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Abstract Monte Carlo methods represent the de facto

standard for approximating complicated integrals in-

volving multidimensional target distributions. In order

to generate random realizations from the target distri-

bution, Monte Carlo techniques use simpler proposal

probability densities to draw candidate samples. The

performance of any such method is strictly related to

the specification of the proposal distribution, such that

unfortunate choices easily wreak havoc on the result-

ing estimators. In this work, we introduce a layered
(i.e., hierarchical) procedure to generate samples em-

ployed within a Monte Carlo scheme. This approach
ensures that an appropriate equivalent proposal den-
sity is always obtained automatically (thus eliminating
the risk of a catastrophic performance), although at

the expense of a moderate increase in the complexity.

Furthermore, we provide a general unified importance

sampling (IS) framework, where multiple proposal den-

sities are employed and several IS schemes are intro-
duced by applying the so-called deterministic mixture
approach. Finally, given these schemes, we also propose

a novel class of adaptive importance samplers using a

population of proposals, where the adaptation is driven

by independent parallel or interacting Markov Chain

Monte Carlo (MCMC) chains. The resulting algorithms

efficiently combine the benefits of both IS and MCMC
methods.
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1 Introduction

Monte Carlo methods currently represent a maturing

toolkit widely used throughout science and technology

[20, 47, 52]. Importance sampling (IS) and Markov Chain

Monte Carlo (MCMC) methods are well-known Monte
Carlo (MC) techniques applied to compute integrals in-
volving a high-dimensional target probability density

function (pdf) π̄(x). In both cases, the choice of a suit-

able proposal density q(x) is crucial for the success of

the Monte Carlo based approximation. For this reason,

the design of adaptive IS or MCMC schemes represents

one of the most active research topics in this area, and

several methods have been proposed in the literature

[12, 15, 16, 27, 33].

Since both IS and MCMC have certain intrinsic ad-
vantages and weaknesses, several attempts have been

made to successfully marry the two approaches, pro-
ducing hybrid techniques: IS-within-MCMC [3, 8, 31,
32, 43] or MCMC-within-IS [5, 7, 14, 39, 41, 44, 54]. To
set the scene for such developments it is useful to recall

briefly some of the main strengths of IS and MCMC,

respectively. For instance, one benefit of IS is that it

delivers a straightforward estimate of the normalizing

constant of π̄(x) [30, 47] (a.k.a. evidence or marginal
likelihood), which is essential for several applications

[25, 49]. In contrast, the estimation of the normaliz-

ing constant is highly challenging using MCMC meth-

ods, and several authors have investigated different ap-

proaches to overcome the obstacles related to the in-

stability of the resulting estimators [6, 10, 13, 25, 53].

Furthermore, the application and the theoretical anal-
ysis of an IS scheme using an adaptive proposal pdf is
easier than the theoretical analysis of the corresponding

adaptive MCMC scheme, which is much more delicate

[4].



2 L. Martino⋆ et al.

On the other hand, an appealing feature of MCMC

algorithms is their explorative behavior. For instance,
the proposal function q(x|xt−1) can depend on the pre-

vious state of the chain xt−1 and foster movements be-

tween different regions of the target density. For this
reason, MCMC methods are usually preferred when no
detailed information about the target π̄(x) is available,

especially in large dimensional spaces [2, 24]. More-
over, in order to amplify their explorative behavior sev-
eral parallel MCMC chains can be run simultaneously

[47, 30]. This strategy facilitates the exploration of the

state space, although at the expense of an increase

in the computational cost. Several schemes have been

introduced to share information among the different

chains [16, 36, 37], which further improves the overall

convergence.

The main contribution of this work is the descrip-

tion and analysis of a hierarchical proposal procedure

for generating samples, which can then be employed

within any Monte Carlo algorithm. In this hierarchical

scheme, we consider two conditionally independent lev-
els: the upper level is used to generate mean vectors
for the proposal pdfs, which are then used in the lower

level to draw candidate samples according to some MC

scheme. We show that the standard Population Monte

Carlo (PMC) method [12] can be interpreted as apply-
ing implicitly this hierarchical procedure.

The second major contribution of this work is pro-
viding a general framework for multiple importance sam-

pling (MIS) schemes and their iterative adaptive ver-
sions. We discuss several alternative applications of the
so-called deterministic approach [22, 46, 50] for sam-
pling a mixture of pdfs. This general framework in-

cludes different MIS schemes used within adaptive im-

portance sampling (AIS) techniques already proposed

in literature, such as the standard PMC [12], the adap-

tive multiple importance sampling (AMIS) [15, 34], and
the adaptive population importance sampling (APIS)
[38].

Finally, we combine the general MIS framework with

the hierarchical procedure for generating samples, in-
troducing a new class of AIS algorithms. More specifi-

cally, one or several MCMC chains are used for driving

an underlying MIS scheme. Each algorithm differs from

the others in the specific Markov adaptation employed

and the particular MIS technique applied for yielding

the final Monte Carlo estimators. This novel class of

algorithms efficiently combines the main strengths of

the IS and the MCMC methods, since it maintains an

explorative behavior (as in MCMC) and can still easily

estimate the normalizing constant (as in IS).

We describe in detail the simplest possible algorithm

of this class, called random walk importance sampling.

Moreover, we introduce two additional population-based

variants that provide a good trade-off between per-
formance and computational cost. In the first variant,
the mean vectors are updated according to indepen-

dent parallel MCMC chains. In the other one, an in-

teracting adaptive strategy is applied. In both cases,

all the adapted proposal pdfs collaborate to yield a

single global IS estimator. One of the proposed algo-

rithms, called parallel interacting Markov adaptive im-

portance sampling (PI-MAIS), can be interpreted as

parallel MCMC chains cooperating to produce a single

global estimator, since the chains exchange statistical

information to achieve a common purpose.

The rest of the paper is organized as follows. Sec-

tion 2 is devoted to the problem statement. The hier-

archical proposal procedure is then introduced in Sec-

tion 3. In Section 4, we describe a general framework

for importance sampling schemes using a population of

proposal pdfs, whereas Section 5 introduces the adap-

tation procedure for the mean vectors of these pro-

posal pdfs. Numerical examples are provided in Sec-

tion 6, including comparisons with several benchmark

techniques. Different scenarios have been considered:

a multimodal distribution, a nonlinear banana-shaped

target, a high-dimensional example, and a localization

problem in a wireless sensor network. Finally, Section

7 contains some brief final remarks.

2 Target distribution and related integrals

In this work, we focus on the Bayesian applications of

IS and MCMC. However, the algorithms described may

also be used for approximating any target distribution

that needs to be handled by simulation methods. Let

us denote the variable of interest as x ∈ X ⊆ R
Dx , and

let y ∈ R
Dy be the observed data. The posterior pdf is

then given by

π̄(x) = p(x|y) =
ℓ(y|x)g(x)

Z(y)
, (1)

where ℓ(y|x) is the likelihood function, g(x) is the prior

pdf, and Z(y) is the model evidence or partition func-

tion. In general, Z(y) is unknown, so we consider the

corresponding unnormalized target,

π(x) = ℓ(y|x)g(x). (2)

Our goal is computing efficiently some integral measure
w.r.t. the target pdf,

I =
1

Z

∫

X

f(x)π(x)dx, (3)
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where

Z =

∫

X

π(x)dx, (4)

and f is any square-integrable function (w.r.t. π̄(x)) of
x.1 In this work, we address the problem of approximat-

ing I and Z via Monte Carlo methods. Since drawing
directly from π̄(x) ∝ π(x) is impossible in many appli-

cations, Monte Carlo techniques use a simpler proposal

density q(x) to generate random candidates, testing or

weighting them according to some suitable rule. Indeed,

throughout the paper we focus on the combined use of

several proposal pdfs, denoted as q1, . . . , qJ .

3 Hierarchical procedure for proposal

generation

The performance of MC methods depends on the dis-
crepancy between the target, π̄(x) ∝ π(x), and the pro-

posal q(x). Namely, the performance improves if q(x)
is more similar (i.e., closer) to π̄(x). In general, tun-

ing the parameters of the proposal is a difficult task

that requires statistical information of the target dis-

tribution. In this section, we deal with this important

issue, focusing on the mean vector of the proposal pdf.

More specifically, we consider a proposal pdf defined by

a mean vector µ and covariance matrix C, denoted as
q(x|µ,C) = q(x−µ|C). We propose the following hier-

archical procedure for generating a set of samples that

will be employed afterwards within some Monte Carlo

technique:

1. For j = 1, . . . , J :

(a) Draw a mean vector µj ∼ h(µ).

(b) Draw x
(m)
j ∼ q(x|µj ,C) for m = 1, . . . ,M .

2. Use all the generated samples, x
(m)
j for j = 1, . . . , J

andm = 1, . . . ,M , as candidates within some Monte

Carlo method.

Note that h(µ) plays the role of a prior pdf over the

mean vector of q in this approach. Hence, the pdf of

each sample x
(m)
j can be expressed as

q̃(x|C) =

∫

X

q(x|µ,C)h(µ)dµ, (5)

i.e., the hierarchical procedure is equivalent to draw-

ing directly x
(m)
j ∼ q̃(x|C) for all j = 1, . . . , J and

m = 1, . . . ,M . The density q̃ is thus the equivalent

proposal density of the whole hierarchical generating

1 Note that, as both π̄(x) and Z depend on the observations
y, the use of π̄(x|y) and Z(y) would be more precise. However,
since the observations are fixed, in the sequel we remove the
dependence on y to simplify the notation.

procedure. Note also that the samples µ1, . . . ,µJ are

not directly used by the Monte Carlo estimator, since
only the samples x

(m)
j , for j = 1, . . . , J , m = 1, . . . ,M ,

enter the actual estimator. Hence, the computational

cost per iteration of this hierarchical procedure is higher

than the cost of a standard approach, However, it leads

to substantial computational savings in terms of im-

proved convergence towards the target, and thus a re-
duced number of iterations required, as shown later in
the simulations. Furthermore, note that the generation

of the µj ’s in the upper level is independent of the sam-

ples x
(m)
j drawn in the lower level, thus facilitating the

theoretical analysis of the resulting algorithms, as dis-

cussed in Section 5.1.2

3.1 Optimal prior h∗(µ)

Assuming that the parametric form of q(x|µ,C) and its

covariance matrix C are fixed, we consider the problem

of finding the optimal prior h∗(µ|C) over the mean vec-

tor µ. Note that, since q(x|µ,C) = q(x−µ|C), we can
write

q̃(x|C) =

∫

X

q(x − µ|C)h(µ|C)dµ. (6)

regardless of the choice of the prior over the mean vec-

tors in the upper level. The desirable scenario is to have
the equivalent proposal q̃(x|C) coinciding exactly with

the target π̄(x),3 i.e.,

q̃(x|C) =

∫

X

q(x − µ|C)h∗(µ|C)dµ = π̄(x), (7)

where h∗(µ|C) represents the optimal prior.

3.2 Asymptotically optimal choice of the prior h(µ)

Since Eq. (7) cannot be solved analytically in general,

in this section we relax that condition and look for
an equivalent proposal q̃ which fulfills (7) asymptoti-

cally as J → ∞. For the sake of simplicity, let us set

2 Note that, in the ideal case described here, each µj is
also independent of the other µ’s. However, in the rest of
this work, we also consider cases where correlation among
the mean vectors (µ1, . . . ,µJ ) is introduced.

3 Given a function f(x), the optimal proposal q minimiz-
ing the variance of the IS estimator is eq(x|C) ∝ |f(x)|π̄(x).
However, in practical applications, we are often interested in
computing expectations w.r.t. several f ’s. In this context, a
more appropriate strategy is to minimize the variance of the
importance weights. In this case, the minimum variance is
attained when eq(x|C) = π̄(x) [19].
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M = 1. Thus, we consider the generation of J sam-

ples {x1, . . . ,xJ}, drawn using the following hierarchi-
cal procedure:

(a) Draw a mean vector µj ∼ h(µ).
(b) Draw xj ∼ q(x|µj ,C).

Note that we are using J different proposal pdfs,

q(x|µ1,C), . . . , q(x|µJ ,C),

to draw {x1, . . . ,xJ}, with each xj being drawn from

the j-th proposal xj ∼ q(x|µj ,C). However, if the sam-
ples x1, . . . ,xJ are used altogether regardless of their

order, then it can interpreted that they have been drawn

from the following mixture using the deterministic mix-

ture sampling scheme (see [45, Chapter 9], [22]):

ψ(x) =
1

J

J∑

j=1

q(x|µj ,C). (8)

Note that, since µj ∼ h(µ), then ψ(x) is a Monte Carlo
approximation of the integral in Eq. (7), i.e.,

ψ(x)
a.s.

