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Layered Feedback Control Improves Robust Functionality across

Heterogeneous Cell Populations

Xinying Ren Richard M. Murray

Abstract— Realizing homeostatic control of metabolites or
proteins is one of the key goals of synthetic circuits. However, if
control is only implemented internally in individual cells, cell-
cell heterogeneity may break the homeostasis on population
level since cells do not contribute equally to the production or
regulation. New control structures are needed to achieve robust
functionality in heterogeneous cell populations. Quorum sensing
(QS) serves as a collective mechanism by releasing and sensing
small and diffusible signaling molecules for group decision-
making. We propose a layered feedback control structure that
includes a global controller using quorum sensing and a local
controller via internal signal-receptor systems. We demonstrate
with modeling and simulation that the global controller drives
contributing cells to compensate for disturbances while the
local controller governs the fail-mode performance in non-
contributing cells. The layered controller can tolerate a higher
portion of non-contributing cells or longer generations of
mutant cells while maintaining metabolites or proteins level
within a small error range, compared with only internal
feedback control. We further discuss the potential of such
layered structures in robust control of cell population size,
population fraction and other population-dependent functions.

I. INTRODUCTION

In synthetic biology, one important challenge is to main-

tain homeostasis from single-cell level to large-scale mul-

ticellular systems using proper control. Negative feedback

is an essential strategy for such processes that requires

sensing disturbances and adapting [1], [2]. Much research has

focused on implementing feedback controllers that robustly

regulate metabolites or protein concentrations on single-cell

level. Two general implementations of negative feedback

are inhibiting protein production and enhancing protein

degradation [3]–[5], and they are widely used in regulating

metabolic biosynthesis [6], biofuel production [7] and dose-

response [8]. Integral negative feedback is an appealing

controller since it effectively drives the regulated protein

level to a constant set-point without error [9]. Using a

strong sequestration pair of a σ -factor and a anti-σ -factor,

an antithetic integral feedback controller has been recently

implemented for robust perfect adaptation [10].

However, internal feedback control on single-cell level

does not always lead to population level homeostasis. Cell-

cell heterogeneity is commonly observed in bacteria, yeast

and mammalian cell communities [11]–[13]. Diverse phe-

notypes and behaviors help organisms to adapt to fluctu-

ating environments and to better survive as a bet-hedging

strategy [14], [15]. For example, the persistence mechanism
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in E. coli allows some cells exhibiting the persistent state

and prolongs the population’s survival when exposed to

antibiotics [16]. Mutation is another source of population

heterogeneity and often cheaters gain more benefits without

paying costs [17], [18]. In biofilm formation, individual cells

follow different developmental pathways that also leads to

heterogeneous populations [19]. Non-contributing cells, i.e.,

cells that are switched to a different state under stress or

cheater cells, no longer perform identically as the contribut-

ing cells, since the production or regulation may be far off

expected. Under these conditions, population level home-

ostasis of metabolites or proteins is significantly perturbed

when these non-contributing cells take a larger fraction of

the whole population after generations, and the internal

controller cannot respond to such disturbances properly.

Population level homeostasis requires more control struc-

tures on top of the internal feedback. Quorum sensing

systems are commonly observed in bacteria for sensing

the collective behaviors across the whole population and

directing responses in individual cells [20], and have been

used in synthetic circuits to engineer microbial consor-

tia [21]–[23]. A typical quorum sensing system utilizes dif-

fusible AHL molecules mediated by the LuxI-LuxR families.

LuxI proteins governs AHL sythesis and LuxR proteins are

AHL-triggered receptors that regulate downstream transcrip-

tions [24]. Since AHL molecules diffuse across membranes

and well mix in the environment, the global AHL concen-

tration is often regarded as a measurement of populational

bahaviors. Therefore, we can build a global feedback con-

troller where the target protein regulates the AHL synthase

LuxI and AHL-triggered receptors regulate the transcription

of the target protein. When a heterogeneous population ap-

pears, the global feedback controller in contributing cells can

detect variations on population level behaviors and respond

properly via AHLs. Meanwhile, we can rewire relationships

between the target protein and LuxR proteins to build a

local feedback so that non-contributing cells apply different

control actions than contributing cells to improve fail-mode

performance and thus maintain populational homeostasis.

