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We develop a layered quantum computer architecture, which is a systematic framework for tack-
ling the individual challenges of developing a quantum computer while constructing a cohesive
device design. We discuss many of the prominent techniques for implementing circuit-model quan-
tum computing and introduce several new methods, with an emphasis on employing surface code
quantum error correction. In doing so, we propose a new quantum computer architecture based
on optical control of quantum dots. The timescales of physical hardware operations and logical,
error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into
layers, we can design and analyze subsystems independently, demonstrating the value of our layered
architectural approach. Using this concrete hardware platform, we provide resource analysis for
executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding
that the quantum dot architecture we study could solve such problems on the timescale of days.

I. INTRODUCTION

Quantum computing as an engineering discipline is
still in its infancy. Although the physics is well un-
derstood, developing devices which compute with quan-
tum mechanics is technologically daunting. While exper-
iments to date manipulate only a handful of quantum
bits [1], we consider what effort is required to build a
large-scale quantum computer. This objective demands
more than a cursory estimate of the number of qubits
and gates required for a given algorithm. One must con-
sider the faulty quantum hardware, with errors caused by
both the environment and deliberate control operations;
when error correction is invoked, classical processing is
required; constructing arbitrary gate sequences from a
limited fault-tolerant set requires special treatment, and
so on. This paper provides a framework to address the
complete challenge of designing a quantum computer.
Many researchers have presented and examined com-

ponents of large-scale quantum computing. We study
here how these components may be combined in an effi-
cient design, and we introduce new methods which im-
prove the quantum computer we propose. This engineer-
ing pursuit is quantum computer architecture, which we
develop here in layers. An architecture decomposes com-
plex system behaviors into a manageable set of opera-
tions. A layered architecture does this through layers of
abstraction where each embodies a critical set of related
functions. For our purposes, each ascending layer brings
the system closer to an ideal quantum computing envi-
ronment.
The paper is organized as follows. The remainder of

Section I provides a global view of a layered quantum
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computer architecture, indicating how each of the top-
ics we examine are connected. Section II enumerates
the essential components of a quantum computer by ex-
amining a new hardware platform based on the optical
control of quantum dots. Section III discusses control
techniques for suppressing hardware errors prior to us-
ing active error correction. Section IV demonstrates how
to implement and account for the resources of quantum
error correction, with particular emphasis on the surface
code [2]. Section V analyzes the necessary techniques
for constructing universal quantum gates from the lim-
ited set of operations provided by error correction. Sec-
tion VI calculates the computer resources necessary to
implement two prominent quantum algorithms: integer
factoring and quantum simulation. Section VII discusses
timing issues which affect how the layers in the archi-
tecture interact with each other. Finally, Section VIII
discusses how our findings are applicable to future work
in quantum computing.

A. Prior work on quantum computer architecture

Many different quantum computing technologies are
under experimental investigation [1], but for each a scal-
able system architecture remains an open research prob-
lem. Since DiVincenzo introduced his fundamental cri-
teria for a viable quantum computing technology [3] and
Steane emphasized the difficulty of designing systems ca-
pable of running quantum error correction (QEC) ade-
quately [4, 5], several groups of researchers have outlined
various additional taxonomies addressing the architec-
tural needs of large-scale systems [6, 7]. As an example,
small-scale interconnects have been proposed for many
technologies, but the problems of organizing subsystems
using these techniques into a complete architecture for
a large-scale system have been addressed by only a few
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researchers. In particular, the issue of heterogeneity in
system architecture has received relatively little atten-
tion.

The most important subroutine in fault-tolerant quan-
tum computers considered thus far is the preparation
of ancilla states for fault-tolerant circuits, because these
circuits often require very many ancillas. Taylor et al.

proposed a design with alternating “ancilla blocks” and
“data blocks” in the device layout [8]. Steane introduced
the idea of “factories” for creating ancillas [9], which we
examine for the case of the surface code in this work.
Isailovic et al. [10] studied this problem for ion trap ar-
chitectures and found that, for typical quantum circuits,
approximately 90% of the quantum computer must be
devoted to such factories in order to calculate “at the
speed of data,” or where ancilla-production is not the
rate-limiting process. The findings we present here are
in close agreement with this estimate. Metodi et al. also
considered production of ancillas in ion trap designs, fo-
cusing instead on a 3-qubit ancilla state used for the
Toffoli gate [11], which is an alternative pathway to a
universal fault-tolerant set of gates.

Some researchers have studied the difficulty of moving
data in a quantum processor. Kielpinski et al. proposed
a scalable ion trap technology utilizing separate memory
and computing areas [12]. Because quantum error cor-
rection requires rapid cycling across all physical qubits in
the system, this approach is best used as a unit cell repli-
cated across a larger system. Other researchers have pro-
posed homogeneous systems built around this basic con-
cept. One common structure is a recursive H tree, which
works well with a small number of layers of a Calderbank-
Shor-Steane (CSS) code, targeted explicitly at ion trap
systems [13, 14]. Oskin et al. [15], building on the Kane
solid-state NMR technology [16], proposed a loose lat-
tice of sites, explicitly considering the issues of classical
control and movement of quantum data in scalable sys-
tems, but without a specific plan for QEC. In the case of
quantum computing with superconducting circuits, the
quantum von Neumann architecture specifically consid-
ers dedicated hardware for quantum memories, zeroing
registers, and a quantum bus [17].

Long-range coupling and communication is a signifi-
cant challenge for quantum computers. Cirac et al. pro-
posed the use of photonic qubits to distribute entangle-
ment between distant atoms [18], and other researchers
have investigated the prospects for optically-mediated
nonlocal gates [19–23]. Such photonic channels could be
utilized to realize a modular, scalable distributed quan-
tum computer [24]. Conversely, Metodi et al. consider
how to use local gates and quantum teleportation to move
logical qubits throughout their ion-trap QLA architec-
ture [11]. Fowler et al. [25] investigated a Josephson junc-
tion flux qubit architecture considering the extreme dif-
ficulties of routing both the quantum couplers and large
numbers of classical control lines, producing a structure
with support for CSS codes and logical qubits organized
in a line. Whitney et al. [26, 27] have investigated auto-

mated layout and optimization of circuit designs specifi-
cally for ion trap architectures, and Isailovic et al. [10, 28]
have studied interconnection and data throughput issues
in similar ion trap systems, with an emphasis on prepar-
ing ancillas for teleportation gates [29].
Other work has studied quantum computer architec-

tures with only nearest-neighbor coupling between qubits
in an array [30–34], which is appealing from a hardware
design perspective. With the recent advances in the op-
eration of the topological codes and their desirable char-
acteristics such as having a high practical threshold and
requiring only nearest-neighbor interactions, research ef-
fort has shifted toward architectures capable of building
and maintaining large two- and three-dimensional clus-
ter states [35–38]. These systems rely on topological er-
ror correction models [39], whose higher tolerance to er-
ror often comes at the cost of a larger physical system,
relative to, for example, implementations based on the
Steane code [40]. The surface code [2], which we exam-
ine in this work for its impact on architecture, belongs to
the topological family of codes.
Recent attention has been directed at distributed mod-

els of quantum computing. Devitt et al. studied how to
distribute a photonic cluster-state quantum computing
network over different geographic regions [41]. The ab-
stract framework of a quantum multicomputer recognizes
that large-scale systems demand heterogeneous intercon-
nects [42]; in most quantum computing technologies, it
may not be possible to build monolithic systems that
contain, couple, and control billions of physical qubits.
Van Meter et al. [43] extended this architectural frame-
work with a design based on nanophotonic coupling of
electron spin quantum dots that explicitly uses multi-
ple levels of interconnect with varying coupling fidelities
(resulting in varying purification requirements), as well
as the ability to operate with a very low yield of func-
tional devices. Although that proposed system has many
attractive features, concerns about the difficulty of fab-
ricating adequately high quality optical components and
the desire to reduce the surface code lattice cycle time
led to the system design proposed in this paper.

B. Layered framework

A good architecture must have a simple structure while
also efficiently managing the complex array of resources
in a quantum computer. Layered architectures are a con-
ventional approach to solving such engineering problems
in many fields of information technology, and Ref. [14]
presents a layered architecture for quantum computer
design software. Our architecture, which describes the
physical design of the quantum computer, consists of five
layers, where each layer has a prescribed set of duties to
accomplish. The interface between two layers is defined
by the services a lower layer provides to the one above it.
To execute an operation, a layer must issue commands to
the layer below and process the results. Designing a sys-
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FIG. 1. Color. Layered control stack which forms the frame-
work of a quantum computer architecture. Vertical arrows
indicate services provided to a higher layer.

tem this way ensures that related operations are grouped
together and that the system organization is hierarchical.
Such an approach allows quantum engineers to focus on
individual challenges, while also seeing how a process fits
into the overall design. By organizing the architecture
in layers, we deliberately create a modular design for the
quantum computer.
The layered framework can be understood by a con-

trol stack composed of the five layers in the architec-
ture. Fig. 1 shows an example of the control stack for
the quantum dot architecture we propose here, but the
particular interfaces between layers will vary according to
the physical hardware, quantum error correction scheme,
etc. that one chooses to implement. At the top of the
control stack is the Application layer, where a quantum
algorithm is implemented and results are provided to the
user. The bottom Physical layer hosts the raw physi-
cal processes supporting the quantum computer. The
layers between (Virtual, Quantum Error Correction, and
Logical) are essential for shaping the faulty quantum pro-
cesses in the Physical layer into a system of high-accuracy
fault-tolerant [44] qubits and quantum gates at the Ap-
plication layer.

C. Interaction between layers

Two layers meet at an interface, which defines how
they exchange instructions or the results of those in-
structions. Many different commands are being executed
and processed simultaneously, so we must also consider
how the layers interact dynamically. For the quantum
computer to function efficiently, each layer must issue in-
structions to layers below in a tightly defined sequence.
However, a robust system must also be able to handle

errors caused by faulty devices. To satisfy both criteria,
a control loop must handle operations at all layers simul-
taneously while also processing syndrome measurement
to correct errors that occur. A prototype for this control
loop is shown in Fig. 2.
The primary control cycle defines the dynamic behav-

ior of the quantum computer in this architecture since
all operations must interact with this loop. The princi-
pal purpose of the control cycle is to successfully imple-
ment quantum error correction. The quantum computer
must operate fast enough to correct errors; still, some
control operations necessarily incur delays, so this cycle
does not simply issue a single command and wait for the
result before proceeding — pipelining is essential [10, 45].
A related issue is that operations in different layers oc-
cur on drastically different timescales, as discussed later
in Section VII. Fig. 2 also describes the control struc-
ture needed for the quantum computer. Processors at
each layer track the current operation and issue com-
mands to lower layers. Layers 1 to 4 interact in the loop,
whereas the Application layer interfaces only with the
Logical layer since it is agnostic about the underlying
design of the quantum computer, which is explained in
Section VI.

