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Abstract Monte Carlo methods represent the de facto
standard for approximating complicated integrals in-
volving multidimensional target distributions. In order
to generate random realizations from the target distri-
bution, Monte Carlo techniques use simpler proposal
probability densities to draw candidate samples. The
performance of any such method is strictly related to
the specification of the proposal distribution, such that
unfortunate choices easily wreak havoc on the result-
ing estimators. In this work, we introduce a layered
(i.e., hierarchical) procedure to generate samples em-
ployed within a Monte Carlo scheme. This approach
ensures that an appropriate equivalent proposal den-
sity is always obtained automatically (thus eliminating
the risk of a catastrophic performance), although at
the expense of a moderate increase in the complexity.
Furthermore, we provide a general unified importance
sampling (IS) framework, where multiple proposal den-
sities are employed and several IS schemes are intro-
duced by applying the so-called deterministic mixture
approach. Finally, given these schemes, we also propose
a novel class of adaptive importance samplers using a
population of proposals, where the adaptation is driven
by independent parallel or interacting Markov Chain
Monte Carlo (MCMC) chains. The resulting algorithms
efficiently combine the benefits of both IS and MCMC
methods.
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1 Introduction

Monte Carlo methods currently represent a maturing
toolkit widely used throughout science and technology
[20, 47, 52]. Importance sampling (IS) and Markov Chain
Monte Carlo (MCMC) methods are well-known Monte
Carlo (MC) techniques applied to compute integrals in-
volving a high-dimensional target probability density
function (pdf) 7(x). In both cases, the choice of a suit-
able proposal density ¢(x) is crucial for the success of
the Monte Carlo based approximation. For this reason,
the design of adaptive IS or MCMC schemes represents
one of the most active research topics in this area, and
several methods have been proposed in the literature
[12, 15, 16, 27, 33].

Since both IS and MCMC have certain intrinsic ad-
vantages and weaknesses, several attempts have been
made to successfully marry the two approaches, pro-
ducing hybrid techniques: IS-within-MCMC [3, 8, 31,
32, 43] or MCMC-within-IS [5, 7, 14, 39, 41, 44, 54]. To
set the scene for such developments it is useful to recall
briefly some of the main strengths of IS and MCMC,
respectively. For instance, one benefit of IS is that it
delivers a straightforward estimate of the normalizing
constant of 7(x) [30, 47] (a.k.a. evidence or marginal
likelihood), which is essential for several applications
[25, 49]. In contrast, the estimation of the normaliz-
ing constant is highly challenging using MCMC meth-
ods, and several authors have investigated different ap-
proaches to overcome the obstacles related to the in-
stability of the resulting estimators [6, 10, 13, 25, 53].
Furthermore, the application and the theoretical anal-
ysis of an IS scheme using an adaptive proposal pdf is
easier than the theoretical analysis of the corresponding

adaptive MCMC scheme, which is much more delicate
[4].
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On the other hand, an appealing feature of MCMC
algorithms is their explorative behavior. For instance,
the proposal function g(x|x;_1) can depend on the pre-
vious state of the chain x;_; and foster movements be-
tween different regions of the target density. For this
reason, MCMC methods are usually preferred when no
detailed information about the target 7(x) is available,
especially in large dimensional spaces [2, 24]. More-
over, in order to amplify their explorative behavior sev-
eral parallel MCMC chains can be run simultaneously
[47, 30]. This strategy facilitates the exploration of the
state space, although at the expense of an increase
in the computational cost. Several schemes have been
introduced to share information among the different
chains [16, 36, 37], which further improves the overall
convergence.

The main contribution of this work is the descrip-
tion and analysis of a hierarchical proposal procedure
for generating samples, which can then be employed
within any Monte Carlo algorithm. In this hierarchical
scheme, we consider two conditionally independent lev-
els: the upper level is used to generate mean vectors
for the proposal pdfs, which are then used in the lower
level to draw candidate samples according to some MC
scheme. We show that the standard Population Monte
Carlo (PMC) method [12] can be interpreted as apply-
ing implicitly this hierarchical procedure.

The second major contribution of this work is pro-
viding a general framework for multiple importance sam-
pling (MIS) schemes and their iterative adaptive ver-
sions. We discuss several alternative applications of the
so-called deterministic approach [22, 46, 50] for sam-
pling a mixture of pdfs. This general framework in-
cludes different MIS schemes used within adaptive im-
portance sampling (AIS) techniques already proposed
in literature, such as the standard PMC [12], the adap-
tive multiple importance sampling (AMIS) [15, 34], and
the adaptive population importance sampling (APIS)
[38].

Finally, we combine the general MIS framework with
the hierarchical procedure for generating samples, in-
troducing a new class of AIS algorithms. More specifi-
cally, one or several MCMC chains are used for driving
an underlying MIS scheme. Each algorithm differs from
the others in the specific Markov adaptation employed
and the particular MIS technique applied for yielding
the final Monte Carlo estimators. This novel class of
algorithms efficiently combines the main strengths of
the IS and the MCMC methods, since it maintains an
explorative behavior (as in MCMC) and can still easily
estimate the normalizing constant (as in IS).

We describe in detail the simplest possible algorithm
of this class, called random walk importance sampling.

Moreover, we introduce two additional population-based
variants that provide a good trade-off between per-
formance and computational cost. In the first variant,
the mean vectors are updated according to indepen-
dent parallel MCMC chains. In the other one, an in-
teracting adaptive strategy is applied. In both cases,
all the adapted proposal pdfs collaborate to yield a
single global IS estimator. One of the proposed algo-
rithms, called parallel interacting Markov adaptive im-
portance sampling (PI-MAIS), can be interpreted as
parallel MCMC chains cooperating to produce a single
global estimator, since the chains exchange statistical
information to achieve a common purpose.

The rest of the paper is organized as follows. Sec-
tion 2 is devoted to the problem statement. The hier-
archical proposal procedure is then introduced in Sec-
tion 3. In Section 4, we describe a general framework
for importance sampling schemes using a population of
proposal pdfs, whereas Section 5 introduces the adap-
tation procedure for the mean vectors of these pro-
posal pdfs. Numerical examples are provided in Sec-
tion 6, including comparisons with several benchmark
techniques. Different scenarios have been considered:
a multimodal distribution, a nonlinear banana-shaped
target, a high-dimensional example, and a localization
problem in a wireless sensor network. Finally, Section
7 contains some brief final remarks.

2 Target distribution and related integrals

In this work, we focus on the Bayesian applications of
IS and MCMC. However, the algorithms described may
also be used for approximating any target distribution
that needs to be handled by simulation methods. Let
us denote the variable of interest as x € X C RP=, and
let y € RP» be the observed data. The posterior pdf is
then given by

(y1x)g(x) "

7x) = plxly) = =75,

where £(y|x) is the likelihood function, g(x) is the prior
pdf, and Z(y) is the model evidence or partition func-
tion. In general, Z(y) is unknown, so we consider the
corresponding unnormalized target,

(%) = £(y|x)g(x)- (2)

Our goal is computing efficiently some integral measure
w.r.t. the target pdf,

1
I= E/Xf(x)ﬂ'(x)dx, (3)
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where
Z:/X’]T(X)dx, (4)

and f is any square-integrable function (w.r.t. 7(x)) of
x.! In this work, we address the problem of approximat-
ing I and Z via Monte Carlo methods. Since drawing
directly from 7(x) o< 7(x) is impossible in many appli-
cations, Monte Carlo techniques use a simpler proposal
density ¢(x) to generate random candidates, testing or
weighting them according to some suitable rule. Indeed,
throughout the paper we focus on the combined use of
several proposal pdfs, denoted as q1,...,qy.