−−−−→
J→∞

q̃(x|C) =

∫

X

q(x − µ|C)h(µ|C)dµ. (9)

Furthermore, if we choose h(µ) = π̄(µ), i.e., µj ∼ π̄(µ),

then ψ(x) is also a kernel density estimator of π̄(x),
where the q(x|µj ,C) play the role of the kernel func-

tions [51]. In general, this estimator has non-zero bias

and variance, depending on the choice of q, C and the

number of samples J . However, for a given value of J ,

there exists an optimal choice of C∗ which provides the
minimum Mean Integrated Square Error (MISE) esti-

mator [51]. Using the optimal covariance matrix C∗, it
can be proved

ψ(x) =
1

J

J∑

j=1

q(x|µj ,C
∗) → π̄(x), (10)

pointwise as J → ∞ [51]. Hence, the equivalent pro-
posal density of the hierarchical approach converges

to the target when J → ∞. It is possible to show
||C∗|| → 0 as J → ∞, so that there is no contradiction

between (9) and (10) since q(x−µ|C∗) becomes increas-

ingly similar to δ(x − µ), and thus q̃(x|C∗) → π̄(x) as

J → ∞.

3.3 Practical implementation

As explained in Section 3.2, h(µ) = π̄(µ) is a suit-

able choice from a kernel density estimation point of

view. However, sampling directly from π̄(µ) is unfeasi-

ble from a practical point of view (otherwise, we would

not require any MC algorithm). Therefore, we propose

applying another sampling method, such as an MCMC

algorithm, to obtain the samples {µ1, . . . ,µJ} ∼ π̄(µ).
More specifically, starting from an initial µ0, we gener-

ate a sequence

µj ∼ K(µj |µj−1), j = 1, . . . , J,

where K is the kernel of the MCMC technique used.

With the choice h(µ) = π̄(µ), the two levels of the
sampler play different roles:

– The upper level attends the need for exploration of

the state space, providing {µ1, . . . ,µJ}.
– The lower level is devoted to the approximation of

local features of the the target, using {x1, . . . ,xJ}.

In general, the two levels require their own tuning of

the parameters of the corresponding proposals.

3.4 Relationship with other adaptive MC schemes

In contrast to the hierarchical approach described pre-

viously, in standard adaptive MC approaches [9, 27, 33]

the parameter µn is determined by a deterministic func-

tion,

γ : R
M×Dx×(n−1) → R

Dx ,

of the previously generated samples (assuming to gen-

erate M samples from each proposal),

Xj−1 = [x
(1)
1 , . . . ,x

(M)
1 , . . . ,x

(1)
j−1, . . . ,x

(M)
j−1 ],

namely,

µj = γ(Xj−1). (11)

Although γ is a deterministic function, the sequence

{µj}
J
j=1 is generated according to a conditional pdf,

K(µj |µ1, . . . ,µj−1), since Xj−1 is random. Unlike in

the hierarchical scheme, in standard adaptive MC ap-

proaches, the sequence {µj}
J
j=1 typically converges to

a fixed vector.

In the standard PMC method [12] the sequence of
mean vectors µj ’s is also generated depending on the

previous x’s but, in this case, the final distribution
is unknown and it is not a fixed vector, in general

(for further details see Appendix C). Similar consid-

erations also apply for Sequential Monte Carlo (SMC)

schemes [42, 23, 48] where the adaptation is performed

using a combination of resampling and MCMC steps.

Other interesting and related techniques are the Parti-

cle MCMC (P-MCMC) [3] and the Sequentially Inter-

acting MCMC (SI-MCMC) [8] methods. In this case,

IS approximations of the target are used to build bet-

ter proposal pdfs, employed within MCMC steps. Both

methods are also able to provide efficient estimators
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of Z. However, unlike in PMC, SMC, P-MCMC and

SI-MCMC, in the proposed hierarchical approach each
µj is always chosen independently of Xj−1 and it is

distributed according to h(µ), decided in advance by

the user. Moreover, the means µ1, . . . ,µj are not in-

volved in the resulting estimators. Related observations
are provided in Section 5.1 and Table 5.

4 Generalized Multiple Importance Sampling

So far, we have introduced a hierarchical procedure to

generate candidates for an MC technique, adapting the

mean vectors of a set of proposal densities. In this sec-

tion, we provide a general framework for multiple im-

portance sampling (MIS) techniques using a population

of proposal densities, which embeds various alternative

schemes proposed in the literature [22]. First, we con-

sider several alternatives of static MIS, and then we

focus on the corresponding adaptive MIS samplers.

4.1 Generalized Static Multiple Importance Sampling

As we have already highlighted, finding a good proposal
pdf, q(x), is critical and is in general very challenging

[46]. An alternative strategy consists in using a popula-

tion of proposal pdfs. This approach is often known in

the literature as multiple importance sampling (MIS)

[45, 46, 50, 22]. Consider a set of J proposal pdfs,

q1(x), . . . , qJ(x),

with heavier tails than the target π, and let us assume

that M samples are drawn from each of them, i.e.,

x
(m)
j ∼ qj(x), j = 1, . . . , J, m = 1, . . . ,M.

In this scenario, the weights associated to the samples

can be obtained following at least one of these two

strategies:

(a) Standard MIS (S-MIS):

w
(m)
j =

π(x
(m)
j )

qj(x
(m)
j )

, (12)

for j = 1, ..., J and m = 1, . . . ,M ,

(b) Deterministic mixture MIS (DM-MIS) [46, 50]:

w
(m)
j =

π(x
(m)
j )

ψ(x
(m)
j )

=
π(x

(m)
j )

1
J

∑J
k=1 qk(x

(m)
j )

, (13)

for j = 1, ..., J andm = 1, . . . ,M , and where ψ(x) =
1
J

∑J
j=1 qj(x) is the mixture pdf, composed of all the

proposal pdfs. This approach is based on the con-

siderations provided in Appendix B.

In both cases, the consistency of the estimators is en-

sured [22]. The main advantage of the DM-MIS weights

is that they yield more efficient estimators than using

the standard importance weights [15, 46, 21, 38]. How-

ever, the DM-MIS estimator is computationally more

expensive, as it requires JM total evaluations for each
proposal instead of justM , for computing all the weights.

The number of evaluations of the target π(x) is the
same regardless of whether the weights are calculated

according to Eq. (12) or (13), so this increase in compu-

tational cost may not be relevant in many applications.

However, in some other cases this additional computa-

tional load may be excessive (especially for large values

of J) and alternative efficient solutions are desirable.

For instance, the use of partial mixtures has been pro-

posed in [21]:

(c) Partial DM-MIS (P-DM-MIS) [21]: divide the J pro-

posals in L = J
P

disjoint groups forming L mix-

tures with P components. Let us denote the set of
P indices corresponding to the ℓ-th mixture (ℓ =

1, . . . , L) as Sℓ = {kℓ,1, . . . , kℓ,P } (i.e., |Sℓ| = P ),
where each kℓ,p ∈ {1, . . . , J}. Thus, we have

S1 ∪ S2 ∪ . . . ∪ SL = {1, . . . , J}, (14)

with Sr ∩ Sℓ = ∅, for all ℓ = 1, . . . , L, and r 6= ℓ. In

this case, the importance weights are defined as

w
(m)
j =

π(x
(m)
j )

1
P

∑
k∈Sℓ

qk(x
(m)
j )

, (15)

with j ∈ Sℓ, ℓ = 1, . . . , L, and m = 1, . . . ,M .

All the previous cases can be captured by a generic

mixture-proposal Φj(x), under which the MIS weights

can be defined as

w
(m)
j =

π(x
(m)
j )

Φj(x
(m)
j )

, (16)

with m = 1, . . . ,M , where Φj(x
(m)
j ) = qj(x

(m)
j ) in Eq.

(12), Φj(x
(m)
j ) = 1

J

∑J
k=1 qk(x

(m)
j ) in Eq. (13), and

Φj(x
(m)
j ) =

1

P

∑

k∈Sℓ

qk(x
(m)
j ), with j ∈ Sℓ, (17)

in Eq. (15). In any case, the weights are always normal-
ized as

ρ̄
(m)
j =

w
(m)
j∑J

i=1

∑M
r=1 w

(r)
i

. (18)

Table 1 shows these three choices of Φj(x
(m)
j ), whereas

Table 2 summarizes a generalized static MIS procedure.
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Table 1 Three possible functions Φj(x) for MIS.

MIS approach
Function Φj(x), L P

(j = 1, . . . , J) LP = J

Standard MIS qj(x) J 1

DM-MIS ψ(x) = 1
J

PJ
j=1 qj(x) 1 J

Partial DM-MIS 1
P

P

k∈Sℓ
qk(x) L P

Table 2 Generalized static MIS scheme.

1. Generation: Draw M samples from each qj , i.e.,

x
(m)
j ∼ qj(x),

for j = 1, . . . , J , and with m = 1, . . . ,M .

2. Weighting: Assign to each sample x
(m)
j the weight

w
(m)
j =

π(x(m)
j )

Φj(x
(m)
j )

, (19)

where Φj is a mixture of qj ’s, as shown in Table 1.
3. Normalization: Set

ρ̄
(m)
j =

w
(m)
j

PJ
i=1

PM
r=1 w

(r)
i

.

4. Output: Return all the pairs {x
(m)
j , ρ̄

(m)
j }, for j =

1, . . . , J and m = 1, . . . ,M .

Note that the IS estimator Î of a specific moment

of π̄, i.e., the integral I given in Eq. (3), and the ap-

proximation Ẑ of the normalizing constant in Eq. (4),

can now be approximated as

Î =

J∑

j=1

M∑

m=1

ρ̄
(m)
j f(x

(m)
j ),

Ẑ =
1

JM

J∑

j=1

M∑

m=1

w
(m)
j .

(20)

Then, the particle approximation of the measure of π̄

is given by

π̂(JM)(x) =
1

JMẐ

J∑

j=1

M∑

m=1

w
(m)
j δ(x − x

(m)
j ). (21)

In Section 4.2, we describe a framework where a partial

grouping of the proposal pdfs arises naturally from the

sampler’s definition.

4.2 Generalized Adaptive Multiple Importance
Sampling

In order to decrease the mismatch between the proposal
and the target, several Monte Carlo methods adapt the

parameters of the proposal iteratively using the infor-
mation of the past samples [12, 15, 38]. In this adaptive
scenario, we have a set of proposal pdfs {qn,t(x)}, with

n = 1, . . . , N and t = 1, . . . , T , where the subscript

t indicates the iteration index, T is the total number

of adaptation steps, and J = NT is the total num-
ber of proposal pdfs. In the following, we present a

unified framework, called generalized adaptive multi-
ple importance sampling (GAMIS), which includes sev-
eral methodologies proposed independently in the liter-
ature, as particular cases. In GAMIS, each proposal pdf

in the population {qn,t} is updated at every iteration

t = 1, . . . , T , forming the sequence

qn,1(x), qn,2(x), . . . , qn,T (x),

for the n-th proposal (see Figure 1). At the t-th itera-

tion, the adaptation procedure takes into account sta-

tistical information about the target distribution gath-

ered in the previous iterations, 1, . . . , t − 1, using one

of the many procedures that have been proposed in the

literature [11, 12, 15, 38]. Furthermore, at the t-th iter-
ation, M samples are drawn from each proposal qn,t,

x
(m)
n,t ∼ qn,t(x), with m = 1, . . . ,M,

n = 1, . . . , N and t = 1, . . . , T . An importance weight

w
(m)
n,t is then assigned to each sample x

(m)
n,t . Several

strategies can be applied to build w
(m)
n,t considering the

different MIS approaches, as discussed in the previous

section. Figure 1 provides a graphical representation of

this scenario, by showing both the spatial and temporal

evolution of the J = NT proposal pdfs.

Iterations (Time)

D
om

ai
n

(S
p
ac

e)

ψ(x)

q1,1(x) . . . q1,t(x) . . . q1,T (x)
...

...
...

...
...

qn,1(x) . . . qn,t(x) . . . qn,T (x)
...

...
...

...
...

qN,1(x) . . . qN,t(x) . . . qN,T (x)

φt(x)

ξn(x)

Fig. 1 Graphical representation of the J = NT proposal pdfs
used in the generalized adaptive multiple IS scheme, spread
through the state space X (n = 1, . . . , N) and adapted over
time (t = 1, . . . , T ). Three different mixtures are displayed:
ψ(x) involving all the proposals, φt(x) involving only the pro-
posals at the t-th iteration, and ξn(x) considering the tempo-
ral evolution of the n-th proposal pdf.

