε > 0, d(y) ≥ ε for all y ∈ R. Then v > 0 in R
2
+ unless

v ≡ 0.

PROOF: For a > 1 let us define ρ =
√

(x + a)2 + y2 and the auxiliary function

w = v/ log ρ. Then, w has the same sign as v, tends to 0 at infinity, and satisfies


−�w − 2
∇ρ

ρ log ρ
· ∇w ≥ 0 in R

2
+

∂w

∂ν
+

(
d − ρx

ρ log ρ

)
w ≥ 0 on ∂R

2
+

by (2.23). If a is chosen large enough, depending on ε, then on ∂R
2
+ we have

that d − ρx/(ρ log ρ) ≥ 0. Hence, the result follows by the application of Hopf’s

maximum principle to a possible nonpositive global minimum of w. �

Our last maximum principle is valid in all dimensions n ≥ 2.

LEMMA 2.9 Let v be a bounded function in R
n
+ satisfying (2.22). Assume that

there exist a set H ⊂ R
n−1 (possibly empty) and a constant ε > 0 such that

v(0, y) > 0 for y ∈ H and d(y) ≥ ε for y �∈ H.

Then v > 0 in R
n
+ unless v ≡ 0.

PROOF: For some a > 1 to be chosen later, consider the function ψ defined in

(2.24). Then, w = v/ψ has the same sign as v and satisfies (2.23). Note that, by

(2.25), w(x, y) → 0 as r = |(x, y)| → ∞, (x, y) ∈ R
n
+.
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Moreover, ∣∣∣∣ψx

ψ
(x, y)

∣∣∣∣ ≤ |ψx(x, y)|
cρα

≤ C

ρ
≤ C

a
if x ≥ 0

for some constant C independent of a. Recall that, by hypothesis, the coefficient

d(y) satisfies d ≥ ε in ∂R
n
+ \ H . Hence, taking a large enough, we have that

|ψx/ψ | ≤ ε in R
n
+ and, as a consequence,

(2.29) −wx + d̃(y)w ≥ 0 and d̃(y) ≥ 0 on ∂R
n
+ \ H,

where d̃ = d − ψx/ψ .

Finally, if w ≤ 0 somewhere in R
n
+, then w would achieve a nonpositive global

minimum at some point (0, y0) with y0 �∈ H . At this point, Hopf’s boundary

lemma gives a contradiction to (2.29). �

2.5 Minimizers of the Dirichlet-Neumann Problem

in Bounded Domains

Let � ⊂ R
n
+ be a bounded domain. We define the following subsets of ∂�:

∂0� = {(0, y) ∈ ∂R
n
+ : B+

ε (0, y) ⊂ � for some ε > 0}(2.30)

and

∂+� = ∂� ∩ R
n
+.(2.31)

In future sections we will use the existence of an absolute minimizer of the en-

ergy in some bounded domains � ⊂ R
n
+ with given Dirichlet boundary conditions

on ∂+�. We will need this existence result both for � a half-ball in R
n
+ and for

� a rectangle in R
2
+. For the sake of completeness, in this subsection we show

the existence of such minimizer. We also study its global regularity (for certain

Dirichlet boundary values) in the case of half-balls and rectangles.

Let u be a C1(�) function with |u| ≤ 1. We consider the energy functional

(2.32) E�(v) =
∫
�

1

2
|∇v|2 +

∫
∂0�

G(v)

in the class

Cu(�) = {v ∈ H 1(�) : −1 ≤ v ≤ 1 a.e. in � and v ≡ u on ∂+�},
which clearly contains u and hence is nonempty. This class is a closed convex

subset of the affine space

(2.33) Hu(�) = {v ∈ H 1(�) : v ≡ u on ∂+�},
where the last condition should be understood to mean that v − u vanishes on ∂+�

in the weak sense. That is, Hu(�) is the set of functions v ∈ H 1(�) such that

v − u belongs to the closure in H 1(�) of C1(�) functions with compact support

in � ∪ ∂0�.
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LEMMA 2.10 Let � ⊂ R
n
+ be a bounded Lipschitz domain. Let u be a C1(�)

function with |u| ≤ 1. Assume that

(2.34) f (1) ≤ 0 ≤ f (−1).

Then the functional E� admits an absolute minimizer w in Cu(�). In particular, w

is a weak solution of

(2.35)




�w = 0 in �

∂w

∂ν
= f (w) on ∂0�

w = u on ∂+�.

Moreover, w is a stable solution of (2.35) in the sense that

(2.36)

∫
�

|∇ξ |2 −
∫

∂0�

f ′(w)ξ 2 ≥ 0

for every ξ ∈ H 1(�) such that ξ ≡ 0 on ∂+� in the weak sense.

Note that the solution w satisfies the Neumann boundary condition in (2.35) in

the classical sense. This follows from the definition of ∂0� and from the regularity

result of Lemma 2.3 applied in small half-balls centered at points on ∂0� (see more

details at the end of the following proof).

Hypothesis (2.34) simply states that −1 and 1 are a subsolution and a superso-

lution, respectively, of (2.35).

PROOF OF LEMMA 2.10: It is useful to consider the following continuous ex-

tension f̃ of f outside [−1, 1]:

f̃ (t) =




f (−1) if s ≤ −1

f (s) if − 1 ≤ s ≤ 1

f (1) if 1 ≤ s.

Let

G̃(s) = −
∫ s

0

f̃ ,

and consider the new functional

Ẽ�(v) =
∫
�

1

2
|∇v|2 +

∫
∂0�

G̃(v)

in the affine space Hu(�) defined by (2.33).

Note that G̃ = G in [−1, 1] up to an additive constant. Therefore, any min-

imizer w of Ẽ� in Hu(�) such that −1 ≤ w ≤ 1 is also a minimizer of E� in

Cu(�).

To show that Ẽ� admits a minimizer in Hu(�), we first recall that the inclusion

Hu(�) � L2(∂0�) is compact. Indeed, let v ∈ Hu(�). Since v − u ≡ 0 on ∂+�,
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we can extend v − u to be identically 0 in R
n
+ \ �, and we have v − u ∈ H 1(Rn

+).

We have∫
∂0�

|v(0, y) − u(0, y)|2 dy = −
∫

R
n
+

∂x(|v − u|2) = −2

∫
R

n
+

(v − u)∂x(v − u)

≤ C‖v − u‖L2(�)‖v − u‖H1(�).

Now, the compactness of the inclusion

Hu(�) � L2(∂0�)

follows from the well-known fact that, since � is Lipschitz, H 1(�) � L2(�) is

compact.

Now, since Hu(�) ⊂ L2(∂0�) and G̃ has linear growth at infinity, it follows

that Ẽ� is well-defined, bounded below, and coercive in Hu(�). Hence, using the

compactness of the inclusion Hu(�) � L2(∂0�), taking a minimizing sequence in

Hu(�) and a subsequence convergent in L2(∂0�), we conclude that Ẽ� admits an

absolute minimizer w in Hu(�).

Since f̃ is a continuous function, Ẽ is a C1 functional in Hu(�). Making

first- and second-order variations of Ẽ at the minimum w, we obtain that w is a

weak solution of (2.35) that satisfies (2.36), with f and f ′ replaced by f̃ and f̃ ′,
respectively, in both (2.35) and (2.36).

Therefore, it only remains to show that −1 ≤ w ≤ 1 a.e. in �. To do this, we

simply use that −1 and 1 are natural barriers for (2.35). That is, we use that −1 and

1 are, respectively, a subsolution and a supersolution of (2.35) due to hypothesis

(2.34). We proceed as follows: We use that the first variation of Ẽ� at w in the

direction (w − 1)+ (the positive part of w − 1) is 0. Since |w| = |u| ≤ 1 on ∂+�

and hence (w − 1)+ vanishes on ∂+�, we have that w + ε(w − 1)+ ∈ Hu(�) for

every ε. We deduce

0 =
∫
�

∇w∇(w − 1)+ −
∫

∂0�

f̃ (w)(w − 1)+

=
∫

�∩{w≥1}

|∇(w − 1)+|2 −
∫

∂0�∩{w≥1}

f (1)(w − 1)+ ≥
∫
�

|∇(w − 1)+|2,

where we have used that f̃ (s) = f (1) for s ≥ 1 and that f (1) ≤ 0 by hypothesis.

We conclude that (w − 1)+ is constant and hence identically 0. Therefore, w ≤ 1

a.e.; the inequality w ≥ −1 can be proven in the same way by using f (−1) ≥ 0.

Finally, we point out that the two first equalities in (2.35) are satisfied in the

classical sense. Indeed, we first consider the first variation of Ẽ at w with a per-

turbation compactly supported in �. We obtain that w is harmonic in �. Next,

given a point on ∂0�, we consider a small half-ball B+
ε centered at this point and

contained in �. By the regularity result of Lemma 2.3, we know that w is C2,α

in B+
ε . We now consider perturbations vanishing on �+

ε . Integrating by parts and
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using that w is harmonic, we find that −wx − f (w) = −wx − f̃ (w) ≡ 0 on �0
ε in

the classical sense. �

In future sections we will need to know further regularity for the weak solu-

tion w of (2.35) in the case when � is a half-ball in R
n
+ or a rectangle in R

2
+ and

for certain Dirichlet boundary values u. The main point is to have regularity up

to the corners ∂+� ∩ ∂R
n
+, where the Dirichlet condition changes to a Neumann

condition. Even if more general results could be established, to simplify the proof

we state the regularity result in the particular domains just mentioned.

LEMMA 2.11 Let f ∈ C1,α for some α ∈ (0, 1), and w ∈ H 1(�) ∩ L∞(�) be a

weak solution of (2.35).

(a) Assume that � = B+
R ⊂ R

n
+ and that u is a bounded solution of prob-

lem (1.1) in all of R
n
+. Then w ∈ C2,α(�).

(b) Assume that � = (0, a) × (b−, b+) ⊂ R
2
+, f (−1) = f (1) = 0, and that

u = u(y) is a C2([b−, b+]) function with u(b−) = −1 and u(b+) = 1. Then one

has that w ∈ W 2,p(�) ∩ C1,β(�) for all p < ∞ and all β ∈ (0, 1). In addition,

for every ε > 0, one has w ∈ C2,α([0, a − ε] × [b−, b+]).

In case (b), if we assume in addition u ∈ C2,α([b−, b+]) and the compatibility

conditions uyy(b
−) = uyy(b

+) = 0, we then have w ∈ C2,α(�).