We demonstrate such a layered controller with global and

local feedback via quorum sensing signals and receptors

improves robustness in following sections. In Section II, we

introduce a simple protein regulation circuit with internal

feedback control using repressors. In Section III, we show

how to build a global controller and a layered controller

based on the same repressing control law in the internal

controller. In Section IV, we show mathematical analysis

and simulations of the internal, global and layered controller
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(a) (b) (c)

Fig. 1. Sketches of protein regulation circuits using different controllers.
Panel (a) shows the internal feedback on the target protein X via a repressor
Rp. In (a), X activates Rp and Rp represses transcription of X to form a
negative feedback loop. Panel (b) implements the global feedback. In (b),
X activates the synthesis of diffusible AHL molecules S. S can bind with
a constitutive receptor R to trigger the repression on X via Rp. Panel (c)
demonstrates a layered feedback with a global controller as in panel (b) and
a local controller where X also activates R.

performance and compare the steady state error of the protein

level in heterogeneous populations. In Section V, we further

discuss potential applications of the layered controller in

more population control problems.

II. INTERNAL FEEDBACK CONTROL ON PROTEIN LEVEL

We consider a protein regulation circuit in E. coli shown

in Fig. 1(a). We introduce a simple feedback where the

target protein’s transcription is repressed by a repressor and

the production of the repressor is activated by the target

protein. When the protein concentration is perturbed to a

higher/lower level, more/fewer repressors get produced and

weaken/strengthen the protein transcription, thus the closed-

loop keeps a constant protein concentration in individual

cells. We develop an ODE model to characterize the closed-

loop dynamics:

dX

dt
= αX +βX

Kn
R

Kn
R +Rpn

−dX X ,

dRp

dt
= αRp +βRpX −dRpRp.

(1)

In equation (1), X is the target protein with a constitutive

production and a Hill-type repression by the repressor Rp.

We assume X activates the transcription of Rp in the linear

regime and Rp serves as a proportional control to X . Both X

and Rp dilute with cell division. Assuming that the activation

in Rp transcription is inducible, the feedback strength can be

tuned to set the steady state level of X by altering the rate

βRp.

To show that the protein level in individual cells can

be regulated and maintains a stable steady state with the

internal feedback controller, we simulate the dynamics when

intracellular fluctuations affect the protein concentration. In

Fig. 2(a), we alter the induction level of the repressor from

low to high(colored from light green to dark green) and the

protein levels converge to different values. At time t = 120

min, the protein level is perturbed and the internal feedback

recovers the steady states. Assuming that in homogeneous

populations, individual cells perform identically, then the

(a) (b)

Fig. 2. Simulations and tuning response curves of the internal feedback
circuit. Panel (a) shows that the protein level can be set to different constant
values with inductions on the repressor. When the protein is perturbed to a
lower concentration, the internal feedback recovers its previous level. Panel
(b) is the tuning curve of the target protein by the repressor. The control
curve determines the equilibrium and shows that X is tunable within a range
of Rp.

protein dynamics shown in Fig. 2(a) should also represent the

population level protein dynamics. The repressed production

kinetics of the protein is usually assumed to follow the

Hill function to provide reasonable tunabililty and sensitiv-

ity [25]. In Fig. 2(b), we show the open-loop relationship

between the repressor and the protein level(colored blue) and

the internal feedback with different strength(colored green).

The intersection points of the open-loop and the feedback

control curves are equilibria that the protein is expected to

converge to at steady state. We consider the regimes within

the gray dashed lines as an ideal working regime of the

circuit.

III. LAYERED FEEDBACK CONTROL ON PROTEIN LEVEL

The layered controller includes a quorum sensing system

to trigger the repressor [26]. Both the signaling molecules

and the receptors are regulated by the target protein and

can bind to form a complex functioning as a repressor.

Instead of the direct feedback from the intracellular protein

to the repressor, the layered feedback can sense population

behaviors via signaling molecules AHLs and individual cell

behaviors via receptors LuxR at the same time before ap-

plying actuation on protein production through the triggered

repressor. The key principle to realize such layered con-

trollers is to have separate global feedback via the signaling

molecules and the local feedback via receptors. Therefore the

control action through the signal-receptor complex carries

information of both the whole population and individual

cells.