In an AIS algorithm, one weight

w
(m)
n,t =

π(x
(m)
n,t )

Φn,t(x
(m)
n,t )

, (22)
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is associated to each sample x
(m)
n,t . In a standard MIS

approach, the function employed in the denominator is

Φn,t(x) = qn,t(x). (23)

In the complete DM-MIS case, the function Φn,t is

Φn,t(x) = ψ(x) =
1

NT

N∑

k=1

T∑

r=1

qk,r(x). (24)

This case corresponds to the external blue rectangle

in Fig. 1. Two natural alternatives of partial DM-MIS

schemes appear in this scenario. The first one uses the

following partial mixture

Φn,t(x) = ξn(x) =
1

T

T∑

r=1

qn,r(x), (25)

with n = 1, . . . , N , in the denominator of the IS weight.

Namely, we consider the temporal evolution of the n-th

single proposal qn,t. Hence, we have L = N mixtures,

each one formed by P = T components (horizontal red
rectangle in Fig. 1). The other possibility is considering

the mixture of all the qn,t’s at the t-th iteration, i.e.,

Φn,t(x) = φt(x) =
1

N

N∑

k=1

qk,t(x), (26)

for t = 1, . . . , T , so that we have L = T mixtures, each

one formed by P = N components (vertical green rect-

angle in Fig. 1). The function Φn,t in Eq. (23) is used
in the standard PMC scheme [12]; Eq. (25) with N = 1

has been considered in adaptive multiple importance

sampling (AMIS) [15]. Eq. (26) has been applied in the

adaptive population importance sampling (APIS) algo-

rithm [38], whereas in other techniques, such as Mix-

ture PMC [11, 17, 18], a similar strategy is employed

but using a standard sampling of the mixture φt(x).
Table 3 summarizes all the possible cases discussed

above. The last row corresponds to a generic grouping

strategy of the proposal pdfs qn,t. As previously de-

scribed, we can also divide the J = NT proposals into

L = NT
P

disjoint groups forming L mixtures with P

components. We denote the set of P pairs of indices cor-

responding to the ℓ-th mixture (ℓ = 1, . . . , L) as Sℓ =
{(kℓ,1, rℓ,1), . . . , (kℓ,P , rℓ,P )}, where kℓ,p ∈ {1, . . . , N},
rℓ,p ∈ {1, . . . , T} (i.e., |Sℓ| = P , with each element be-

ing a pair of indices), and Sr∩Sℓ = ∅ for all ℓ = 1, . . . , L,

and r 6= ℓ. In this scenario, we have

Φn,t(x) =
1

P

∑

(k,r)∈Sℓ

qk,r(x), with (n, t) ∈ Sℓ. (27)

Note that, using ψ(x) and ξn(x), the computational

cost per iteration increases as the total number of it-
erations T grows. Indeed, at the t-th iteration all the

previous proposals qn,1, . . . , qn,t−1 (for all n) must be

evaluated at all the new samples x
(m)
n,t . Hence, algo-

rithms based on these proposals quickly become unfea-
sible as the number of iterations grows. On the other

hand, using φt(x) the computational cost per iteration
is controlled by N , remaining invariant regardless of the

number of adaptive steps performed.

Observe also that a suitable AIS scheme builds iter-
atively a global IS estimator which uses the normalized

weights

ρ̄
(m)
n,t =

w
(m)
n,t∑T

τ=1

∑N
n=1

∑M
m=1 w

(m)
n,τ

, (28)

for n = 1, . . . , N , m = 1, . . . ,M , and t = 1, . . . , T .

Table 4 shows an iterative version of GAMIS. We re-

mark that, at the t-th iteration, the weights of the sam-

ples previously generated need to be recalculated, as

shown in step 2(c-3) of Table 4. The choices Φn,t(x) =

qn,t(x) or Φn,t(x) = φt(x) allow avoiding completely
this re-computation step of the weights. For simplicity,

in Table 4 we have provided the output of the algo-
rithms as weighted samples, i.e., all the pairs {x

(m)
n,t , ρ̄

(m)
n,t }.

However, the output can be equivalently expressed as
an estimator of a specific moment of the target. In this

case, the final IS estimators ÎT and ẐT are

ÎT =

T∑

τ=1

N∑

n=1

M∑

m=1

ρ̄(m)
n,τ f(x(m)

n,τ ),

ẐT =
1

NMT

T∑

τ=1

N∑

n=1

M∑

m=1

w(m)
n,τ ,

(29)

where ρ̄
(m)
n,τ =

w(m)
n,τ

NMTẐT

. Moreover, the final particle ap-

proximation is

π̂(NMT )(x) =
1

NMTẐT

T∑

τ=1

N∑

n=1

M∑

m=1

w(m)
n,τ δ(x − x(m)

n,τ ).

(30)

The estimators in Eq. (29) can be expressed recursively,

thus providing an estimate at each iteration t, as stated
before. Starting with H0 = 0, Î0 = 0, and setting St =∑N

n=1

∑M
m=1 w

(m)
n,t and Ht = Ht−1 + St, we have

Ît =
1

Ht

[
Ht−1Ît−1 +

N∑

n=1

M∑

m=1

w
(m)
n,t f(x

(m)
n,t )

]
,

=
Ht−1

Ht−1 + St

Ît−1 +
St

Ht−1 + St

Ât, (31)

where Ât =
∑N

n=1

∑M
m=1

w
(m)
n,t

St
f(x

(m)
n,t ) is the partial IS

estimator using only the samples drawn at the t-th iter-

ation. Therefore, Ît can be seen as a convex combination
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Table 3 Summary of possible MIS strategies in an adaptive framework.

MIS approach Function Φn,t(x) J
L P

Corresponding Algorithm
LP = J

Standard MIS qn,t(x) NT 1 PMC [12]

DM-MIS ψ(x) = 1
NT

PN
n=1

PT
t=1 qn,t(x) 1 NT suggested in [21]

Partial DM-MIS ξn(x) = 1
T

PT
t=1 qn,t(x) NT N T AMIS [15], with N = 1

Partial DM-MIS φt(x) = 1
N

PN
n=1 qn,t(x) T N APIS [38] and [11, 17, 18]

Partial DM-MIS generic Φn,t(x) in Eq. (27) L P suggested in [21]

Table 4 GAMIS scheme: iterative version.

1. Initialization: Set t = 1, H0 = 0 and choose N initial
proposal pdfs qn,0(x).

2. For t = 1, . . . , T :
(a) Adaptation: update the proposal pdfs

{qn,t−1}N
n=1 providing {qn,t}N

n=1, using a preestab-
lished procedure (e.g., see [12, 11, 15, 38] for some
specific approaches).

(b) Generation: Draw M samples from each qn,t, i.e.,

x
(m)
n,t ∼ qn,t(x), with n = 1, . . . , N and m =

1, . . . ,M .
(c) Weighting:

(c-1) Update the function Φn,t(x) given the current
population {q1,t, . . . , qN,t}.

(c-2) Assign the weights to the new samples x
(m)
n,t ,

w
(m)
n,t =

π(x(m)
n,t )

Φn,t(x
(m)
n,t )

, (33)

for n = 1, . . . , N , and m = 1, . . . ,M .

(c-3) Re-weight the previous samples x
(m)
n,τ for τ =

1, . . . , t− 1 as

w
(m)
n,τ =

π(x(m)
n,τ )

Φn,t(x
(m)
n,τ )

, (34)

with τ = 1, . . . , t − 1, n = 1, . . . , N , and m =
1, . . . ,M .

(d) Normalization: Set St =
PM

m=1

PN
n=1 w

(m)
n,t ,

Ht = Ht−1 +St , and re-normalize all the weights,

ρ̄
(m)
n,τ = ρ̄

(m)
n,τ−1

Ht−1

Ht

, (35)

for τ = 1, . . . , t, n = 1, . . . , N , and m = 1, . . . ,M .

(e) Output: Return all the pairs {x
(m)
n,τ , ρ̄

(m)
n,τ }, for τ =

1, . . . , t, n = 1, . . . , N , and m = 1, . . . ,M .

of the two IS estimators Ît−1 and Ât (for further expla-

nations see Eqs. (46)-(47) in Appendix B.3). Finally,

note that

Ẑt =
1

t

1

NM
Ht. (32)

A brief discussion about the consistency of Ît and Ẑt is

provided in Appendix A.

5 Markov adaptation for GAMIS

In this section, we design efficient adaptive importance

sampling (AIS) techniques by combining the main ideas

discussed in the two previous sections. More specifically,

we apply the hierarchical MC approach to adapt the

proposal pdfs within a GAMIS scheme. Therefore, a

Markov GAMIS technique, or simply Markov Adaptive

Importance Sampling (MAIS) algorithm, consists of the

following two layers:

1. Upper level (Adaptation): Given the set of mean vec-

tors,
Pt−1 = {µ1,t−1, . . . ,µN,t−1},

obtain the new set Pt = {µ1,t, . . . ,µN,t} accord-

ing to MCMC transitions with π̄ as invariant den-

sity. More specifically, a kernel K(µ1:N,t|µ1:N,t−1)

leaving invariant the distribution
∏N

n=1 π̄(µn) is ap-

plied.

2. Lower level (MIS estimator): Given the population

of proposals,

q1,t(x|µ1,t,C1), . . . , qN,t(x|µN,t,CN ),

choose a function Φn,t(x) for the computation of the

weights in Eq. (22), and perform a MIS approxima-

tion of the target as described in Section 4.2.

5.1 Theoretical support: adaptation and consistency

The motivation behind the MCMC adaptation has been

described in Section 3.2 and 3.3: the functions qn,t, lo-

cated at the µn,t’s, jointly provide a kernel estimate of

the target π̄.

Furthermore, we recall that the generation of the
means, µn,t, is completely independent from the samples

xn,t drawn in the lower level. This is a key point from
a theoretical and practical point of view. Indeed, the

generic MAIS algorithm can be divided in two steps: (a)

first generate all the means {µn,t}
T
t=1 for n = 1, . . . , N ,

(b) then perform the MIS estimation considering all

the proposals qn,t(x|µn,t,Cn), ∀n and ∀t. Namely, any

MAIS technique can be converted into a generalized

static MIS scheme (see Section 4.1). As a consequence,
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the unique conditions required for ensuring the consis-

tency of the corresponding estimators are [22, 47]:

– All the proposal pdfs, qn,t, must have heavier tails

than the target π̄.

– A suitable function Φn,t(x) for the denominator of
the importance weights must be chosen. Namely, the

use of Φn,t(x) provides consistent estimators [22],

like the functions Φn,t(x) described in Section 4.2.

Moreover, the independence of the upper level from the

lower level of the hierarchical approach, helps the par-

allelization of the algorithms as we discuss later.

Table 5 compares different AIS schemes. In the stan-

dard AIS method [9], the sequence of {µn,t} converges

to a unknown fixed vector as t → ∞. In the standard
PMC algorithm [12], the limiting distribution of {µn,t}
is unknown. Furthermore, in both cases, standard AIS

and PMC, the adaptation depends on the previously

generated samples x’s. In MAIS techniques, the use of

an ergodic chain (with invariant pdf π̄) for generating

the n-th mean vector µn,t ensures that its asymptotic
density is π̄(µ).

Table 5 Adaptation of the mean vectors {µn,t} using differ-
ent AIS techniques.

Features Stand. AIS PMC MAIS

limiting (unknown) unknown
distribution of fixed (if/when π̄(µ)

{µn,t} for t→ ∞ vector exists)
dependence of
the adaptation yes yes no
w.r.t. the x’s

5.2 The new class of algorithms

Markov GAMIS framework can lead to many differ-
ent algorithms, depending on the MCMC strategy used
to update the mean vectors and the specific choice of

the function Φn,t. Table 6 provides several examples

of novel techniques determined by the value of N , the

choice of Φn,t, and the type of MCMC adaptation. Some

of them are variants of well-known techniques like PMC

[12] and AMIS [15], where the Markov adaptation pro-

cedure is employed. Others, such as the Random Walk

Importance Sampling (RWIS), the Parallel Interacting

Markov Adaptive Importance Sampling (PI-MAIS) and

Doubly Interacting Markov Adaptive Importance Sam-

pling (I2-MAIS), are described below in detail. For these

completely novel algorithms we have set Φn,t(x) = φt(x),

so that the computational cost is directly controlled by

Table 7 Random Walk Importance Sampling (RWIS) algo-
rithm.