PROOF OF LEMMA 2.11:

(a) The function v = w − u is a weak solution of


�v = 0 in B+
R

∂v

∂ν
= h(y) on �0

R

v = 0 on �+
R ,

where h(y) = f (w(0, y)) − f (u(0, y)). Consider the odd reflection of v through

�+
R given by minus its Kelvin transform

v(x, y) = − r2−n

R2−n
v

(
R2 (x, y)

r2

)
for (x, y) ∈ R

n
+ \ B+

R ,

where r = |(x, y)|. Since u is C2,α in R
n
+ by Lemma 2.3, it suffices to show that v

is C2,α in every half-ball of R
n
+.

Away from any neighborhood of {x = 0, |y| = R} in B+
R , we know that w,

and hence v, are C2,α. This follows from Lemma 2.3 applied at points on �0
R , and

from boundary regularity for harmonic functions with a smooth Dirichlet boundary

condition on {x > 0, |(x, y)| = R}. In addition, v is harmonic in R
n
+ \ B+

R , and

the normal derivatives of v on �+
R from both sides coincide. Hence, away from any
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neighborhood of {x = 0, |y| = R} in R
n
+, the extended function v satisfies

(2.37)




�v = 0 in R
n
+,

∂v

∂ν
= h̃(y) on ∂R

n
+,

in the classical sense, where

(2.38) h̃(y) =
{

h(y) = f (w(0, y)) − f (u(0, y)) if |y| < R

−Rn|y|−nh(R2 y/|y|2) if |y| > R.

We deduce that

(2.39)

∫
R

n
+

∇v∇ξ −
∫

∂R
n
+

h̃(y)ξ = 0

for all ξ ∈ C1 with compact support in R
n
+ and vanishing in a neighborhood in R

n
+

of {x = 0, |y| = R}.
We claim that (2.39) also holds for every ξ ∈ C1 with compact support in R

n
+,

and hence v is a weak solution of (2.37). This is easily seen by writing (2.39) with

ξ replaced by ξ̃ = ξ(x, y){1−η((|y|−R)/ε)η(x/ε)}, where η is a smooth function

with η(s) ≡ 1 for |s| ≤ 1
2

and η(s) ≡ 0 for |s| ≥ 1. Since |∇ ξ̃ | ≤ C/ε on the

set {ξ̃ �≡ ξ}, which has measure not larger than Cε2, letting ε → 0 we deduce the

claim.

Now, we proceed as in the method of the proof of Lemma 2.3. We consider

the auxiliary function V (x, y) = ∫ x

0
v(t, y)dt and the Dirichlet problem that it

solves. First, since h̃ is a bounded function, we obtain that v is W 1,p for all p < ∞
and hence is Cα in every half-ball of R

n
+. We deduce that w ∈ Cα(B+

R ) and, in

particular, w ≡ u in the classical sense on {x = 0, |y| = R}. It follows that h is

Cα on {x = 0, |y| ≤ R} and that h ≡ 0 on {x = 0, |y| = R}. Using (2.38), we

easily deduce that h̃ is a Cα function on ∂R
n
+. Now Schauder estimates give that v,

and hence w, are C1,α in every half-ball of R
n
+.

As a consequence, we obtain that h ∈ C1,α(B+
R ). Using the form (2.38) of the

extension h̃, we deduce that h̃ is C1,α in every half-ball of R
n
+. Hence, considering

the Dirichlet problem satisfied by each tangential derivative Vyi
, as in the proof of

Lemma 2.3, we conclude that v ∈ C2,α in every half-ball of R
n
+.

(b) We only need to study the regularity of w in a neighborhood of each of the

four corners of the rectangle. It suffices to consider the corners on {y = b+}; the

other two are treated in the same way. Recall that w is smooth and identically 1 on

{0 < x < a, y = b+}. We consider the “odd” reflection of w across this segment,

given by w(x, y) = 2 − w(x, 2b+ − y) for b+ < y < 2b+ − b−. As in case (a), it
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is easy to check that we obtain a weak solution of


�w = 0 in (0, a) × (b−, 2b+ − b−)
∂w

∂ν
= h̃(y) on {x = 0, b− < y < 2b+ − b−}

w = ũ(y) on {x = a, b− < y < 2b+ − b−},

where

h̃(y) =
{

f (w(0, y)) if b− < y < b+

− f (w(0, 2b+ − y)) if b+ < y < 2b+ − b−,

and ũ denotes the “odd” reflection of u through {y = b+}.
To obtain regularity at (a, b+), we simply consider the function w − ũ, which

vanishes on {x = a, b− < y < 2b+ − b−} and has bounded Laplacian on the left

of this segment, since the reflected ũ is a W 2,∞ function. Boundary regularity for

the Dirichlet problem gives that w − ũ, and hence w, are W 2,p for all p < ∞, and

in particular C1,β for all β ∈ (0, 1) in a neighborhood of (a, b+) in {x ≤ a}. If,

in addition, u ∈ C2,α([b−, b+]) and uyy(b
−) = uyy(b

+) = 0, then the reflected

function ũ is C2,α, and hence its Laplacian is Cα. We obtain in this case that w is

C2,α in a neighborhood of (a, b+) in {x ≤ a}.
To deal with the left corner (0, b+), we proceed as in the proof of Lemma 2.3.

We consider the function W (x, y) = ∫ x

0
w(t, y)dt and the Dirichlet problem that

it solves. Since h̃ is bounded, we first obtain that w is Cα up to {x = 0, b− <

y < 2b+ − b−}. This leads to w(0, b+) = 1 in the classical sense, and using the

hypothesis that f (1) = 0, we deduce that h̃ is a Cα function. Schauder estimates

now give that w is C1,α up to {x = 0, b− < y < 2b+ − b−}.
As a consequence, we obtain that f (w(0, y)) is C1,α((b−, b+]). Hence, its ex-

tension h̃ is C1,α(b−, 2b+−b−). Hence, considering the Dirichlet problem satisfied

by each tangential derivative Wyi
as in the proof of Lemma 2.3, we conclude that

w ∈ C2,α in a neighborhood of (0, b+) in {x ≥ 0}. �

3 Layer Solutions: Local Minimality, Consequences,

and the Proof of Theorem 1.4

The fact that, for reactions in the interior, layer solutions are necessarily local

minimizers was recently found in [1]. The proof in that paper used the variational

theory of calibrations. An alternative, more elementary proof was later given in

[16, 25]. Here we follow this simpler proof, adapted to reactions on the boundary.

Its key point lies in the following uniqueness result for the Dirichlet-Neumann

problem with Dirichlet boundary conditions equal to a certain layer.
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LEMMA 3.1 Let u be a layer solution of (1.1). Then, for every R > 0, u is the

unique weak solution of the problem

(3.1)




�w = 0 in B+
R ⊂ R

n
+

−1 ≤ w ≤ 1 in B+
R

∂w

∂ν
= f (w) on �0

R

w = u on �+
R .

We emphasize that the previous lemma makes no assumption on the nonlinear-

ity f and that uniqueness is a consequence of the presence in the whole half-space

of a layer solution.

The local minimality of every layer solution u follows automatically from the

previous lemma, since by uniqueness u must agree in B+
R with the absolute mini-

mizer w of problem (3.1).

PROOF OF LEMMA 3.1: Since u is a layer solution, we know by Lemma 2.4

that

(3.2) f (−1) = f (1) = 0.

Let w be a weak solution of (3.1). By Lemma 2.11(a), we know that w ∈
C2(B+

R ). Hence, by Hopf’s boundary lemma and (3.2), we deduce that

−1 < w < 1 in B+
R ;

recall that w cannot be identically −1 or 1 since it agrees with u ∈ (−1, 1) on �+
R .

To establish w ≡ u, we first prove that w ≤ u in B+
R . For this, we slide u in the

y1-direction. That is, for t > 0, consider

ut(x, y1, y2, . . . , yn−1) = u(x, y1 + t, y2, . . . , yn−1) for (x, y) ∈ B+
R .

Note that ut → 1 as t → +∞ uniformly in B+
R , as a consequence of (2.13).

Moreover, −1 < w < 1 is a continuous function in the compact set B+
R . We

deduce that w < ut in B+
R for t > 0 large enough.

Next, we claim that the same inequality is true for all t > 0. This will conclude

the proof of w ≤ u, by letting t > 0 tend to 0.

Note that if w < ut holds for some t0, then it also holds for every t ≥ t0. Hence,

we suppose that s > 0 is the infimum of those t > 0 such that w < ut in B+
R , and

we need to arrive at a contradiction. We have that w ≤ us in B+
R . At the same time,

on �+
R we have w = u < us , since s > 0. In particular, w �≡ us .

Since s is supposed to be such an infimum value of the parameter t , we deduce

that w = us at some point (x0, y0) in B+
R ∪ �0

R . But since w ≤ us in B+
R and since

both w and us are solutions of the same nonlinear boundary value problem, Hopf’s

maximum principle implies that w ≡ us , a contradiction. Here we have used the

strong maximum principle if x0 > 0 and Hopf’s boundary lemma if x0 = 0.
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To prove the reversed inequality, u ≤ w in �+, we use the same sliding method

but now with t < 0. �

The following result, which we prove with variational techniques, will be useful

in several future arguments. For instance, we will use it to establish existence of a

two-dimensional layer solution when proving Theorem 1.2(a).

PROPOSITION 3.2 Let u be a solution of (1.1) such that |u| < 1 and

lim
y1→±∞

u(0, y) = L± for every (y2, . . . , yn−1) ∈ R
n−2

for some constants L− and L+ (that could be equal). Assume that u is a local

minimizer relative to perturbations in [−1, 1]. Then

G ≥ G(L−) = G(L+) in [−1, 1].
PROOF: It suffices to show that G ≥ G(L−) and G ≥ G(L+) in [−1, 1]. It

then follows that G(L−) = G(L+). By symmetry, it is enough to establish that

G ≥ G(L+) in [−1, 1]. Note that this inequality, as well as the notion of local

minimizer, is independent of adding a constant to G. Hence, we may assume that

G(s) = 0 < G(L+) for some s ∈ [−1, 1],
and we need to obtain a contradiction.

Since G(L+) > 0, we have that G(t) ≥ ε > 0 for t in a neighborhood of L+.

Consider the points (0, b, 0) = (0, b, 0, . . . , 0) on ∂R
n
+. Since for R > 0,

EB+
R (0,b,0)(u) ≥

∫
�0

R(b,0)

G(u(0, y))dy

and u(0, y) −→
y1→+∞

L+, we deduce

(3.3) lim
b→+∞

EB+
R (0,b,0)(u) ≥ cεRn−1 for all R > 0.

Recall that the definition of the energy functional E� in a bounded set � was given

in (2.32). Throughout the proof, c and C denote positive constants independent of

R and b.