Similar strategies using quorum sensing systems for pop-

ulation control have been proposed and implemented in pre-

vious studies [27]–[30]. Most of these circuits are designed

to express a constitutive receptor and only regulate AHL

synthesis as a global feedback. By choosing the working

regime, the triggered activator or repressor approximately

depends on AHL level linearly. Consider that a single AHL

molecule S and a single receptor R bind to form a complex

Rp with binding rate k+ and unbinding rate k−, the complex

level at steady state is determined by the Michaelis-Menten
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equation with the dissociation constant Kd = k−

k+
as the

following:

Rp =



















S

Kd +S
R R ≪ S ≈

{

kSR S ≪ Kd ,

R S saturate,

R

Kd +R
S R ≫ S ≈

{

kSR R ≪ Kd ,

S R saturate.

(2)

When R≪ S, Rp rises approximately linearly with S if S≪K

and reaches saturation when S is high. Similarly, we can

approximate Rp in a linear regime and a saturation regime

when R ≫ S.

Now we show how to achieve a global controller with

a constitutive receptor and a layered controller where both

AHL and receptor expressions are regulated within multiple

potential regimes.

A. Global Feedback Control with A Constitutive Receptor

To build a global feedback where cells sense AHLs to trig-

ger protein repression, we include a constitutive receptor as

shown in Fig. 1(b) and ensure the triggered repressor depends

linearly on AHL concentration. According to equation (2),

one possible design is to express more receptors than AHLs.

Another design is to express a low level of receptors and

keep the range of AHLs lower than the dissociation constant

Kd , which suggests choosing a weak binding signal-receptor

binding pair for a large linear working regime.

We consider the second scenario where R ≪ S. Given

the following assumptions, we obtain a simplified model of

the target protein X , the intracellular AHL S, the triggered

repressor Rp, and the global AHL S̄: 1) total cell population

size is fixed as N; 2) AHL molecules diffuse in and out

membranes at the same rate D f and diffuse freely and

get mixed quickly in the environment [31]; 3) the signal-

receptor binding reaction is fast compared to transcription

and translation and can be characterized as a Michaelis-

Menten equation. This yields a model:

dX

dt
= αX +βX

KR
n

Kn
R +Rpn −dX X ,

dS

dt
= αS +βSX −D f (S− S̄)−dSS,

dS̄

dt
= ND f (S− S̄),

Rp =
S

Kd +S
R, R = const ≪ S.

(3)

In homogeneous populations, the global feedback behaves

the same way as the internal feedback described by equa-

tion (1) before AHLs reach saturation. By altering the in-

duction on AHL synthesis, the global feedback also presents

a similar tunability, as shown in Fig. 3(a). To better illustrate

how the approximations of equation (2) determine different

working regimes, we plot both AHL and triggered repressor

levels and show they diverge when switching from linear to

saturating regimes in Fig. 3(b).

B. Layered Feedback Control

The layered controller involves a global feedback via

AHLs and a local feedback via receptors, demonstrated in

(a) (b)

Fig. 3. Tuning response curves of the global feedback circuit. Panel (a)
shows that the target protein level can be tuned by inducing the AHL
synthesis at different strengths. The control actuation shows saturation in the
triggered repressor when AHL concentration is high. Panel (b) demonstrates
a more detailed switch in working regimes from linear to saturation when
AHL level rises above the threshold.

Fig. 1(c). By the target protein X separately regulating S

and R, we can achieve more working regimes according

to equation (2). Ideally, the working regime for setting a

constant protein level is when Rp is proportional to S, i.e.

the global feedback is the main control. Therefore the tuning

performance in homogeneous population is similar to the

global feedback mentioned above when applying the same

control law. When some cells switch to non-contributing

states or mutants appear, they often drag the circuit dynamics

to a different operating point(fail-mode) where the local

feedback plays more role.