1. Initialization: start with t = 1, H0 = 0, choose the
values M and T , the initial location parameter µ0, the
scale parameters C and Λ.

2. For t = 1, . . . , T :
(a) MH step:

(a-1) Draw µ′ ∼ ϕ(µ|µt−1,Λ).
(a-2) Set µt = µ′ with probability

α = min

»

1,
π(µ′)ϕ(µt|µ′,Λ),

π(µt)ϕ(µ′|µt−1,Λ)

–

,

otherwise set µt = µt−1 (with probability 1−
α).

(b) IS steps:

(b-1) Draw x
(m)
t ∼ qt(x|µt,Cn) for m = 1, . . . ,M .

(b-2) Weight the samples as

w
(m)
t =

π(x(m)
t )

qt(x
(m)
t |µt,Cn)

.

(b-3) Set St =
PM

m=1 w
(m)
t , Ht = Ht−1 + St, and

normalize the weights

ρ̄
(m)
t =

w
(m)
t

Pt
τ=1

PM
r=1 w

(r)
τ

= ρ̄
(m)
t−1

Ht−1

Ht

.

(c) Output: Return all the pairs {x
(m)
τ , ρ̄

(m)
τ } for m =

1, . . . ,M and τ = 1, . . . , t.

N and the re-weighting step 2(c-3) in Table 4 is not

required.

RWIS is the simplest possible Markov GAMIS algo-
rithm. Specifically, for the MCMC adaptation we con-

sider a standard MH technique, setting N = 1 and
choosing Φn,t(x) = φt(x) = qn,t(x) (since N = 1,

the two cases coincide). Table 7 shows the RWIS al-

gorithm, which is a special case of the more general

scheme described in Table 8 when N = 1. Note that

we have a proposal pdf used for the MH adaptation,
ϕ(µ|µt−1,Λ), which is different from the proposal pdf

used for the IS estimation, q(x|µt,C).

5.3 Population-based algorithms

The RWIS technique can be easily extended by using a

population of N proposal pdfs. In this case, we choose

Φn,t(x) = φt(x) =
1

N

N∑

n=1

qn,t(x),

so that the computational cost of evaluating the mix-

ture Φn,t(x) = φt(x) depends only on N , regardless of

the number t of iterations. Moreover, step 2(c-3) in Ta-

ble 4 is not required in this case. Table 8 describes the
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Table 6 Example of possible Markov GAMIS algorithms.

Parallel adaptation Interacting adaptation

Function Φn,t(x) N = 1 N > 1 N > 1

qn,t(x)
RWIS Markov PMC (related to [12])

(see Table 7)

ξn(x) = 1
T

PT
t=1 qn,t(x)

Markov AMIS N parallel Population-based
(related to [15]) Markov AMIS (rel. to [15]) Markov AMIS (rel. to [15])

φt(x) = 1
N

PN
n=1 qn,t(x)

RWIS PI-MAIS I2-MAIS
(see Table 7) (see Section 5.3) (see Section 5.3)

ψ(x) = 1
NT

PN
n=1

PT
t=1 qn,t(x)

Markov AMIS Full Markov GAMIS
(related to [15])

generic Φn,t(x) Partial Markov GAMIS

corresponding algorithm without specifying the MCMC

approach used for generating the population of means,
Pt = {µ1,t, ...,µN,t}, given Pt−1.

Two possible adaptation procedures via MCMC are

discussed below. In the first one, we consider N inde-
pendent parallel chains for updating the N mean vec-

tors. We refer to this method as Parallel Interacting

Markov Adaptive Importance Sampling (PI-MAIS). Al-

though PI-MAIS is parallelizable, in the iterative ver-

sion of Table 8 the N independent processes cooperate
together in Eq. (36) to provide unique global IS esti-

mate. In the second adaptation scheme, we introduce
the interaction also in the upper level. Hence, we refer
to this method as Doubly Interacting Markov Adaptive

Importance Sampling (I2-MAIS). In both cases, the cor-

responding technique provides an IS approximation of
the target or, equivalently, the estimators ÎT and ẐT in
Eq. (29), using NMT samples.

5.3.1 MCMC adaptation for PI-MAIS

The simplest option is applying one iteration of N par-

allel MCMC chains, one for each µn,t−1 returning µn,t,

for n = 1, . . . , N . For instance, given N parallel MH
transitions, each one employing (possibly) a different

proposal pdf ϕn with covariance matrix Λn, we have:

For n = 1, . . . , N :

1. Draw µ′ ∼ ϕn(µ|µn,t−1,Λn).

2. Set µn,t = µ′ with probability

α = min

[
1,

π(µ′)ϕn(µn,t−1|µ
′,Λn)

π(µn,t−1)ϕn(µ′|µn,t−1,Λn)

]
,

otherwise set µn,t = µn,t−1 (with probability 1−α).

Figure 2(a) illustrates this scenario. Each mean vec-

tor µn,t is updated independently from the rest. There-

fore, in PI-MAIS, the interaction among the different

Table 8 Population-Based MAIS algorithms.

1. Initialization: Set t = 1, Î0 = 0 and H0 = 0. Choose
the initial population

P0 = {µ1,0, ...,µN,0},

and N covariance matrices Cn (n = 1, . . . , N). Choose
also the parametric form of the N normalized propos-
als qi,t with parameters µn,t and Cn. Let T be the
total number of iterations.

2. For t = 1, . . . , T :
(a) Update of the location parameters: Perform one

transition of one or more MCMC techniques over
the current population,

Pt−1 = {µ1,t−1, ...,µN,t−1},

obtaining a new population,

Pt = {µ1,t, ...,µN,t}.

(b) IS steps:

(b-1) Draw x
(m)
n,t ∼ qn,t(x|µn,t,Cn) for m =

1, . . . ,M and n = 1, . . . , N .
(b-2) Compute the importance weights,

w
(m)
n,t =

π(x(m)
n,t )

1
N

PN
k=1 qk,t(x

(m)
n,t |µk,t,Ck)

, (36)

with n = 1, . . . , N , and m = 1, . . . ,M .

(b-3) Set St =
PN

n=1

PM
m=1 w

(m)
n,t , Ht = Ht−1 + St,

and normalize the weights

ρ̄
(m)
n,t =

w
(m)
n,t

Pt
τ=1

PN
i=1

PM
r=1 w

(r)
i,τ

= ρ̄
(m)
n,t−1

Ht−1

Ht

.

(c) Outputs: Return all the pairs {x
(m)
τ , ρ̄

(m)
τ } for

m = 1, . . . ,M and τ = 1, . . . , t.

processes occurs only in the underlying IS layer of the

hierarchical structure: the importance weights in Eq.

(36) are built using the partial DM-MIS strategy with
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MH MH MH …. 

µ1,t µ2,t µN,t

µ1,t−1 µ2,t−1 µN,t−1

(a) For PI-MAIS

MH  in  

R
Dx×N

[µ1,t−1, . . . , µN,t−1]

[µ1,t, . . . , µN,t]
(b) For I2-MAIS

SMH   

{µ1,t−1, . . . , µN,t−1}

{µ1,t, . . . , µN,t}
(c) For I2-MAIS

MH 

…. 

µN,t

µ2,t

µ1,t

µ0,t = µN,t−1

MH 

MH 

(d) For I2-MAIS

Fig. 2 Different possible adaptation procedures for Population-based MAIS schemes. (a) One transition of N indepen-
dent parallel MH chains (µn,t ∈ R

Dx) for PI-MAIS. (b) One transition of an MH method working in the extended
space [µ1,t, . . . ,µN,t] ∈ R

Dx×N . (c) One transition of SMH [30, Chapter 5], considering the population of mean vectors
Pt = {µ1,t, ...,µN,t}. (d) N sequential transitions of (possibly) different MH kernels starting from µ0,t = µN,t−1.

φt(x) = 1
N

∑N
n=1 qn,t(x|µn,t,Cn). Considerations about

the parallelization of PI-MAIS are given in Section 5.5.

5.3.2 MCMC adaptation for I2-MAIS

Let us consider an extended state space R
Dx×N and an

extended target pdf

π̄g(µ1, . . . ,µN ) ∝
N∏

n=1

π(µn), (37)

where each marginal π(µn), for i = 1, ..., N , coincides

with the target in Eq. (2). In this section, we describe

three interacting adaptation procedures for the mean

vectors, which consider the generalized pdf in Eq. (37)

as invariant density. They are represented graphically
in Figs. 2(b), (c) and (d).

MH in the extended space R
Dx×N

The simplest possibility is applying directly a block-
MCMC technique, transitioning from the matrix

Pt−1 = [µ1,t−1, . . . ,µN,t−1],

to the matrix Pt = [µ1,t, . . . ,µN,t]. Let us consider an

MH method and a proposal pdf ϕ(Pt|Pt−1) : R
Dx×N →

R
Dx×N . For instance, one can consider a proposal of the

type

ϕ(µ1,t, . . . ,µN,t|µ1,t−1, . . . ,µN,t−1)

=

N∏

n=1

ϕn(µn,t|µn,t−1,Λn).

Thus, one transition is formed by the following steps:

1. Draw P′ ∼ ϕ(P|Pt−1), where P′ = [µ′
1, . . . ,µ

′
N ].

2. Set Pt = P′ with probability

α = min

[
1,

πg(P
′)ϕ(Pt−1|P

′)

πg(Pt−1)ϕ(P′|Pt−1)

]
,

otherwise set Pt = Pt−1 (with probability 1 − α).

At each iteration, N new samples µ′
n are drawn (as

in PI-MAIS) and therefore N new evaluations of π are
required (i.e., one evaluation of πg). When a new P′ is

accepted, all the components of Pt differ from Pt−1, un-
like in the strategy described later. However, the proba-

bility of accepting a new population becomes very small

for large values of N .

Sample Metropolis-Hastings (SMH) algorithm

SMH is a population-based MCMC technique, suitable
for our purposes [30, Chapter 5]. At each iteration t,

given the previous set

Pt−1 = {µ1,t−1, ...,µN,t−1},

a new possible parameter µ0,t−1, drawn from an in-
dependent proposal ϕ(µ), is tested to be interchanged

with another parameter in Pt−1 = {µ1,t−1, ...,µN,t−1}.
The underlying idea of SMH is to replace one “bad”
sample in the population Pt−1 with a potentially “bet-

ter” one, according to a certain suitable probability α.

The algorithm is designed so that, after a burn-in pe-
riod, the elements in Pt are distributed according to
π̄g(µ1, . . . ,µN ). One iteration of SMH consists of the

following steps:

1. Draw a candidate µ0,t−1 ∼ ϕ(µ).

2. Choose a “bad” sample, µk,t−1 with k ∈ {1, ..., N},
from the population according to a probability pro-

portional to
ϕ(µk,t−1)
π(µk,t−1)

, which corresponds to the in-

verse of the standard IS weights.
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3. Accept the new population, Pt = {µ1,t, . . . ,µN,t}
with µn,t = µn,t−1 for all n 6= k and µk,t = µ0,t−1,
with probability

α(Pt−1,µ0,t−1) =

∑N
n=1

ϕ(µn,t−1)
π(µn,t−1)∑N

i=0
ϕ(µi,t−1)
π(µi,t−1)

− min
0≤i≤N

ϕ(µi,t−1)
π(µi,t−1)

.

Otherwise, set Pt = Pt−1.

Unlike in the previous strategy, the difference between

Pt−1 and Pt is at most one sample. Observe that α de-

pends on Pt−1 and the candidate µ0,t−1. However, at
each iteration, only one new evaluation of π (and ϕ) is

needed at µ0,t−1, since the rest of the weights have al-
ready been computed in the previous steps (except for

the initial iteration).

MH within Gibbs

Another simple alternative, following an “MH within

Gibbs” approach for sampling from π̄g, is to update
sequentially each µn,t−1 using one MH step in R

Dx .

Hence, setting µ0,t = µN,t−1, we have:

For n = 1, . . . , N :

1. Draw µ′ from a proposal pdf ϕn(µ|µn−1,t,Λn).

2. Set µn,t = µ′ with probability

α = min

[
1,

π(µ′)ϕn(µn−1,t|µ
′,Λn)

π(µn−1,t)ϕn(µ′|µn−1,t,Λn)

]
,

otherwise set µn,t = µn−1,t.