The lower bound (3.3) will be a contradiction with an upper bound for the

energy of u that we obtain using the local minimality of u, as follows:

For R > 2, consider

ξR(x, y) =



log R − log r

log R − log(R − R1/2)
if r = |(x, y)| ∈ [R − R1/2, R]

1 if r ≤ R − R1/2.

Note that ξR is Lipschitz-continuous in B+
R , 0 ≤ ξR ≤ 1, and ξR ≡ 0 on �+

R .

Consider

ξR,b(x, y) = ξR(x, y1 − b, y2, . . . , yn−1).
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We have that ξR,b ≡ 0 on �+
R (0, b, 0). Hence, the comparison function

vR,b = (1 − ξR,b)u + ξR,bs

takes values in [−1, 1] and agrees with u on �+
R (0, b, 0). Note also that

(3.4) vR,b ≡ s in B+
R−R1/2(0, b, 0).

Let S > 0 be large enough such that B+
R (0, b, 0) ⊂ B+

S = B+
S (0), and ex-

tend vR,b to be identically u outside B+
R (0, b, 0). Clearly we can approximate ξR

in H 1(B+
R ) by C1 functions taking values in [0, 1] and with compact support in

B+
R ∪ �0

R . Therefore, vR,b = u + ξR,b(s − u) can be approximated in H 1(B+
S ) by

C1 functions taking values in [−1, 1] and such that vR,b − u has compact support

in B+
S ∪ �0

S . Hence, since u is a local minimizer, we deduce EB+
S
(u) ≤ EB+

S
(vR,b).

This is equivalent to EB+
R (0,b,0)(u) ≤ EB+

R (0,b,0)(vR,b) since u and vR,b agree

outside B+
R (0, b, 0). Using also (3.4) and that G(s) = 0, we obtain

EB+
R (0,b,0)(u)

≤ EB+
R (0,b,0)(vR,b)

=
∫

B+
R (0,b,0)\B+

R−R1/2 (0,b,0)

1

2
|∇vR,b|2 dx dy +

∫
�0

R(b,0)\�0

R−R1/2 (b,0)

G(vR,b(0, y))dy

≤
∫

B+
R (0,b,0)\B+

R−R1/2 (0,b,0)

1

2
|∇vR,b|2 dx dy + C{Rn−1 − (R − R1/2)n−1}

≤
∫

B+
R (0,b,0)\B+

R−R1/2 (0,b,0)

1

2
|∇vR,b|2 dx dy + C Rn−3/2.

Next, we have that ∇vR,b = (1 − ξR,b)∇u + (s − u)∇ξR,b and hence |∇vR,b| ≤
2(|∇u| + |∇ξR,b|). Inserting this bound in the previous estimate for the energy, we

deduce

lim
b→+∞

EB+
R (0,b,0)(u)

≤ lim
b→+∞

C

{
Rn‖∇u‖2

L∞(B+
R (0,b,0))

+
∫

B+
R (0,b,0)\B+

R−R1/2 (0,b,0)

|∇ξR,b|2 dxdy + Rn−3/2

}

≤ C

∫
B+

R \B+
R−R1/2

|∇ξR|2 dx dy + C Rn−3/2,
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where we have used (2.14) from Lemma 2.4.

We have that

|∇ξR| = {log R − log(R − R1/2)}−1r−1

in B+
R \ B+

R−R1/2 , and hence

∫
B+

R \B+
R−R1/2

|∇ξR|2 dx dy = C

{log R − log(R − R1/2)}2

R∫
R−R1/2

1

r2
rn−1 dr.

Note that
∫ R

R−R1/2 rn−3 dr is bounded by C{log R − log(R − R1/2)} if n = 2, and

by C Rn−5/2 if n ≥ 3. Using that

log R − log(R − R1/2) = log
R

R − R1/2
= − log(1 − R−1/2) ≥ R−1/2,

we finally arrive at

lim
b→+∞

EB+
R (0,b,0)(u) ≤ C Rn−3/2

for every dimension n. For R large enough, this contradicts (3.3). �

We can now give the following proof:

PROOF OF THEOREM 1.4: To prove statement (a), let u be a layer solution of

(1.1) and let R > 0. By Lemma 2.10, we know that there exists an absolute min-

imizer w of the energy EB+
R

in the set Cu(B+
R ) defined in Lemma 2.10. Moreover,

w is a weak solution of (3.1) and hence, by Lemma 3.1, w must agree with u.

Therefore, u is the absolute minimizer of EB+
R

in Cu(B+
R ). Since R is arbitrary, we

conclude that u is a local minimizer of problem (1.1) relative to perturbations in

[−1, 1] in the sense of Definition 1.1.

Now we establish part (b). We are assuming that problem (1.1) admits a layer

solution u. By Lemma 2.4, we deduce that f (−1) = f (1) = 0. This is the first

statement of (1.12). Next, we already know that u is a local minimizer relative to

perturbations in [−1, 1]. Hence we can apply Proposition 3.2 and, since L± = ±1

here, its conclusion gives the second statement of (1.12). �

4 Stable Solutions: Monotonicity, Two-Dimensional Symmetry,

and the Proof of Theorem 1.5

To prove Theorem 1.5, we need two lemmas. The following one, applied with

d(y) = − f ′(u(0, y)), establishes an alternative criterion for a solution u of (1.1)

to be stable.

LEMMA 4.1 Let d be a bounded, Hölder-continuous function on ∂R
n
+. Then

(4.1)

∫
R

n
+

|∇ξ |2 +
∫

∂R
n
+

d(y)ξ 2 ≥ 0
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for every function ξ ∈ C1(Rn
+) with compact support in R

n
+ if and only if there

exists a function ϕ ∈ C1
loc(R

n
+) ∩ C2(Rn

+) such that ϕ > 0 in R
n
+ and

(4.2)




�ϕ = 0 in R
n
+

∂ϕ

∂ν
+ d(y)ϕ = 0 on ∂R

n
+.

PROOF: First, assume the existence of a positive solution ϕ of (4.2), as in the

statement of the lemma. Let ξ ∈ C1(Rn
+) have compact support in R

n
+. Multiplying

�ϕ = 0 by ξ 2/ϕ, integrating by parts, and using the Cauchy-Schwarz inequality,

one can easily obtain (4.1).

The other implication is the one we will need in the sequel, and it is more

delicate to prove. For the sake of completeness, we give all details of the proof—

which are standard by now in the case of reactions in the interior.

Assume that (4.1) holds for every ξ ∈ C1(Rn
+) with compact support in R

n
+.

For every R > 0, let λR be the infimum of the quadratic form

(4.3) Q R(ξ) =
∫

B+
R

|∇ξ |2 +
∫
�0

R

d(y)ξ 2

among functions in the class SR , defined by

SR =
{
ξ ∈ H 1(B+

R ) : ξ ≡ 0 on �+
R and

∫
�0

R

ξ 2 = 1

}

⊂ H0(B+
R ) = {

ξ ∈ H 1(B+
R ) : ξ ≡ 0 on �+

R

}
.

By our assumption, λR ≥ 0 for every R. By definition it is clear that λR is a

nonincreasing function of R. Next, we show that λR is indeed a decreasing function

of R. As a consequence, we deduce that λR > 0 for every R, and this will be

important in the sequel.

To show that λR is decreasing in R, note first that since d is assumed to be

a bounded function, the functional Q R is bounded below in the class SR . For

the same reason, any minimizing sequence (ξ k) has (∇ξ k) uniformly bounded in

L2(B+
R ). Hence, by the compact inclusion H0(B+

R ) � L2(�0
R) (see Section 2.5),

we conclude that the infimum of Q R in SR is achieved by a function φR ∈ SR .

Moreover, we may take φR ≥ 0, since |φ| is a minimizer whenever φ is a mini-

mizer.

Note that φR ≥ 0 is a solution of


�φR = 0 in B+
R

∂φR

∂ν
+ d(y)φR = λRφR on �0

R

φR = 0 on �+
R .

It follows from the strong maximum principle that φR > 0 in B+
R .
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We can now easily prove that λR is decreasing in R. Indeed, arguing by contra-

diction, assume that R1 < R2 and λR1
= λR2

. Multiply �φR1
= 0 by φR2

, integrate

by parts, and use the equalities satisfied by φR1
and φR2

and also the assumption

λR1
= λR2

. We obtain ∫
�+

R1

∂φR1

∂ν
φR2

= 0,

and this is a contradiction since, on �+
R1

, we have φR2
> 0 and the normal derivative

∂φR1
/∂ν < 0.

Next, using that λR > 0 we obtain∫
B+

R

|∇ξ |2 +
∫
�0

R

d(y)ξ 2 ≥ λR

∫
�0

R

ξ 2 ≥ −δR

∫
�0

R

d(y)ξ 2

for all ξ ∈ H0(B+
R ), where δR is taken such that 0 < δR ≤ λR/‖d‖L∞ . From the

last inequality, we deduce that

(4.4)

∫
B+

R

|∇ξ |2 +
∫
�0

R

d(y)ξ 2 ≥ εR

∫
B+

R

|∇ξ |2

for all ξ ∈ H0(B+
R ), for εR > 0 given by εR = 1 − 1/(1 + δR).

It is now easy to prove that, for every constant cR > 0, there exists a solution

ϕR of

(4.5)




�ϕR = 0 in B+
R

∂ϕR

∂ν
+ d(y)ϕR = 0 on �0

R

ϕR = cR on �+
R .

Indeed, rewriting this problem for the function ψR = ϕR − cR , we need to solve


�ψR = 0 in B+
R

∂ψR

∂ν
+ d(y)ψR + cRd(y) = 0 on �0

R

ψR = 0 on �+
R .

This problem can be solved by minimizing the functional∫
B+

R

1

2
|∇ξ |2 +

∫
�0

R

{
1

2
d(y)ξ 2 + cRd(y)ξ

}

in the space H0(B+
R ). Note that the functional is bounded below and coercive,

thanks to inequality (4.4). Finally, the compact inclusion H0(B+
R ) � L2(�0

R) gives

the existence of a minimizer.

Next, we claim that

ϕR > 0 in B+
R .
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Indeed, the negative part ϕ−
R of ϕR vanishes on �+

R . Using this, (4.5), and the

definition (4.3) of Q R , it is easy to verify that Q R(ϕ−
R ) = 0. By definition of the

first eigenvalue λR and the fact that λR > 0, this implies that ϕ−
R ≡ 0, i.e., ϕR ≥ 0.

Now, Hopf’s maximum principle gives ϕR > 0 up to the boundary.

Finally, we choose the constant cR > 0 in (4.5) such that ϕR(0) = 1. Then, by

the Harnack inequality of Lemma 2.5, we deduce

sup
B+

R

ϕS ≤ CR for all S > 4R.