3 Hierarchical procedure for proposal
generation

The performance of MC methods depends on the dis-
crepancy between the target, 7(x) o m(x), and the pro-
posal ¢(x). Namely, the performance improves if g(x)
is more similar (i.e., closer) to 7(x). In general, tun-
ing the parameters of the proposal is a difficult task
that requires statistical information of the target dis-
tribution. In this section, we deal with this important
issue, focusing on the mean vector of the proposal pdf.
More specifically, we consider a proposal pdf defined by
a mean vector p and covariance matrix C, denoted as
q(x|p, C) = q(x— p|C). We propose the following hier-
archical procedure for generating a set of samples that
will be employed afterwards within some Monte Carlo
technique:

1. Fory=1,...,J:
(a) Draw a mean vector p; ~ h(p).
(b) Draw X;-m) ~ q(x|p;,C) form=1,..., M.

2. Use all the generated samples, x§-m> forj=1,...,J
andm =1,..., M, as candidates within some Monte
Carlo method.

Note that h(u) plays the role of a prior pdf over the
mean vector of ¢ in this approach. Hence, the pdf of
each sample xg-m) can be expressed as

7(x|C) = /X 4(x |1, C)h () dp, (5)

i.e., the hierarchical procedure is equivalent to draw-
ing directly xg-m) ~ q(x|C) for all j = 1,...,J and
m = 1,...,M. The density ¢ is thus the equivalent
proposal density of the whole hierarchical generating

1 Note that, as both 7(x) and Z depend on the observations
v, the use of #(x|y) and Z(y) would be more precise. However,
since the observations are fixed, in the sequel we remove the
dependence on y to simplify the notation.

procedure. Note also that the samples pq,...,u; are
not directly used by the Monte Carlo estimator, since
only the samples ij)’ forj=1,....,J,m=1,..., M,
enter the actual estimator. Hence, the computational
cost per iteration of this hierarchical procedure is higher
than the cost of a standard approach, However, it leads
to substantial computational savings in terms of im-
proved convergence towards the target, and thus a re-
duced number of iterations required, as shown later in
the simulations. Furthermore, note that the generation
of the p;’s in the upper level is independent of the sam-

ples xg-m) drawn in the lower level, thus facilitating the
theoretical analysis of the resulting algorithms, as dis-

cussed in Section 5.1.2

3.1 Optimal prior h*(w)

Assuming that the parametric form of ¢(x|u, C) and its
covariance matrix C are fixed, we consider the problem
of finding the optimal prior h*(u|C) over the mean vec-
tor p. Note that, since q(x|u, C) = ¢(x — |C), we can
write

1x1C) = [ atox = ulC)(uIC)ip (6)

regardless of the choice of the prior over the mean vec-
tors in the upper level. The desirable scenario is to have
the equivalent proposal ¢(x|C) coinciding exactly with
the target 7(x), i.e.,

F(x[C) = /X 4(x — p|C)R* (u]C)dps = 7(x), (1)

where h*(u|C) represents the optimal prior.

3.2 Asymptotically optimal choice of the prior h(u)

Since Eq. (7) cannot be solved analytically in general,
in this section we relax that condition and look for
an equivalent proposal ¢ which fulfills (7) asymptoti-
cally as J — oo. For the sake of simplicity, let us set

2 Note that, in the ideal case described here, each p; is
also independent of the other wp’s. However, in the rest of
this work, we also consider cases where correlation among
the mean vectors (p1,..., @) is introduced.

3 Given a function f(x), the optimal proposal ¢ minimiz-
ing the variance of the IS estimator is ¢(x|C) « |f(x)|7(x).
However, in practical applications, we are often interested in
computing expectations w.r.t. several f’s. In this context, a
more appropriate strategy is to minimize the variance of the
importance weights. In this case, the minimum variance is
attained when g(x|C) = 7(x) [19].
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M = 1. Thus, we consider the generation of J sam-
ples {x1,...,xs}, drawn using the following hierarchi-
cal procedure:

(a) Draw a mean vector p; ~ h(p).
(b) Draw x; ~ q(x|p;,C).

Note that we are using J different proposal pdfs,

q(x‘/'l’l, C)v oo »(I(X“l’Ja C)7

to draw {x1,...,xs}, with each x; being drawn from
the j-th proposal x; ~ ¢(x|u;, C). However, if the sam-
ples x1,...,x; are used altogether regardless of their
order, then it can interpreted that they have been drawn
from the following mixture using the deterministic mix-
ture sampling scheme (see [45, Chapter 9], [22]):

J

V60 =23 alxs, ©). 0

Jj=1

Note that, since p; ~ h(p), then 1(x) is a Monte Carlo
approximation of the integral in Eq. (7), i.e.,

0x) 22 G0) = [ alx— WOMIC) (9
Furthermore, if we choose h(p) = w(p), i.e., pj ~ T(w),
then ¥ (x) is also a kernel density estimator of w(x),
where the ¢(x|p;, C) play the role of the kernel func-
tions [51]. In general, this estimator has non-zero bias
and variance, depending on the choice of ¢, C and the
number of samples J. However, for a given value of J,
there exists an optimal choice of C* which provides the
minimum Mean Integrated Square Error (MISE) esti-
mator [51]. Using the optimal covariance matrix C*, it
can be proved

b(x) = =

<

J
ZQ(XIWC*) — 7(x), (10)

pointwise as J — oo [51]. Hence, the equivalent pro-
posal density of the hierarchical approach converges
to the target when J — oo. It is possible to show
[|C*|]| — 0 as J — o0, so that there is no contradiction
between (9) and (10) since ¢(x—p|C*) becomes increas-
ingly similar to 6(x — p), and thus ¢(x|C*) — 7(x) as
J — oo.

3.3 Practical implementation

As explained in Section 3.2, h(p) = 7(u) is a suit-
able choice from a kernel density estimation point of
view. However, sampling directly from 7(u) is unfeasi-
ble from a practical point of view (otherwise, we would
not require any MC algorithm). Therefore, we propose

applying another sampling method, such as an MCMC
algorithm, to obtain the samples {1, ..., s} ~ 7(p).
More specifically, starting from an initial po, we gener-
ate a sequence

p’jNK(u’j‘p’j—l)a j:17"'7<]a

where K is the kernel of the MCMC technique used.
With the choice h(p) = @(p), the two levels of the
sampler play different roles:

— The upper level attends the need for exploration of
the state space, providing {gt1,..., s}

— The lower level is devoted to the approximation of
local features of the the target, using {xi,...,xs}.

In general, the two levels require their own tuning of
the parameters of the corresponding proposals.

3.4 Relationship with other adaptive MC schemes

In contrast to the hierarchical approach described pre-
viously, in standard adaptive MC approaches [9, 27, 33]
the parameter p,, is determined by a deterministic func-
tion,

o RMxDﬁx(n—l) BN RD””,

of the previously generated samples (assuming to gen-
erate M samples from each proposal),

1 M 1 M
Xj,lz[xg),...,xg )7...,x§_)1,...,x;-_1)],
namely,
pi =v(X;-1)- (11)

Although ~ is a deterministic function, the sequence
{p;}/_, is generated according to a conditional pdf,
K(pjlpa,- .., pj—1), since X;_1 is random. Unlike in
the hierarchical scheme, in standard adaptive MC ap-
proaches, the sequence {uj}jzl typically converges to
a fixed vector.