D. The QuDOS hardware platform

The layered framework for quantum computing was
developed in tandem with a specific hardware plat-
form, known as QuDOS (quantum dots with optically-
controlled spins). The QuDOS platform uses electron
spins within quantum dots for qubits. The quantum dots
are arranged in a two-dimensional array; Fig. 3 shows a
cut-away rendering of the quantum dot array inside an
optical microcavity, which facilitates control of the elec-
tron spins with laser pulses. We demonstrate that the
QuDOS design is a promising candidate for large-scale
quantum computing, beginning with an analysis of the
hardware in the Physical layer.

II. LAYER 1: PHYSICAL

The essential requirements for the Physical layer are
embodied by the DiVincenzo criteria [3], but we are also
interested in performance of the quantum hardware. The
timescale of operations and the degrees of errors, both
systematic and random, are critical parameters which de-
termine the size and speed of the computer. This section
discusses the essential hardware components of a quan-
tum computer, accompanied by the QuDOS platform we
introduce as an example. We conclude by analyzing the
performance of the QuDOS hardware. We caution that
many of the required hardware elements are still under
experimental development, but we choose those discussed
below as examples to establish timescales which will im-
pact higher layers of the architecture.



4

Maintain virtual

qubits and gates

with physical 

control sequences

Translate hardware 

readout signal into

measurement of

virtual qubits

Decompose QEC

circuits into virtual

qubits and gates

Process virtual qubit

measurements to 

determine error

syndrome and

update Pauli frame

Construct logical

substrate for quantum

computing by 

decomposing arbitrary 

gates into fundamental 

gates and ancillas

QEC Syndrome 

Processing

Virtual Layer

Processing

Pipelined Control Cycle

Logical

Processing
Quantum Error

Correction

Processing

Layer 5: Application

Layer 4: Logical

Layer 3: QEC

Layer 2: Virtual

Layer 1: Physical

Store Quantum

Information

Process 

Quantum

Information

Measure

Quantum

Information

Quantum Region

Application

Layer

Physical-to-Virtual

Object Translation

Issue 

Commands

Process

Results

QEC

Syndrome

Processor

Logical 

Controller

QEC

 Controller

Virtual Layer

 Controller

Compiled

Algorithm

Virtual Layer

 Processor

FIG. 2. Color. Primary control cycle of the layered architecture quantum computer. Whereas the control stack in Fig. 1
dictates the interfaces between layers, the control cycle determines the timing and sequencing of operations. The dashed box
encircling the Physical layer indicates that all quantum processes happen exclusively here, and the layers above process and
organize the operations of the Physical layer. The Application layer is external to the loop since it functions without any
dependence on the specific quantum computer design.

GaAs/AlGaAs 

DBR Cavity

(a) (b) Laser Light

1 μm

Quantum Dot

FIG. 3. Color. Quantum dots in a planar optical microcavity form the basis of the QuDOS hardware platform. (a) The
quantum dots are arranged 1 µm apart in a two-dimensional square array. The quantum dots trap single electrons, whose spins
will be used for quantum information processing. (b) Side view. The electron spins are manipulated with laser pulses sent
into the optical cavity from above, and two neighboring quantum dots can be coupled by a laser optical field which overlaps
them. The purple and green layers are AlGaAs and GaAs, grown by molecular beam epitaxy. The alternating layers form a
distributed Bragg reflector (DBR) optical cavity which is planar, confining light in the vertical direction and extending across
the entire system in horizontal directions.
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A. Physical qubit

A quantum computer must have the ability to store in-
formation between processing steps; the object fulfilling
this role is conventionally known as the physical qubit. A
physical qubit may be more complex than a two-level sys-
tem, and this issue is addressed by Layer 2 in the archi-
tecture, where control operations are used to form a true
quantum bit as an information unit (see Section IIIA).
Examples of physical qubits include trapped ions, photon
polarization modes, electron spins, and quantum states
in superconducting circuits [1]. The remainder of the
Physical layer is devoted to controlling and measuring
the physical qubit.
The layered architecture design is flexible in the sense

that the Physical layer can be tailored to a specific hard-
ware, such as superconducting circuit qubits, with mini-
mal change to higher layers such as error correction. The
physical qubit we consider in QuDOS is the spin of an
electron bound within an InGaAs self-assembled quan-
tum dot (QD) surrounded by GaAs substrate [46–51].
These QDs can be optically excited to trion states (a
bound electron and exciton), which emit light of wave-
length∼ 900 nm when they decay. A transverse magnetic
field splits the spin levels into two metastable ground
states [52], which will later form a two-level system for
a virtual qubit in Layer 2. The energy separation of
the spin states is important for two reasons related to
controlling the electron spin. First, the energy split-
ting facilitates control with optical pulses as explained
in Section IIC. Second, there is continuous phase rota-
tion between spin states |↑〉 and |↓〉 around the Ẑ-axis on
the qubit Bloch sphere, which in conjunction with timed
optical pulses provides complete unitary control of the
electron spin vector.

B. Host system

For our purposes, the host system is the engineered
environment of the physical qubit which supports com-
puting. Examples include the trapping fields in ion-trap
designs, the waveguides in optical quantum computing,
and the diamond crystal surrounding nitrogen-vacancy
centers [1]. The host system will define the immediate en-
vironment of the physical qubit, which will be important
for characterizing noise affecting quantum operations.
We noted above that, in QuDOS, the electron spin is

bound within a quantum dot. These quantum dots are
embedded in an optical microcavity, which will facilitate
quantum gate operations via laser pulses. To accom-
modate the two-dimensional array of the surface code
detailed in Layer 3, this microcavity must be planar in
design, so the cavity is constructed from two distributed
Bragg reflector (DBR) mirrors stacked vertically with a
λ/2 cavity layer in between, as shown in Fig. 3. This
cavity is grown by molecular beam epitaxy (MBE). The
QDs are embedded at the center of this cavity to maxi-
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FIG. 4. Color. Hadamard pulses in QuDOS. (a) A short

pulse sequence generates an X̂-axis rotation on the spin Bloch
sphere with two Hadamard pulses and Ẑ-axis precession from
the magnetic field. The duration of the pulses and the de-
lay between them is proportional to the Larmor period, TL.
(b) Bloch sphere diagrams showing the axis of rotation at
each time during the sequence.

mize interaction with antinodes of the cavity field modes.
Using MBE, high-quality (Q > 105) microcavities can be
grown with alternating layers of GaAs/AlAs [53]. The
nuclei in the quantum dot and surrounding substrate
have nonzero spin, which is an important source of noise
(see Section II F).

C. 1-qubit gate mechanism

The 1-qubit gate manipulates the state of a single phys-
ical qubit. This 1-qubit gate mechanism is still a phys-
ical process, and only later will these physical control
operations be combined into a “virtual gate” (see Sec-
tion III B). Still, it is important that the Physical layer
delivers sufficient control of the physical qubit. Full uni-
tary control of a qubit requires at least two adjustable
degrees of freedom, such as rotation around two axes on
the Bloch sphere, and three freely adjustable parame-
ters [54].
The 1-qubit operations in QuDOS are developed using

a transverse magnetic field and ultrafast laser pulses [51,
55]. The magnetic field provides a constant-angular-

frequency rotation around the Ẑ axis, while laser pulses
enact a power-dependent rotation around an orthogonal
axis, which we label X̂. The first non-ideal behavior
we consider is that the laser pulse has some finite dura-
tion, so that X̂ and Ẑ precession happen concurrently,
which impairs manipulation of the spin Bloch vector. To
remedy this, we introduce “Hadamard pulses” [56]—one
tunes the laser pulse power and duration to make the
pulse-driven X̂-axis rotation equal in angular frequency
to the Ẑ-axis precession from the magnetic field, so that

the axis of rotation becomes H = 1√
2

(

X̂ + Ẑ
)

. A “π-

pulse” around this axis is a Hadamard gate, and by us-
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ing two Hadamard pulses and rotation RẐ(θ) via free
precession in the magnetic field, we can construct any
X̂-axis rotation by RX̂(θ) = H · RẐ(θ) · H, as shown
in Fig. 4. By implementing Hadamard pulses, we can
obtain high-fidelity operations with pulses of finite du-
ration. A challenging problem for QuDOS is how the
system executes millions of control operations in paral-
lel. We envision an optical imaging system consisting
of an array of MEMS mirrors to individually steer laser
control beams toward or away from quantum dots, along
with electro-optic modulators to precisely control laser
pulse timing; we discuss this approach in Appendix A,
but rigorously engineering such a system is beyond our
scope.

D. 2-qubit gate mechanism

The 2-qubit operation couples two physical qubits,
which can generate entanglement. This mechanism is
crucial for quantum computing, yet it is often difficult
to implement experimentally. For example, entangling
gates like CNOT are used frequently in quantum error
correction, so developing fast, high-fidelity 2-qubit gate
mechanisms is imperative for large-scale quantum infor-
mation processing. In many cases, the 2-qubit gate is
the process which defines the speed and accuracy of a
quantum computer.
The construction of a practical, scalable 2-qubit gate

in QuDOS remains the most challenging element of the
hardware, and various methods are currently under de-
velopment. A fast, all-optically controlled 2-qubit gate
would certainly be attractive, and early proposals [47]
identified the importance of employing the nonlinearities
of cavity QED. Ref. [47] suggests the application of two
lasers for both single-qubit and 2-qubit control; more re-
cent developments have indicated that both single-qubit
gates [55, 57, 58] and 2-qubit gates [59] can be accom-
plished using only a single optical pulse.
We consider a 2-qubit gate via the dispersive interac-

tion proposed in Ref. [59]. The critical figure of merit
for the cavity QED system is the cooperativity factor
C, which is proportional to the cavity quality factor
Q divided by the cavity volume V . For QuDOS, we
envision transverse cavity confinement entirely due to
the extended microplanar microcavity arrangement, in
which cooperativity factors are enhanced by the angle-
dependence of the cavity response, an effect which is
enlarged by high index of refraction contrast in the al-
ternating mirrors of the DBR stack [46]. While existing
cooperativity factors achieved this way are not estimated
to be high enough to produce quantum gates with error
rates sufficiently low for fault-tolerant quantum comput-
ing, advanced control techniques and multi-spin encod-
ings (such as for “virtual qubits”; see Section III) may
enable this technology to function with acceptable er-
ror rates. Ref. [59] estimates that this gate will require
10–100 ns to execute, and for the present analysis we as-

Probe Pulse

Quantum Dot

Cavity
Reflected Pulse (     )

Reflected Pulse (     )

(a)

(b)

FIG. 5. Color. A dispersive quantum non-demolition (QND)
readout scheme for QuDOS. (a) A probe pulse is sent into
a microcavity containing a charged quantum dot. (b) The
cavity-enhanced dispersive interaction between the pulse and
the electron spin creates a state-dependent phase shift in the
light which leaves the cavity. Measurement of the phase shift
can perform projective measurement on the electron spin.

sume the value 32 ns, which coincides with a virtual gate
in Section III B. Further enhancements to speed and/or
gate fidelity may be available by introducing exchange
interactions using microcavity polaritons [60]; studying
this possibility is the subject of future work.