Hence, using the C1,α estimate of Lemma 2.3(c), a subsequence of (ϕS) converges

locally in R
n
+ to a C1

loc(R
n
+) ∩ C2(Rn

+) solution ϕ ≥ 0 of (4.2) with ϕ(0) = 1. It

follows that ϕ > 0. �

Observe that the previous lemma provides a direct proof of the fact that every

layer solution u of (1.1) is stable —something that we already knew from the local

minimality property of layer solutions proven in Section 3. Indeed, we simply

note that ϕ = uy1
is strictly positive and solves the linearized problem (4.2), with

d(y) = − f ′(u(0, y)). Hence the stability of u follows from Lemma 4.1.

We use now the previous lemma to establish a result that easily leads to the

monotonicity and the two-dimensional symmetry of stable solutions in dimensions

2 and 3.

LEMMA 4.2 Assume that n ≤ 3 and that u is a bounded stable solution of (1.1).

Then there exists a function ϕ ∈ C1
loc(R

n
+) ∩ C2(Rn

+) with ϕ > 0 in R
n
+ and such

that, for every i = 1, . . . , n − 1,

uyi
= ciϕ in R

n
+

for some constant ci .

PROOF: Since u is assumed to be a stable solution, then (4.1) holds with d(y) =
− f ′(u(0, y)). Note that d ∈ Cα by Lemma 2.3. Hence, by Lemma 4.1, there exists

a function ϕ ∈ C1
loc(R

n
+) ∩ C2(Rn

+) such that ϕ > 0 in R
n
+ and


�ϕ = 0 in R

n
+

∂ϕ

∂ν
− f ′(u(0, y))ϕ = 0 on ∂R

n
+.

For i = 1, . . . , n − 1 fixed, consider the function

σ = uyi

ϕ
.

The goal is to prove that σ is constant in R
n
+.

Since

ϕ2∇σ = ϕ∇uyi
− uyi

∇ϕ,

we have that

div(ϕ2∇σ) = 0 in R
n
+.
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Moreover, the normal derivative of σ on ∂R
n
+ is 0. Indeed, on ∂R

n
+ we have

ϕ2σx = ϕuxyi
− uyi

ϕx = 0,

since both uyi
and ϕ satisfy the same boundary condition −uxyi

− f ′(u)uyi
= 0,

−ϕx − f ′(u)ϕ = 0.

We can use the Liouville property of Lemma 2.6 and deduce that σ is constant

provided that the growth condition∫
B+

R

(ϕσ)2 ≤ C R2 for all R > 1

holds for some constant C independent of R. But note that ϕσ = uyi
, and therefore∫

B+
R

(ϕσ)2 ≤
∫

B+
R

|∇u|2 =
∫

∂ B+
R

uuν ≤ C Rn−1 ≤ C R2

since uuν is bounded and n ≤ 3. This finishes the proof of the lemma. �

We can now give the following proof:

PROOF OF THEOREM 1.5: Let u be a bounded stable solution of (1.1).

To prove part (a), let n = 2. The conclusion of Lemma 4.2 establishes that uy =
cϕ for some function ϕ > 0 in R

2
+ and some constant c. Therefore, depending on

the sign of the constant c, we have that either uy ≡ 0, uy > 0 everywhere, or

uy < 0 everywhere. In the case uy ≡ 0, we deduce that u is a bounded harmonic

function that depends only on the x-variable. Hence, u must be constant.

To prove part (b), let n = 3. Lemma 4.2 establishes that uyi
≡ ciϕ for some

constants ci , i = 1, 2. If c1 = c2 = 0, then u is constant. Otherwise we have that

c2uy1
− c1uy2

≡ 0, and we conclude that u depends only on x and on the variable

parallel to (0, c1, c2). That is,

u(x, y1, y2) = u0

(
x,

c1 y1 + c2 y2

(c2
1 + c2

2)
1/2

)
= u0(x, y),

where y denotes the variable parallel to (0, c1, c2) and u0 is a solution for n = 2.

In particular, ∂yu0 = (c2
1 + c2

2)
1/2ϕ, and hence ∂yu0 > 0 everywhere. This

finishes the proof of the theorem. �

5 Solutions with Uniform Limits:

Monotonicity, Two-Dimensional Symmetry, and Uniqueness

The following result establishes the two-dimensional symmetry of solutions

that have limits ±1 as y1 → ±∞ on ∂R
n
+, uniformly in (y2, . . . , yn−1). This is

the exact analogue of a result for interior reactions due to Berestycki, Hamel, and

Monneau [11].
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THEOREM 5.1 Assume f ′(±1) < 0. Let u be a solution of (1.1) satisfying |u| ≤ 1

in R
n
+ and

(5.1) lim
y1→±∞

u(0, y) = ±1 uniformly in (y2, . . . , yn−1) ∈ R
n−2.

Then u is necessarily a function of the two variables x and y1 alone, that is, u =
u(x, y1). Moreover, uy1

> 0 and u is unique up to translations in the y1-variable.

Due to the hypothesis of uniform limits, the y-variable on which the solution

depends is exactly y1. This is in contrast to the two-dimensional symmetry result

of Theorem 1.5(b) in dimension 3, where the y-variable on which u depends is

not known a priori and can be any combination of y1 and y2. This reflects the

greater difficulty of proving the two-dimensional symmetry of solutions with no

hypothesis on uniform limits.

We start by treating the case n = 2 and later prove Theorem 5.1 in any dimen-

sion. The following lemma will imply the monotonicity of solutions with limits,

as well as the uniqueness of the layer solution in dimension 2. The statement of

the lemma contains the main features of its proof, which is based on a very useful

technique introduced by Berestycki and Nirenberg in [12]: the sliding method.

LEMMA 5.2 Assume that n = 2 and that

(5.2) f is nonincreasing in (−1,−τ) ∪ (τ, 1) for some τ ∈ (0, 1).

Let u1 and u2 be two solutions of (1.1) such that, for i = 1, 2,

(5.3) ui (0, 0) = 0, |ui | ≤ 1, and lim
y→±∞

ui (0, y) = ±1.

For t > 0, consider

ut
2(x, y) = u2(x, y + t).

Then, for every t > 0, u1 ≤ ut
2 in R

2
+.

PROOF: First, note that f (−1) = f (1) = 0 by Lemma 2.4. Therefore, since

|ui | ≤ 1, we have that |ui | < 1 for i = 1, 2. Note that the ui are not identically

constant by the assumption in (5.3) about their limits as y → ±∞.

By hypothesis (5.3), there exists a compact interval [a, b] in R such that, for

i = 1, 2, {
ui (0, y) ∈ (−1,−τ) if y ≤ a

ui (0, y) ∈ (τ, 1) if y ≥ b.

Note that ut
2 is also a solution of (1.1), and hence{

�(ut
2 − u1) = 0 in R

2
+

−(ut
2 − u1)x = −dt(y)(ut

2 − u1) on ∂R
2
+,

where

dt(y) = − f (ut
2) − f (u1)

ut
2 − u1

(0, y)
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if (ut
2 −u1)(0, y) �= 0, and dt(y) = 0 otherwise. Note that dt is a bounded function

since f is Lipschitz. Note that we also have

(ut
2 − u1)(0, y) → 0 as |y| → ∞.

We finish the proof in three steps.

Step 1. We claim that u1 < ut
2 for t > 0 large enough.

To show this, we take t > 0 sufficiently large such that u1(0, y) < ut
2(0, y) for

y ∈ [a, b]. This is possible since u1 < 1 and u2(0, y + t) → 1 as t → +∞. We

apply Lemma 2.7 to v = ut
2 − u1, with

H = (a, b) ∪ {y ∈ R : (ut
2 − u1)(0, y) > 0}

= {y ∈ R : (ut
2 − u1)(0, y) > 0}.

Clearly, v(0, y) > 0 in H .

To show that dt ≥ 0 in R \ H , let y �∈ H . There are two possibilities. First, if

y ≥ b then y+t ≥ b also. Therefore, u1(0, y) ≥ τ and ut
2(0, y) = u2(0, y+t) ≥ τ .

We conclude that dt(y) ≥ 0 by (5.2).

The other possibility is that y ≤ a. In this case, we have u1(0, y) ≤ −τ , and

since y �∈ H , then (ut
2 − u1)(0, y) ≤ 0. Therefore ut

2(0, y) ≤ u1(0, y) ≤ −τ , and

we conclude dt(y) ≥ 0, again by (5.2).

Lemma 2.7 gives that ut
2 − u1 > 0 in R

2
+.

Step 2. Claim: If u1 ≤ ut
2 for some t > 0, then u1 ≤ u

t+µ

2 for every µ small

enough (with µ either positive or negative).

This statement will finish the proof of the lemma, since then {t > 0 : u1 ≤ ut
2}

is a nonempty, closed and open set in (0,∞), and hence equal to this interval. We

conclude u1 ≤ ut
2 for all t > 0.

To prove the claim of Step 2, we will show in Step 3 that

(5.4) if t > 0 and u1 ≤ ut
2, then u1 �≡ ut

2.

Once (5.4) is known, we can finish the proof of the claim as follows: First, by

Hopf’s maximum principle, u1 < ut
2 in R

2
+. Let Kt be a compact interval such

that, for y �∈ Kt , |u1(0, y)| > 1 − τ/2 and |ut
2(0, y)| > 1 − τ/2. Recall that

(ut
2 − u1)(0, y) > 0 in the compact set Kt . By continuity and the existence of

limits at infinity, we have that if |µ| is small enough, then (u
t+µ

2 − u1)(0, y) > 0

for y ∈ Kt and |ut+µ

2 (0, y)| > 1 − τ for y �∈ Kt . Hence, we can apply Lemma 2.7

to v = u
t+µ

2 − u1 with H = Kt , since dt+µ ≥ 0 outside Kt . We therefore conclude

u
t+µ

2 − u1 > 0.

Step 3. Here we establish (5.4), therefore completing the proof of Step 2 and

of the lemma. That is, we assume that t > 0 and u1 ≤ ut
2, and we need to show

that u1 �≡ ut
2.

To prove this, consider first the case when both solutions in the lemma are the

same, that is, u1 ≡ u2. Assume that t > 0 and u1 ≡ ut
1. Then, the function u1(0, y)

is t-periodic. But this contradicts the hypothesis u1(0, y) → ±1 as y → ±∞ in
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the lemma. Therefore, in the case u1 ≡ u2, the two steps above can be carried

out. We conclude that, for every solution u1 as in the lemma, we have u1 ≤ ut
1 for

every t > 0. In particular, ∂yu1 ≥ 0 and, by the strong maximum principle, u1 is

increasing in y.

