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Abstract

We continue the line of research on graph compression started
in [BV04], but we move our focus to the compression of so-
cial networks in a proper sense (e.g., LiveJournal): the ap-
proaches that have been used for a long time to compress
web graphs rely on a specific ordering of the nodes (lexico-
graphical URL ordering) whose extension to general social
networks is not trivial. In this paper, we propose a solution
that mixes clusterings and orders, and devise a new algo-
rithm, called Layered Label Propagation, that builds on pre-
vious work on scalable clustering and can be used to reorder
very large graphs (billions of nodes). Our implementation
uses task decomposition to perform aggressively on multi-core
architecture, making it possible to reorder graphs of more
than 600 millions nodes in a few hours. Experiments per-
formed on a wide array of web graphs and social networks
show that combining the order produced by the proposed al-
gorithm with the WebGraph compression framework provides
a major increase in compression with respect to all currently
known techniques, both on web graphs and on social net-
works. These improvements make it possible to analyse in
main memory significantly larger graphs.

1 Introduction

The acquaintance structure underlying a social network con-
tains a wealth of information about the network itself,
and many data mining tasks can be accomplished from
this information alone (e.g., detecting outlier nodes, iden-
tifying interest groups, estimating measures of centrality
etc. [WFI94, KY08]). Many of these tasks translate into
graph mining problems and can be solved through suitable
(sometimes, variants of standard) graph algorithms that of-
ten assume that the graph is stored into the main mem-
ory. However, this assumption is far from trivial when large
graphs are dealt with, and this is actually the case when so-
cial networks are considered; for instance, current estimates
say that the indexable web contains at least 23:59 billion

pages1, and in 2008 Google announced to have crawled 1 tril-
lion unique URLs: the successor lists for such a graph would
require hundreds of terabytes of memory! The situation is
somewhat similar in other social networks; for example, as of
October 20102, Facebook has more than 500 millions users
and 65 billions friendship relations.

The objective of this paper is to find effective techniques
to store and access large graphs that can be applied fruitfully
not only to web graphs but also to social networks of other
kinds. The considerations above explain why this problem
is lately emerging as one of the central algorithmic issues in
the field of information retrieval [GL04, CKLC09]; it should
also be noted that improving the compression performance
on a class of networks, apart for its obvious practical conse-
quences, implies (and requires) a better understanding of the
regularities and of the very structure of such networks.

Here and in the following, we are thinking of compressed
data structures. A compressed data structure for a graph
must provide very fast amortised random access to an edge
(link), say in the order of few hundreds of nanoseconds, as
opposed to a “compression scheme”, whose only evaluation
criterion is the number of bits per link. While this definition
is not formal, it excludes methods in which the successors of a
node are not accessible unless, for instance, a large part of the
graph is scanned. In a sense, compressed data structures are
the empirical counterpart of succinct data structures (intro-
duced by Jacobson [Jac89]), which store data using a number
of bits equal to the information-theoretical lower bound, pro-
viding access asymptotically equivalent to a standard data
structure.

The idea of using a compressed data structure to store so-
cial networks was already successfully exploited with appli-
cation to web graphs [BV04], showing that such graphs may
be stored using less than 3 bits/link; this impressive com-
pression ratio is mostly obtained by making good use of two
simple properties that can be experimentally observed when
nodes are ordered lexicographically by URL [RSWW02]:

1http://www.worldwidewebsize.com/
2http://www.facebook.com/press/info.php?statistics
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� similarity : nodes that are close to each other in the order
tend to have similar sets of neighbours;

� locality : most links are between nodes that are close to
each other in the order.

The fact that most compression algorithms exploit these
(or analogous) properties explains why such algorithms are
so sensible to the way nodes are ordered; the solution of or-
dering nodes lexicographically by URL is usually considered
good enough for all practical purposes, and has the extra
advantage that even the URL list can be compressed very
efficiently via prefix omission. Analogous techniques, which
use additional information besides the graph itself, are called
extrinsic. One natural and important question is whether
there exist any intrinsic order of the nodes (i.e., one that does
not rely on any external data) that produces comparable, or
maybe even better, compression ratios. This is particularly
urgent for general social networks, where the very notion of
URL does no longer apply and finding a natural extrinsic
order is problematic [CKLC09, BSV09].

2 Problem Definition and Related
Works

The general problem we consider may be stated as follows:
a graph-compression algorithm A takes (the adjacency ma-
trix of) a graph as input and stores it in a compressed data
structure; the algorithm output depends on the specific num-
bering chosen for the nodes. We let �A .G; �/ be the number
of bits per link needed by A to store the graph G under the
given node numbering3 � W VG ! jVG j. The overall objective
is to find a numbering O� minimising �A .G; O�/. In the fol-
lowing, we shall always assume that a graph G with n nodes
has VG D n, so a node numbering is actually a permutation
� W n! n.