E. Measurement readout

Measurement is another essential component of quan-
tum computing. At a bare minimum, one must be able
to read the final result of a calculation, but typically
measurement is used extensively in fault-tolerant quan-
tum error correction. For this reason, quantum com-
puters may require measurement which is comparable in
speed and accuracy to the control operations. Moreover,
many situations call for quantum non-demolition (QND)
measurement, where the physical qubit is projected into
an eigenstate of the measurement operator. To illus-
trate a counter-example, consider a qubit defined by the
ground and first optically excited states of a quantum
dot. A possible measurement scheme is to detect a pho-
ton emission, which would indicate the qubit was in the
excited state. However, the final state of the qubit is the
ground state for either measurement outcome, which is
destructive measurement, and this procedure cannot be
repeated. Conversely, QND measurement is highly desir-
able because it can be repeated, so that classical readout
noise can be reduced by time-averaging.
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QuDOS will require a QND measurement scheme
which is still under experimental development. The pro-
posed mechanism (shown in Fig. 5) is based on Fara-
day/Kerr rotation. The underlying physical principle is
as follows: an off-resonant probe pulse impinges on a
quantum dot, and it receives a different phase shift de-
pending on whether the quantum dot electron is in the
spin-up or spin-down state (these are separated in energy
by the external magnetic field). Sensitive photodetectors
combined with homodyne detection measure the phase
shift to enact a projective QND measurement on the
electron spin. Several results in recent years have demon-
strated the promise of this mechanism for measurement:
multi-shot experiments by Berezovsky et al. [61] and
Atatüre et al. [62] have measured spin-dependent phase
shifts in charged quantum dots, and Fushman et al. [63]
observed a large phase shift induced by a neutral quan-
tum dot in a photonic crystal cavity. Most recently,
Young et al. observed a significantly enhanced phase
shift from a quantum dot embedded in a micropillar cav-
ity [64].

F. Noise sources and errors

Noise and decoherence are the biggest obstacles to scal-
able quantum computing. In general, the noise sources
which corrupt the physical qubit or degrade the fidelity
of control operations should be characterized as well as
possible. For the present analysis, we consider the noisy
environment for an electron spin in QuDOS. The pri-
mary noise in this system is dephasing, likely caused by
the inhomogeneous distribution of nuclear spins in the
quantum dot. The ensemble dephasing is characterized
by T ∗

2 ≈ 2 ns, while the intrinsic dephasing is character-
ized by T2 ≈ 3 µs [65]. When the noise experienced by
a qubit is dominated by dephasing, one can counteract
decoherence with control sequences tailored to this noise
source [66]. Section IIIA introduces a decoupling scheme
designed specifically for QuDOS.

G. Hardware performance summary

We summarize the execution times for the essential
Layer 1 operations in QuDOS in Table I. These are the
quantum processes which are the building blocks of quan-
tum information operations in Layers 2 and above. For
a complete quantum processor, however, one would also
have to consider the classical control hardware and the
engineering concerns, such as delays, which may occur
in a large system. For example, Ref. [34] considers the
implications of classical control wires, such as routing
concerns, signal timing, and the generation of heat in
low-temperature devices. Although engineering of clas-
sical control hardware is an important problem, it lies
outside the scope of our present analysis, and we reserve
it for future work.

III. LAYER 2: VIRTUAL

The Virtual layer is where quantum effects in the Phys-
ical layer are first cast into information primitives — vir-
tual qubits and quantum gates. We use “virtual” as it is
defined in the field of computer science, where a virtual
object obeys a pre-determined set of behaviors, without
specifying the structure of this object. As an example, a
virtual qubit may be defined by a decoherence-free sub-
space [67–69] constructed from three electron spins; when
considered as a whole, three spins have many more de-
grees of freedom than a single qubit. Similar behavior
is seen in the quantum gates in QuDOS, which actually
consist of a sequence of laser pulses. This transcription
process of converting many physical elements into a vir-
tual information unit is the task of Layer 2, and we clarify
the functions of this layer below. Fig. 6 gives an overview
of the Virtual layer processes in QuDOS.
In a general sense, the Virtual layer makes the Physi-

cal layer robust to systematic errors. This effect will be
seen in both virtual qubits and gates, where we enforce
symmetries in the system (by careful design of control
operations) which cause correlated errors to cancel by
interference. The simplest example of this behavior is
the Hahn spin-echo sequence [70], and in fact decoupling
techniques will play a prominent role in how we construct
a virtual qubit.

A. Virtual qubit

The virtual qubit shapes the underlying physical qubit
into a two-level system which approximates an ideal
qubit. However, the virtual qubit is modeled as having
some finite amount of decoherence, such as the depolar-
izing channel [54]. Where applicable, dynamical decou-
pling [71–73] and/or decoherence-free subspaces [67–69]
are used to create long-lived virtual qubits, and the resid-
ual decoherence characterizes the lifetime of the virtual
qubit. In what follows, we consider how to construct a
virtual qubit with a charged quantum dot, including the
mitigation of several non-ideal effects in this system.
In QuDOS, the virtual qubit is created from the two

metastable spin states of an electron confined to a QD. As
discussed in Section II F, the raw physical system has de-
phasing time T2

∗ ≈ 2 ns [65] caused by an inhomogeneous
distribution of nuclear spins in the environment of the
electron. This dephasing time is insufficient for quantum
error correction in Layer 3, so this system must be aug-
mented with dynamical decoupling techniques [74, 75],
which extend the dephasing time of the virtual qubit into
the microsecond regime [65].
Constructing the virtual qubit in QuDOS requires

Layer 2 to conceal the complexity of controlling the QD
spin state. Because the physical qubit Bloch vector con-
tinuously rotates around the Ẑ-axis, control pulses must
be accurately timed so that they perform the desired op-
eration. Furthermore, control of the QD spin is com-
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Operation Mechanism Duration Notes

Spin phase precession

(Ẑ-axis)

Magnetic field splitting of spin
energy levels

40 ps

Inhomogeneous nuclear environ-
ment causes spectral broadening
in Larmor frequency, which is the
source of T2

∗ processes.

Spin state rotation pulse
Stimulated Raman transition
with broadband optical pulse

14 ps
Red-detuned from spin ground
state-trion transitions.

Entangling operation
Nonlinear phase shift of spin
states via coupling to a
common cavity mode

32 ns
CW laser signal modulated by an
electro-optic modulator (EOM).

QND measurement
Dispersive phase-shift of light
reflected from planar cavity

1 ns
CW laser signal modulated by an
EOM.

TABLE I. Parameters for Layer 1 quantum operations. Spin phase precession is determined by the spin-state energy splitting
due to an external magnetic field. To implement a Hadamard gate, the broadband pulse time is 1/

√
8 of the Larmor period

(TLarmor). Times for entangling operation and QND measurement are estimated from simulation.

Measure
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Virtual 1-Qubit Gate
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Sequence
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Dynamical Decoupling
8H Decoupling 
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e.g.

SU(2) State Rotation
Arbitrary Spin Vector

Rotation

e.g.

FIG. 6. Color. The mechanics of the Virtual layer. The outputs of Layer 1 are combined in controlled sequences to produce
virtual qubits and gates. Arrows indicate how the output of one process is used by another process.

plicated by the inhomogeneous nuclear-spin environment
which causes the Ẑ-axis rotation to proceed at a some-
what uncertain angular frequency. This problem is miti-
gated by a dynamical decoupling (DD) sequence, so that
the system is decoupled from environmental noise and
brought into a precisely controlled reference frame at
a predictable time. Fig. 7a illustrates the “8H” decou-
pling sequence (so named because it uses eight Hadamard
pulses), which is appropriate for use in QuDOS. This
control sequence is designed both to decouple a qubit
from dephasing noise and to compensate for system-
atic pulse errors in the presence of a strong but slowly-
fluctuating drift term in the qubit Hamiltonian, which is
the case for optically-controlled quantum dots in a strong
magnetic field. Although longer sequences consisting of
more pulses may in theory decouple to higher fidelity, we
have chosen a sequence of just eight Hadamard pulses to

minimize execution time. Instead of using a more com-
mon sequence like Carr-Purcell (CP) [76, 77] or Uhrig
dynamical decoupling (UDD) [78], the sequence in Fig. 7
is custom-designed to eliminate to first-order the errors
which occur in both the free evolution and control of the
virtual qubit (CP and UDD cannot accomplish the lat-
ter). We note, however, that the 8H sequence does have
a structure similar to the CP sequence.

Fig. 8 shows the simulated effectiveness of 8H as com-
pared to CP and UDD. We have selected τ = 1 ns (from
Fig. 7a), so one iteration of the sequence requires 8 ns.
Because this sequence is specifically designed to account
for the errors particular to QuDOS, the performance ex-
ceeds that of the more common dynamical decoupling
schemes. Nonetheless, 8H may be very effective in other
quantum information systems where the physical qubit
states are separated in energy and the control pulses have
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τ 2τ + ½T
L

2τ + TL 2τ + ½T
L

τ
(a)

(b)

X X X X

FIG. 7. Color. A special dynamical decoupling sequence for QuDOS, known as 8H since it requires eight Hadamard pulses.
TL is the Larmor period determined by the external magnetic field (see Table I). (a) Timing specification for the 8H sequence,
where τ is an arbitrary time. Each of the pulse pairs enacts a π-rotation around the X-axis of the virtual qubit Bloch sphere,
as shown in Fig. 4. For 8H to work efficiently, τ ≪ T2. (b) Four 8H sequences in a row interleaved with arbitrary gates formed
from three Hadamard pulses (orange). The overall sequence forms a virtual gate by way of a BB1 compensation sequence.
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FIG. 8. Color. Simulation of the decoupling effectiveness of
the 8H sequence compared to CP and UDD (each using 4 X

gates) in the presence of dephasing noise and control errors.
Here, “pulse error” is a systematic, relative deviation in the
energy of every pulse. In all cases, two Hadamard pulses are
combined to produce an approximate X gate, as in Fig. 4.
The vertical axis is infidelity after evolution of the sequence
in Fig. 7a with τ = 1 ns; here infidelity is 1 − F = 1 − χII ,
where χII is the identity-to-identity matrix element in process
tomography for the decoupling gate sequence with random
noise. Since we aim to execute virtual gates with 1 − F <
10−3, laser pulse errors must be less than 1% in order for the
virtual qubit memory error rate to be adequately low.

a duration which is comparable to the free precession
(e.g. Larmor) period of the qubit Bloch vector.