Finally, consider the general case of two solutions u1 and u2. Assume that t > 0

and u1 ≡ ut
2. Then, by (5.3), u1(0,−t) = ut

2(0,−t) = u2(0, 0) = 0. Moreover,

u1(0, 0) = 0 by hypothesis. Hence, both (0,−t) and (0, 0) are zeroes of u1. This

is a contradiction, since we have already established that u1 is increasing in y. �

We now give the following proof:

PROOF OF THEOREM 5.1: First, note that f (−1) = f (1) = 0 by Lemma 2.4.

Therefore, since |u| ≤ 1, we conclude that |u| < 1 by Hopf’s boundary lemma.

Note that u is not identically constant by assumption (5.1).

Since f ′(±1) < 0, we have that

(5.5) f ′ ≤ −ε in (−1,−τ) ∪ (τ, 1)

for some ε > 0 and 0 < τ < 1. By hypothesis (5.1) on uniform limits, there exists

a compact interval [a, b] in R such that{
u(0, y) ∈ (−1,−τ) if y1 ≤ a

u(0, y) ∈ (τ, 1) if y1 ≥ b.

We claim that

(5.6) sup
y∈[a,b]×Rn−2

u(0, y) < 1.

We prove this arguing by contradiction. Suppose that there exists a sequence (yk)

of points in [a, b] × R
n−2 such that u(0, yk) → 1 as k → ∞. Set uk(x, y) =

u(x, y + yk). By the estimates of Lemma 2.3, up to extraction of a subsequence

the solutions uk tend locally to a classical solution u∞ of (1.1). Since yk
1 ∈ [a, b]

for all k, u∞ also satisfies condition (5.1) on uniform limits and, in particular, u∞
is not constant. But u∞ ≤ 1 and u∞(0, 0) = 1. Since f (1) = 0, we deduce that

u∞ ≡ 1, a contradiction.

Next, we prove that u is increasing in any direction ν = (0, ν1, . . . , νn−1) with

ν1 > 0. For this, we define the function

ut(x, y) = u((x, y) + tν)

for every t > 0.

Note that ut is also a solution of (1.1), and hence

(5.7)

{
�(ut − u) = 0 in R

n
+

−(ut − u)x = −dt(y)(ut − u) on ∂R
n
+,
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where

(5.8) dt(y) = − f (ut) − f (u)

ut − u
(0, y)

if (ut − u)(0, y) �= 0, and dt(y) = 0 otherwise. Note that dt is a bounded function

since f is Lipschitz.

First, we claim that u < ut for t > 0 large enough.

To show this, we take t > 0 sufficiently large such that u(0, y) < ut(0, y) for

y1 ∈ [a, b]. This is possible since u satisfies (5.6) and ut(0, y) → 1 as t → +∞
uniformly in [a, b] × R

n−2. We apply Lemma 2.9 to v = ut − u, with

H = [(a, b) × R
n−2] ∪ {y ∈ R

n−1 : (ut − u)(0, y) > 0}
= {y ∈ R

n−1 : (ut − u)(0, y) > 0}.

Clearly, v(0, y) > 0 in H . To show that dt ≥ ε in R
n−1 \ H , let y �∈ H . There are

two possibilities. First, if y1 ≥ b, then y1 + tν1 ≥ b also. Therefore, u(0, y) ≥ τ

and ut(0, y) ≥ τ , and we conclude that dt(y) ≥ ε by (5.5). The other possibility

is that y1 ≤ a. In this case, we have u(0, y) ≤ −τ , and since y �∈ H , then

(ut − u)(0, y) ≤ 0. Therefore ut(0, y) ≤ u(0, y) ≤ −τ , and we conclude again

dt(y) ≥ ε. Lemma 2.9 gives that ut − u > 0 in R
n
+.

Next, we claim that if u ≤ ut for some t > 0, then u ≤ ut+µ for every µ small

enough (with µ either positive or negative). This statement will prove that u is

nondecreasing in the direction ν, since then the set {t > 0 : u ≤ ut} is nonempty,

closed, and open in (0,∞), and hence equal to this interval.

To prove the previous claim, we assume that t > 0 and u ≤ ut . We first show

that

(5.9) inf
y∈[a,b]×Rn−2

(ut − u)(0, y) > 0.

Indeed, if this were not the case, there would be a sequence (yk) of points in [a, b]×
R

n−2 such that (ut − u)(0, yk) → 0 as k → ∞. Set uk(x, y) = u(x, y + yk). By

Lemma 2.3, up to extraction of a subsequence the solutions uk tend locally to a

solution u∞ of (1.1). Therefore, ut
∞ − u∞ satisfies (5.7) and (5.8), with u replaced

by u∞ throughout these three equalities. Moreover, by construction, ut
∞ − u∞ ≥ 0

and (ut
∞ −u∞)(0, 0) = 0. We deduce that ut

∞ −u∞ ≡ 0, and hence u∞ is periodic

with respect to the vector tν. This is a contradiction, since tν1 > 0 and yk
1 ∈ [a, b]

for all k imply that u∞ also satisfies condition (5.1) on uniform limits.

Since u is globally Lipschitz (recall that ∇u ∈ L∞(Rn
+) by Lemma 2.3), (5.9)

implies that

inf
y∈[a,b]×Rn−2

(ut+µ − u)(0, y) > 0
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for every µ small enough (with t + µ > 0). We finally apply Lemma 2.9 to

v = ut+µ − u, with

H = [(a, b) × R
n−2] ∪ {y ∈ R

n−1 : (ut+µ − u)(0, y) > 0}
= {y ∈ R

n−1 : (ut+µ − u)(0, y) > 0}.
Clearly, v(0, y) > 0 in H . To show that dt+µ ≥ ε in R

n−1\H , let y �∈ H . We argue

as before. There are two possibilities. First, if y1 ≥ b, then y1 +(t +µ)ν1 ≥ b also.

Therefore, u(0, y) ≥ τ and ut+µ(0, y) ≥ τ , and we conclude that dt+µ(y) ≥ ε.

The other possibility is that y1 ≤ a. In this case, we have u(0, y) ≤ −τ , and since

y �∈ H , then (ut+µ − u)(0, y) ≤ 0. Therefore ut+µ(0, y) ≤ u(0, y) ≤ −τ , and we

conclude again dt+µ(y) ≥ ε. Lemma 2.9 gives that ut+µ − u > 0 in R
n
+.

Hence, we have proven that u is a nondecreasing function in every direction

ν = (0, ν1, . . . , νn) with ν1 > 0. That is, we have ∂νu ≥ 0. Letting ν1 decrease to

0, we deduce that ∂ξ u ≥ 0 for every direction ξ = (0, 0, ν2, . . . , νn). In particular,

considering the direction (0, 0,−ν2, . . . ,−νn), we also have ∂−ξ u ≥ 0. Therefore,

∂ξ u ≡ 0 for every ξ = (0, 0, ν2, . . . , νn), and this implies that u is a function of x

and y1 alone. In addition, we have proven that uy1
≥ 0 and hence, since u is not

identically constant, uy1
> 0.

Finally, to establish that u is unique up to translations in the y1-variable, we use

Lemma 5.2. Take two solutions u1 and u2 as in the theorem. We already know that

they are functions of x and y1 alone. Slide them so that u1(0, 0) = u2(0, 0) = 0.

Now, letting t ↘ 0 in the conclusion of Lemma 5.2, we obtain u1 ≤ u2 in R
2
+.

Interchanging u1 and u2, we conclude u1 ≡ u2. �

6 Existence and Properties of Two-Dimensional Solutions:

Proof of Theorems 1.2, 1.3, and 1.6

In this section we always consider n = 2. First we prove the Modica-type

estimate and the Hamiltonian conserved quantity of Theorem 1.3. The argument

on its proof establishes the necessary condition G(−1) = G(1) for existence of

a layer solution. This is an alternative proof to the variational one presented in

Proposition 3.2. More importantly, the Modica-type estimate leads to the strict

inequality G > G(±1) in (−1, 1) in the presence of a layer solution. This is a part

of the necessary and sufficient condition of our main result, Theorem 1.2(a).

The next and main part of the section is dedicated to proving the existence of a

layer solution, as stated in Theorem 1.2(a). The proof is based on the monotonicity

and variational properties of an appropriate sequence of solutions in larger and

larger half-balls (see Lemma 6.2 below).

This section also contains the proof of the decay estimates at infinity for two-

dimensional layer solutions, Theorem 1.6.

We also include the following result, where we have collected different assump-

tions on G that guarantee for n = 2 that a local minimizer, a solution with limits,

or a stable solution is necessarily a layer solution.
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PROPOSITION 6.1 Let n = 2 and u be a function such that

|u| < 1 in R
2
+.

(a) Assume that G > G(−1) = G(1) in (−1, 1), and let u be a local minimizer

of problem (1.1) relative to perturbations in [−1, 1]. Then, either u = u(x, y) or

v = v(x, y) = u(x,−y) is a layer solution of (1.1).

(b) Assume G ′′(±1) > 0, and let u be a solution of (1.1) with

lim
y→±∞

u(0, y) = ±1.

Then u is a layer solution of (1.1).

(c) Assume that G satisfies

if −1 ≤ L− < L+ ≤ 1, G ′(L±) = 0, and G > G(L−) = G(L+)

in (L−, L+), then L− = −1 and L+ = 1.

Let u be a nonconstant stable solution of (1.1). Then either u = u(x, y) or v =
v(x, y) = u(x,−y) is a layer solution of (1.1).

Note that an identically constant function u ≡ s is a stable solution of (1.1) if

and only if G ′(s) = 0 and G ′′(s) ≥ 0. This follows easily from definition (1.8) of

stability. Therefore, regarding part (c) of the proposition, a way to guarantee that a

stable solution u is nonconstant is that u = s ∈ (−1, 1) at some point, and either

G ′(s) �= 0 or G ′′(s) < 0.

This section is organized as follows: In Section 6.1, we prove Theorem 1.3,

establishing the Modica-type estimate (1.10). Section 6.2 contains the proof of

our main result on existence of a layer solution, namely Theorem 1.2(a), and also

of Proposition 6.1. Finally, Section 6.3 is devoted to the proof of the decay and

asymptotic estimates stated in Theorem 1.6.

6.1 A Modica-Type Estimate: Proof of Theorem 1.3

PROOF OF THEOREM 1.3: Let n = 2 and u be a layer solution. By interior

gradient estimates applied to the harmonic function u in the ball Bt(t, y) ⊂ R
2
+,

we have that

(6.1) |∇u(t, y)| ≤ C

t
‖u‖L∞ ≤ C

t
for all t > 0, y ∈ R.