This scenario is illustrated in Fig. 2(d). In this case,

after T iterations of the I2-MAIS scheme, we generate

a unique MH chain with NT total states, divided in

T parts of N states. At each iteration of the I2-MAIS

scheme, each block of N states is employed as mean

vector of the N proposal pdfs used in the lower level.

5.4 Computational cost: comparison between PI-MAIS
and I2-MAIS

In all cases, the total number of samples involved in the
final estimation is NMT . The total number of evalu-

ations of the target, E, is larger due to the MCMC

implementation, i.e., E > NMT . More precisely, the

total number of evaluations of the target is:

– E = MNT +NT , for PI-MAIS,

– E = MNT + NT , for I2-MAIS with MH in the

extended space R
DX×N ,

– E = MNT + T , for I2-MAIS with SMH,

– E = MNT+NT , for I2-MAIS with the MH-within-

Gibbs approach.

Note that we have taken into account that several eval-

uations of the target have been computed in the previ-
ous iterations. Moreover, the application of the MCMC
techniques requires generation of V additional uniform

r.v.’s for performing the acceptance tests (and addi-
tional r.v.’s for choosing a “bad” candidate in SMH).
Specifically, we need: V = NT uniform r.v.’s in PI-

MAIS and I2-MAIS with MH-within-Gibbs, V = T uni-
form r.v.’s for I2-MAIS with MH in the extended space,

andV = 2T , T uniform r.v. and T multinomial r.v., for

I2-MAIS with SMH. However, in practical applications,

the main computational effort is usually required for
the target evaluation. The computing time required in
the multinomial sampling within SMH increases with

N . Finally, we recall that we have used a determin-

istic mixture weighting scheme with Φn,t(x) = φt(x),

which requires MN2T evaluations of the proposal pdfs,

qn,t(x), for n = 1, . . . , N and t = 1, . . . , T .

5.5 Non-iterative and parallel implementations

As remarked in Section 5.1, the choice of the means

µn,t’s is completely independent from the estimation

steps. Thus, all the means can be selected in advance

(also in parallel if the strategy in Section 5.3.1 is used),

and the MIS estimation steps can then be performed as

in a completely static framework (i.e., as described in

Section 4.1). This consideration is valid for any choice
of Φn,t(x).

Let us consider now the choice of Φn,t’s as tempo-

ral mixtures, i.e., Φn,t = 1
T

∑T
t=1 qn,t(x) or Φn,t(x) =

qn,t(x). Moreover, let us consider the use of N par-

allel MCMC chains for adapting the means, i.e., one
independent chain for each parameter µn,t, with n =

1, . . . , N . In this case, the corresponding algorithm is

completely parallelizable. Indeed, it can be decomposed
into N parallel MAIS techniques, each one producing

the partial estimators În,T and Ẑn,T , after T iterations.

The global estimators are then given by

ÎT =

N∑

n=1

Ẑn,T∑N
i=1 Ẑi,T

În,T ,

ẐT =
1

N

N∑

n=1

Ẑn,T .

(38)

Furthermore, different strategies for sharing informa-

tion among the parallel chains can also be applied [16,

36, 37, 26, 35, 44], or for reducing the total number of

evaluations of the target [29] (the scheme in [29] can be

applied if a unique independent proposal is employed,

i.e., ϕn(µ) = ϕ(µ) for all n).
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6 Numerical simulations

In this section, we test the performance of the proposed

scheme comparing them with other benchmark tech-
niques. First of all, we tackle two challenging issues for
adaptive Monte Carlo methods: multimodality in Sec-

tion 6.1 and nonlinearity in Section 6.2. Furthermore,

in Section 6.4 we consider an application of position-

ing and tuning model parameters in a wireless sensor

network [1, 28, 40].

6.1 Multimodal target distribution

In this section, we test the novel proposed algorithms

in a multimodal scenario, comparing with several other

methods. Specifically, we consider a bivariate multi-

modal target pdf, which is itself a mixture of 5 Gaus-

sians, i.e.,

π̄(x) =
1

5

5∑

i=1

N (x; νi,Σi), x ∈ R
2, (39)

with means ν1 = [−10,−10]⊤, ν2 = [0, 16]⊤, ν3 =

[13, 8]⊤, ν4 = [−9, 7]⊤, ν5 = [14,−14]⊤, and covariance

matrices Σ1 = [2, 0.6; 0.6, 1], Σ2 = [2, −0.4;−0.4, 2],

Σ3 = [2, 0.8; 0.8, 2], Σ4 = [3, 0; 0, 0.5] and Σ5 =

[2, −0.1;−0.1, 2]. The main challenge in this exam-

ple is the ability in discovering the 5 different modes

of π̄(x) ∝ π(x). Since we know the moments of π(x),
we can easily assess the performance of the different

techniques.

Given a random variable (r.v.) X ∼ π̄(x), we con-

sider the problem of approximating via Monte Carlo the

expected value E[X] = [1.6, 1.4]⊤ and the normalizing

constant Z = 1. Note that an adequate approximation
of Z requires the ability of learning about all the 5

modes. We compare the performances of different sam-
pling algorithms in terms of Mean Square Error (MSE):
(a) the AMIS technique [15], (b) three different PMC

schemes4, two of them proposed in [11, 12] and one

PMC using a partial DM-MIS scheme with Φn,t(x) =

φt(x), (c) N parallel independent MCMC chains and
(d) the proposed PI-MAIS method. Moreover, we test

two static MIS approaches, the standard MIS and a par-
tial DM-MIS schemes with Φn,t(x) = φt(x), computing

iteratively the final estimator.

For a fair comparison, all the mentioned algorithms

have been implemented in such a way that the num-

ber of total evaluations of the target is E = 2 · 105. All

the involved proposal densities are Gaussian pdfs. More

4 The standard PMC method [12] is described in Section
C.

specifically, in PI-MAIS, we use the following parame-

ters: N = 100, M ∈ {1, 19, 99}, T ∈ {20, 100, 1000} in
order to fulfill E = MNT +NT = (M+1)NT = 2 ·105

(see Section 5.4). The proposal densities of the upper

level of the hierarchical approach, ϕn(x|µn,t,Λn), are

Gaussian pdfs with covariance matrices Λn = λ2I2

and λ ∈ {5, 10, 70}. The proposal densities used in

the lower importance sampling level, qn,t(x|µn,t,Cn)
are Gaussian pdfs with covariance matrices Cn = σ2I2

and σ ∈ {0.5, 1, 2, 5, 10, 20, 70}. We also try different

non-isotropic diagonal covariance matrices in both lev-

els, i.e, Λn = diag(λ2
n,1, λ

2
n,2), where λi,j ∼ U([1, 10]),

and Cn = diag(σ2
n,1, σ

2
n,2), where σn,j ∼ U([1, 10]) for

j ∈ {1, 2} and n = 1, . . . N . We test all these techniques

using two different initializations: first, we choose delib-

erately a “bad” initialization of the initial mean vectors,

denoted as In1, in the sense that the initialization re-

gion does not contain the modes of π. Thus, we can test
the robustness of the algorithms and their ability to im-

prove the corresponding static approaches. Specifically,

the initial mean vectors are selected uniformly within

the following square

µn,0 ∼ U([−4, 4] × [−4, 4]),

for n = 1, . . . , N . Different examples of this configura-
tion are shown in Fig. 3 with squares. Secondly, we also

consider a better initialization, denoted as In2, where
the initialization region contains all the modes. Specif-

ically, the initial mean vectors are selected uniformly

within the following square

µn,0 ∼ U([−20, 20] × [−20, 20]),

for n = 1, . . . , N . All the results are averaged over 2·103

independent experiments. Tables 9 and 10 show the

Mean Square Error (MSE) in the estimation of the first

component of E[X], with the initialization In1 and In2

respectively. Table 11 provides the MSE in the estima-

tion of Z with In1. The best results in each column

are highlighted in bold-face. In AMIS [15], the mean

vector and the covariance matrix of a single proposal

(i.e., N = 1) are adapted, using Φ1,t(x) = ξ1(x) in

the computation of the IS weights. Hence, in AMIS, we

have tested different values of samples per iterations

M ∈ {500, 103, 2 · 103, 5 · 103, 104} and T = E
M

. For the

sake of simplicity, we directly show the worst and best

results among the several simulations made with differ-

ent parameters. PI-MAIS outperforms the other algo-

rithms virtually for all the choices of the parameters,

with both initializations. In general, a greater value of

T is needed since the proposal pdfs are initially bad

localized. Moreover, PI-MAIS always improves the per-

formance of the static approaches. These two considera-

tion show the benefit of the Markov adaptation. Hence,
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PI-MAIS presents more robustness with respect to the

initial values and the choice of the covariance matrices.

Figure 6(a) providing a summary of the results in Ta-

ble 9 showing the log(MSE) as function of the log(σ),

for the main compared methods. Figure 3 depicts the

initial (squares) and final (circles) configurations of the

mean vectors of the proposal densities for the standard

PMC and the PI-MAIS methods, in a specific run and
different values of σ, λ ∈ {3, 5}. In both cases, PI-MAIS

guarantees a better covering of the modes of π(x).

6.2 Nonlinear banana-shaped target distribution

Here we consider a bi-dimensional “banana-shaped” tar-
get distribution [27], which is a benchmark function in
the literature due to its nonlinear nature. Mathemati-
cally, it is expressed as

π̄(x1, x2) ∝ exp

„

−
1

2η21

`

4 −Bx1 − x22
´2

−
x21
2η22

−
x22
2η23

«

,

where, we have set B = 10, η1 = 4, η2 = 5, and
η3 = 5. The goal is to estimate the expected value

E[X], where X = [X1, X2] ∼ π̄(x1, x2), by applying dif-

ferent Monte Carlo approximations. We approximately

compute the true value E[X] ≈ [−0.4845, 0]⊤ using an

exhaustive deterministic numerical method (with an ex-

tremely thin grid), in order to obtain the mean square

error (MSE) of the following methods: standard PMC

[12], the Mixture PMC [11], the AMIS [15], PI-MAIS

and I2-MAIS with SMH adaptation.

We consider Gaussian proposal distributions for all

the algorithms. The initialization has been performed

by randomly drawing the parameters of the Gaussians,

with the mean of the n-th proposal given by µn,0 ∼
U([−6,−3] × [−4, 4]), and its covariance matrix given
by Cn = [σ2

n,1 0; 0 σ2
n,2]

⊤. We have considered two

cases: an isotropic setting where σn,k ∈ {1, 2, . . . , 10}
with k = 1, 2, and an anisotropic case with random se-

lection of the parameters where σn,k ∼ U([1, 20]), with

k = 1, 2. Recall that in AMIS and Mixture PMC, the

covariance matrices are also adapted.

For each algorithm, we test several combinations of
parameters, keeping fixed the total number of target

evaluations, E = 2 ·105. In the standard PMC method,
described in Section C), we considerN ∈ {50, 100, 103, 5·
103} and T = E

N
(here M = 1). In Mixture PMC,

we consider different number of component in the mix-
ture proposal pdf N ∈ {10, 50, 100}, and different sam-

ples per proposal S ∈ {100, 200, 103, 2 · 103, 5 · 103}
at each iteration (here T = E

S
). In AMIS, we test

S ∈ {500, 103, 2 · 103, 5 · 103, 104} and T = E
S

(we

recall N = 1). The range of these values of parame-

ters are chosen, after a preliminary study, in order to

obtain the best performance from each technique. In

PI-MAIS an I2-MAIS, we set N ∈ {50, 100}. For the

adaptation in PI-MAIS, we also consider Gaussian pdfs

ϕn(x|µn,t,Λn), covariance matrices Λn = λ2I2 with

λ ∈ {3, 5, 10, 20}. In I2-MAIS, for the SMH method we

use a Gaussian pdf with mean [0, 0]⊤ and covariance

matrix Λ = λ2I2 and again λ ∈ {3, 5, 10, 20}. We test
M ∈ {1, 9, 19} for both, so that T = E

N(M+1) for PI-

MAIS and T = ⌊ E
NM+1⌋ for I2-MAIS (see Section 5.4).

The results are averaged 500 over independent sim-
ulations, for each combination of parameters. Table 12

shows the smallest and highest MSE values obtained in

the estimation of the expected value of the target, aver-

aged between the two components of E[X], achieved by

the different methods. The smallest MSEs in each col-

umn (each σ) are highlighted in bold-face. PI-MAIS and

I2-MAIS outperform the other techniques virtually for
all the values of σ. In this example, AMIS also provides

good results. Figure 7 show a graphical representation

of the results in Table 12, with the exception of the last

column.