We now present an example of the layered controller

and obtain three different working regimes. We assume the

AHL production is activated by the target protein in a linear

kinetics, same as the internal feedback in equation (1) and

the global feedback in equation (3). Meanwhile, the target

protein regulates the receptor transcription in a Hill-type

kinetics. The ODE model is obtained as the following:

dX

dt
= αX +βX

KR
n

Kn
R +Rpn −dX X ,

dS

dt
= αS +βSX −dSS−D f (S− S̄),

dR

dt
= αR +βR

XnR

K
nR

X +XnR
−dRR,

dS̄

dt
= ND f (S− S̄),

Rp =















S

Kd +S
R R ≪ S,

R

Kd +R
S R ≫ S.

(4)

We show the tunable range of the protein level in Fig.

4(a) and working regimes of the layered controller in Fig.

4(b). Notice that when the protein level is perturbed to

be lower/higher than its minimum/maximal value that the

circuit can reach in the ideal linear working regime, the local

feedback starts to contribute more than the global feedback

in the the control actuation via Rp.

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.03.24.006528doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006528
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) (b)

Fig. 4. Tuning response curves of the layered feedback circuit. Panel
(a) shows that the target protein level can be tuned by inducing the AHL
synthesis at different strengths with a similar tuning range as the internal
and the global controller. Panel (b) demonstrates three working regimes: Rp

depending on both R and S when X is very low; Rp depending on S in the
ideal working space; Rp switching to S saturation regime and depending on
R.

IV. PROTEIN HOMEOSTASIS IN HETEROGENEOUS

POPULATION

The three controllers presented above all function simi-

larly in homogeneous populations within the ideal working

regime since all cells contribute equally and follow the

same response curve. However, non-contributing cells or

mutants that do not work in the ideal regime might appear in

populations, and the populational protein level is perturbed.

We consider two potential sub-populations that are non-

contributing cells or mutants: 1) they only express a low level

of protein; 2) the repression pathway on the target protein

is broken. The first case often happens when the protein

expression takes substantial energy and causes metabolic

burden so that mutants that produce fewer proteins have more

growth benefits [32]. It is also observed when cells are under

starvation or shock so they switch to a low functional state

with slow expression [33]. The second case can occur when

the target protein offers advantage in survival thus mutants

with high protein expression tend to be selected, such as

antibiotic resistance [34]. Some repressors and activators are

affacted by certain resources in the environment and their

regulation pathways can be turned on or off as a response

to environmental fluctuations [35], [36]. In this section, we

show how internal, global and layered feedback controllers

perform to regulate populational protein homeostasis in these

two heterogeneous populations.

A. Non-contributing Cells with Low Protein Expression

Consider the first case when non-contributing cells or

mutants only express a low level of protein. To model

the heterogeneous population behavior, we assume the total

population consist of N1 contributing cells that are properly

functional in the ideal working regime and N2 = N − N1

non-contributing cells in the fail-mode. We use η ≪ 1 to

characterize how much the protein expression is slowed.

(a) (b)

(c) (d)

Fig. 5. Tuning response curves and simulations of steady state error
in populational protein levels across heterogeneous populations. Panel (a)-
(c) are response curves of contributing and non-contributing cells using
the internal, global and layered controller. In (a), the contributing cells
produce an expected level of the target protein of X1, while non-contributing
cells produce a low level of protein X2(the yellow dots). The population
level protein expression is determined as the weighted average of X1 and
X2(between the two dashed horizontal lines). In (b), the global AHL level
moves to the middle(black vertical line) since it measures the populational
protein level. Contributing cells are actuated to relieve the repression on
X(black arrow pointing up from X1). The non-contributing cells also follow
the global control and decrease their protein expression more, which is
the opposite to the protein recovery. In (c), the local controller governs
the non-contributing cells so the protein level doesn’t change much with
the global feedback. The contributing cells compensate for the decrease
in protein expression through the global feedback. Panel (d) compares the
simulated steady state errors in population level protein expression when
non-contributing cells appear. The layered controller can tolerate a higher
fraction of non-contributing cells than the internal or global controller.

N1 :
dX1

dt
= αX +βX

Kn
R

Kn
R +Rpn

1

−dX X1,

N2 :
dX2

dt
= η

(

αX +βX
Kn

R

Kn
R +Rpn

2

)

−dX X2,

X =
∑XiNi

N
, i = 1,2.