Since, in addition, ∇u is bounded in all R
2
+ (see Lemma 2.3(b)), we deduce

(6.2) |∇u(t, y)| ≤ C

1 + t
for all t > 0, y ∈ R.

We use the same argument applied now to the partial derivatives of u (instead

of u). Recall that D2u is bounded in all R
2
+ (again by Lemma 2.3(b)). Using (6.2)

to control t−1‖∇u‖L∞ , we conclude

(6.3) ‖D2u(t, y)‖ ≤ C

1 + t2
for all t > 0, y ∈ R.
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We start establishing equality (1.11). Consider the function

(6.4) v(y) =
∫ +∞

0

1

2

{
u2

y(t, y) − u2
x(t, y)

}
dt,

which is well-defined by (6.2). Note that

∂y

(u2
y − u2

x)(t, y)

2
= (uyyuy − uxyux)(t, y),

which is bounded in absolute value by C/(1 + t3) from (6.2) and (6.3). Hence,

using the intermediate value property to estimate {v(y + h) − v(y)}/h and the

dominated convergence theorem, we see that (6.4) can be differentiated under the

integral sign. Therefore,

d

dy
v(y) =

∫ +∞

0

(uyyuy − uxyux)(t, y)dt

=
∫ +∞

0

(−uxx uy − uxyux)(t, y)dt = (ux uy)(0, y) = d

dy
G(u(0, y)),

where we have integrated by parts in the second integral.

Hence, the function v(y) − {G(u(0, y)) − G(1)} is constant in y. We need

to show that this function is identically 0, and hence we simply look at its limits

at ±∞.

For this, let R > 0 and use (2.14) to deduce that

lim
y→±∞

|v(y)| = lim
y→±∞

∣∣∣∣
∫ +∞

R

1

2

{
u2

y(t, y) − u2
x(t, y)

}
dt

∣∣∣∣.
Now, by (6.2), this last integral is bounded by C/R. Letting R → ∞ we conclude

that v → 0 as y → ±∞. Therefore, v−{G(u(0, · ))−G(1)} ≡ 0 ≡ G(1)−G(−1).

We conclude equality (1.11) and, at the same time, the necessary condition

(6.5) G(−1) = G(1)

for the existence of a layer solution.

Note that the previous argument gives an alternative proof of (6.5), a property

of G that we have already established in the paper by variational methods. Indeed,

by Theorem 1.4 we know that u is a local minimizer relative to perturbations in

[−1, 1], and then (6.5) follows from Proposition 3.2.

Next, to prove estimate (1.10) we essentially use equality (6.5) and the maxi-

mum principle, as follows: Consider the harmonic function (u2
y −u2

x)/2, and define

the function

w(x, y) =
∫ x

0

1

2

{
u2

y(t, y) − u2
x(t, y)

}
dt,

which is bounded in all R
2
+ by (6.2).
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Note that (�w)x = 0, and hence �w depends only on y. It is enough then

to compute �w on {x = 0}. We obtain �w(x, y) = wxx(0, y) = (uyuxy −
ux uxx)(0, y). But we observe that

d2

dy2
G(u(0, y)) = d

dy
(ux(0, y)uy(0, y))

= (uxyuy + ux uyy)(0, y).

Hence, the function G(u(0, y)) − G(1) − w(x, y) is a bounded harmonic func-

tion in R
2
+, and its restriction to {x = 0} is G(u(0, y)) − G(1). We need to show

that

G(u(0, y)) − G(1) − w(x, y) > 0 in R
2
+.

We argue by contradiction and assume that G(u(0, y)) − G(1) − w(x, y) is

nonpositive at some point in R
2
+. Since the harmonic function G(u(0, y))−G(1)−

w(x, y) is bounded in R
2
+, it then follows that G(u(0, y)) − G(1) − w(x, y) is

nonpositive somewhere in {x = 0}. That is, G(u(0, y0)) − G(1) ≤ 0 for some y0.

Since G(−1) = G(1), we deduce that G(u(0, y)) − G(1) → 0 as y → ±∞.

Hence we may assume that y0 is a global minimum of G(u(0, y)) − G(1). Then

0 = d

dy
G(u(0, y))

∣∣∣∣
y=y0

= − f (u(0, y0))uy(0, y0),

and therefore

(6.6) 0 = − f (u(0, y0)) = ux(0, y0).

On the other hand, since y0 is a global minimum for G(u(0, y)) − G(1), it is

also a global minimum of its bounded harmonic extension, namely, G(u(0, y)) −
G(1) − w(x, y). Using (6.6), we conclude

0 ≥ −∂x{G(u(0, y0)) − w(x, y0)}
∣∣
x=0

= ∂xw(x, y0)
∣∣
x=0

=
1

2

{
u2

y(0, y0) − u2
x(0, y0)

} = 1

2
u2

y(0, y0) > 0,

a contradiction. �

6.2 Existence of a Layer Solution: Proofs of Theorem 1.2

and Proposition 6.1

In this section we prove the existence of a layer solution in dimension 2 when-

ever the nonlinearity satisfies the conditions of Theorem 1.2(a). This existence

result is contained in the following key lemma, whose statement explains (at least

partially) how the layer solution is constructed.

LEMMA 6.2 Assume that n = 2 and that

G ′(−1) = G ′(1) = 0 and G > G(−1) = G(1) in (−1, 1).
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Then, for every R > 0, there exists a function u R ∈ C1(B+
R ) such that

−1 < u R < 1 in B+
R ,

u R(0) = 0,

∂yu R ≥ 0 in B+
R ,

and u R is a minimizer of the energy in B+
R in the sense that

EB+
R
(u R) ≤ EB+

R
(u R + ψ)

for every ψ ∈ H 1(B+
R ) with compact support in B+

R ∪ �0
R and such that −1 ≤

u R + ψ ≤ 1 in B+
R . Moreover, as a consequence of the previous statements, we

will deduce that a subsequence of (u R) converges in C2
loc(R

2
+) to a layer solution u

of (1.1).

PROOF: For R > 0, let

Q+
R = (0, R1/4) × (−R, R).

Consider the function

vR(x, y) = vR(y) = arctan y

arctan R
for (x, y) ∈ Q+

R .

Note that −1 ≤ vR ≤ 1 in Q+
R .

Let u R be an absolute minimizer of EQ+
R

in the set of functions v ∈ H 1(Q+
R)

such that |v| ≤ 1 in Q+
R and v ≡ vR on ∂+Q+

R in the weak sense; recall (2.30) and

(2.31) for the definition of ∂0 and ∂+. Since we are assuming G ′(−1) = G ′(1) = 0,

the existence of such a minimizer was proven in Lemma 2.10. We have that u R is

a weak solution of 


�u R = 0 in Q+
R

∂u R

∂ν
= f (u R) on ∂0 Q+

R

u R = vR on ∂+Q+
R ,

and, by the strong maximum principle,

|u R| < 1 in Q+
R .

We proceed in three steps. First we show that, for R > 1,

(6.7) Claim 1: EQ+
R
(u R) ≤ C R1/4

for some constant C independent of R. Here we take G − G(1) = G − G(−1)

as boundary energy potential. We will use this energy bound to prove in a second

step that, for R large enough,

(6.8) Claim 2:

∣∣∣∣
{

u R(0, y) >
1

2

}∣∣∣∣ ≥ R3/4 and

∣∣∣∣
{

u R(0, y) < −1

2

}∣∣∣∣ ≥ R3/4.
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Finally, in a third step independent of the two previous ones, we prove that

(6.9) Claim 3: u R
y = ∂yu R ≥ 0 in Q+

R .

With the above three claims, we can easily finish the proof of the lemma, as

follows. Since u R(0, y) is nondecreasing and continuous in (−R, R), we deduce

from (6.8) that for R large enough,

u R(0, yR) = 0 for some yR such that |yR| ≤ R − R3/4.

Since |yR| ≤ R − R3/4 < R − R1/4, we have that

B+
R1/4(0, yR) ⊂ [0, R1/4] × (−R, R) ⊂ Q+

R .

We slide u R and define

u R1/4(x, y) = u R(x, y + yR) for (x, y) ∈ B+
R1/4(0, 0).

Then, relabeling the index by setting S = R1/4, we have that uS ∈ C1(B+
S (0, 0)),

−1 < uS < 1 in B+
S (0, 0), uS(0) = 0, and ∂yuS ≥ 0 in B+

S (0, 0). Moreover, uS is

a minimizer in B+
S (0, 0) in the sense of Lemma 6.2. This follows from extending a

given H 1 function ψ with compact support in (B+
S ∪�0

S)(0, yR), and with |u+ψ | ≤
1 in B+

S (0, yR), by 0 in Q+
R \ B+

S (0, yR). Hence ψ is a H 1(Q+
R) function. Then one

uses the minimality of u R in Q+
R and the fact that the energies of u R and u R + ψ

coincide in Q+
R \ B+

S (0, yR) to deduce the desired relation between the energies in

B+
S (0, yR).

Now we prove the last statement of the lemma: a subsequence of (u R) con-

verges to a layer solution. Note that we use the sequence (u R) just constructed, and

not the sequence (u R) in the beginning of the proof.

Let S > 0. Since |u R| < 1, Lemma 2.3 gives C2,α(B+
S ) estimates for u R ,

uniform for R ≥ 4S. Hence, for a subsequence (that we still denote by u R), we

have that u R converges as R → ∞ in C2
loc(R

2
+) to some function u ∈ C

2,α
loc (R2

+).

Automatically, u is a solution of (1.1), |u| ≤ 1,

u(0) = 0 and uy ≥ 0 in R
2
+.

Since u(0) = 0, we have |u| �≡ 1 and hence |u| < 1 by the strong maximum prin-

ciple. Note that ±1 are solutions of the problem since, by hypothesis, G ′(±1) =
f (±1) = 0.

Let us now show that u is a local minimizer relative to perturbations in [−1, 1].
Indeed, let S > 0 and ψ be a C1 function with compact support in B+

S ∪ �0
S and

such that |u + ψ | ≤ 1 in B+
S . Extend ψ to be identically 0 outside B+

S so that

ψ ∈ H 1
loc(R

2
+). Note that, since −1 < u < 1 and −1 ≤ u + ψ ≤ 1, we have

that −1 < u + (1 − ε)ψ < 1 in B+
S for every 0 < ε < 1. Hence, by the local

convergence of (u R) towards u, for R large enough we have −1 ≤ u R +(1−ε)ψ ≤
1 in B+

S , and hence also in B+
R . Then, since u R is a minimizer in B+

R , we have
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EB+
R
(u R) ≤ EB+

R
(u R + (1 − ε)ψ) for R large. Since ψ has support in B+

S ∪ �0
S ,

this is equivalent to

EB+
S
(u R) ≤ EB+

S
(u R + (1 − ε)ψ) for R large.