B. Virtual gate

Virtual gates manipulate the state of the virtual qubit
by combining physical control operations in Layer 1 in
a manner which creates destructive interference of con-
trol errors. Quantum operations must be implemented
by physical hardware which is ultimately faulty to some
extent. Many errors are systematic, so that they are cor-
related in time, even if they are unknown to the quantum
computer designer. Virtual gates suppress systematic er-
rors as much as possible in order to satisfy the demands
of the error correction system in Layer 3.
Efficient schemes exist for eliminating systematic er-

rors. Compensation sequences can correct correlated er-
rors in the gate operations in Layer 1 [79, 80]. This sit-
uation arises often for errors due to imperfections in the
control operations, such as laser intensity fluctuations
or the coupling strength of a quantum dot electron to
an optical field (caused by fabrication imperfections). If
these errors are correlated on timescales longer than op-
erations in this architecture, a compensation sequence is
effective for generating a virtual gate with lower net er-
ror than each of the constituent gates in the sequence.
Many compensation sequences are quite general, so that
error reduction works without knowledge of the type or
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magnitude of error. Dynamically corrected gates are an
alternative scheme where one tunes the time-dependent
Hamiltonian of the control operations [81]. Beyond such
open-loop control techniques, it is also desirable to char-
acterize the accuracy of operations in the Virtual layer,
especially multi-qubit gates and entangled states. Sys-
tematically evaluating quantum operations is an impor-
tant component of a research program to develop quan-
tum computers and merits further investigation; how-
ever, it is beyond our present scope.
In QuDOS, the ultrafast pulses in Layer 1 would ideally

induce a state rotation in the spin basis (two-level sys-
tem), but inevitably the physical system will suffer from
some loss of fidelity by both systematic and random pro-
cesses. We attempt to cause destructive interference of
any systematic errors—both from the environment and
control pulses—by embedding a BB1 compensation se-
quence within a train of 8H dynamical decoupling se-
quences, as shown in Fig. 7b. This approach is moti-
vated by the properties of the physical qubit. The elec-
tron spin has a strong but slowly fluctuating drift term
in its Hamiltonian because of the magnetic field and the
nuclear spin environment. The 8H sequence brings the
qubit “into focus” (analogous to a “spin echo”) only at
prescribed instants, which are when the BB1 pulses are
applied. This approach is more accurate than a BB1 se-
quence without refocusing because of the time required to
implement rotations on the physical qubit Bloch sphere
using Hadamard pulses, for the same reasons that 8H is
more effective at decoupling than CP or UDD sequences,
as in Figure 8. The BB1 compensation sequence requires
four arbitrary gates [79]; hence the virtual gate with error
cancellation requires 32 ns.

C. Measurement of virtual qubits

Measurement is a crucial operation which must also be
applied to the virtual qubit in a manner consistent with
other control processes. For example, dynamical decou-
pling prevents measurement by isolating a qubit from en-
vironment interactions, so DD may have to be suspended
during readout. Since measurement plays a crucial role
in error correction, this mechanism should be made as
fast and efficient as possible, and a slow measurement
process may suffer loss of fidelity if the physical qubit
decoheres quickly without DD.
Even if the measurement process is much faster than

qubit decoherence, classical noise in the measurement
readout signal could be a concern. If the Physical layer
provides QND measurement, then the Virtual layer can
repeat the measurement of a virtual qubit multiple times
and overcome noise in readout circuitry by a majority
poll of discrete measurement outcomes. This is a sim-
ple yet robust way to suppress measurement errors. For
example, if the optical measurement pulse in QuDOS re-
quires 1 ns, then measurement could be repeated about
30 times in the same window of time as a virtual gate.

Another possibility is to couple a virtual qubit to one or
more ancilla qubits which facilitate measurement [82]. In
such a scheme, the measurement process at the Physical
layer could be destructive, but since only the ancilla is
destroyed, the back-action on the original qubit is QND
measurement, which can be repeated.
Measurement of the virtual qubit in QuDOS requires

that the DD sequence be halted, because the 8H sequence
interferes with readout. Since the measurement pulse is
in the Ẑ-basis, rotations around the Ẑ-axis from the mag-
netic environment do not affect the outcome. Neglecting
DD during measurement is acceptable because the longi-
tudinal (T1) relaxation time is very long compared with
the measurement pulse duration [83, 84].

IV. LAYER 3: QUANTUM ERROR
CORRECTION

Fault-tolerant quantum error correction (QEC) is es-
sential for large-scale quantum computing. In Sec-
tion VIB we analyze an implementation of Shor’s factor-
ing algorithm requiring an error-per-gate of order 10−15,
which is simply infeasible on faulty hardware, even using
Layer 2 techniques like dynamical decoupling. The ac-
tion of error correction on a quantum information system
is to pump entropy out in the form of an error syndrome;
in the process, new resources—logical qubits and gates—
are created. Whereas Layer 2 causes correlated errors to
cancel, Layer 3 isolates and removes arbitrary errors, so
long as the error rate is below a threshold [85]. If this con-
dition is met, QEC can in principle produce arbitrarily
low-error logical qubits and gates. Such complete error
suppression is necessary because quantum algorithms in
the Application layer assume logical qubits and gates are
error-free.
The field of quantum error correction has become too

broad to cover in its entirety [54, 86, 87]. Instead, we an-
alyze the case of stabilizer codes [88], and we specifically
consider the surface code [2, 89, 90] for QuDOS. We
select the surface code for its high threshold and two-
dimensional nearest-neighbor interaction geometry. This
section focuses on the aspects of quantum error correction
that are relevant for a quantum computer architecture,
such as determining the size of a code sufficient for a cer-
tain application, as well as how the errors are tracked
by Pauli frames in classical hardware. Fig. 9 shows the
surface code operations in Layer 3 for QuDOS.
Other error-correction schemes besides the surface

code could also be implemented in a layered architecture.
As examples, the C4/C6 code [91, 92] and Bacon-Shor
codes [32–34, 93] have also received significant attention
as viable schemes for fault-tolerant quantum computa-
tion. Because the layered architecture is modular, replac-
ing the surface code with another QEC scheme is possible
as long as the Virtual layer supports the necessary oper-
ations of the new code. In general, the QEC code chosen
is likely to impact many aspects of a quantum computing
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system, such as device geometry, connectivity, and sensi-
tivity to defective components, so that the structure and
behavior of the computer is defined in large part by the
selected code. For this reason, much attention should be
devoted to optimizing Layer 3 in any quantum computer
architecture.
One key message is worth emphasizing. The threshold

error rate of an error-correcting code is defined as the
error rate at which error correction begins to show a net
gain in protecting information. A functioning quantum
error correction system must operate below threshold,
and a practical system must operate well below thresh-
old. We show in this section that the resources required
for error correction become manageable when the hard-
ware error rate is about an order of magnitude below the
threshold of the chosen code.

A. Estimating the strength of error correction
needed

We consider how to estimate the degree of error correc-
tion required for a given application because this deter-
mines the necessary amount of resources in the computer.
Quantum error correction schemes generate protected
codespaces within a larger Hilbert space formed from
many qubits. The tradeoff for reducing logical errors
is that instead of requiring a single qubit, the quantum
computer now requires many virtual qubits to produce
a logical qubit. The number of virtual qubits required
for a single logical qubit is an important resource-usage
quantity, and it depends on the performance aspects of
the quantum computer:

• error per virtual gate (εV), which is an input to
Layer 3 from Layer 2,

• threshold error per virtual gate of the error-
correcting code (εthresh),

• distance (d) of the code,

• maximum error per logical gate (εL), which is
upper-bounded by the performance requirements of
the quantum algorithm in Layer 5.

To determine εL, the simplest approach, KQ product,
assumes the worst case. If the quantum algorithm has a
circuit with logical depth K acting on Q logical qubits,
then the maximum failure probability is given by

Pfail = 1− (1− εL)
KQ ≈ KQεL (1)

for small εL. Therefore, we demand that εL ≪ 1/KQ.
Given these quantities, the average error per logical gate
in a code operating well below threshold may be closely
approximated [54, 85, 86, 94–96] by

εL ≈ C1

(

C2
εV

εthresh

)⌊ d+1

2
⌋
, (2)

Parameter Symbol Value

Threshold error per virtual gate [96] εthresh 9×10−3

Error per virtual gate εV 1×10−3

Circuit depth (lattice refresh cycles) K 1.6×1011

Logical qubits (“Shor”, Section VIB) Q 72708

Error per lattice refresh cycle εL 2.6×10−20

Surface code distance d 31

Virtual qubits per logical qubit nV /nL 6240

TABLE II. Parameters determining the size of the surface
code in QuDOS for an implementation of Shor’s factoring
algorithm.

where C1 is a constant determined by the specific im-
plementation of the code, C2 ∼ 1, and, by assumption,
εV ≪ εthresh. The data in Ref. [96] suggests C1 ≈ 0.13
and C2 ≈ 0.61 for the surface code, which we now use as
an example. Given a known εV and code-specific quan-
tities {εthresh, C1, C2}, one can determine the necessary
distance d such that the probability of failure of an entire
quantum algorithm is sufficiently small. For comparison,
Aliferis presents similar analysis for concatenated codes
such as the Bacon-Shor code [97].

Equation (2) illustrates that the error per virtual gate
should be εV < 0.2εthresh; otherwise, the code distance,
and hence size of the quantum computer, will be imprac-
tically large. Table II provides an example of these cal-
culations for the QuDOS quantum computer. Error per
virtual gate (εV) is also assumed, and theK and Q values
are for Shor’s algorithm factoring a 1024-bit integer (see
Section VIB). We require that εL ≤ 10−2/KQ, so that
the logical error probability of the quantum algorithm is
less than 1%.

Determining the necessary strength of error correc-
tion also indicates how large the quantum computer is in
terms of qubits. We can estimate the number of virtual
qubits per logical qubit, or nV /nL, by considering the
minimum area needed for the two lattice defects, which
make up a logical qubit, separated by distance d in the
surface code [2]. For a typical set of parameters, as might
be required in a large-scale computing application such
as Shor’s factoring algorithm [98], 6240 virtual qubits are
needed to construct a logical qubit. This is a nontrivial
overhead, because quantum algorithms require a substan-
tial number of logical qubits, as we discuss in greater
detail in subsequent sections. For example, quantum
simulation algorithms may require ∼1000–10,000 logi-
cal qubits [99, 100] and integer factoring may require
100,000 logical qubits or more, depending on the meth-
ods of calculating arithmetic [101]; more detail on why so
many logical qubits are necessary is given in Section VB.
Combining the size of quantum computations with the
requirements of error correction means that large-scale
quantum computing architectures will require millions or
billions of virtual qubits (and hence physical qubits).
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FIG. 9. Color. Process translation in Layer 3 in QuDOS. A surface code is constructed with virtual qubits and gates, ultimately
yielding logical qubits and operations. The arrows in yellow along the bottom are outputs of Layer 2, whereas the green arrows
at the top are the outputs of Layer 3. Small dashed arrows indicate that the output of one process is used by another process.