In the standard PMC method [12] the sequence of
mean vectors p;’s is also generated depending on the
previous x’s but, in this case, the final distribution
is unknown and it is not a fixed vector, in general
(for further details see Appendix C). Similar consid-
erations also apply for Sequential Monte Carlo (SMC)
schemes [42, 23, 48] where the adaptation is performed
using a combination of resampling and MCMC steps.
Other interesting and related techniques are the Parti-
cle MCMC (P-MCMC) [3] and the Sequentially Inter-
acting MCMC (SI-MCMC) [8] methods. In this case,
IS approximations of the target are used to build bet-
ter proposal pdfs, employed within MCMC steps. Both
methods are also able to provide efficient estimators
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of Z. However, unlike in PMC, SMC, P-MCMC and
SI-MCMC, in the proposed hierarchical approach each
p; is always chosen independently of X,;_; and it is
distributed according to h(u), decided in advance by
the user. Moreover, the means p1,...,p; are not in-
volved in the resulting estimators. Related observations
are provided in Section 5.1 and Table 5.

4 Generalized Multiple Importance Sampling

So far, we have introduced a hierarchical procedure to
generate candidates for an MC technique, adapting the
mean vectors of a set of proposal densities. In this sec-
tion, we provide a general framework for multiple im-
portance sampling (MIS) techniques using a population
of proposal densities, which embeds various alternative
schemes proposed in the literature [22]. First, we con-
sider several alternatives of static MIS, and then we
focus on the corresponding adaptive MIS samplers.

4.1 Generalized Static Multiple Importance Sampling

As we have already highlighted, finding a good proposal
pdf, ¢(x), is critical and is in general very challenging
[46]. An alternative strategy consists in using a popula-
tion of proposal pdfs. This approach is often known in
the literature as multiple importance sampling (MIS)
[45, 46, 50, 22]. Consider a set of J proposal pdfs,

QI(X)7 L ,QJ(X),

with heavier tails than the target m, and let us assume
that M samples are drawn from each of them, i.e.,

(m)

x; ~qi(x), j=1...,J, m=1...,M

In this scenario, the weights associated to the samples
can be obtained following at least one of these two
strategies:

(a) Standard MIS (S-MIS):

(m)
X\
wfr) = T ), (12)
(m)
‘Ij(xj )
forj=1,..,Jandm=1,..., M,
(b) Deterministic mizture MIS (DM-MIS) [46, 50]:
(m) (m)
(X TIX:
um == j(m)> =3 it )<m> ! (13)
b(x) T k= an(x)

forj=1,..,Jandm =1,..., M, and where ¢(x) =
% Z'j]:l ¢;(x) is the mixture pdf, composed of all the
proposal pdfs. This approach is based on the con-
siderations provided in Appendix B.

In both cases, the consistency of the estimators is en-
sured [22]. The main advantage of the DM-MIS weights
is that they yield more efficient estimators than using
the standard importance weights [15, 46, 21, 38]. How-
ever, the DM-MIS estimator is computationally more
expensive, as it requires JM total evaluations for each
proposal instead of just M, for computing all the weights.
The number of evaluations of the target m(x) is the
same regardless of whether the weights are calculated
according to Eq. (12) or (13), so this increase in compu-
tational cost may not be relevant in many applications.
However, in some other cases this additional computa-
tional load may be excessive (especially for large values
of J) and alternative efficient solutions are desirable.
For instance, the use of partial mixtures has been pro-
posed in [21]:

(¢) Partial DM-MIS (P-DM-MIS) [21]: divide the J pro-
posals in L = % disjoint groups forming L mix-
tures with P components. Let us denote the set of
P indices corresponding to the ¢-th mixture (¢ =
17 [N ,L) as Sg = {k@ﬁl, ceey kg’p} (i.e., |Sg| = P),
where each kg, € {1,...,J}. Thus, we have

SUSU...US,={1,...,J}, (14)

with §, NS, =0, forall {=1,...,L, and 7 # £. In

this case, the importance weights are defined as
(m)

(X

= - (15)
% Zke&e q’“(x; ))

with j € Sp, {=1,...,L,andm=1,..., M.

All the previous cases can be captured by a generic
mixture-proposal @;(x), under which the MIS weights
can be defined as

oy _ 5™

wim = 152 (16)
T agm)

with m = 1,..., M, where Qij(xgm)) =g (xgm)) in Eq.

(12), éj(xg-m)) = %Zizl qk(xgm ) in Eq. (13), and

. 1 , L
B = LS ), jes. an

in Eq. (15). In any case, the weights are always normal-
ized as

(™

J
S T w

Table 1 shows these three choices of @; (X;m)), whereas
Table 2 summarizes a generalized static MIS procedure.

_(m) _

Pj (18)
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Table 1 Three possible functions &;(x) for MIS.

MIS approach F\E;:lfn%(%()’ EP[ :PJ
Standard MIS qJ (x) J 1
DM-MIS P(x) = 5 E _1qi(x) |1 J
Partial DM-MIS TS es, () I P

Table 2 Generalized static MIS scheme.

1. Generation: Draw M samples from each gj, i.e.,
x§™) ~ g5 (x),

,J, and with m =1,..., M.
2. Weighting: Assign to each sample xg.m) the weight

forj=1,...

(m)
my  T570)
wi™ = —L (19)

P (xj )
where @ is a mixture of g;’s, as shown in Table 1.
3. Normalization: Set
(m) _ wy™
_(m W
p = T
! =1 Zr 1 w( a

4. Output: Return all the pairs {xgm),ﬁg.m)}, for j =
1,...,Jand m=1,...,. M ‘ ‘

Note that the IS estimator I of a specific moment
of 7, i.e., the integral I given in Eq. (3), and the ap-
proximation Z of the normalizing constant in Eq. (4),
can now be approximated as

J
f=ZZ 2Ry
j=1m=1
:JMZZw(m)'

j=1m=1

(20)

Then, the particle approximation of the measure of 7
is given by

J M
AU (x w(m)a — xmy, 21
JMZZZ ) (21)

j=1m=1

In Section 4.2, we describe a framework where a partial
grouping of the proposal pdfs arises naturally from the
sampler’s definition.

4.2 Generalized Adaptive Multiple Importance
Sampling

In order to decrease the mismatch between the proposal
and the target, several Monte Carlo methods adapt the

parameters of the proposal iteratively using the infor-
mation of the past samples [12, 15, 38]. In this adaptive
scenario, we have a set of proposal pdfs {g, (x)}, with
n=1,....,Nand t = 1,...,T, where the subscript
t indicates the iteration index, T is the total number
of adaptation steps, and J = NT is the total num-
ber of proposal pdfs. In the following, we present a
unified framework, called generalized adaptive multi-
ple importance sampling (GAMIS), which includes sev-
eral methodologies proposed independently in the liter-
ature, as particular cases. In GAMIS, each proposal pdf
in the population {g, .} is updated at every iteration
t=1,...,T, forming the sequence

Qn,l(x)a Qn,Z(X)v < qn,T (X),

for the n-th proposal (see Figure 1). At the ¢-th itera-
tion, the adaptation procedure takes into account sta-
tistical information about the target distribution gath-
ered in the previous iterations, 1,...,¢ — 1, using one
of the many procedures that have been proposed in the
literature [11, 12, 15, 38]. Furthermore, at the t-th iter-
ation, M samples are drawn from each proposal ¢y +,

Xy ~ (%),
,Nand t =1,.

is then assigned to each sample X(

strategies can be applied to build wflyt) con51der1ng the

different MIS approaches, as discussed in the previous
section. Figure 1 provides a graphical representation of
this scenario, by showing both the spatial and temporal
evolution of the J = NT proposal pdfs.

with m=1,..., M,

,T. An importance weight
. Several

n=1,.

w')

Iterations (Time)
q1.1(x) q1,4(x) q1,7(x)
f e 1) 0o () > €n (%)
) : : :
:g; gn (%) qn,t(x) qn,7 (%)
£ I X
8 v ¢t (X) w( )

Fig. 1 Graphical representation of the J = NT proposal pdfs
used in the generalized adaptive multiple IS scheme, spread
through the state space X (n = 1,...,N) and adapted over
time (¢t = 1,...,T). Three different mixtures are displayed:
1(x) involving all the proposals, ¢+(x) involving only the pro-
posals at the t-th iteration, and &, (x) considering the tempo-
ral evolution of the n-th proposal pdf.