Letting R → ∞, we deduce EB+
S
(u) ≤ EB+

S
(u + (1 − ε)ψ). We conclude now by

letting ε → 0.

Finally, since uy ≥ 0, the limits L± = limy→±∞ u(0, y) exist. To establish that

u is a layer solution, it remains only to prove that L± = ±1. For this, note that

we can apply Proposition 3.2 to u, a local minimizer relative to perturbations in

[−1, 1], and deduce that

G ≥ G(L−) = G(L+) in [−1, 1].
Since G > G(−1) = G(1) in (−1, 1), we infer that |L±| = 1. Since u(0) = 0,

u cannot be identically 1 or −1. We conclude that L− = −1 and L+ = 1, and

therefore u is a layer solution.

We now go back to the functions u R defined in the beginning of the proof and

proceed to establish the three claims made above.

Step 1. Here we prove (6.7) for R > 1 and for some constant C independent of

R. We take G − G(1) = G − G(−1) as the boundary energy potential.

Since EQ+
R
(u R) ≤ EQ+

R
(vR), we simply need to bound the energy of vR . We

have

|∇vR| = |∂yv
R| = 1

arctan R

1

1 + y2
≤ C

1

1 + y2
,

and hence ∫
Q+

R

|∇vR|2 ≤ C R1/4

∫ R

−R

dy

(1 + y2)2
≤ C R1/4.

Next, since G ′(−1) = G ′(1) = 0 and G(−1) = G(1), we have that

G(s) − G(1) ≤ C(1 + cos(πs)) for all s ∈ [−1, 1]
for some constant C > 0. Therefore, using that π/(arctan R) > 2, we have

G(vR(0, y)) − G(1) ≤ C

{
1 + cos

(
π

arctan y

arctan R

)}

≤ C
(
1 + cos(2 arctan y)

) = C2 cos2(arctan y) = 2C

1 + y2
.

We conclude that∫ R

−R

{G(vR(0, y)) − G(1)} dy ≤ C

∫ R

−R

dy

1 + y2
≤ C.

This, together with the above bound for the Dirichlet energy, proves (6.7).
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Step 2. Here we prove (6.8) for R large enough.

Since u R ≡ vR on {x = R1/4} and
∫ R

−R
vR(y) dy = 0, we have∫ R

−R

u R(0, y)dy =
∫ R

−R

u R(0, y)dy −
∫ R

−R

u R(R1/4, y)dy = −
∫

Q+
R

u R
x .

Hence, using the energy bound (6.7) and the hypothesis that G − G(1) ≥ 0, we

have ∣∣∣∣
∫ R

−R

u R(0, y)dy

∣∣∣∣ ≤
∫

Q+
R

∣∣u R
x

∣∣ ≤
{
|Q+

R | ·
∫

Q+
R

|∇u R|2
}1/2

≤ C{R R1/4 R1/4}1/2 = C R3/4.

(6.10)

Next, by (6.7) we know that
∫ R

−R
{G(u R(0, y)) − G(1)}dy ≤ C R1/4 ≤ C R3/4.

On the other hand, G(s) − G(1) ≥ ε > 0 if s ∈ [− 1
2
, 1

2
], for some ε > 0

independent of R. Moreover, G − G(1) ≥ 0 in (−1, 1). We deduce

ε

∣∣∣∣
{
|u R(0, y)| ≤ 1

2

}∣∣∣∣ ≤
∫ R

−R

{G(u R(0, y)) − G(1)}dy ≤ C R3/4,

and therefore |{|u R(0, y)| ≤ 1
2
}| ≤ C R3/4. This combined with (6.10) leads to

(6.11)

∣∣∣∣
∫

(−R,R)∩{|u R(0,y)|>1/2}

u R(0, y)dy

∣∣∣∣ ≤ C R3/4.

We claim that∣∣∣∣
{

u R(0, y) >
1

2

}∣∣∣∣ ≥ R3/4 for R large enough.

Suppose not. Then, using (6.11) and |{u R(0, y) > 1/2}| ≤ R3/4, we obtain

1

2

∣∣∣∣
{

u R(0, y) < −1

2

}∣∣∣∣ ≤
∣∣∣∣

∫
(−R,R)∩{u R(0,y)<−1/2}

u R(0, y)dy

∣∣∣∣ ≤ C R3/4.

Hence, all three sets {|u R(0, y)| ≤ 1
2
}, {u R(0, y) > 1

2
}, and {u R(0, y) < − 1

2
} would

have length smaller than C R3/4. This is a contradiction for R large, since these sets

fill (−R, R).

Step 3. Here we establish (6.9). We prove this monotonicity result using the

sliding method. There are, however, three other ways to obtain the same result,

which use different methods. Because of their independent interest, we present

these three alternative proofs below.

To use the sliding method, extend u R to be identically 1 on (0, R1/4)×[R,+∞).

For t > 0, consider

(6.12) u R,t(x, y) = u R(x, y + t) for (x, y) ∈ Q+
R .
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For 0 < ε < 1, let

Q+
R,ε = (0, R1/4) × (−R, R − ε).

With ε fixed, we are going to prove that

(6.13) u R ≤ u R,t in Q+
R,ε for every t ≥ ε.

Then, given (x, y) ∈ Q+
R , we have (x, y) ∈ Q+

R,ε for every ε small enough. From

(6.13) applied with t = ε, we obtain u R(x, y) ≤ u R,ε(x, y) for every small ε > 0.

Letting ε decrease to 0, we deduce that u R
y (x, y) ≥ 0, as claimed.

To establish (6.13), note first that by Lemma 2.11(b), we know that u R is a

continuous function in Q+
R . Hence, u R and u R,t are continuous in Q+

R,ε for all

t ≥ ε. We also know that −1 < u R < 1 in [0, R1/4] × (−R, R). Hence, using also

the structure of the Dirichlet boundary value vR , it is easy to check that

(6.14) u R < u R,t on ∂+Q+
R,ε for every t ≥ ε.

Since u R,t ≡ 1 in Q+
R,ε for t large, we have that (6.13) holds for t large enough.

We now consider the set of t’s such that t ≥ ε and (6.13) holds. This is clearly

a closed set. We only need to show that it is also open. For this, assume that

u R ≤ u R,t0 in Q+
R,ε for some t0 ≥ ε.

Suppose that u R = u R,t0 at some point (x0, y0) ∈ Q+
R,ε. Then, by (6.14),

(x0, y0) ∈ Q+
R,ε ∪ ∂0 Q+

R,ε and, in particular, u R,t0(x0, y0) = u R(x0, y0) ∈ (−1, 1).

Hence both u R and u R,t0 are solutions of the same Neumann problem in a neigh-

borhood in R
2
+ of (x0, y0), a point where they agree, and u R ≤ u R,t0 . Hence, they

must agree everywhere, which contradicts (6.14). We conclude that u R < u R,t0

in Q+
R,ε. Hence, by continuity, the same inequality is true for every t ≥ ε in a

neighborhood of t0.

This concludes the proof of Step 3 and of the lemma. �

In the case of our problem in the rectangle, the monotonicity in y of the min-

imizer u R can be proven in three other ways, which we present next. Each proof

uses a different method. For other nonlinear problems it may happen that only

some of the four methods can be applied.

The second proof is based on the stability of the minimizer, as follows: Since

u R is an absolute minimizer, we know that

(6.15) Q(ξ) =
∫

Q+
R

|∇ξ |2 −
∫ R

−R

f ′(u R(0, y))ξ 2(0, y)dy ≥ 0

for all ξ ∈ H 1(Q+
R) with ξ ≡ 0 on ∂+Q+

R in the weak sense; see Section 2.5

and (2.36). By Lemma 2.11(b), we know that u R ∈ H 2(Q+
R) ∩ C1(Q+

R). Using

that the Dirichlet boundary value vR is increasing in y and also Hopf’s boundary

lemma, we have that u R
y ∈ H 1(Q+

R)∩C(Q+
R) satisfies u R

y > 0 on ∂+Q+
R ∩{x > 0}.

Therefore, the negative part of u R
y , (u R

y )− ≥ 0, can be approximated in H 1 by
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C1 functions with compact support in Q+
R ∪{x = 0,−R < y < R}, and hence it is

an admissible test function on (6.15). Since (u R
y )− is harmonic on its support, we

have

Q
((

u R
y

)−) =
∫

Q+
R

∣∣∇(
u R

y

)−∣∣2 −
∫ R

−R

f ′(u R(0, y))
((

u R
y

)−)2
(0, y)dy

=
∫ R

−R

{[ − ∂x

(
u R

y

)− − f ′(u R)
(
u R

y

)−](
u R

y

)−}
(0, y)dy = 0,

since −∂x(u
R
y )− = f ′(u R)(u R

y )− on {x = 0} ∩ {u R
y < 0}, an open set of {x = 0}.

We conclude that (u R
y )− minimizes the quadratic form Q on the space of func-

tions vanishing on ∂+Q+
R . Therefore, if (u R

y )− is not identically 0, then it must be

the first eigenfunction of the linearized problem at u R (see the proof of Lemma 4.1

for this type of argument). In particular, (u R
y )− is harmonic in all Q+

R . But (u R
y )−

vanishes in a neighborhood of ∂+Q+
R ∩ {x > 0}. Therefore (u R

y )− ≡ 0 in Q+
R , and

hence u R
y ≥ 0 in Q+

R .

The third proof of monotonicity is variational and has been employed in the

literature for other problems. The key idea is that, under appropriate boundary

conditions, the graphs of two minimizers of the same problem cannot intersect

each other. The details go as follows: Since u R − vR can be approximated in

H 1(Q+
R) by C1 functions with compact support in Q+

R ∪ ∂0 Q+
R , we deduce (here

no global regularity result is needed) that, extending u R by 1 for y ≥ R and by −1

for y ≤ −R, we have u R ∈ H 1
loc((0, R1/4) × R). We now define u R,t by (6.12) for

every t > 0. Consider the H 1
loc functions

w = min(u R, u R,t) and w = max(u R, u R,t).

Recall that −1 ≤ u R ≤ 1 a.e. and that vR is increasing in y. It follows that w = vR

on ∂+Q+
R in the weak sense and that w = vR,t on ∂+{(0,−t) + Q+

R} in the weak

sense. Since u R,t is a minimizer in (0,−t) + Q+
R with vR,t as Dirichlet boundary

value, we deduce that

E(0,−t)+Q+
R
(u R,t) ≤ E(0,−t)+Q+

R
(w).