B. Pauli frames

A Pauli frame [91, 102] is a simple and efficient classi-
cal computing technique to track the result of applying a
series of Pauli gates (X, Y, or Z) to single qubits. The
Gottesman-Knill Theorem implies that tracking Pauli
gates can be done efficiently on a classical computer [103].
Many quantum error correction codes, such as the sur-
face code, project the encoded state into a perturbed
codeword with erroneous single-qubit Pauli gates applied
(relative to states within the codespace). The syndrome
reveals what these Pauli errors are, up to undetectable
stabilizers and logical operators, and error correction is
achieved by applying those same Pauli gates to the ap-
propriate qubits (since Pauli gates are Hermitian and
unitary). However, quantum gates are faulty, and ap-
plying additional gates may introduce more errors into
our system.

Rather than applying every correction operation, one
can keep track of what Pauli correction operation would

be applied, and continue with the computation. This is
possible because the operations needed for error correc-
tion are in the Clifford group. When a measurement in a
Pauli X, Y, or Z basis is finally made on a qubit, the result
is modified based on the corresponding Pauli gate which
should have been applied earlier, as in Fig. 10. This
stored Pauli gate is called the Pauli frame [91, 102], since
instead of applying a Pauli gate, the quantum computer
changes the reference frame for the qubit, which can be
understood by remapping the axes on the Bloch sphere,
rather than moving the Bloch vector.

The Pauli frame is maintained as follows. Denote the
Pauli frame at time t as Ft:

Ft =
⊗

j

Pt(j), (3)

where Pt(j) = {I, X, Y, Z} is an element from the Pauli
group corresponding to qubit j at time t. Any Pauli
gate in the quantum circuit is multiplied into the Pauli
frame and is not implemented in hardware, so Ft+1 =
(

⊗

j U{I,X,Y,Z}
)

Ft for all Pauli gates U{I,X,Y,Z} in the cir-

cuit at time t. Other gates UC in the Clifford group are

implemented, but they will transform the Pauli frame by

Ft+1 = UCFtU
†
C. (4)

The quantum computer operations proceed normally,
with the only change being how the final measurement
of that qubit is interpreted. The set of Clifford gates is
sufficient for Layer 3, though the next section describes
another Pauli frame for non-Clifford logical operations.
We emphasize that the Pauli frame is a classical object

stored in the digital circuitry that handles error correc-
tion. Pauli frames are nonetheless very important to the
functioning of a surface code quantum computer. Layer 3
uses a Pauli frame with an entry for each virtual qubit
in the error-correcting code. As errors occur, the syn-
drome processing step identifies a most-likely pattern of
Pauli errors. Instead of applying the recovery step di-
rectly, the Pauli frame is updated in classical memory.
The Pauli gates form a closed group under multiplication
(and global phase of the quantum state is unimportant),
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FIG. 10. Color. Example of a Pauli frame evolving over time
with entries corresponding to virtual qubits forming a surface
code. Each horizontal slice is the Pauli frame at that time.
For example, if the qubit in the top-front-corner position is
measured in the X basis, the interpreted result is the negation
of the observed outcome, because the Pauli frame Z anticom-
mutes with this measurement basis.

so the Pauli frame only tracks one of four values (X, Y, Z,
or I) for each virtual qubit in the lattice.

V. LAYER 4: LOGICAL

The Logical layer takes the fault-tolerant resources
from Layer 3 and creates a logical substrate for univer-
sal quantum computing. This task requires additional
processing of error-corrected gates and qubits to produce
any arbitrary gate required in the Application layer, as
shown in Fig. 11. Quantum error correction provides only
a limited set of gates — to see why, consider that no fi-
nite number of syndrome bits can distinguish arbitrarily
small rotation gate errors. A common set of gates pro-
vided by QEC is the Clifford group; although circuits
from this set can be simulated efficiently on a classi-
cal computer by the Gottesman-Knill Theorem [54], the
Clifford group forms the backbone of quantum circuits.
Still, some QEC schemes, such as the surface code, do
not provide the full Clifford group without some sort of
ancilla. We identify the set of fault-tolerant gates gener-
ated by Layer 3 without the use of ancillas as the fun-

damental gates. The Logical layer then constructs arbi-
trary gates from circuits of fundamental gates and ancil-
las injected into the error-correcting code. For example,
surface code architectures inject and purify the ancillas
|Y 〉 = 1√

2
(|0〉+ i |1〉) and |A〉 = 1√

2

(

|0〉+ eiπ/4 |1〉
)

; then

the surface code consumes these ancillas in quantum cir-
cuits to produce S = ei(π/4)σZ and T = ei(π/8)σZ gates,
respectively [2, 54]. This section discusses the important
functions of the Logical layer: implementing logical Pauli
frames; distilling ancilla states like |Y 〉 and |A〉; imple-
menting the full Clifford group in the surface code with-
out measurement; and approximating arbitrary quantum
gates for the Application layer.

Gate Implementation
Execution Time
(Lattice Steps)

X, Y, Z Pauli frame Instantaneous
CNOT Defect braiding 13⌈d/4⌉
H (Hadamard) Shift lattice 13⌈d/8⌉
MX, MZ
(Measurement)

Measure stabilizers 1

TABLE III. Fundamental gates in QuDOS using surface code
QEC (Ref. [2]). The execution time here is one possible imple-
mentation, but in many cases the surface code computation
can be deformed into other topologically equivalent circuits
which yield faster execution at the expense of more spatial
resources, or vice versa.

A. Fundamental gates and logical Pauli frame

Fundamental gates are provided natively by the error-
correcting code in Layer 3. For example, Table III shows
the fundamental gates used in QuDOS. In practice, Pauli
gates are implemented with a logical Pauli frame, which
is qualitatively the same as the Pauli frame in Layer 3
for virtual qubits (Section IVB). However, in Layer 4 we
may also need to apply gates UNC outside the Clifford
group. The gate we actually implement, U ′

NC, results
from a Pauli frame transform:

U ′
NC = FtUNCF

†
t . (5)

Note the distinction between this expression and Eq.(4),
where the Pauli frame is changed by a Clifford gate.
The fundamental gate set in Table III is particular to

the surface code, and it is not the full Clifford group
because it is missing the phase gate S; Section VC illus-
trates a method to construct S using an ancilla, without
measurement, which is efficient since it uses a small num-
ber of fundamental gates and the ancilla can be re-used.
The remaining logical gates to produce a universal set
in the surface code will require ancilla states which are
injected and distilled [2].

B. Magic state distillation

The conventional method for making a universal set of
quantum gates in a fault-tolerant manner is to produce
a certain ancilla state and use it in a quantum circuit
equivalent to the desired logical gate [44, 54, 97]. In some
cases these circuits require measurement that consumes
the ancilla, so that the number of ancilla states required
is proportional to the number of gates in the quantum
algorithm. For example, the algorithms discussed in Sec-
tion VI require around 1012 or more ancilla states, which
are typically manufactured on an as-needed basis.
To complicate matters, ancillas must be produced by

methods that are not fault-tolerant, such as initializing a
virtual qubit and applying the appropriate virtual gate.
This ancilla state can then be injected into a QEC code in
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FIG. 11. Color. Organization of processes in the Logical layer. Logical qubits from Layer 3 are unaltered, but faulty singular
states are distilled into high-fidelity states |Y 〉 = 1√

2
(|0〉+ i |1〉) and |A〉 = 1√

2

(

|0〉+ ei
π

4 |1〉
)

. The distilled states are used to

create arbitrary gates with specialized quantum circuits [39, 104–106].

Layer 3 [2], but it carries with it the errors in its produc-
tion. Fortunately, a few “magic states” can be distilled by
using several low-fidelity ancillas and fundamental gates
to produce one high-fidelity ancilla. Once the ancilla fi-
delity is higher than the necessary logical gate fidelity,
we may construct arbitrary fault-tolerant logical gates.
We examine here the resource costs for this process; each
distillation is expensive, and very many ancillas must be
distilled. We characterize the performance of the magic
state distillation because it will probably dominate the
resource costs of any quantum computer that uses it.
Accordingly, this is an important area for future opti-
mizations.

We focus first on distilling the ancilla state |A〉 =
1√
2

(

|0〉+ ei
π

4 |1〉
)

, which is used to construct the T or π/8

phase gate [2, 90, 107]. In the next section, Fig. 14 pro-
vides an illustration of why this process is important by
showing the fault-tolerant construction of a Toffoli gate
in Layer 5 using resources in Layer 4; specifically, ancilla
distillation circuits constitute over 90% of the computing
effort for a single Toffoli gate. As a result, the analy-
sis in Appendix B 1 contends that these distillation cir-
cuits account for the majority of resources in a surface
code quantum computer executing Shor’s algorithm. In
particular, for every qubit used by the algorithm, ap-
proximately 10 qubits are working in the background to
generate the necessary distilled ancillas. The ancilla dis-
tillation circuit in Fig. 14 shows one level of |A〉 distil-
lation, but a lengthy program like Shor’s will typically
require two levels (one concatenated on another). More-
over, since perhaps trillions of distilled |A〉 ancillas will

Parameter Symbol Value

Circuit depth - 6 clock cycles

Circuit area Adistill 12 logical qubits

Circuit volume V
(
∣

∣A(1)
〉)

72 qubits×cycles

Factory rate (level n) Rfactory

(
∣

∣A(n)
〉) Afactory/V

(
∣

∣A(n)
〉)

ancillas/cycle

TABLE IV. Resource analysis for a distillation factory. These
factories are crucial to quantum computers which require an-
cillas for universal gates. Magic state distillation uses Clifford
gates and measurement, so the circuit can be deformed to re-
duce depth and increase area, or vice versa, while keeping
volume approximately constant.

be needed for the algorithm, we create a “distillation fac-
tory” [9, 43], which is a dedicated region of the computer
that continually produces these states as fast as possible.
Speed is important, because ancilla distillation can be
the rate-limiting step in quantum circuits [10].

Each |A〉 distillation circuit will require 15 lower-level
|A〉 states, but they are not all used at the same time.
For simplicity we will use a clock cycle for each gate
equal to the time to implement a logical CNOT (see Sec-
tion VII for more on this point), so that with initializa-
tion and measurement, the distillation circuit requires
6 cycles. By only using |A〉 ancillas when they are
needed, the circuit can be compacted to require at most
12 logical qubits at a given instant. We characterize
the computing effort by a “circuit volume,” which is the
product of logical memory space (i.e. area of the com-
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FIG. 12. Circuit decomposition for a logical S gate which
uses an ancilla |Y 〉, but does not consume it. The inverse
operation S

† can be created by running this circuit in reverse.

puter) and time. The circuit volume of |A〉 distillation is
V
(
∣

∣A(1)
〉)

= (12logical qubits) × (6 clock cycles) = 72.
A two-level distillation will require 16 distillation circuits,
or a circuit volume of V

(
∣

∣A(2)
〉)

= 1152. An efficient
distillation factory with area Afactory will produce on av-

erage Afactory/V
(∣

∣A(2)
〉)

distilled ancillas per clock cy-
cle. Analysis of this problem in the context of Shor’s
algorithm is given in Appendix B 1, and Table IV lists a
summary of these results.