In an AIS algorithm, one weight
(m))

= (22)

w,
B, (x\7)
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is associated to each sample x( ). In a standard MIS
approach, the function employed in the denominator is

qf)n,t (X) = Qn,t (X) (23)
In the complete DM-MIS case, the function @, ; is

1 N T
ﬁ Z ZQk,r(x)' (24)

k=1r=1

Pt (%) = ¥ (x) =

This case corresponds to the external blue rectangle
in Fig. 1. Two natural alternatives of partial DM-MIS
schemes appear in this scenario. The first one uses the
following partial mixture

1 T
T ZQn,r(X)a (25)
r=1

withn =1,..., N, in the denominator of the IS weight.
Namely, we consider the temporal evolution of the n-th
single proposal g, ;. Hence, we have L = N mixtures,
each one formed by P = T components (horizontal red
rectangle in Fig. 1). The other possibility is considering
the mixture of all the g, +’s at the ¢-th iteration, i.e.,

GZ5n,t (X) = 5" (X)

() = G4(x qum (26)

fort=1,...,T, so that we have L = T mixtures, each
one formed by P = N components (vertical green rect-
angle in Fig. 1). The function &,, ; in Eq. (23) is used
in the standard PMC scheme [12]; Eq. (25) with N =1
has been considered in adaptive multiple importance
sampling (AMIS) [15]. Eq. (26) has been applied in the
adaptive population importance sampling (APIS) algo-
rithm [38], whereas in other techniques, such as Mix-
ture PMC [11, 17, 18], a similar strategy is employed
but using a standard sampling of the mixture ¢;(x).

Table 3 summarizes all the possible cases discussed
above. The last row corresponds to a generic grouping
strategy of the proposal pdfs ¢, ;. As previously de-
scribed, we can also divide the J = NT proposals into
L = ]\;T disjoint groups forming L mixtures with P
components. We denote the set of P pairs of indices cor-
responding to the ¢-th mixture (¢ =1,...,L) as Sy =
{(k£,177“£,1)7 ey (kg’p,mﬁp)}, where kg’p S {1, ey N},
rop € {1,...,T} (ie., |S¢| = P, with each element be-
ing a pair of indices), and §,NS; = P forall{ =1,..., L,
and 7 # £. In this scenario, we have

1
én,t (X) = F

> qee(x), with (n,t) €S, (27)
(k,r)ES,

Note that, using ¥(x) and &,(x), the computational
cost per iteration increases as the total number of it-
erations T' grows. Indeed, at the t-th iteration all the

s qn,i—1 (for all n) must be
evaluated at all the new samples x( ). Hence, algo-
rithms based on these proposals qu1ckly become unfea-
sible as the number of iterations grows. On the other
hand, using ¢:(x) the computational cost per iteration
is controlled by NV, remaining invariant regardless of the
number of adaptive steps performed.

Observe also that a suitable AIS scheme builds iter-
atively a global IS estimator which uses the normalized
weights

previous proposals ¢p 1, ...

(m)

—(m) __ Wy, ¢

pnt - m)’ (28)
DD DD DU
forn=1,...,.Nym=1,...,M,and t=1,...,T.

Table 4 shows an iterative version of GAMIS. We re-
mark that, at the ¢-th iteration, the weights of the sam-
ples previously generated need to be recalculated, as
shown in step 2(c-3) of Table 4. The choices @, +(x) =
Gnt(x) or @, 4(x) = ¢(x) allow avoiding completely
this re-computation step of the weights. For simplicity,
in Table 4 we have provided the output of the aI%
rithms as weighted samples, i.e., all the pairs {Xn tsPn, t
However, the output can be equlvalently expressed as
an estimator of a specific moment of the target. In this
case, the final IS estimators Ir and Zr are

T N M

L 3 9 WL

T=1n=1m=1 (29)
T N M

Zr = NMTZZZwm’

T7=1n=1m=1

where Sm) i
Pn7 = NMTZt

proximation is

. Moreover, the final particle ap-

T N M

() (m)
NMTZr NMTE, 2 2 2 w00 =)

T=1n=1m=1

ﬁ.(NMT)( )

(30)

The estimators in Eq. (29) can be expressed recursively,
thus providing an estimate at each iteration ¢, as stated
before. Starting with Hy = 0, fo = 0, and setting S; =
Zn 1 Zm 1 w(m) and H; = H;_1 + S, we have

I Hy Iy + Z Z w(m) (m)

n=1m=1

= o (31)

where A, = Zn 1 Zm | == i (x( )) is the partial IS

S, n,t
estimator using only the samples drawn at the #-th iter-

ation. Therefore, I; can be seen as a convex combination
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Table 3 Summary of possible MIS strategies in an adaptive framework.

MIS approach Function &, +(x) J I[‘,P — 5 Corresponding Algorithm
Standard MIS qn,t(x) NT 1 PMC [12]
DM-MIS P(x) = ﬁ S S L ant(x) 1 NT suggested in [21]
Partial DM-MIS En(x) = £ 21—y ani(x) NT | N T AMIS [15], with N =1
Partial DM-MIS Pt(x) = & >on_q an,t(X) T | N APIS [38] and [11, 17, 18]
Partial DM-MIS generic ¥, ¢(x) in Eq. (27) L P suggested in [21]

Table 4 GAMIS scheme: iterative version.

1. Initialization: Set t = 1, Ho = 0 and choose N initial

proposal pdfs gp o(x)-

2. Fort=1,...,T:

(a) Adaptation: update the proposal pdfs
{gn,t—1})_, providing {gn,:}_,, using a preestab-
lished procedure (e.g., see [12, 11, 15, 38] for some
specific approaches).

(b) Generation: Draw M samples from each gy, ¢, i.e.,
xs’rz) ~ gnt(x), with n = 1,...,N and m =
1,... M.

(c) Weighting:

(c-1) Update the function @, +(x) given the current

population {q1,t,...,qn,t}-
(c-2) Assign the weights to the new samples xgﬁ),
(m)
m(x
wom) — ") (33)
n,t (m)
Qnﬁt(xn,t )

forn=1,...,Nyand m=1,..., M.
(c-3) Re-weight the previous samples ngfi) for 7 =
1,...,t—1as

(m)
wi™ = _m(xnir) (34)

Pt (x17)
withr=1,...,t—1,n=1,...,N, and m =
1,...,M.

(d) Normalization: Set S; = M_ SN w,(;?z),
Hy = H;—1 + St , and re-normalize all the weights,

(m) Hi—1
n,7T—1 Ht ’

e =5

(35)
forr=1,....,t,n=1,...,Nyand m=1,..., M.