Fig. 4 displays the initial (squares) and final (circles)

configurations of the mean vectors of the proposals for

the different algorithms, in one specific run. Since in

Mixture PMC and AMIS the covariance matrices are

also adapted, we show the shape of some proposals as

ellipses representing approximately 85% of probability
mass. For, PMC we also depict a last resampling output
with triangles, in order to show the loss in diversity.
Unlike PMC, PI-MAIS ensures a better covering of the

region of high probability.

6.3 High dimensional target distribution

Let us consider again a mixture of isotropic Gaussians

as target pdf, i.e.,

π̄(x) =
1

3

3∑

k=1

N (x;νk,Σk), x ∈ R
Dx , (40)

where νk = [νk,1, . . . , νk,Dx
]⊤, and Σk = χ2

kIDx
for k ∈

{1, 2, 3}, with IDx
being the Dx ×Dx identity matrix.

We set ν1,j = −5, ν2,j = 6, ν3,j = 3 for all j = 1, ..., Dx,
and χk = 8 for all k ∈ {1, 2, 3}. The expected value of

the target π(x) is then E[Xj ] = 4
3 for j = 1, . . . , Dx. In

order to study the performance of the proposed scheme

as the dimension of the state space increases, we vary

the dimension of the state space in Eq. (40) testing

different values of Dx (with 2 ≤ Dx ≤ 50).

We consider the problem of approximating via Monte

Carlo the expected value of the target density, and

we compare the performance of different methods: (a)
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(b) PMC (N = 100, σ = 5)
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(d) PI-MAIS (N = 100, λ = 5)

Fig. 3 Initial (squares) and final (circles) configurations of the mean vectors of the proposal densities for the standard PMC
and the PI-MAIS methods, in different specific runs. The initial configuration corresponds to In1.
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(a) PMC (N = 100, σ = 1)
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(b) Mixture PMC with 10
mixands (σ = 5)

−6 −4 −2 0 2
−10

−5

0

5

10

(c) AMIS (σ = 5)
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(d) PI-MAIS (N = 100, λ = 3)

Fig. 4 Initial (squares) and final (circles) configurations of the mean vectors of the proposal densities for the banana-shaped
target distribution, in one specific run for the different methods. The Mixture PMC [11] and AMIS techniques [15] also adapt
the covariance matrices (the ellipses show approximately 85% of the probability mass).

the standard PMC scheme [12], (b) N parallel inde-

pendent MH chains (Par-MH), (c) a standard Sequen-

tial Monte Carlo (SMC) scheme [42] and (d) the pro-

posed PI-MAIS method. We test the algorithms with
N ∈ {100, 500}. All the proposal pdfs involved in the

experiments are Gaussians, with the same covariance

matrices for all the techniques. The initial mean vec-

tors in all techniques are selected randomly and inde-

pendently as µn,0 ∼ U([−6 × 6]Dx) for n = 1, . . . , N .

Again, all the mentioned algorithms have been im-

plemented in such a way that the number of total eval-

uations of the target is E = 2 ·105. More specifically, in

PI-MAIS, we use two sets of parameters: with N = 100,
M = 19, T = 100, and with N = 500, M = 19, T = 20

in order to fulfill E = (M +1)NT = 2 ·105 (see Section

5.4). The proposal pdf of the upper level of the hier-

archical approach, ϕn(x|µn,t,Λn), are Gaussian pdfs

with covariance matrices Λn = λ2IDx
and λ = 10. The

proposal pdfs used in the lower importance sampling

level, qn,t(x|µn,t,Cn) are Gaussian pdfs with covari-

ance matrices Cn = σ2IDx
again with σ = 10 (for a

fair comparison with the other techniques). In PMC,

Par-MH and SMC we use the same proposals with the

same covariances and initial parameters. As described

in App. C, in PMC the adaptation is carried out by

resampling steps, in SMC an alternation of resampling

and MH steps is performed whereas, in Par-MH, N in-

dependent MH chains are carried out.

The results are averaged over 200 independent sim-

ulations. Fig. 8 shows the log-MSE in the estimation of

E[X] as a function of the dimension Dx of the state-

space. Fig. 8(a) compares the algorithms with N = 100
proposal pdfs, whereas in Fig. 8(b) we have N = 500,

keeping fixed the number of total evaluations of the

target E = 2 · 105. We observe, as expected, the perfor-

mance of all the methods degenerate as the dimension

of the problem, Dx increases, since we maintain fixed

the computational cost E = 2 · 105. PI-MAIS always
provides the best results, with the exception for the

cases corresponding to N = 100 and Dx = 35, 50 where

SMC obtains a lower MSE (for N = 100 and Dx = 40,

they provide virtually the same MSE).

6.4 Localization problem in a wireless sensor network

We consider the problem of positioning a target in a
2-dimensional space using range measurements. This

problem appears frequently in localization applications

in wireless sensor networks [1, 28, 40]. Namely, we con-

sider a random vector X = [X1, X2]
⊤ to denote the

target position in the plane R
2. The position of the

target is then a specific realization X = x. The range
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measurements are obtained from 3 sensors located at

h1 = [−10, 2]⊤, h2 = [8, 8]⊤ and h3 = [−20,−18]⊤.
The observation equations are given by

Yj = a log

(
||x − hj ||

0.3

)
+Θj , j = 1, . . . , 3, (41)

whereΘj are independent Gaussian variables with iden-

tical pdfs, N (ϑj ; 0, ω
2), j = 1, 2. We also consider a

prior density over ω, i.e., Ω ∼ p(ω) = N (ω; 0, 25)I(ω >

0), where I(ω > 0) is 1 if ω > 0 and 0 otherwise. The
parameter A = a is also unknown and we again con-

sider a Gaussian prior A ∼ p(a) = N (a; 0, 25). More-
over, we also apply Gaussian priors over X, i.e., p(xi) =

N (xi; 0, 25) with i = 1, 2. Thus, the posterior pdf is

π̄(x1, x2, a, ω) = p(x1, x2, a, ω|y)

∝ ℓ(y|x1, x2, a, ω)p(x1)p(x2)p(a)p(ω),

where y ∈ R
Dy is the vector of received measurements.

We simulate d = 30 observations from the model (Dy/3 =
10 from each of the three sensors) fixing x1 = 3, x2 = 3,

a = −20 and ω = 5. With Dy = 30, the expected

value of the target (E[X1] ≈ 2.8749, E[X2] ≈ 3.0266,

E[A] ≈ 5.2344, E[Ω] ≈ 20.1582)5 is quite close to the

true values.

Our goal is computing the expected value of

(X1, X2, A,Ω) ∼ π̄(x1, x2, a, ω)

via Monte Carlo, in order to provide an estimate of the

position of the target, the parameter a and the standard

deviation ω of the noise in the system. We apply PI-

MAIS and three different PMC schemes (see example

in Section 6.1, for a description), all using N Gaussian
proposals. We initialize the mean vectors so that they

are randomly spread within the space of the variables
of interest, i.e.,

µn,0 ∼ N (µ;0, 302I4), n = 1, ..., N,

and the covariance matrices Cn = diag(σ2
n,1, . . . , σ

2
n,4)I4

with n = 1, . . . , N . The values of the standard de-
viations σn,j are chosen randomly for each Gaussian

pdf. Specifically, σn,j ∼ U([1, Q]), j = 1, . . . , 4, where
we have considered three possible values for Q, i.e.,

Q ∈ {5, 10, 30}. For the adaptation process of PI-MAIS,

we consider also Gaussian proposals with covariance
matrices Λn = λ2I2 and λ ∈ {5, 10, 70}. We also try

different non-isotropic diagonal covariance matrices, i.e,
Λn = diag(λ2

n,1, λ
2
i,2), where λn,j ∼ U([1, 30]).

For a fair comparison, all the techniques have been

simulated with sets of parameters that yield the same

5 These values have been obtained with a deterministic, ex-
pensive and exhaustive numerical integration method, using
a thin grid.

number of target evaluations, fixed to E = 2 · 105.

In PI-MAIS, we have chosen parameters N = 100,
M = {1, 19, 99}, T = {20, 100, 1000}. The PMC algo-

rithms has been simulated with N = 100 and T = 2000.

The MSE of the different estimators (averaged over

3000 independent runs) are provided in Table 13 and

the log(MSE) in Figure 6(b). PI-MAIS outperforms al-

ways PMC when σn,j ∼ U([1, 5]) and σn,j ∼ U([1, 10])
whereas PMC provides better results for σn,j ∼ U([1, 30]).

Therefore, the results show jointly the robustness and

flexibility of the proposed PI-MAIS technique.

7 Conclusions

In this work, we have introduced a layered (i.e., hierar-
chical) framework for designing adaptive Monte Carlo

methods. In general terms, we have shown that such a

hierarchical interpretation lies behind the good perfor-

mance of two well-known algorithms; a random walk

proposal within an MH scheme and the standard PMC

method. Furthermore, we have used this approach to

introduce a novel class of adaptive importance sam-

pling (AIS) schemes. The novel class of AIS algorithms

employs the determinist mixture (DM) idea [46, 50] in

order to reduce the variance of the resulting IS estima-

tors. We have extended the use of the DM strategy with

respect to other algorithms available in the literature,

providing a more general and flexible framework. From

an estimation perspective, this framework includes dif-

ferent schemes proposed in literature [15, 38] as spe-

cial cases, although they differ to an extent in terms

of the employed adaptation procedure. Our framework

also contains several other sampling schemes consider-

ing full or partial DM approaches. Finally, we have dis-

cussed several aspects of the trade-offs in terms of the

computational cost and advantages due to improved ac-

curacy of the resulting estimators. Numerical compar-
isons with different algorithms on benchmark models
have confirmed the benefit of the layered adaptive sam-
pling approaches.
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A Consistency of GAMIS estimators

First of all, we remark that the complete analysis should
take in account the chosen adaptive procedure since, in gen-
eral, the adaptation uses the information of previous weighted
samples. However, in this work we consider an adaption pro-
cedure completely independent of the estimation steps, as
clarified in Sections 3.4-5.1. This simplifies substantially the
analysis as described in Section 5.1.

The consistency of the global estimators in Eq. (29) pro-
vided by GAMIS can be considered when number of samples
per time step (M × N) and the number of iterations of the
algorithm (T ) grow to infinity. For some exhaustive studies
of specific cases, see the analysis in [47, 17] and [34]. Here
we provide some brief arguments for explaining why ÎT and
ẐT obtained by a GAMIS scheme are, in general, consistent.
Let us assume that qn,t’s have heavier tails than π̄(x) ∝ π(x).
Note that the global estimator ÎT can be seen as a result of
a static batch MIS estimator involving L different mixture-
proposals Φn,t(x) and J = NMT total number of samples.

The weights w(m)
n,t built using Φn,t(x) in the denominator of

the IS ratio are suitable importance weights yielding consis-
tent estimators, as explained in detail in AppendixB. Hence,
for a finite number of iterations T < ∞, when M → ∞ (or
N → ∞), the consistency can be guaranteed by standard IS
arguments, since it is well known that ẐT → Z and ÎT → I

as M → ∞, or N → ∞ [47].
Furthermore, for T → ∞ and N,M <∞, we have a convex

combination, given in Eq. (31), of conditionally independent
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(consistent but biased) IS estimators [47]. Indeed, although
in an adaptive scheme the proposals depend on the previous
configurations of the population, the samples drawn at each
iteration are conditionally independent of the previous ones,
and independent of each other drawn at the same iteration.
The bias is due to unknown Z (see Eq. (4)), and hat ẐT is
used to replace Z. However, ẐT → Z as T → ∞, as discussed
in [47, Chapter 14]: hence, ÎT is asymptotically unbiased as
T → ∞.

B Importance sampling with multiple proposals

Recall that our goal is computing efficiently the integral I =
1
Z

R

X
f(x)π(x)dx where f is any square-integrable function

(w.r.t. π̄(x)) of x, and Z =
R

X
π(x)dx < ∞ with π(x) ≥ 0 for

all x ∈ X ⊆ R
Dx . Let us assume that we have two proposal

pdfs, q1(x) and q2(x), from which we intend to draw M1 and
M2 samples respectively:

x
(1)
1 , . . . ,x

(M1)
1 ∼ q1(x) and x

(1)
2 , . . . ,x

(M2)
2 ∼ q2(x).

There are at least two procedures to build a joint IS estimator:
the standard multiple importance sampling (MIS) approach
and the full deterministic mixture (DM-MIS) scheme.