C. Logical phase gate without measurement

The S gate, or phase gate, is the final component of
the Clifford group absent from the fundamental set of
fault-tolerant gates in Section VA. Previous implemen-
tations of the surface code presented a method for cre-
ating this gate by consuming a distilled |Y 〉 state in a
projective measurement-based circuit [2, 90]. However,
this approach forces the quantum computer to distill a
high-fidelity |Y 〉 ancilla for each S gate, which can be
very costly in both fundamental gates and qubits.
We consider an alternative method that uses the |Y 〉

ancilla without consuming it to make the S gate, which
was originally presented in Ref. [97]. The circuit uses
only four fundamental gates and, unlike the previous
technique, is deterministic because measurement is not
needed. Since |Y 〉 ancillas are not consumed, one can
distill a handful of such states when a quantum com-
puter is turned on, then preserve them for later use. The
circuit in Fig. 12 is equivalent to a simple S gate on the
control qubit. This is because |Y 〉 is the +i eigenstate
of the operator iY , and so the controlled-iY gate will
impart a phase +i only if the control qubit is in the
state |1〉, which is identical to the S gate. Note also
that S† can be created by running the circuit in Fig. 12
backwards. This technique allows one to implement the
entire Clifford group without measurement in the sur-
face code. Moreover, since S gates are used frequently
in quantum algorithms, this improved gate construction
substantially reduces the complexity of a quantum com-
puter since fewer of the resource-intensive state distilla-
tions are necessary.

D. Approximating arbitrary logical gates

The primary function of the Logical layer is to decom-
pose arbitrary unitary gates from the quantum algorithm

Application

Qubits

Re-Used

Ancilla

Qubits

Consumed

Ancilla

Qubits

U

F
t

Update Pauli frame

FIG. 13. Color. Constructing an arbitrary gate in the Log-
ical layer. Application qubits are visible to the quantum al-
gorithm, while logical ancilla qubits facilitate universal quan-
tum computation. Some ancillas are re-used, such as |Y 〉 for
S gates, while other ancillas are consumed, such as |A〉 for T
gates. Often when an ancilla is consumed in a circuit that
uses measurement, the circuit is probabilistic, and the Pauli
frame is updated conditional on the measurement result.

into circuits containing fundamental gates available from
the QEC layer. The circuits in the Logical layer act on
application qubits (used explicitly by the quantum algo-
rithm) and ancilla logical qubits which facilitate univer-
sal quantum computation, as shown in Fig. 13. Since
arbitrary quantum gates are not available directly, they
must be approximated in some fashion, where the to-
tal resources required is a function of the approximation
accuracy. We cover briefly some of the methods which
can be employed to produce such arbitrary gates; a more
comprehensive survey of techniques is given in Ref. [106].
When constructing approximations to a unitary op-

eration in the Logical layer, one seeks to implement a
quantum circuit that approximates the desired unitary
with a minimal overhead in terms of gates and ancillas
produced by Layer 3. We denote approximation accuracy
as

εapprox =

√

d− |tr(U †Uapprox)|

d
, (6)

where Uapprox is the fault-tolerant quantum circuit that
approximates the desired unitary U , and d is the dimen-
sionality of these operators [105]. Several techniques ex-
ist for approximating arbitrary single-qubit gates, which
can be generalized to arbitrary multi-qubit gates:

• Gate approximation sequences, such as those pro-
duced by the Solovay-Kitaev algorithm [54, 104]
or Fowler’s algorithm [105], generate a sequence
of gates from the fault-tolerant set (e.g. the set
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{X,Y,Z,H,S,T}) that approximates the desired uni-
tary U . The depth of these sequences scales as
O(logc(εapprox)) with c ≈ 4 for Solovay-Kitaev se-
quences and O(log(εapprox)) for Fowler sequences.

• Phase kickback uses a special ancilla register and a
quantum adder to produce fault-tolerant phase ro-
tations [39, 108, 109]. The depth of phase kickback
circuits is O(log(εapprox)) or O(log log(εapprox)) de-
pending on the quantum adder [110–112]. The
ancilla register, which is not consumed and can
be reused, has size m qubits to approximate a
phase rotation to precision π

2m radians, which is
also O(log(εapprox)).

• “Teleportation gates” [29] can yield very fast quan-
tum circuits, but typically a special purpose ancilla
required for each such gate must be computed in
advance, which demands a larger and more com-
plex quantum computer; teleportation gates that
increase performance in large-scale quantum com-
puting are used extensively in the architecture of
Ref. [10] and in the simulation algorithms analyzed
in Ref. [106].

Choosing among these methods depends on the capabili-
ties of the quantum architecture, such as available logical
qubits for parallel computation, and on the desired per-
formance characteristics of the computer.

VI. LAYER 5: APPLICATION

The Application layer is where quantum algorithms are
executed. The efforts of Layers 1 through 4 have pro-
duced a computing substrate that supplies any arbitrary
gate needed. The Application layer is therefore not con-
cerned with the implementation details of the quantum
computer—it is an ideal quantum programming environ-
ment. We do not introduce any new algorithmic methods
here, but rather we are interested in how to accurately
estimate the quantum computing resources required for
a target application. This analysis can indicate the feasi-
bility of a proposed quantum computer design, which is a
worthwhile consideration when evaluating the long-term
prospects of a quantum computing research program.

A quantum engineer could start here in Layer 5 with
a specific application in mind and work down the layers
to determine the system design necessary to achieve de-
sired functionality. We take this approach for QuDOS by
examining two interesting quantum algorithms: Shor’s
factoring algorithm and simulation of quantum chem-
istry. A rigorous system design is beyond the scope of the
present work, but we consider the computing resources
required for each application in sufficient detail that one
may gauge the engineering effort necessary to design a
quantum computer based on QuDOS technology.

A. Elements of the Application Layer

The Application layer is composed of application

qubits and gates that act on the qubits. Application
qubits are logical qubits used explicitly by a quantum
algorithm (see Fig. 13); as discussed in Section V, many
logical qubits are also used to distill ancilla states nec-
essary to produce a universal set of gates, but these dis-
tillation logical qubits are not visible to the algorithm
in Layer 5. When an analysis of a quantum algorithm
quotes a number of qubits without reference to fault-
tolerant error correction, often this means the number of
application qubits [99, 113–115]. Similarly, Application-
layer gates are equivalent in most respects to logical
gates; the distinction is made according to what resources
are visible to the algorithm or deliberately hidden in the
machinery of the Logical layer, which affords some dis-
cretion to the computer designer.
A quantum algorithm could request any arbitrary gate

in Layer 5, but not all quantum gates are equal in terms
of resource costs. We saw in Section VB that distill-
ing |A〉 ancillas, which are needed for T gates, is a very
expensive process. For example, Fig. 14 shows how Lay-
ers 4 and 5 coordinate to produce an Application-layer
Toffoli gate, illustrating the extent to which ancilla dis-
tillation consumes resources in the computer. When an-
cilla preparation is included, T gates can account for over
90% of the circuit complexity in a fault-tolerant quan-
tum algorithm (cf. Ref. [10] as well). For this reason,
we count resources for applications in terms of Toffoli
gates. This is a natural choice, because the level of an-
cilla distillation, number of virtual qubits, etc. depend
on the choice of hardware, error correction, and many
other design-specific parameters; by comparison, number
of Toffoli gates is machine-independent since this quan-
tity depends only on the algorithm (much like the number
of application qubits mentioned above). To determine
error correction or hardware resources for a given algo-
rithm, one can take the Layer 5 resource estimates and
work down through Layers 4 to 1, which is an example
of modularity in this architecture framework. Using the
analysis in the preceding sections, an Application-layer
Toffoli gate in QuDOS has an execution time of 930 µs
(31 logical gate cycles including the S gate circuits, dis-
cussed in Section VII).

B. Shor’s algorithm

Perhaps the most well-known application of quantum
computers is Shor’s algorithm, which decomposes an inte-
ger into its prime factors [98]. Solving the factoring prob-
lem efficiently would compromise the RSA cryptosys-
tem [116]. Because of the prominence of Shor’s algo-
rithm in the field of large-scale, fault-tolerant quantum
computing, we analyze the resources required to factor a
number of size typical for RSA.
A common key length for RSA public-key cryptogra-
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FIG. 14. Color. A Toffoli gate (|x, y, z〉 → |x, y, z ⊕ xy〉) at the Application layer is constructed with assistance from the Logical
layer, using the decomposition in Ref. [54]. There are only three application qubits, but substantially more logical qubits are

needed for distillation circuits in Layer 4. The |A(2)〉 ancillas are the result of two levels of distillation (|A(0)〉 is an injected
state) on the ancilla required for T gates. Note that each time an ancilla is used with measurement, the Pauli frame may need
to be updated. The ancilla-based circuit for S gates (see Fig. 12) is not shown here, for clarity.

phy is 1024 bits. Factoring a number this large is not
trivial, even on a quantum computer, as the following
analysis shows. Fig. 15 shows the expected run time on
QuDOS for one iteration of Shor’s algorithm versus key
length in bits for two different quantum computers: one
where system size increases with the problem size, and
one where the system size is limited to 105 logical qubits
(including application qubits). For the fixed-size quan-
tum computer, the runtime begins to grow faster than
the minimal circuit depth when factoring numbers 2048
bits and higher. Fixing the machine size highlights the
importance of the ancilla distillation factories. For this
instance of Shor’s algorithm, about 90% of the machine
should be devoted to distillation; if insufficient resources
are devoted to distillation, performance of the factoring
algorithm plummets. For example, the 4096-bit factor-
ization devotes ∼ 75% of the machine to distillation, but
about 3× as many factories would be needed to achieve
maximum execution speed in the lower trace in Fig. 15.
Many design parameters in an implementation of Shor’s
algorithm can be tuned as desired, and we collect the
details of our analysis in Appendix B 1. We should also
mention here that Shor’s algorithm is probabilistic, so a
few iterations may be required [98].

C. Quantum simulation

Quantum computers were inspired by the problem that
simulating quantum systems on a classical computer is
fundamentally difficult. Feynman postulated that one
quantum system could simulate another much more ef-
ficiently than a classical processor, and he proposed a
quantum processor to perform this task [117]. Quantum
simulation is one of the few known quantum algorithms
that solves a useful problem believed to be intractable on
classical computers, so we analyze the resource require-
ments for quantum simulation in the quantum architec-
ture we propose.