(e) Output: Return all the pairs {x&ﬁ),ﬁg?}, for 7 =
1,...,t,n=1,...,N,and m=1,..., M.

of the two IS estimators I;_; and A; (for further expla-
nations see Eqs. (46)-(47) in Appendix B.3). Finally,
note that

1
NM

1

A Dbrief discussion about the consistency of I, and Z, is
provided in Appendix A.

5 Markov adaptation for GAMIS

In this section, we design efficient adaptive importance
sampling (AIS) techniques by combining the main ideas
discussed in the two previous sections. More specifically,
we apply the hierarchical MC approach to adapt the
proposal pdfs within a GAMIS scheme. Therefore, a
Markov GAMIS technique, or simply Markov Adaptive
Importance Sampling (MAIS) algorithm, consists of the
following two layers:

1. Upper level (Adaptation): Given the set of mean vec-
tors,

7/1’N7t—1}7
obtain the new set Py = {p14,..., N} accord-

ing to MCMC transitions with 7 as invariant den-
sity. More specifically, a kernel K (p1.n,

P11 = {Nl,t—la S

Nl:N,tfl)
leaving invariant the distribution ngl T(py,) is ap-
plied.

2. Lower level (MIS estimator): Given the population
of proposals,

qre(x|p1,e,Cr), . an e (X[, Cw),

choose a function @, ;(x) for the computation of the
weights in Eq. (22), and perform a MIS approxima-
tion of the target as described in Section 4.2.

5.1 Theoretical support: adaptation and consistency

The motivation behind the MCMC adaptation has been
described in Section 3.2 and 3.3: the functions g, ¢, lo-
cated at the p, s, jointly provide a kernel estimate of
the target 7.

Furthermore, we recall that the generation of the
means, fn ¢, is completely independent from the samples
Xp,+ drawn in the lower level. This is a key point from
a theoretical and practical point of view. Indeed, the
generic MAIS algorithm can be divided in two steps: (a)
first generate all the means {p, ,}7, forn=1,..., N,
(b) then perform the MIS estimation considering all
the proposals g, ¢(X|tn.t, Cr), Vn and V. Namely, any
MAIS technique can be converted into a generalized
static MIS scheme (see Section 4.1). As a consequence,
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the unique conditions required for ensuring the consis-
tency of the corresponding estimators are [22, 47):

— All the proposal pdfs, g, ;, must have heavier tails
than the target 7.

— A suitable function @, ;(x) for the denominator of
the importance weights must be chosen. Namely, the
use of &, ,(x) provides consistent estimators [22],
like the functions &,, ;(x) described in Section 4.2.

Moreover, the independence of the upper level from the
lower level of the hierarchical approach, helps the par-
allelization of the algorithms as we discuss later.

Table 5 compares different AIS schemes. In the stan-
dard AIS method [9], the sequence of {p,, .} converges
to a unknown fixed vector as ¢ — oo. In the standard
PMC algorithm [12], the limiting distribution of { g, ¢}
is unknown. Furthermore, in both cases, standard AIS
and PMC, the adaptation depends on the previously
generated samples x’s. In MAIS techniques, the use of
an ergodic chain (with invariant pdf 7) for generating
the n-th mean vector pw, ; ensures that its asymptotic
density is 7(p).

Table 5 Adaptation of the mean vectors {ptr,,+} using differ-
ent AIS techniques.

Features Stand. AIS PMC MAIS
limiting (unknown) | unknown
distribution of fixed (if/when ()
{pn,} for t — oo vector exists)

dependence of
the adaptation yes yes no
w.r.t. the x’s

5.2 The new class of algorithms

Markov GAMIS framework can lead to many differ-
ent algorithms, depending on the MCMC strategy used
to update the mean vectors and the specific choice of
the function @, ;. Table 6 provides several examples
of novel techniques determined by the value of N, the
choice of @, ;+, and the type of MCMC adaptation. Some
of them are variants of well-known techniques like PMC
[12] and AMIS [15], where the Markov adaptation pro-
cedure is employed. Others, such as the Random Walk
Importance Sampling (RWIS), the Parallel Interacting
Markov Adaptive Importance Sampling (PI-MAIS) and
Doubly Interacting Markov Adaptive Importance Sam-
pling (1>-MAIS), are described below in detail. For these
completely novel algorithms we have set @, +(x) = ¢¢(x),
so that the computational cost is directly controlled by

Table 7 Random Walk Importance Sampling (RWIS) algo-
rithm.

1. Initialization: start with ¢ = 1, Ho = 0, choose the
values M and T, the initial location parameter po, the
scale parameters C and A.

2. Fort=1,...,T:

(a) MH step:
(a-1) Draw p' ~ o(plpe—1, A).
(a-2) Set p; = ' with probability

(1 )o(pe ', A), }
m(pt)o( |pe—1, A) ]’

a = min [1,

otherwise set py = pt—1 (with probability 1 —

a).

(b) IS steps:
(b-1) Draw xgm) ~ g¢(x|pt,Cp) for m=1,..., M.
(b-2) Weight the samples as

(™)
qt(xim) I/—"t7 Cn)

o™ =

(b-3) Set, St = Z%I:]_ wgm), Ht = Htfl + St, and
normalize the weights

5™ = L — pim) Hia
' PO Z£1=1 w-(rr) ThoH,
(c) Output: Return all the pairs {x.(rm) , ﬁim)} form =

1,...,Mand r=1,...,t

N and the re-weighting step 2(c-3) in Table 4 is not
required.

RWIS is the simplest possible Markov GAMIS algo-
rithm. Specifically, for the MCMC adaptation we con-
sider a standard MH technique, setting N = 1 and
choosing &, ;(x) = ¢ (x) = gn(x) (since N = 1,
the two cases coincide). Table 7 shows the RWIS al-
gorithm, which is a special case of the more general
scheme described in Table 8 when N = 1. Note that
we have a proposal pdf used for the MH adaptation,
o(plpi—1, A), which is different from the proposal pdf
used for the IS estimation, ¢(x|u:, C).

5.3 Population-based algorithms

The RWIS technique can be easily extended by using a
population of N proposal pdfs. In this case, we choose

1 N
Boa(x) = 61(5) = 15 D (),

so that the computational cost of evaluating the mix-
ture &y, 1(x) = ¢+(x) depends only on N, regardless of
the number ¢ of iterations. Moreover, step 2(c-3) in Ta-
ble 4 is not required in this case. Table 8 describes the
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Table 6 Example of possible Markov GAMIS algorithms.

Parallel adaptation

Interacting adaptation

Function &, (x) N=1

N>1 N>1

RWIS

an,1 () (see Table 7)

Markov PMC (related to [12])

Markov AMIS

€n(x) = 7 201 ant(x) (related to [15])

Markov AMIS (rel. to [15])

Population-based
Markov AMIS (rel. to [15])

N parallel

RWIS

de(x) = % EnN=1 qn.t(x) (see Table 7)

PI-MAIS 12-MAIS
(see Section 5.3) (see Section 5.3)

Markov AMIS

Y(x) = ﬁ Zg:l Zz:l n (%) (related to [15])

Full Markov GAMIS

[ generic @y, (x) [

Partial Markov GAMIS ]

corresponding algorithm without specifying the MCMC
approach used for generating the population of means,
Pt = {,11/17,5, ---7HN,t}7 given Pt—l-

Two possible adaptation procedures via MCMC are
discussed below. In the first one, we consider N inde-
pendent parallel chains for updating the N mean vec-
tors. We refer to this method as Parallel Interacting
Markov Adaptive Importance Sampling (PI-MAIS). Al-
though PI-MALIS is parallelizable, in the iterative ver-
sion of Table 8 the N independent processes cooperate
together in Eq. (36) to provide unique global IS esti-
mate. In the second adaptation scheme, we introduce
the interaction also in the upper level. Hence, we refer
to this method as Doubly Interacting Markov Adaptive
Importance Sampling (1>-MAIS). In both cases, the cor-
responding technique provides an IS approximation of
the target or, equivalently, the estimators Ir and Zr in
Eq. (29), using NMT samples.