B.1 Standard IS approach

The simplest approach [47, Chapter 14] is computing the clas-
sical IS weights:

w
(i)
1 =

π(x(i)
1 )

q1(x(i)
1 )

, w
(k)
2 =

π(x(k)
2 )

q2(x(k)
2 )

, (42)

with i = 1, . . . ,M1 and k = 1, . . . ,M2. The IS estimator is
then built by normalizing them jointly, i.e., computing

ÎIS =
1

Stot

0

@

M1
X

i=1

w
(i)
1 f(x(i)

1 ) +
M2
X

k=1

w
(k)
2 f(x(k)

2 )

1

A , (43)

where Stot =
PM1

i=1 w
(i)
1 +

PM2

k=1 w
(k)
2 . For J > 2 proposal pdfs

and x
(1)
j , . . . ,x

(Mj)

j ∼ qj(x), for j = 1, . . . , J , we have

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

w
(mj)

j =
π(x

(mj)

j )

qj(x
(mj)

j )
, and

ÎIS =
1

PJ
n=1

PMj

mj=1 w
(mj)

j

J
X

j=1

Mj
X

mj=1

w
(mj)

j f(x
(mj)

j ).

In this case, Stot =
PJ

n=1

PMj

mj=1 w
(mj)

j .

B.2 Deterministic mixture approach

An alternative approach is based on the deterministic mixture
sampling idea [46, 50, 22]. Considering N = 2 proposals q1,
q2, and setting

Z =
n

x
(1)
1 , . . . ,x

(M1)
1 ,x

(1)
2 , . . . ,x

(M2)
2

o

,

with x
(mj)

j ∈ R
Dx (n ∈ {1, 2} and 1 ≤ mj ≤ Mj), the weights

are now defined as

w
(mj)

j =
π(x

(mj)

j )

M1

M1+M2
q1(x

(mj)

j ) + M2

M1+M2
q2(x

(mj)

j )
. (44)

In this case, the complete proposal is considered to be a mix-
ture of q1 and q2, weighted according to the number of sam-
ples drawn from each one. Note that, unlike in the standard
procedure for sampling from a mixture, a deterministic and
fixed number of samples are drawn from each proposal in the
DM approach [22]. It can be shown that the set Z of samples
drawn in this deterministic way is distributed according to
the mixture q(z) = M1

M1+M2
q1(z) + M2

M1+M2
q2(z) [45, Chapter

9, Section 11]. The DM estimator is finally given by

ÎDM =
1

Stot

2
X

j=1

Mj
X

mj=1

w
(mj)

j f(x
(mj)

j ), (45)

where Stot =
P2

j=1

PMj

mj=1 w
(mj)

j and the w
(mj)

j are given by

(44). For J > 2 proposal pdfs, the DM estimator can also be
easily generalized:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

w
(mi)
i =

π(x(mi)
i )

PJ
j=1

Mj

Mtot
qj(x

(mj)

j )
, and

ÎDM =
1

PJ
n=1

PMj

mj=1 w
(mj)

j

J
X

j=1

Mj
X

mj=1

w
(mj)

j f(x
(mj)

j ),

with i = 1, . . . , J , Mtot = M1 + M2 + . . . + MJ and Stot =
PJ

j=1

PMj

mj=1 w
(mj)

j . On the one hand, the DM approach is

more efficient than the IS method, thus providing a better
performance in terms of a reduced variance of the correspond-
ing estimator, as shown in the following section. On the other
hand, it needs to evaluate every proposal Mtot times instead
of only Mj times (in the standard MIS procedure), and there-
fore is more costly from a computational point of view. How-
ever, this increased computational cost is negligible when the
proposal is much cheaper to evaluate than the target, as it
often happens in practical applications.

B.3 Convex combination of partial IS estimators

Regardless the type of weights employed in the IS scheme (ei-
ther as in Eq. (42) or as in Eq. (44)), the resulting estimators
can be written as convex combination of simpler ones. First of
all, let us consider again the use of J = 2 proposals, q1 and q2.

We draw Mj samples from each one, x
(1)
j , . . . ,x

(Mj)

j ∼ qj(x),
with j ∈ {1, 2}. The two partial sums of the weights cor-
responding only to the samples drawn from q1 and q2, are

given by S1 =
PM1

i=1 w
(i)
1 and S2 =

PM2

k=1 w
(k)
2 . The partial

IS estimators, obtained by considering only one proposal pdf,

are Î1 =
PM1

i=1 w̄
(i)
1 f(x(i)

1 ) and Î2 =
PM2

k=1 w̄
(k)
2 f(x(k)

2 ) where

the normalized weights are w̄(i)
1 =

w
(i)
1

S1
and w̄

(k)
2 =

w
(k)
2

S2
, re-

spectively. The complete IS estimator, taking into account
the M1 +M2 samples jointly, is

Îtot =
1

S1 + S2

“

S1Î1 + S2Î2

”

=
S1

S1 + S2
Î1 +

S2

S1 + S2
Î2. (46)
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This procedure can be easily extended for J > 2 different
proposal pdfs, obtaining the complete estimator as the convex
combination of the N partial estimators:

Îtot =

PJ
j=1 Sj Îj

PJ
j=1 Sj

,

Ẑtot =
1

PJ
j=1Mj

J
X

j=1

Sj =
1

PJ
j=1Mj

J
X

j=1

MjẐj ,

(47)

where x
(1)
j , . . . ,x

(Mj)

j ∼ qj(x), Îj =
PMj

k=1 w
(k)
j f(x(k)

j ), Sj =
PMj

k=1 w
(k)
j and Ẑj = 1

Mj

PMj

k=1 w
(k)
j .

C Hierarchical interpretation of PMC

The standard Population Monte Carlo (PMC) [12] method
can be interpreted as using a hierarchical procedure. Although
it is possible to recognize the two different layers, there are
some differences w.r.t. the hierarchical procedure in Section
3. The first one is that in PMC the generation of µ’s is not
independent of the previously generated x’s. The second one

is that the prior is instead h(µ) = π̂
(N)
t (µ), where π̂

(N)
t is

an approximation of the measure of π̄(µ) obtained using the
previously generated samples x’s (in the second level of the
hierarchical approach). More specifically, a standard PMC
method [12] is an adaptive importance sampler using a popu-
lation of proposals q1, . . ., qN . PMC consists of the following
steps, given an initial set, µ1,0, . . ., µN,0, of mean vectors:

1. For t = 0, . . . , T − 1 :
(a) Draw xn,t ∼ qn,t(x|µn,t,Cn), for n = 1, . . . , N .
(b) Assign to each sample xn,t the weights,

wn,t =
π(xn,t)

qn,t(xn,t|µn,t,Cn)
. (48)

(c) Resampling: draw N independent samples µn,t+1, n =
1, . . . , N , according to the particle approximation

π̂
(N)
t (µ|x1:N,t) =

1
PN

n=1 wn,t

N
X

n=1

wn,tδ(µ− xn,t),

(49)

where we have denoted x1:N,t = [x1,t, . . . ,xN,t]⊤. Note
that each µn,t+1 ∈ {x1,t, . . . ,xN,t}, for all n.

2. Return all the pairs {xn,t, wn,t}, n = 1, . . . , N and t =
0, . . . , T − 1.

Fixing an iteration t, the generating procedure used in one
iteration of the standard PMC method can be cast in the
hierarchical formulation:

1. Draw N samples µ1,t, . . . ,µN,t from π̂
(N)
t−1(µ|x1:N,t−1).

2. Draw xn,t ∼ qn,t(x|µn,t,Cn), for n = 1, . . . , N .

Note that π̂(N)
t−1 plays the role of the prior h in the hierarchical

scheme above. Differently from the novel proposed scheme,
the two levels of hierarchical procedure are not independent

since the pdf π̂(N)
t (µ|x1:N,t) depends on the samples drawn

in the lower level. Furthermore, π̂(N)
t also varies with t and

N , whereas in our procedure we consider a fixed prior h. How-

ever, note that π̂(N)
t is an empirical measure approximation

of π̄ that improves when N grows. An equivalent formula-
tion of the hierarchical scheme for PMC is given below, in-
volving a probability of generating a new mean µ given the
previous ones µ1:N,t−1 = [µ1,t−1, . . . ,µN,t−1]⊤, denoted as

K
(N)
t (µ|µ1:N,t−1).

C.1 Distribution after one resampling step

Consider the t-th iteration of PMC. Let us define as

m¬n = [x1,t, . . . ,xn−1,t,xn+1,t, . . . ,xN,t]
⊤,

the vector containing all the generated samples except for the
n-th. Let us also denote as µi,t+1 ∈ {x1,t . . . ,xN,t}, a generic
mean vector, i.e. i ∈ {1, . . . , N} at the iteration t + 1, after
applying one resampling step (i.e., a multinomial sampling
according to the normalized weights). Hence, the distribution
of µ given the previous means µ1:N,t−1 is

K
(N)
t+1(µi,t+1|µ1,t, . . . ,µN,t) =

=

Z

XN
π̂
(N)
t (µi,t+1|x1:N,t)

"

N
Y

n=1

qn,t(xn,t|µn,t,Cn)

#

dx1:N,t,

(50)

where π̂(N)
t (µ|x1:N,t) is given in Eq. (49). For simplicity, be-

low we denote

qn(x) = qn,t(x|µn,t,Cn), and µ = µi,t.

Then, after some straightforward rearrangements, Eq. (50)
can be rewritten as

K
(N)
t+1 (µ|µ1,t, . . . , µN,t) =

=

N
X

j=1

0

B

B

@

Z

XN−1

π(xj,t)
P

N
n=1

π(xn,t)

qn(xn,t)

2

6

6

4

N
Y

n=1
n6=j

qn(xn,t)

3

7

7

5

dm¬j

1

C

C

A

δ(µ − xj,t).

Finally, we can write

K
(N)
t+1(µ|µ1,t, . . . ,µN,t) =

π(µ)
N

X

j=1

0

B

B

@

Z

XN−1

1

NẐ

2

6

6

4

N
Y

n=1
n6=j

qn(xn,t)

3

7

7

5

dm¬j

1

C

C

A

, (51)

where Ẑ = 1
N

PN
n=1

π(xn)
qn(xn)

is the estimate of the normalizing

constant of the target obtained using the classical IS weights.
The hierarchical formulation of PMC can be rewritten as:

1. Draw N samples µ1,t, . . . ,µN,t from K
(N)
t (µ|µ1:N,t−1) in

Eq. (50) or (51).
2. Draw xn,t ∼ qn,t(x|µn,t,Cn), for n = 1, . . . , N .

WhenN → ∞, then Ẑ → Z [47], and thusK(N)
t (µ|µ1:N,t−1) →

1
Z
π(µ) = π̄(µ), for all t = 1 . . . , T . Namely, when N grows, the

hierarchical scheme above tends to have h(µ) = π̄(µ) as prior
in the upper level. Figures 5 show three different examples

of the conditional pdf K(N)
t (obtained via numerical approx-

imation) for a fixed t and different N ∈ {2, 20, 1000}. We can

observe that K(N)
t becomes closer to the target π̄ (depicted

in solid line) as N grows.

C.1.1 Differences between PMC and MAIS algorithms

In the Markov adaptive importance sampling (MAIS) schemes
described in Section 5, since we are using MCMC methods for
drawing from h(µ) = π̄(µ), actually we have also a current

prior K
(N)
t (µ1:N,t|µ1:N,t−1), determined for the kernels of

the considered MCMC algorithms. For instance, in PI-MAIS
we have

K
(N)
t (µ1:N,t|µ1:N,t−1) =

N
Y

n=1

An(µn,t|µn,t−1),
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π̄(x)

K
(2)
t

x

(a)
x

π̄(x)

K
(20)
t

(b)
x

π̄(x)

K
(1000)
t

(c)

Fig. 5 Examples of K(N)
t (µ|µ1:N,t−1) (approximated numerically and shown with dashed line) and a bimodal target pdf π̄(x)

(solid line), fixing an iteration t within a PMC method and for different N : (a) N = 2, (b) N = 20 and (c) N = 1000.