(5)

We apply internal, global and layered feedback controllers

to the system in equation (5). For i= 1,2 in Ni, we obtain the

following equations of repressor level Rpi solved at steady

state:

Internal : Rpi =
(

αRp +βRpXi

)/

dRp, (6)

Global : Rpi ≈ S̄ =

(

αS +βS
∑XiNi

N

)

/

dS, (7)
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Layered :

Rp1 ≈ S̄ =

(

αS +βS
∑XiNi

N

)

/

dS,

Rp2 ≈ kS̄R2 =
k

dSdR

(

αS +βS
∑XiNi

N

)(

αR +βR

X
nR

2

K
nR

X +X
nR

2

)

.

(8)

Using the internal feedback in equation (6), contributing

and non-contributing cells maintain their own protein lev-

els via the internal repressor Rp1,Rp2. When more non-

contributing cells appear, the population level protein home-

ostasis is significantly disturbed from the normal level X1 to

a lower level
N1
N

X1 +
N2
N

X2 ≤ X1 given X2 ≤ X1, as shown in

Fig. 5(a).

The global feedback shows a better control performance

since both contributing and non-contributing cells share the

same AHL molecules. As shown in Fig. 5(b), when non-

contributing cells N2 have low protein expression, the global

AHL S̄ is perturbed to a lower level (the black line).

Therefore, the protein expression in contributing cells N1

is steered up to a higher level to compensate and recover

population level protein homeostasis (the arrow pointing

out from current equilibrium). However, since the non-

contributing cells are also governed by the global feedback

and the control action drags the their protein expression to

an even lower level, which can hinder the overall disturbance

rejection across the population.

By combining the local feedback together with the global

feedback, we show that the layered controller improves the

robustness of protein expression in Fig. 5(c). In contribut-

ing cells N1, the global feedback governs and leads to a

compensating increase in protein level. Meanwhile, the non-

contributing cells N2 work in a different regime where the

local controller regulates the protein level to be relative

robust to variations in AHL level. Therefore, the populational

protein homeostasis can be maintained by contributing cells

and avoids fail-modes in non-contributing cells get worse.

Notice that the tuning curve becomes a little bit sharper in the

left of the plot (darker and lighter curves), but the tunability

is not influenced much as the the difference appears more

outside the ideal working regimes for tuning.

To obtain a more practical knowledge of how the global

and the layered feedback improve the robust expression of

protein across heterogeneous populations, we simulate for

the steady state error of populational protein level with a

range of fractions of the non-contributing sub-population. In

Fig. 5(d), we compare the error versus fraction curves of

three controllers, and by setting the error cap to be 10%,

the maximal fraction of non-contributing cells the population

can tolerate is 15% for internal, 22% for global and 36%

for layered feedback. Assuming the non-contributing cells

grow 20% faster than the contributing cells, applying the

layered feedback can ensure the functionality for around 9

more generations than the internal feedback before the error

goes beyond the limit.

B. Non-contributing Cells with Weak Protein Repression

Similarly, we consider another scenario of heterogeneous

populations where the repressor in non-contributing cells

(a) (b)

(c) (d)

Fig. 6. Tuning response curves and simulations of steady state error in
populational protein levels across heterogeneous populations. Panel (a)-(c)
are response curves of contributing and non-contributing cells using the
internal, global and layered controller. In (a), the contributing cells produce
an expected level of the target protein of X1, while non-contributing cells
have a weaker repression on X , leading to a higher protein level X2(the
yellow dots). In (b), the non-contributing cells has a higher protein level
since the AHLs are saturated. Contributing cells and non-contributing cells
are actuated by the global AHLs in opposite directions. In (c), the local
controller governs the non-contributing cells and their protein level doesn’t
exceed much from AHL saturation. Panel (d) compares the simulated steady
state errors in population level protein expression when non-contributing
cells appear.

fails to inhibit the target protein’s transcription. We model

such breakdown by setting a large value of λKRp,λ ≫ 1

in the repression Hill function and it represents a weaker

repressor in binding to its DNA binding site.