We specifically consider fault-tolerant quantum sim-
ulation. Other methods of simulation are under in-
vestigation [118–120], but they lie outside the scope of
this work. The particular example we select is sim-
ulating the Schrödinger equation for time-independent
Hamiltonians in first-quantized form, where each Hamil-
tonian represents the electron/nuclear configuration in
a molecule [100, 121]. An application of such a simu-
lation is to determine ground- and excited-state energy
levels in a molecule. We select first-quantized instead of
second-quantized form for better resource scaling at large
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FIG. 15. Color. Execution time for Shor’s algorithm, using
the same circuit implementation as Ref. [43]. The vertical axis
shows circuit depth, in terms of Toffoli gates, and the plot is
labeled with estimated runtime on the QuDOS architecture.
The blue trace is a quantum computer whose size in logical
qubits scales as necessary to compute at the speed of data
(no delays). The green trace is a machine with 105 logical
qubits, which experiences rapidly increasing delays as problem
size increases beyond 2048 bits since insufficient resources are
available to distill ancillas for T gates, a necessary component
of Shor’s algorithm. The inset shows the same data on a
linear vertical scale, illustrating when the quantum computer
experiences delays for lack of enough qubits.

problem sizes [122].
Fig. 16 shows the time necessary to execute the sim-

ulation algorithm for determining an energy eigenstate
on the QuDOS computer as a function of the size of
the simulation problem, expressed in number of electrons
and nuclei. First-quantized form stores the position-basis
information for an electron wavefunction in a quantum
register, and the complete Hamiltonian is a function of
one- and two-body interactions between these registers,
so this method does not depend on the particular molec-
ular structure or arrangement; hence, the method is very
general. Note that the calculation time scales linearly
in problem size, as opposed to the exponential scaling
seen in classical methods. The precision of the simulation
scales with the number of time steps simulated [99], and
this example uses 210 time steps for a maximum precision
of about 3 significant figures. Details of this simulation
algorithm can be found in Appendix B 2.

D. Large-scale quantum computing

The factoring algorithm and quantum simulation rep-
resent interesting applications of large-scale quantum
computing, and for each the computing resources re-
quired of a layered architecture based on QuDOS are
listed in Table V. The algorithms are comparable in to-
tal resource costs, as reflected by the fact that these two
example problems require similar degrees of error correc-
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FIG. 16. Color. Execution time for simulation of a molecular
Hamiltonian in first-quantized form, as a function of prob-
lem size. The horizontal axis is number of particles being
simulated, and the plot is labeled with some interesting ex-
amples from chemistry. The vertical axis is circuit depth in
Toffoli gates, and the plot is labeled with estimated runtime
on QuDOS. Each simulation uses 12-bit spatial precision in
the wavefunction and 210 time steps for 10-bit precision in
readout, or at most ∼ 3 significant figures. The linear scaling
in algorithm runtime versus problem size is due to two-body
potential energy calculations, which constitute the majority of
the quantum circuit. The number of potential energy calcula-
tions increases quadratically with problem size, but through
parallel computation they require linear execution time, as
described in Appendix B 2.

tion (hence very similar KQ product). The simulation
algorithm is more compact than Shor’s, requiring in par-
ticular fewer logical qubits for distillation, which reflects
the fact that this algorithm performs fewer arithmetic
operations in parallel. However, Shor’s algorithm has a
shorter execution time in this analysis. Both algorithms
can be accelerated through parallelism if the quantum
computer has more logical qubits to work with [101, 106].

VII. TIMING CONSIDERATIONS

Precise timing and sequencing of operations are crucial
to making an architecture efficient. In the framework we
present here, an upper layer in the architecture depends
on processes in the layer beneath, so that logical gate
time is dictated by QEC operations, and so forth. This
system of dependence of operation times is depicted for
QuDOS in Fig. 17. The horizontal axis is a logarithmic
scale in the time to execute an operation at a particular
layer, while the arrows indicate fundamental dependence
of one operation on other operations in lower layers.
Examining Fig. 17, we see that the timescales increase

as one goes to higher layers. This is because a higher
layer must often issue multiple commands to layers be-
low. Using QuDOS as an example, the Virtual layer must
construct a virtual 1-qubit gate from a sequence of spin-
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FIG. 17. Color. Relative timescales for critical operations in QuDOS within each layer. Each bar indicates the approximate
timescale of an operation, and the width indicates that some operation times may vary with improvements in technology. The
arrows indicate dependence of higher operations on lower layers. The red arrow signifies that the surface code lattice refresh
must be 2–3 orders of magnitude faster than the dephasing time in order for error correction to function. The Application layer is
represented here with a Toffoli gate, which is a common building block of quantum algorithms. Complete algorithm runtimes can
vary significantly, depending on both the capabilities of the quantum computer and the specific way each algorithm is compiled,
such as to what extent calculations are performed in parallel. The optical control hardware is discussed in Appendix A.

state rotations. This process includes the duration of the
laser pulses and the delays between pulses, which all add
together for the total duration of the virtual gate. A
crucial point shown in Fig. 17 is that the time to imple-
ment a logical quantum gate can be orders of magnitude
greater than the duration of each individual physical pro-
cess, such as a laser pulse. This increase in operation time
is an important consideration for quantum computer de-
signs which rely on comparatively slower physical pro-
cesses. At the same time, a quantum computer with a
subset of very fast control mechanisms is limited by the
slowest essential gate process, as QuDOS can only op-
erate as fast as the 2-qubit entangling gate in Layer 1
permits. For large-scale quantum computing, the speed
of logical, error-corrected operations is the crucial figure
of merit.

Fig. 17 also highlights the fact that different control
operations in the computer occur on substantially differ-
ent timescales; achieving synchronization of these pro-
cesses is an important function for a quantum computer

architecture. To facilitate this process, each layer in the
architecture has an internal “clock frequency,” which is
characteristic of the timescale of operations in that layer.
These clock cycle times for each layer in QuDOS are listed
in Table VI, along with the operations which define them.
Even within the same layer, some processes may take dif-
ferent lengths of time to execute, so setting a clock cycle
synchronizes these operations. Accordingly, as one layer
builds on operations in a lower layer, the two layers are
naturally synchronized.

Synchronization alone is not sufficient for a quantum
computer to function. Consider again the control cy-
cle in Fig. 2. Extracting and processing the error syn-
drome must be executed on timescales of the same or-
der as the duration of a logical gate, or else errors will
accumulate faster than they can be detected. This func-
tion is performed by classical circuitry, but the required
computing effort may not be trivial. Fast quantum op-
erations can be a burden when error correction requires
complex (classical) calculations, as is the case for the sur-
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Computing Resource
Shor’s
Algorithm
(1024-bit)

Molecular
Simulation
(alanine)

Layer 5 Application qubits 6144 6650

Circuit depth (Toffoli) 1.68×108 1.27×109

Layer 4 Log. distillation qubits 66564 15860

Logical clock cycles 5.21×109 3.94×1010

Layer 3 Code distance 31 31

Error per lattice cycle 2.58×10−20 2.58×10−20

Layer 2 Virtual qubits 4.54×108 1.40×108

Error per virtual gate 1.00×10−3 1.00×10−3

Layer 1 Quantum dots
(area on chip)

4.54×108

(4.54 cm2)
1.40×108

(1.40 cm2)

Execution time (est.) 1.81 days 13.7 days

TABLE V. Summary of the computing resources in a lay-
ered architecture based on the QuDOS platform, for Shor’s
algorithm factoring a 1024-bit number (same implementation
as Ref. [43]) and the ground state simulation of the molecule
alanine (C3H7NO2) using first-quantized representation. Fur-
ther details about the algorithms are provided in Appendix B.

Layer Clock Cycle Limiting Operation
(1) Physical 8 ns Laser repetition frequency
(2) Virtual 32 ns Virtual 1-qubit gate

(3) QEC 256 ns
Lattice refresh
(syndrome circuit)

(4) Logical 30 µs Logical CNOT

TABLE VI. Clock cycle times for Layers 1 to 4 in our analysis
of QuDOS. The cycle time in each layer is determined by
a fundamental control operation. Many operations possess
some flexibility that would permit tradeoffs in execution time
and system size, and better methods may be discovered.

face code. Devitt et al. [37] and Fowler et al. [96, 123]
examined this problem, finding that the processing re-
quirements for surface code error correction are not triv-
ial; performing these calculations “live” where the re-
sults may be needed within e.g. 10 µs could be one of
the more important problems for engineering a quantum
computer. Still, the recent progress in this area suggests
that some combination of improved algorithm software
and custom hardware can achieve the necessary perfor-
mance [123].

VIII. DISCUSSION

We have presented a layered framework for a quantum
computer architecture. The layered framework has two
major strengths: it is modular, and it facilitates fault tol-
erance. The layered nature of the architecture hints at
modularity, but the defining characteristic of the layers
we have chosen is encapsulation. Each of the layers has
a unique and important purpose, and that layer bundles
the related operations to fulfill this purpose. Addition-
ally, each layer plays the role of resource manager, since

often many operations in a lower layer are combined in
a higher layer. Since technologies in quantum comput-
ing will evolve over time, layers may need replacement in
the future, and encapsulation makes integration of new
processes a more straightforward task.

Fault tolerance is at present the biggest challenge for
quantum computers, and the organization of layers is de-
liberately chosen to serve this need. Arguably, Layers 1
and 5 define any quantum computer, but the layers in
between are devoted exclusively to creating fault toler-
ance in an intelligent fashion. Layer 2 uses simple control
to mitigate systematic errors, so this layer is positioned
close to the Physical layer where techniques like dynam-
ical decoupling and decoherence-free subspaces are most
effective. Layer 3 hosts quantum error correction (QEC),
which is essential for large-scale circuit-model quantum
computing on any hardware, such as executing Shor’s al-
gorithm on a 1024-bit number. There is a significant in-
terplay between Layers 2 and 3, because Layer 2 enhances
the effectiveness of Layer 3. Finally, Layer 4 fills the gaps
in the gate set provided by Layer 3 to form any desired
unitary operation to arbitrary accuracy, thereby provid-
ing a complete substrate for universal quantum compu-
tation in Layer 5.

QuDOS, a specific hardware platform we introduce
here, demonstrates the power of the layered architecture
concept, but it also highlights a promising set of technolo-
gies for quantum computing, which are particularly note-
worthy for the fast timescales of quantum operations, the
high degree of integration possible with solid state fabri-
cation, and the adoption of several mature technologies
from other fields of engineering. The execution times for
fundamental quantum operations are discussed in Sec-
tion IIG, but the importance of these fast processes be-
comes clear in Fig. 17, where the overhead resulting from
virtual gates in Layer 2, QEC in Layer 3, and gate con-
structions in Layer 4 increases the time to implement
quantum gates from nanoseconds in the Physical layer
to milliseconds in the Application layer, or six orders of
magnitude. In this context, a quantum computer needs
very fast physical operations.