5.8.1 MCMC adaptation for PI-MAIS

The simplest option is applying one iteration of N par-
allel MCMC chains, one for each p, 11 returning g, 4,
for n = 1,..., N. For instance, given N parallel MH
transitions, each one employing (possibly) a different
proposal pdf ¢,, with covariance matrix A, we have:

Forn=1,...,N:

L. Draw p' ~ @n(p|pn,t—1, An).
2. Set p,, 4 = p’ with probability

W(Nl)gpn(y‘n,t—l |l'l'/7 An)
W(Nn,tfl)%on (Nl|l"n,t717 Ay)

a =min |1, ,

otherwise set o, 1 = p,¢—1 (With probability 1—a).

Figure 2(a) illustrates this scenario. Each mean vec-
tor py, + is updated independently from the rest. There-
fore, in PI-MAIS, the interaction among the different

Table 8 Population-Based MAIS algorithms.

1. Initialization: Set t = 1, Io = 0 and Hp = 0. Choose
the initial population

Po = {p1,0, -, uN, 0},

and N covariance matrices C, (n =1,...,N). Choose

also the parametric form of the N normalized propos-

als g;,; with parameters p,,; and C,. Let T be the

total number of iterations.

2. Fort=1,...,T:

(a) Update of the location parameters: Perform one
transition of one or more MCMC techniques over
the current population,

Pi—1={pm1,6—1,-s UNt—1}

obtaining a new population,

Pe=A{p1,t,-, Nt }-

(b) IS steps:
(b-1) Draw ng;) ~  gqn,t(X|pn,t,Cn) for m =
1,...,Mandn=1,...,N.
(b-2) Compute the importance weights,

(m)
(X
oo ) @)
N k=1 Tkt (Xt |15t Cr)

withn=1,...,N,and m=1,..., M.
(b-3) Set S; = 7]:]:1 %:1 wr(:;), Hy = Hi—1 + Sy,
and normalize the weights
(m)

w.

ﬁ('m) _ Wy ¢
mt Tt N M (r)
JIEPED DA it iT
_ =(m) Hioa
- pn,tfl Ht .

(c) Outputs: Return all the pairs {xim),ﬁgm)} for
m=1,...,Mand 7=1,...,¢t.

processes occurs only in the underlying IS layer of the
hierarchical structure: the importance weights in Eq.
(36) are built using the partial DM-MIS strategy with
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1o, ¢t ? UN,t—1
Hit—1 H2t—1 UN,t—1 [Nl,t—l;---aﬂN,t—l] {Nl,t—la---aﬂN,t—l} MH
L | | o
MH| [MH| .... | MH [ngl—ixl?V SMH MiH fi2.¢
l MH
1t 2,t KNt [,Lbl,t,---,,LLN,t] {,ul,t,---,MN,t} v OHNG

(a) For PI-MAIS (b) For 12-MAIS (c) For 12-MAIS (d) For 12-MAIS

Fig. 2 Different possible adaptation procedures for Population-based MAIS schemes. (a) One transition of N indepen-
dent parallel MH chains (pn,: € RP=) for PI-MAIS. (b) One transition of an MH method working in the extended

space [p1,¢, ..

. mN,t] € RP=XN_ (c) One transition of SMH [30, Chapter 5], considering the population of mean vectors

Pt ={p1,t, -, Nt} (d) N sequential transitions of (possibly) different MH kernels starting from po,: = pn ¢—1-

1

oi(x) =+ Zﬁ;l qn,t(X|pn ¢, Cr). Considerations about

N
the parallelization of PI-MAIS are given in Section 5.5.

5.8.2 MCMC adaptation for P-MAIS

Let us consider an extended state space RP=*¥ and an
extended target pdf
N
ﬁ-g(ula"wNN)O( Hﬂ-(un)a (37>
n=1

where each marginal 7(u,), for ¢ = 1,..., N, coincides
with the target in Eq. (2). In this section, we describe
three interacting adaptation procedures for the mean
vectors, which consider the generalized pdf in Eq. (37)
as invariant density. They are represented graphically
in Figs. 2(b), (¢) and (d).

MH in the extended space RP»*N

The simplest possibility is applying directly a block-
MCMC technique, transitioning from the matrix

Py =[pi4-1,-, WNt—1],

to the matrix P, = [p1,4,..., pn¢]. Let us consider an
MH method and a proposal pdf p(P¢|P;_;) : RP=>N —
RP=*N _For instance, one can consider a proposal of the

type

7/1'N,t—1)

N
= H @n(“n,t

n=1

Oty - BN 1 =15 - -

IJ/n,t—la An)

Thus, one transition is formed by the following steps:

1. Draw P’ ~ o(P|P;_1), where P’ = [p],..., )y

2. Set P; = P’ with probability

Ty (P")p(Pi—1|P’)
Tg(Pi—1)p(P’|Pi1) ]’

otherwise set Py = P;_; (with probability 1 — «).

a =min |1,

At each iteration, N new samples p, are drawn (as
in PI-MAIS) and therefore N new evaluations of 7 are
required (i.e., one evaluation of 7;). When a new P’ is
accepted, all the components of P; differ from P;_1, un-
like in the strategy described later. However, the proba-
bility of accepting a new population becomes very small
for large values of N.

Sample Metropolis-Hastings (SMH) algorithm

SMH is a population-based MCMC technique, suitable
for our purposes [30, Chapter 5]. At each iteration t,
given the previous set

,Ptfl = {u‘l,tflu [RX3) HN,tfl}v

a new possible parameter po:—1, drawn from an in-
dependent proposal ¢(u), is tested to be interchanged
with another parameter in Pr_; = {ft1¢—1, .., BN t—1}-
The underlying idea of SMH is to replace one “bad”
sample in the population P;_; with a potentially “bet-
ter” one, according to a certain suitable probability c.
The algorithm is designed so that, after a burn-in pe-
riod, the elements in P, are distributed according to
Tg(p1, ..., N). One iteration of SMH consists of the
following steps:

1. Draw a candidate po¢—1 ~ @(p).

2. Choose a “bad” sample, pg 11 with k € {1,..., N},
from the population according to a probability pro-
portional to M, which corresponds to the in-

(g t—1
verse of the standard IS weights.
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3. Accept the new population, P, = {p14,..., Nt}
with py ¢ = pn—1 for all n # k and pyr = pot—1,
with probability

ZN P(Hn,t-1)
a(,]) ) _ n=1 ﬂ'(l-‘/n‘t—l)
t717lj’0’t71 — ZN LP(IJri,t—l) — @(ﬂi,t—l) .
=0 m(pi-1)  o<i<n T(Hip-1)

Otherwise, set Py = P;_1.

Unlike in the previous strategy, the difference between
P;_1 and Py is at most one sample. Observe that o de-
pends on P;_; and the candidate p,—1. However, at
each iteration, only one new evaluation of 7 (and ¢) is
needed at po+—1, since the rest of the weights have al-
ready been computed in the previous steps (except for
the initial iteration).