This is equivalent to E{u R>u R,t }(u R,t) ≤ E{u R>u R,t }(u R). But this implies that

EQ+
R
(w) ≤ EQ+

R
(u R),

and hence both u R and w are absolute minimizers in Q+
R with vR as the Dirichlet

boundary value. Now, the interior regularity of any minimizer together with w ≤
u R leads to w ≡ u R . That is, u R ≤ u R,t . Therefore, u R is monotone in y.

A fourth proof of the monotonicity result can be given using the moving plane

method. As pointed out in [12], it is possible for some problems to apply both the

sliding and the moving plane method, yielding the same result. This is our case.

We simply recall that with the moving plane method one establishes u R ≤ uλ,R in
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[0, R1/4] × [−R, λ], where here uλ,R is the even reflection of u R across {y = λ}
(after extending u R by 1 for y ≥ R). One starts with λ close to −R and goes all the

way up to λ = R. To deal with the corners, one needs to use the improved version

of the moving plane method due to Berestycki and Nirenberg [12], based on max-

imum principles in small domains (adapted here to Neumann-Dirichlet problems).

See [18] for an application of the moving plane method to positive solutions of

“ground state” type for a Neumann-Dirichlet problem.

We now present the following proof:

PROOF OF THEOREM 1.2: The existence part of statement (a) follows from

Lemma 6.2. Now we prove the necessary conditions on G. First, by Lemma 2.4,

we have that G ′(±1) = − f (±1) = 0. Next, by Theorem 1.3, we have that

G(−1) = G(1) and, taking x = 0 in (1.10), that G > G(1) in (−1, 1).

Let us now prove part (b), i.e., that problem (1.1) admits at most one layer

solution up to translations in the y-variable under hypothesis f ′(±1) < 0. Take

two layer solutions u1 and u2, and slide them so that (abusing notation) u1(0, 0) =
u2(0, 0) = 0. Now, let t ↘ 0 in the conclusion of Lemma 5.2 to obtain u1 ≤ u2 in

R
2
+. Interchanging u1 and u2, we conclude u1 ≡ u2.

Finally, to prove statement (c) of Theorem 1.2 concerning odd nonlinearities

f , simply note that if u satisfies (1.1), |u| ≤ 1, and limy→±∞ u(0, y) = ±1, then

v(x, y) = −u(x,−y) also satisfies these three conditions, since f is odd. Hence,

by the uniqueness result above, −u(x,−y) = v(x, y) = u(x, y + a) for some

a ∈ R. Replacing y by y − a/2, we obtain u(x, y + a/2) = −u(x,−y + a/2), as

stated. �

PROOF OF PROPOSITION 6.1: To prove part (a), let u be a local minimizer rel-

ative to perturbations in [−1, 1]. It follows that u is a stable solution and hence,

by Theorem 1.5(a), u is either identically constant, increasing in y, or decreasing

in y. In particular, the limits limy→±∞ u(0, y) = L± exist. Now we can apply

Proposition 3.2 to u and deduce that

G ≥ G(L−) = G(L+) in [−1, 1].
Since by hypothesis G > G(−1) = G(1) in (−1, 1), we infer that |L±| = 1. Since

|u| < 1 by hypothesis, we conclude that {L−, L+} = {−1, 1}. Therefore, either u

or u(x,−y) is a layer solution.

Statement (b), i.e., that every solution as in Proposition 6.1(b) is increasing in

y, follows by taking u1 = u2 = u in Lemma 5.2 after a translation in y to have

u(0, 0) = 0. Its conclusion (u < ut for t > 0) leads to uy ≥ 0. Since u has limits

±1, u is not identically constant, and hence we conclude uy > 0.

Finally, we prove (c). Let u be a nonconstant, stable solution. By Theo-

rem 1.5(a), u is either increasing or decreasing in y. Hence, the limits L± =
limy→±∞ u(0, y) exist. Up to a change of u by u(x,−y) (in case u is decreasing

in y), we may assume that L− < L+.
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Now note that {u − (L− + L+)/2}/{(L+ − L−)/2} is a layer solution for a new

nonlinearity. Using Theorem 1.2(a) and restating the conclusion for u, we have

that G ′(L±) = 0 and G > G(L−) = G(L+) in (L−, L+). Finally, the hypothesis

made on G implies that L± = ±1, and hence u is a layer solution. �

6.3 Decay Estimates: Proof of Theorem 1.6

We now prove the precise decay estimates for layer solutions in dimension 2

when f ′(±1) < 0, as stated in Theorem 1.6. The proof uses the explicit solutions

presented in Section 2.1.

PROOF OF THEOREM 1.6: Assume n = 2 and f ′(±1) < 0, and let u be a layer

solution of (1.1). Set r =
√

x2 + y2.

We start with the upper bound for uy . We have{
�uy = 0 in R

2
+

−(uy)x = f ′(u(0, y))uy on ∂R
2
+.

Since u(0, y) → ±1 as y → ±∞ and f ′(±1) < 0, we can write f ′(u(0, y)) =
d̃(y)−d(y) for some function d̃ with compact support and some function d(y) ≥ ε,

where ε > 0. Then the function d̃(y)uy(0, y) has also compact support, and hence

it can be bounded in the form

d̃(y)uy(0, y) ≤ Kφ2/ε
y (0, y)

for some K > 0 (recall that the functions φa were defined in Lemma 2.1).

Note that the boundary inequality in (2.2) can be rewritten as −(aφa
y )x +2φa

y ≥
φa

y . Using this, we obtain the following inequalities, where all the functions are

evaluated at points (0, y) on ∂R
2
+:

−(uy)x + d(y)uy = d̃(y)uy ≤ Kφ2/ε
y ≤ K

{
−

(
2

ε
φ2/ε

y

)
x

+ 2φ2/ε
y

}

= −
(

2K

ε
φ2/ε

y

)
x

+ ε
2K

ε
φ2/ε

y

≤ −
(

2K

ε
φ2/ε

y

)
x

+ d(y)
2K

ε
φ2/ε

y .

Looking only at the first and last terms in this chain of inequalities and using

Lemma 2.8, we conclude that

(6.16) uy(x, y) ≤ 2K

ε
φ2/ε

y = 2K

ε

2

π

x + 2/ε

(x + 2/ε)2 + y2

for all (x, y) ∈ R
2
+. Since uy > 0, the desired bound |uy| ≤ C/(1 + r) in R

2
+ for

uy follows. In addition, evaluating (6.16) at x = 0, we see that

(6.17) uy(0, y) ≤ C

1 + y2
for all y ∈ R,
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for some constant C > 0. This is the upper bound in (1.13). Throughout the proof,

c and C will denote positive constants that may change in every inequality.

Note that (6.16) could also be proven using Lemma 2.7 instead of Lemma 2.8,

since we know that uy(0, y) → 0 as y → ±∞ by (2.14). Now, to prove the

lower bound on uy , we simply note that we can interchange the roles of uy and

φa . More precisely, let − f ′ ≤ (2a)−1 in (−1, 1) for a constant a > 0. We

have −(uy)x + (2a)−1uy ≥ 0 ≥ −(φa
y )x + (2a)−1φa

y for |y| large, since − f ′
a ≥

(2a)−1 near ±1 (recall Lemma 2.1 for the definition of fa). Lemma 2.7 gives that

Cuy − φa
y > 0 in R

2
+ if C is chosen large enough. That is,

(6.18) uy(x, y) ≥ c
x + a

(x + a)2 + y2

in R
2
+. Taking x = 0, we deduce the lower bound in (1.13).

It follows from (6.17) that

(6.19) |±1 − u(0, y) | ≤ C

|y| as y → ±∞,

and hence that

(6.20) | f (u(0, y))| ≤ C

1 + |y| for all y ∈ R,

an inequality that will be important below.

To obtain estimate (1.14) for the gradient, it remains to bound |ux |. First,

by (6.2) we have |ux | ≤ C/(1 + x) ≤ C/(1 + r) in the sector {|y| ≤ x}.
To estimate |ux | in {|y| > x}, we use the maximum principle in the set S =

{|y| > x > 0, r > 1}. We know that |ux | ≤ C/x on {|y| = x} by (6.1), and that

|ux(0, y)| = | f (u(0, y))| ≤ C/(1 + |y|) for all y by (6.20). We deduce

(6.21) |ux | ≤ C
|y|

x2 + y2
on ∂S = ∂{|y| > x > 0, r > 1}

for some constant C . Since both functions ux and Cy/(x2 + y2) are harmonic

and bounded in S (recall that ∇u ∈ L∞(R2
+) by Lemma 2.3(b)), the maximum

principle implies that the inequality in (6.21) also holds in S. Here we have used

Lemma 2.1 of [10] (among other possibilities); this is a version of the maximum

principle for bounded subsolutions in unbounded domains (such as S) that admit an

infinite open exterior cone. The proof in [10] of such a maximum principle simply

uses a comparison function similar to the one used in the beginning of Section 2.4.

Hence, |ux | ≤ C/(1 + r) in the sector {|y| > x}, and this concludes the proof

of (1.14).

Now, estimate (1.15) for the Dirichlet energy follows from the gradient bound

(1.14). Estimate (1.16) follows from bound (6.19) and the fact that G(s)− G(1) ≤
C(1 − s)2 (since G ′(1) = G ′(−1) = 0 by Lemma 2.4), and G(s) − G(1) =
G(s) − G(−1) ≤ C(1 + s)2.
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Next, (u − φ1)2 is a nonnegative, bounded subharmonic function in R
2
+ less

than or equal to C/(1 + y2) on {x = 0}—since both u and φ1 satisfy (6.19). Hence

the maximum principle gives (u − φ1)2 ≤ C(x + 1)/((x + 1)2 + y2) in R
2
+, since

this last function is harmonic. Therefore

(6.22)

∣∣∣∣u(x, y) − 2

π
arctan

y

x + 1

∣∣∣∣ = |(u − φ1)(x, y)| ≤ C√
r

in R
2
+. From this, (1.17) follows immediately.

Since uy > 0, every level set of u is a graph of y as a function of x . Let

{u = s} = {y = ϕs(x), x ≥ 0}. Evaluating (6.22) at y = ϕs(x), we obtain (1.18).

Finally, we prove that {u = s} is globally Lipschitz; i.e., |(ϕs)′| is bounded.

Note that at points (x, ϕs(x)) on the s-level set we have

|(ϕs)′| = |ux |
uy

≤ C

(1 + r)uy

≤ C
(1 + r)2

(1 + r)(1 + x)
≤ C

1 + x + |ϕs(x)|
1 + x

,

where we have used the upper bound (1.14) for the gradient in the first inequality

and the lower bound (6.18) for uy in the second one. Finally, the limit (1.18)

implies that |ϕs(x)|/(1+x) is bounded, and hence ϕs is a globally Lipschitz graph.

�
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