N1 :
dX1

dt
= αX +βX

Kn
R

Kn
R +Rpn

1

−dX X1,

N2 :
dX2

dt
= αX +βX

(λKR)
n

(λKR)
n +Rpn

2

−dX X2,

X =
∑XiNi

N
, i = 1,2.

(9)

The controllers are the same as in equation (6)-(8), and we

plot analytical and simulated results in Fig. 6. The internal

feedback regulates contributing and non-contributing sub-

populations separately and the populational protein level is

the weighted average of X1,X2, shown in Fig. 6(a). The

global controller via AHLs only functions within the linear

regime before it saturates, and when the repression pathway

stops to work, the non-contributing cells are dragged to the

saturation regime. As shown in Fig. 6(b), even though the

global S̄ helps by providing information of population level

behaviors, the control input is saturated by the constitutive re-

ceptor and cannot improve much on the disturbance response.

The layered control either performs as the global feedback in
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contributing cells or the local feedback in non-contributing

cells since the heterogeneous population work in different

regimes. As shown in Fig. 6(c), the layered feedback can

manage to handle the disturbance better than merely with

the global controller. Fig. 6(d) demonstrates that the layered

controller can maintain the steady state within 20% error

for around 22 more generations than the internal feedback,

assuming non-contributing cells are 20% faster in growth.

V. DISCUSSION

In this paper, we show that the layered feedback con-

trol structure improves the population level homeostasis in

protein expression. By ODE modeling, analysis of tuning

response curves and working regimes, and simulations of

a simple feedback regulation circuit, we demonstrate and

compare three controllers’ performances in two potential

heterogeneous populations. The analyzing approach and ob-

servations from this case study tend to be applied to a more

general area of population control problems. Integrating the

single-cell level circuit design with cell-cell communications

extends our ability to build more diverse and stable microbial

consortia [37]–[39]. It also requires a new perspective in

theory to understand population level behaviors, such as

stability and robustness, and novel control structures across

single-cell levels to multicellular levels need more investi-

gation. In this study, we rethink the source of disturbances

in cell populations and propose that layered controllers are

good strategies to maintain robust functionality while having

diverse population heterogeneity.

In the future, we will apply the layered control structure

to more population control problems, such as controlling

population size, fraction, differentiation and spatial organiza-

tions, using models of cell growth/death and states transition

processes. Meanwhile, we will look into more sophisticated

origins that cause population heterogeneity and connect

control strategies in nature to improve synthetic designs.
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[22] F. K. Balagaddé, H. Song, J. Ozaki, C. H. Collins, M. Barnet, F. H.
Arnold, S. R. Quake, and L. You, “A synthetic escherichia coli
predator–prey ecosystem,” Molecular Systems Biology, vol. 4, no. 1,
2008.

[23] X. Ren and R. M. Murray, “Cooperation enhances robustness of
coexistence in spatially structured consortia,” in 2019 18th European

Control Conference (ECC). IEEE, 2019, pp. 2651–2656.

[24] C. Fuqua, S. C. Winans, and E. P. Greenberg, “Census and consensus
in bacterial ecosystems: the luxr-luxi family of quorum-sensing tran-
scriptional regulators,” Annual review of microbiology, vol. 50, no. 1,
pp. 727–751, 1996.

[25] J. Ang, E. Harris, B. J. Hussey, R. Kil, and D. R. McMillen, “Tuning
response curves for synthetic biology,” ACS synthetic biology, vol. 2,
no. 10, pp. 547–567, 2013.

[26] T. D. Minogue, M. W.-v. Trebra, F. Bernhard, and S. B. v. Bodman,
“The autoregulatory role of esar, a quorum-sensing regulator in
pantoea stewartii ssp. stewartii: evidence for a repressor function,”
Molecular microbiology, vol. 44, no. 6, pp. 1625–1635, 2002.

[27] L. You, R. S. Cox, R. Weiss, and F. H. Arnold, “Programmed
population control by cell–cell communication and regulated killing,”
Nature, vol. 428, no. 6985, pp. 868–871, 2004.

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.03.24.006528doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006528
http://creativecommons.org/licenses/by-nc-nd/4.0/


[28] Y. Chen, J. K. Kim, A. J. Hirning, K. Josić, and M. R. Bennett,
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