MH within Gibbs

Another simple alternative, following an “MH within
Gibbs” approach for sampling from 7,4, is to update
sequentially each p,; 1 using one MH step in RP=.
Hence, setting po ¢ = pn,t—1, we have:

Forn=1,...,N:

1. Draw p' from a proposal pdf ¢, (p|pen—1,, Ar)-
2. Set p,, ; = p’ with probability

ﬂ'(u/)(pn(/l'n—l,AF‘/v An)
W(Mnfl,t)son(p‘/“l’n*l,tv A’ﬂ)

« = min |1, ,

otherwise set iy ¢+ = tn—14-

This scenario is illustrated in Fig. 2(d). In this case,
after Titerations of the I2>-MAIS scheme, we generate
a unique MH chain with NT total states, divided in
T parts of N states. At each iteration of the I2-MAIS
scheme, each block of N states is employed as mean
vector of the N proposal pdfs used in the lower level.

5.4 Computational cost: comparison between PI-MATIS
and I2-MAIS

In all cases, the total number of samples involved in the
final estimation is NMT. The total number of evalu-
ations of the target, FE, is larger due to the MCMC
implementation, i.e., E > NMT. More precisely, the
total number of evaluations of the target is:

— E=MNT + NT, for PI-MAIS,

— E = MNT + NT, for I>-MAIS with MH in the
extended space RPx*V

— E=MNT +T, for I>-MAIS with SMH,

— E = MNT+NT, for I>-MAIS with the MH-within-
Gibbs approach.

Note that we have taken into account that several eval-
uations of the target have been computed in the previ-
ous iterations. Moreover, the application of the MCMC
techniques requires generation of V' additional uniform
r.v.’s for performing the acceptance tests (and addi-
tional r.v.’s for choosing a “bad” candidate in SMH).
Specifically, we need: V' = NT uniform r.v.’s in PI-
MAIS and I>-MAIS with MH-within-Gibbs, V = T uni-
form r.v.’s for I>-MAIS with MH in the extended space,
andV = 2T, T uniform r.v. and T multinomial r.v., for
12-MAIS with SMH. However, in practical applications,
the main computational effort is usually required for
the target evaluation. The computing time required in
the multinomial sampling within SMH increases with
N. Finally, we recall that we have used a determin-
istic mixture weighting scheme with @, 4(x) = ¢;(x),
which requires M N2T evaluations of the proposal pdfs,
gni(x), forn=1,...,Nandt=1,...,T.

5.5 Non-iterative and parallel implementations

As remarked in Section 5.1, the choice of the means
Mnt’s is completely independent from the estimation
steps. Thus, all the means can be selected in advance
(also in parallel if the strategy in Section 5.3.1 is used),
and the MIS estimation steps can then be performed as
in a completely static framework (i.e., as described in
Section 4.1). This consideration is valid for any choice
of &, 4(x).

Let us consider now the choice of &, ;’s as tempo-
ral mixtures, i.e., &, = % Zthl Gnt(x) or D, 4(x) =
dn.+(x). Moreover, let us consider the use of N par-
allel MCMC chains for adapting the means, i.e., one
independent chain for each parameter p,, ;, with n =
1,...,N. In this case, the corresponding algorithm is
completely parallelizable. Indeed, it can be decomposed
into N parallel MAIS techniques, each one producing
the partial estimators IA",T and ZAmT7 after T iterations.
The global estimators are then given by

Yz
R Wl -
T — Z EN Z In,T;
n=1 i=1 4T (38)
1 N
Zr==2> Znr
N n=1

Furthermore, different strategies for sharing informa-
tion among the parallel chains can also be applied [16,
36, 37, 26, 35, 44], or for reducing the total number of
evaluations of the target [29] (the scheme in [29] can be
applied if a unique independent proposal is employed,

i.e., on(p) = (p) for all n).
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6 Numerical simulations

In this section, we test the performance of the proposed
scheme comparing them with other benchmark tech-
niques. First of all, we tackle two challenging issues for
adaptive Monte Carlo methods: multimodality in Sec-
tion 6.1 and nonlinearity in Section 6.2. Furthermore,
in Section 6.4 we consider an application of position-
ing and tuning model parameters in a wireless sensor
network [1, 28, 40].

6.1 Multimodal target distribution

In this section, we test the novel proposed algorithms
in a multimodal scenario, comparing with several other
methods. Specifically, we consider a bivariate multi-
modal target pdf, which is itself a mixture of 5 Gaus-
sians, i.e.,

1 5

7(x) = g;/\/(x;w,zi), x € R?, (39)
with means vy = [-10,—10]", vo = [0,16]7, v3 =
[13,8]", vy = [-9,7]T, v5s = [14,—14] T, and covariance

matrices ¥; = [2, 0.6;0.6, 1], X5 =[2, —0.4;—0.4, 2],
Y3 = [2, 0.8;0.8, 2], ¥, = [3, 0;0, 0.5] and 35 =
[2, —0.1;—0.1, 2]. The main challenge in this exam-
ple is the ability in discovering the 5 different modes
of T(x) o m(x). Since we know the moments of m(x),
we can easily assess the performance of the different
techniques.

Given a random variable (r.v.) X ~ 7(x), we con-
sider the problem of approximating via Monte Carlo the
expected value E[X] = [1.6,1.4]" and the normalizing
constant Z = 1. Note that an adequate approximation
of Z requires the ability of learning about all the 5
modes. We compare the performances of different sam-
pling algorithms in terms of Mean Square Error (MSE):
(a) the AMIS technique [15], (b) three different PMC
schemes®*, two of them proposed in [11, 12] and one
PMC using a partial DM-MIS scheme with &, ;(x) =
¢¢(x), (c) N parallel independent MCMC chains and
(d) the proposed PI-MAIS method. Moreover, we test
two static MIS approaches, the standard MIS and a par-
tial DM-MIS schemes with &,, ;(x) = ¢;(x), computing
iteratively the final estimator.

For a fair comparison, all the mentioned algorithms
have been implemented in such a way that the num-
ber of total evaluations of the target is £ = 2-105. All
the involved proposal densities are Gaussian pdfs. More

4 The standard PMC method [12] is described in Section
C.

specifically, in PI-MAIS, we use the following parame-
ters: N = 100, M € {1,19,99}, T € {20,100, 1000} in
order to fulfil E = MNT+NT = (M +1)NT = 2-10°
(see Section 5.4). The proposal densities of the upper
level of the hierarchical approach, ¢, (X|tint, Ay), are
Gaussian pdfs with covariance matrices A, = A1
and A € {5,10,70}. The proposal densities used in
the lower importance sampling level, g, (x|ttn i, Cr)
are Gaussian pdfs with covariance matrices C,, = 021,
and o € {0.5,1,2,5,10,20,70}. We also try different
non-isotropic diagonal covariance matrices in both lev-
els, i.e, A, = diag(\2 ;, A2 ), where X; j ~ U([1,10]),
and C,, = diag(o? |, 07 5), where o, ; ~ U([1,10]) for
je{l,2}andn=1,... N. We test all these techniques
using two different initializations: first, we choose delib-
erately a “bad” initialization of the initial mean vectors,
denoted as Inl, in the sense that the initialization re-
gion does not contain the modes of 7. Thus, we can test
the robustness of the algorithms and their ability to im-
prove the corresponding static approaches. Specifically,
the initial mean vectors are selected uniformly within
the following square