Algorithm σ = 0.5 σ = 1 σ = 2 σ = 5 σ = 10 σ = 70 σn,j ∼ U([1, 10])

λ = 5
M = 99, T = 20 1.2760 0.5219 0.5930 0.0214 0.0139 0.1815 0.0107
M = 19, T = 100 0.2361 0.1205 0.0422 0.0087 0.0140 0.1868 0.0052
M = 1, T = 1000 0.1719 0.0019 0.0155 0.0103 0.0273 0.3737 0.0070

λ = 10
M = 99, T = 20 1.0195 0.1546 0.2876 0.0178 0.0133 0.1789 0.0098
M = 19, T = 100 0.1750 0.0120 0.0528 0.0086 0.0136 0.1856 0.0050

PI-MAIS (N = 100) M = 1, T = 1000 0.1550 0.0021 0.0020 0.0095 0.0252 0.3648 0.0066

λ = 70
M = 99, T = 20 16.9913 5.5790 1.4925 0.0382 0.0128 0.1834 0.0252
M = 19, T = 100 2.6693 0.9182 0.1312 0.0147 0.0143 0.1844 0.0120
M = 1, T = 1000 0.3014 0.1042 0.0136 0.0115 0.0267 0.3697 0.0093

λn,j ∼ U([1, 10])
M = 99, T = 20 1.0707 0.5364 0.3523 0.0199 0.0121 0.1919 0.0094
M = 19, T = 100 0.2481 0.0595 0.1376 0.0075 0.0144 0.1899 0.0049

M = 1, T = 1000 0.1046 0.0037 0.0045 0.0099 0.0274 0.3563 0.0065

Static standard MIS Φn,t(x) = qn,t(x) 29.56 41.95 64.51 2.17 0.0147 0.1914 4.55
Static partial DM-MIS Φn,t(x) = φt(x) 29.28 47.74 75.22 0.2424 0.0124 0.1789 0.0651

AMIS [15]
(best results) 124.22 121.21 100.23 0.8640 0.0121 0.0136 0.7328
(worst results) 125.43 123.38 114.82 16.92 0.0128 18.66 13.49

PMC [12] 112.99 114.11 47.97 2.34 0.0559 2.41 0.3017
PMC with partial DM-MIS N = 100, T = 2000 111.92 107.58 26.86 0.6731 0.0744 2.42 0.0700
Mixture PMC [11] 110.17 113.11 50.23 2.75 0.0521 2.57 0.6194

Parallel Indep. MH chains N = 100,T = 2000 1.6910 1.7640 1.8832 1.4133 0.2969 0.5475 7.3446

Table 9 (Ex-Sect 6.1) MSE of the estimator of the E[X] (first component) with the initialization In1. For all the techniques,
the total number of evaluations of the target is E = 2 · 105. We recall that, in AMIS [15], N = 1 and Φ1,t(x) = ξ1(x). The last
row corresponds to the application of N = 100 (as in PI-MAIS) parallel MH chains where the random walk proposals have
covariance matrices C = σ2I2. The lengths of the chains, as well as of the PMC runs, is T = 2000 for keeping E = 2 · 105. For
the techniques which adapt the covariance matrices of the proposal pdfs, the values of σ have been employed as initial scale
values for the covariance matrices. For AMIS, we show the best and worst results obtained testing different combinations of
M and T = E

M
. The best results, in each column, are highlighted with bold-faces.

where An(µn,t|µn,t−1) is the kernel of the n-th chain. Unlike
in PMC, since we are using ergodic chains with invariant pdf

π̄, we know that K(N)
t (µ1:N,t|µ1:N,t−1) →

QN
n=1 π̄(µn) for

t→ ∞, with a fixed N . Whereas PMC requires to increase N
for obtaining the same result.
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Fig. 6 (Ex-Sect 6.1-6.4) Summary of the results in Table 9 in Fig. (a), and Table 13 in Fig. (b): the curve log(MSE) of the
different methods as function of log(σ) in Fig. (a) (σ ∈ {0.5, 1, 2, 5, 10, 70}), and as function of the different experiments in Fig.
(b). The worst and best results of PI-MAIS are depicted with triangles up and down, respectively.

Algorithm σ = 0.5 σ = 1 σ = 2 σ = 5 σ = 10 σ = 70 σn,j ∼ U([1, 10])

λ = 5
M = 99, T = 20 0.6096 0.0657 0.0023 0.0056 0.0124 0.1768 0.0051
M = 19, T = 100 0.2878 0.0358 0.0010 0.0050 0.0127 0.1802 0.0038
M = 1, T = 1000 0.1244 0.0011 0.0014 0.0091 0.0242 0.3510 0.0064

λ = 10
M = 99, T = 20 0.9236 0.0543 0.0021 0.0062 0.0137 0.1815 0.0054
M = 19, T = 100 0.2294 0.0077 0.0012 0.0054 0.0132 0.1890 0.0044

PI-MAIS (N = 100) M = 1, T = 1000 0.0786 0.0042 0.0014 0.0086 0.0256 0.3503 0.0066

λ = 70
M = 99, T = 20 5.9889 0.3662 0.0082 0.0089 0.0140 0.1841 0.0093
M = 19, T = 100 1.6670 0.0871 0.0045 0.0080 0.0139 0.1971 0.0074
M = 1, T = 1000 0.2579 0.0134 0.0024 0.0097 0.0258 0.3543 0.0082

λn,j ∼ U([1, 10])
M = 99, T = 20 0.5623 0.0417 0.0025 0.0059 0.0124 0.1848 0.0056
M = 19, T = 100 0.2704 0.0204 0.0011 0.0048 0.0136 0.1726 0.0037

M = 1, T = 1000 0.0750 0.0014 0.0013 0.0089 0.0247 0.3540 0.0066

Static standard MIS Φn,t(x) = qn,t(x) 12.00 9.40 10.26 7.67 0.5443 0.1764 4.37
Static partial DM-MIS Φn,t(x) = φt(x) 10.14 0.9469 0.0139 0.0100 0.0146 0.1756 0.0106

AMIS [15]
(best results) 113.97 112.70 107.85 44.93 0.7404 0.0141 31.02
(worst results) 116.66 115.62 111.83 70.62 9.43 18.62 58.63

PMC [12] 111.54 110.78 90.21 2.29 0.0631 2.42 0.3082
PMC with partial DM-MIS N = 100, T = 2000 23.16 7.43 7.56 0.6420 0.0720 2.37 0.0695
Mixture PMC [11] 25.43 10.68 6.29 0.6142 0.0727 2.55 0.1681

Parallel Indep. MH chains N = 100,T = 2000 1.3813 1.3657 1.2942 1.0178 0.3644 1.0405 5.3211

Table 10 (Ex-Sect 6.1) MSE of the estimator of the expected value (first component). For all the techniques, the total number
of evaluations of the target is again E = 2 · 105. In this case, we have applied the initialization In2, differently from Table 9.
The best results, in each column, are highlighted with bold-faces.
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Algorithm σ = 0.5 σ = 1 σ = 2 σ = 5 σ = 10 σ = 70 σn,j ∼ U([1, 10])

λ = 5
M = 99, T = 20 0.0388 0.0120 0.0070 0.0002 0.0001 0.0016 0.0001
M = 19, T = 100 0.0031 0.0013 0.0004 0.0001 0.0001 0.0017 0.0001
M = 1, T = 1000 0.0016 0.0001 0.0001 0.0001 0.0002 0.0031 0.0001

λ = 10
M = 99, T = 20 0.0217 0.0046 0.0040 0.0001 0.0001 0.0016 0.0002
M = 19, T = 100 0.0019 0.0002 0.0005 0.0001 0.0001 0.0017 0.0001

PI-MAIS (N = 100) M = 1, T = 1000 0.0016 0.0001 0.0001 8 ·10−5 0.0002 0.0031 0.0001

λ = 70
M = 99, T = 20 6.3732 0.2713 0.0226 0.0003 0.0001 0.0016 0.0002
M = 19, T = 100 0.1082 0.0114 0.0019 0.0001 0.0001 0.0017 0.0001
M = 1, T = 1000 0.0038 0.0009 0.0001 0.0001 0.0002 0.0033 0.0001

λn,j ∼ U([1, 10])
M = 99, T = 20 0.0350 0.0101 0.0043 0.0001 0.0001 0.0015 0.0001

M = 19, T = 100 0.0029 0.0007 0.0010 8 ·10−5 9 ·10−5 0.0017 9 ·10−5

M = 1, T = 1000 0.0014 0.0001 9 · 10−5 0.0001 0.0002 0.0036 0.0001

Static standard MIS Φn,t(x) = qn,t(x) 3.94 ·104 7.12 ·107 1.07 ·103 0.0113 0.0001 0.0016 0.2190
Static partial DM-MIS Φn,t(x) = φt(x) 9.51·108 4.60 ·105 15.34 0.0016 0.0001 0.0016 0.0005

AMIS [15]
(best results) 15.92 15.66 12.81 0.0069 8 ·10−5

0.0001 0.0002
(worst results) 15.97 15.92 14.87 0.4559 0.0001 1.62 0.0084

PMC [12] 33.53 17.10 14.42 0.4249 0.0015 0.0016 0.3542
PMC with partial DM-MIS N = 100, T = 2000 15.85 14.31 1.81 0.0402 0.0002 0.0016 0.0004
Mixture PMC [11] 14.51 12.09 3.56 0.0287 0.0002 0.0015 0.0010

Table 11 (Ex-Sect 6.1) MSE of the estimator of the normalizing constant Z with the initialization In1. For all the techniques,
the total number of evaluations of the target is E = 2 · 105. The smallest MSE for each σ is bold-faced.

Algorithm σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 10 σ = 70 σi,j ∼ U([1, 20])

PI-MAIS
Worst 0.0083 0.0081 0.0012 0.0005 0.0050 0.0126 0.1126 0.0218
Best 0.0025 0.0001 0.0002 0.0001 0.0002 0.0003 0.0361 0.0004

I2-MAIS
Worst 0.0335 0.0227 0.0053 0.0044 0.0041 0.0096 0.2130 0.0181
Best 0.0082 0.0025 0.0013 0.0008 0.0001 0.0002 0.0265 0.0003

PMC [12]
Worst 0.0670 0.0461 0.0209 0.0093 0.0055 0.0072 9.4749 0.1065
Best 0.0210 0.0164 0.0069 0.0016 0.0015 0.0011 0.0262 0.0026

Mixture PMC [11]
Worst 3.5772 0.0113 0.0044 0.0066 0.0174 0.0267 0.0913 0.0103
Best 0.0092 0.0020 0.0018 0.0035 0.0034 0.0055 0.0138 0.0025

AMIS [15]
Worst 0.0040 0.0039 0.0040 0.0016 0.0011 0.0012 0.0035 0.0013
Best 0.0023 0.0028 0.0023 0.0009 0.0003 0.0004 0.0023 0.0007

Table 12 (Ex-Section-6.2) Bi-dimensional banana-shaped distribution example: Best and worst results in terms of MSE,
obtained with the different techniques for different values of σ. The smallest MSE for each σ is bold-faced.

Algorithm σi,j ∼ U([1, 5]) σi,j ∼ U([1, 10]) σi,j ∼ U([1, 30])

PI-MAIS

λ = 5
M = 99, T = 20 0.3819 0.3508 0.3626
M = 19, T = 100 0.0728 0.0738 0.0710
M = 1, T = 1000 0.0173 0.0164 0.0171

λ = 10
M = 99, T = 20 0.5701 0.5943 0.5605
M = 19, T = 100 0.1389 0.1429 0.1425
M = 1, T = 1000 0.0401 0.0408 0.0393

λi,j ∼ U([1, 30])
M = 99, T = 20 0.3758 0.3795 0.4028
M = 19, T = 100 0.0741 0.0793 0.0771
M = 1, T = 1000 0.0169 0.0167 0.0162

PMC [12] 0.0642 0.4345 0.1533
PMC with partial DM-MIS N = 100, T = 2000 0.0524 0.3163 0.0817
Mixture PMC [11] 0.0577 0.2870 0.4083

Table 13 (Ex-Sect 6.4) MSE of the estimator of E[(X1, X2, A,Ω)] using different techniques, keeping constant the total
number of target evaluation, E = 2 105. The best results, in each column, are highlighted with bold-faces.
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Fig. 7 (Ex-Section-6.2) Graphical representation of the results in Table 12 (except for the last column): the curve log(MSE)
versus log(σ) with σ ∈ {0.5, 1, 2, 3, 5, 10, 70} for the different methods, (a) worst and (b) best results.
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(a) N = 100 and E = 2 · 105.
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(b) N = 500, keeping E = 2 · 105.

Fig. 8 (Ex-Section-6.3) The curve log(MSE) as function of dimension of the problem, Dx ∈ {2, 3, 5, 10, 12, 15, 20, 25, 35, 40, 50},
for different methods. We test (a) N = 100 and (b) N = 500, keeping fixed the same number of evaluation of the target
E = 2 · 105. Hence the total number of iterations (of the different algorithms) is greater in Fig. 9(a) than in Fig. 9(b).