One of our principal objectives is to better understand
the resources required to construct a quantum computer
that solves a problem intractable for classical comput-
ers. Common figures of merit for evaluating quantum
computing technology are gate fidelity, operation time,
and qubit coherence time. This investigation goes fur-
ther to show how connectivity and classical control per-
formance are also crucial. Designing a quantum com-
puter requires viewing the system as a whole, such that
tradeoffs and compatibility between component choices
must be addressed. A holistic picture is equally impor-
tant for comparing different quantum computing tech-
nologies, such as ion traps or superconducting circuits.
This work illustrates how to approach the complete chal-
lenge of designing a quantum computer, so that one can
adapt these techniques to develop architectures for other
quantum computing technologies we have not considered
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here. By doing so, differing system proposals can be com-
pared within a common framework, which gives aspiring
quantum engineers a common language for determining
the best quantum computing technology for a desired ap-
plication.
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Appendix A: Parallel Control of Laser Pulses in
QuDOS

The QuDOS design depends on applying millions (or
billions) of laser control pulses in parallel. For complete-
ness, we outline here a method for achieving this level of
control, but a detailed analysis of the engineering prob-
lem lies outside the scope of this work. Imagine that the
2D array of quantum dots in a cavity is an image plane,
like a projector screen. The challenge is to create a pre-
cisely controlled optical pattern on this screen. We need
two key elements for this scheme to work: the ability to
modulate laser pulses to each point on the screen (i.e.
quantum dot), and the ability to focus laser signals near
the diffraction limit. Similar concepts were presented in
Ref. [5]
To solve the first problem, we propose to use an ar-

ray of MEMS mirrors. This technology was developed
for high-definition projectors and optical switches for
telecommunications [124, 125], but the same devices are
being adapted for use in quantum information process-
ing [126, 127]. Since MEMS mirrors are based on the
same fabrication techniques as integrated circuits, a con-
trollable mirror array with millions of units has been
demonstrated commercially [124], and even larger arrays
may be possible.
The 2-qubit gate mechanism in Section IID requires

the quantum dots to be in relatively close proximity
(1 µm), which is close to the wavelength of the laser
light (920 nm). Therefore, any optical patterns will have
to compete with diffraction. This is a familiar problem in
photolithography, so we propose to adopt the method of
phase-shift masking [128, 129] from this field. In essence,
a “mask” is defined by a transparent plate patterned in
such a way that light passing through the mask receives a

phase shift that is a function of position within the image
plane. This technique creates interference of light coming
from different directions in such a manner that one can
produce diffraction-limited patterns on the quantum dot
array.
The MEMS mirrors and phase-shift masks work to-

gether as follows. Operations on the surface code follow a
highly regular pattern of virtual gates; more specifically,
the surface code can be constructed by building a cluster
state and performing measurement on selected virtual
qubits to create defects in the lattice [90]. The clus-
ter state operations are decomposed into a sequence of
laser pulses, which are in turn created by appropriately-
designed phase-shift masks. Separately, a pattern of mea-
surement pulses for each virtual qubit are modulated by a
MEMS array. All of these optical signals are multiplexed
together and sent to the quantum dot array, which is
depicted in Fig. 18.
The configuration of defects in the surface code

changes more slowly than one cycle of the syndrome ex-
traction circuit. Because the defect boundaries must all
be separated by the code distance d, the pattern of de-
fects can be rearranged every d/4 lattice steps. There-
fore, the MEMS mirrors, which control where measure-
ments are made, can be rearranged every 2 µs in QuDOS,
which is compatible with current technology [130]. Still,
one has to account for the time required to reposition a
set of mirrors. Two sets of mirrors are used in an alter-
nating sequence: one is repositioning while the other is
actively used, as shown in the top of Fig. 18. Electro-
optic modulators can quickly multiplex laser pulses be-
tween the two mirror arrays.

Appendix B: Application Layer Details

We provide here a brief summary of the computational
complexity for Shor’s algorithm and quantum simulation
in first-quantized form. This analysis produces the re-
source estimates in Section VI.

1. Shor’s algorithm

We adopt the same implementation of Shor’s algorithm
given in Van Meter et al. [43]. In order to determine
the performance of Shor’s algorithm at Layer 5, we must
look at how efficiently Layer 4 prepares Toffoli gates. Let
us suppose that the quantum computer has capacity for
105 logical qubits; in general, one can interchange log-
ical capacity and algorithm execution time. To factor
an N -bit number, approximately 6N application qubits
are used by the algorithm itself, with the remainder of
the logical qubits used to produce the crucial |A〉 ancil-
las. Implementations with fewer application qubits are
possible [113, 115], but the performance of such circuits
is dramatically slower, especially if one is restricted to
a limited set of gates. As shown in Section VB, one



22

MEMS Array A

MEMS Array B

Electro-Optic

Modulators

Projection Optics

50:50 Beamsplitter

Phase-Shift Mask

Measurement 

Pulses

2-qubit 

Pulses

Phase-Shifted

Pulse

Quantum Dot Array

NPBS

NPBS

FIG. 18. Color. Optical setup in QuDOS which controls many quantum dots in parallel. Phase-shift masks are used to
produce diffraction-limited optical patterns which entangle the physical qubits (bottom). Computation is achieved by measuring
the resulting cluster-state; the measurement pattern is controlled by MEMS mirrors (top). Two MEMS mirror arrays are
multiplexed with electro-optic modulators, so that one can reposition mirrors while the other is “active.”

Bits to
Factor

Ancilla Factory
Cross-Section
(Logical Qubits)

Distillation
Rate
(|A〉 per cycle)

Consumption
Rate (Max)
(|A〉 per cycle)

512 96928 84.1 32.1
1024 93856 81.5 57.8
2048 87712 76.1 105.1
4096 75424 65.5 192.7
8192 50848 44.1 355.7
16384 1696 1.5 660.6

TABLE VII. Generation rates and maximal consumption
rates for a 105-qubit quantum computer running Shor’s fac-
toring algorithm. When the speed-of-data consumption rate
is higher than the distillation rate, Shor’s algorithm experi-
ences delays.

Operator
Maximum
Memory Size
(Logical Qubits)

Circuit Depth
(Layer 4 Clock Cycles)

Kinetic Energy 334×B 1.55×105

Potential Energy 369×B 6.26×105 ×B

QFT 272×B 2.57×104

TABLE VIII. Resource requirements for the operators in first-
quantized molecular simulation with B particles and 12-bit
spatial precision including ancilla distillation.

round of |A〉 distillation requires a volume of computing
resources with cross-section 12 logical qubits and time 6
CNOT cycles. We arrange the excess (105 − 6N) qubits in
“factories” which distill ancillas as fast as possible.
As before, we define a Logical layer clock cycle as

1 CNOT gate. We express the rate at which the fac-
tory generates ancillas by mean number of ancillas pro-

duced per clock cycle. Two levels of distillation will
require 16 distillation circuits (15 at the first level, 1
at the second level), which uses a circuit volume of
Vdistill = 16 × (12 log. qubits) × (6 clock cycles). For a
given cross-section area Afactory of the quantum computer
devoted to distillation, the maximal rate of ancilla pro-
duction is given by Afactory/Vdistill. Calculations of these
values are given in Table VII.

We need to determine whether the quantum computer
can run as fast as the circuit depth in Layer 5, or whether
the distillation of |A〉 states limits performance. Using a
construction like Fig. 14, the depth of the Toffoli gate
is 31 clock cycles, where each S gate requires 4 cycles
as shown in Fig. 12, and the circuit requires 7 distilled
|A〉 ancillas. The circuit uses the carry-lookahead adder
construction in Ref. [112], which requires ∼ 10N Toffoli
gates in total with a circuit depth of (∼ 4 log2 N)tToffoli,
or ∼ 124 log2 N cycles. Using these figures, the maximal
consumption rate of ancillas can be calculated, as shown
in Table VII. As the size of the number to be factored in-
creases, a fixed-size quantum computer is at some point
unable to generate enough ancillas to run the algorithm
at maximum speed; when this happens, execution time
is limited by the distillation process. One can make a
crude estimate from Table VII that an efficient quantum
computer for Shor’s algorithm must devote 90% of its
resources to distillation. By similar arguments, a “min-
imal” size quantum computer that holds just the algo-
rithm qubits and distills one |A〉 ancilla at a time will be
very slow.
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U(τ) V(τ) U T(τ)QFT UQFT=
-1

FIG. 19. Circuit representation for one iteration of the Hamil-
tonian propagator in first-quantized form. The QFT is per-
formed on the wavefunction, transforming between position-
basis and momentum-basis.
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FIG. 20. The time-evolution of the Hamiltonian is produced
by iterating the system propagator over many time steps. Af-
ter evolution, a quantum Fourier transform of the time vec-
tor transforms the system into the energy eigenbasis, allowing
readout of an energy eigenvalue.

2. Quantum simulation

We utilize the method in Ref. [100] to perform simu-
lation in first-quantized form. Each electron wavefunc-
tion is represented on a 3-dimensional Cartesian grid
with 12 bits of precision in each dimension, which re-
quires a quantum register of 36 qubits per particle. We

elect to use a different set of adders and multipliers
than Ref. [100], opting instead for simple ripple-carry
adders which suffice for 12-bit precision [111]. First, the
potential energy operator is calculated in the position-
basis. We transform the wavefunction representation
from position-basis to momentum-basis with the quan-
tum Fourier transform (QFT), allowing efficient evalu-
ation of the kinetic energy operator. The inverse QFT
transforms our system back to position-basis. The quan-
tum circuit representation of the system propagator U is
depicted in Fig. 19.
The resource requirements for each of the kinetic (T ),

potential (V), and QFT operators are summarized in Ta-
ble VIII. The parameters in Table VIII were derived as-
suming parallel calculation of commuting operator terms;
for example, the Coulomb interaction between particles
α and β can be calculated simultaneously as γ and δ, be-
cause these terms in the Hamiltonian commute and the
circuits are disjoint [106]. Moreover, we have used the
preceding analysis in Appendix B 1 to include in these
figures the size of ancilla factories, which is ∼ 260B log-
ical qubits in order to simulate a system of B particles.
For this parallel simulation algorithm, ancilla production
consumes about 70% of the quantum computer.
The circuit construction in Fig. 19 is just one iteration

of the system propagator. Estimating an energy eigen-
value requires simulation of the system at discrete time
steps, so the propagator is repeated many times [99], as
shown in Fig. 20. After evolving the propagator along
these time steps, the system is transformed to the energy
eigenbasis via a QFT operation on the time vector
|t〉 [54]. The precision in the final answer is limited by
the number of bits in |t〉, so for this analysis we assume
the system is evolved for 210 time steps, which offers at
most ∼ 3 decimal digits of precision.
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