Hn,0 ~ U([—4, 4] X [_47 4]),

forn =1,...,N. Different examples of this configura-
tion are shown in Fig. 3 with squares. Secondly, we also
consider a better initialization, denoted as In2, where
the initialization region contains all the modes. Specif-
ically, the initial mean vectors are selected uniformly
within the following square

pn0 ~ U([=20,20] x [-20,20)),

forn =1,..., N. All the results are averaged over 2-10>
independent experiments. Tables 9 and 10 show the
Mean Square Error (MSE) in the estimation of the first
component of E[X], with the initialization In1 and In2
respectively. Table 11 provides the MSE in the estima-
tion of Z with Inl. The best results in each column
are highlighted in bold-face. In AMIS [15], the mean
vector and the covariance matrix of a single proposal
(i.e., N = 1) are adapted, using @ +(x) = &1(x) in
the computation of the IS weights. Hence, in AMIS, we
have tested different values of samples per iterations
M € {500,10%,2-10%,5-10%,10*} and T' = £ For the
sake of simplicity, we directly show the worst and best
results among the several simulations made with differ-
ent parameters. PI-MAIS outperforms the other algo-
rithms virtually for all the choices of the parameters,
with both initializations. In general, a greater value of
T is needed since the proposal pdfs are initially bad
localized. Moreover, PI-MAIS always improves the per-
formance of the static approaches. These two considera-
tion show the benefit of the Markov adaptation. Hence,
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PI-MALIS presents more robustness with respect to the
initial values and the choice of the covariance matrices.
Figure 6(a) providing a summary of the results in Ta-
ble 9 showing the log(MSE) as function of the log(o),
for the main compared methods. Figure 3 depicts the
initial (squares) and final (circles) configurations of the
mean vectors of the proposal densities for the standard
PMC and the PI-MAIS methods, in a specific run and
different values of o, A € {3,5}. In both cases, PI-MAIS
guarantees a better covering of the modes of m(x).

6.2 Nonlinear banana-shaped target distribution

Here we consider a bi-dimensional “banana-shaped” tar-

get distribution [27], which is a benchmark function in
the literature due to its nonlinear nature. Mathemati-
cally, it is expressed as

_ 1 2 2 z2
(w1, 72) x exp (_ﬁ (4 — By —a:%) — % — ﬁ ,

where, we have set B = 10, ;1 = 4, 7o = 5, and
ns = 5. The goal is to estimate the expected value
E[X], where X = [X;, Xo]| ~ T(21, 22), by applying dif-
ferent Monte Carlo approximations. We approximately
compute the true value F[X] ~ [-0.4845,0] " using an
exhaustive deterministic numerical method (with an ex-
tremely thin grid), in order to obtain the mean square
error (MSE) of the following methods: standard PMC
[12], the Mixture PMC [11], the AMIS [15], PI-MAIS
and I2-MAIS with SMH adaptation.

We consider Gaussian proposal distributions for all
the algorithms. The initialization has been performed
by randomly drawing the parameters of the Gaussians,
with the mean of the n-th proposal given by p, o ~
U([—6,—3] x [—4,4]), and its covariance matrix given

by Cn =[02, 0; 0 02,]". We have considered two
cases: an isotropic setting where o, € {1,2,...,10}

with £ = 1,2, and an anisotropic case with random se-
lection of the parameters where o, 1 ~ U([1,20]), with
k = 1,2. Recall that in AMIS and Mixture PMC, the
covariance matrices are also adapted.

For each algorithm, we test several combinations of
parameters, keeping fixed the total number of target
evaluations, £ = 2-10°. In the standard PMC method,

described in Section C), we consider N € {50, 100, 103, 5-

10°} and T = £ (here M = 1). In Mixture PMC,
we consider different number of component in the mix-
ture proposal pdf N € {10,50, 100}, and different sam-
ples per proposal S € {100,200,103,2 - 103,5 - 103}
at each iteration (here T = £). In AMIS, we test
S € {500,10%,2 - 10%,5 - 10%,10*} and T = £ (we
recall N = 1). The range of these values of parame-
ters are chosen, after a preliminary study, in order to

obtain the best performance from each technique. In

PI-MAIS an I2-MAIS, we set N € {50,100}. For the
adaptation in PI-MAIS, we also consider Gaussian pdfs
©n(X|tnt, Ay), covariance matrices A,, = A?Iy with
A € {3,5,10,20}. In I2-MAIS, for the SMH method we
use a Gaussian pdf with mean [0,0]" and covariance
matrix A = A\2I, and again \ € {3,5,10,20}. We test

M € {1,9,19} for both, so that T = W for PI-
MAIS and T' = \_#ﬂj for I2-MALIS (see Section 5.4).

The results are averaged 500 over independent sim-
ulations, for each combination of parameters. Table 12
shows the smallest and highest MSE values obtained in
the estimation of the expected value of the target, aver-
aged between the two components of E[X], achieved by
the different methods. The smallest MSEs in each col-
umn (each o) are highlighted in bold-face. PI-MAIS and
12-MAIS outperform the other techniques virtually for
all the values of ¢. In this example, AMIS also provides
good results. Figure 7 show a graphical representation
of the results in Table 12, with the exception of the last
column.

Fig. 4 displays the initial (squares) and final (circles)
configurations of the mean vectors of the proposals for
the different algorithms, in one specific run. Since in
Mixture PMC and AMIS the covariance matrices are
also adapted, we show the shape of some proposals as
ellipses representing approximately 85% of probability
mass. For, PMC we also depict a last resampling output
with triangles, in order to show the loss in diversity.
Unlike PMC, PI-MAIS ensures a better covering of the
region of high probability.

6.3 High dimensional target distribution

Let us consider again a mixture of isotropic Gaussians
as target pdf, i.e.,

3
7_T(X) =3 ZN(X§ Vi, 2k)7 X € RDwa (40)

where v, = [Vk,la ceey l/k7Dm]T, and Xy, = X%ID@, for k €
{1,2,3}, with Ip, being the D, x D, identity matrix.
We set Vi, = 757 Va5 = 6, V3 = 3 for aﬂj = 1, ...,Dz,
and x, = 8 for all k € {1,2,3}. The expected value of
the target 7(x) is then E[X;] = 3 for j=1,...,D,. In
order to study the performance of the proposed scheme
as the dimension of the state space increases, we vary
the dimension of the state space in Eq. (40) testing
different values of D, (with 2 < D, < 50).

We consider the problem of approximating via Monte
Carlo the expected value of the target density, and
we compare the performance of different methods: (a)
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Fig. 3 Initial (squares) and final (circles) configurations of the mean vectors of the proposal densities for the standard PMC
and the PI-MAIS methods, in different specific runs. The initial configuration corresponds to Inl.

10,
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(a) PMC (N =100,0=1) (b) Mixture
mixands (o = 5)

PMC with 10
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(c) AMIS (o = 5) (d) PI-MAIS (N = 100, A = 3)

Fig. 4 Initial (squares) and final (circles) configurations of the mean vectors of the proposal densities for the banana-shaped
target distribution, in one specific run for the different methods. The Mixture PMC [11] and AMIS techniques [15] also adapt
the covariance matrices (the ellipses show approximately 85% of the probability mass).

the standard PMC scheme [12], (b) N parallel inde-
pendent MH chains (Par-MH), (c) a standard Sequen-
tial Monte Carlo (SMC) scheme [42] and (d) the pro-
posed PI-MAIS method. We test the algorithms with
N € {100,500}. All the proposal pdfs involved in the
experiments are Gaussians, with the same covariance
matrices for all the techniques. The initial mean vec-
tors in all techniques are selected randomly and inde-
pendently as g, 0 ~U([—6 x 6]P=) forn =1,...,N.

Again, all the m