Of course, the problem has different solutions depending
on the specific compression algorithm A that is taken into
consideration. In the following, we shall focus on the so-called
BV compression scheme [BV04] used within the WebGraph
framework, which incorporates the main ideas adopted in
earlier systems and is a de facto standard for handling large
web-like graphs. In particular, the framework strongly relies
on similarity and locality to achieve its good compression re-
sults; for this reason, we believe that most compressed struc-
tures that are based on the same properties will probably
display a similar behaviour.

As noted in [CKLC09], even a very mild version of the
above-stated optimisation problem turns out to be NP-hard,
so we can only expect to devise heuristics that work well in

3Throughout this paper, we use von Neumann’s notation n D
f0; 1; : : : ; n� 1 g.

most practical cases. Such heuristics may be intrinsic or ex-
trinsic, depending on whether they only use the information
contained in the graph itself or they also depend on some
external knowledge.

In the class of intrinsic order heuristics, [RSWW02] pro-
poses to choose the permutation � that would sort the rows
of the adjacency matrix AG in lexicographic order. This is
an example of a more general kind of solution: fix some total
ordering � on the set of n-bit vectors (e.g., the lexicographic
ordering), and let � be the permutation that would sort the
rows of the adjacency matrix AG according to4 �.

Another possible solution in the same class, already men-
tioned in [RSWW02] and studied more deeply in [BSV09],
consists in letting � be a Gray ordering. Recall that [Knu05]
an n-bit Gray ordering is a total order on the set of the 2n bi-
nary n-bit vectors such that any two successive vectors differ
in exactly one position. Although many n-bit Gray order-
ing exist, a very effective one (i.e., one that is manageable
in practice because it is easy to decide which of two vectors
come first in the order) is the so-called reflective n-bit Gray
ordering, which was used in [BSV09].5

Chierichetti et al. [CKLC09] propose a completely different
intrinsic approach based on shingles that adopts ideas used
for document similarity derived from min-wise independence.
The compression results they get are comparable to those
achieved through Gray ordering [BSV09]. In the same paper
they also discuss an alternative compression technique (called
BL) that provides better ratios; however, while interesting as
a compression scheme, BL does not provide a compressed
data structure—recovering the successors of a node requires,
in principle, decompressing the whole graph.

Recently, Safro and Temkin [ST10] presented a multiscale
approach for the network minimum logarithmic arrangement
problem: their method searches for an intrinsic ordering that
optimises directly the sum of the logarithms of the gaps (nu-
merical difference between two successive neighbours). Al-
though their work is not aimed at compression, their order-
ing is potentially useful for this task if combined with a com-
pression scheme like BV. Indeed, some preliminary tests show
that these orderings are promising especially on social net-
works; however, their implementation does not scale well to
datasets with more that a few millions of nodes and so it is
impractical for our purpose.

As far as extrinsic orderings are concerned, a central rôle
is played by the URL-based ordering in a web graph. If G is
a web graph, we can assume to have a permutation �U of its
nodes that sorts them according to the lexicographic URL or-
dering: this extrinsic heuristic dates back to [BBHC98] and,

4Here we are disregarding the problem that � is not unique if the
adjacency matrix contains duplicated rows. This issue turns out to have
a negligible impact on compression and will be ignored in the following.

5Since in the rest of this paper we will only deal with this Gray
ordering, we will simply omit the adjective “reflective” in the following.
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as explained above, turns out to give very good compres-
sion, but it is clearly of no use in non-web social networks.
Another effective way to exploit the host information is pre-
sented in [BSV09], where URLs from the same host are kept
adjacent (within the same host, Gray ordering is used in-
stead).

It is worth remarking that all the intrinsic techniques men-
tioned above produce different results (and, in particular, at-
tain different compression ratios) depending on the initial
numbering of the nodes, because they work on the adjacency
matrix AG . This fact was overlooked in almost all previous
literature, but it turns out to be very relevant: applying one
of these intrinsic re-ordering to a randomly numbered graph
(see Table 7) produces worse compression ratios than starting
from a URL-ordered web graph (see Table 6).

This problem arises because even if the intrinsic techniques
described above do not explicitly use any external informa-
tion, the initial order of a graph is often obtained by means of
some external information, so the compression performances
cannot be really considered intrinsic. To make this point
clear, throughout the paper we will speak of coordinate-free
algorithms for those algorithms that achieve almost the same
compression performances starting from any initial ordering;
this adjective can be applied both to compression algorithms
and to orderings+compression algorithm pairs. From an ex-
perimental viewpoint, this means that, unlike in the previous
literature, we run all our tests starting from a random per-
mutation of the original graph. We suggest this approach as
a baseline for future research, as it avoids any dependency on
the way in which the graph is presented initially.

The only coordinate-free compression algorithm we are
aware of6 is that proposed by Apostolico and Drovandi
in [AD09];7 they exploit a breadth-first search (BFS) to ob-
tain an ordering of the graph and they devise a new compres-
sion scheme that takes full advantage of it. Their algorithm
has a parameter, the level, which can be tuned to obtain dif-
ferent trade-offs between compression performance and time
to retrieve the adjacency list of a node: at level 8 they attain
better compression performances than those obtained by BV
with Gray orderings and have a similar speed in retrieving
the adjacency list. Even in this optimal setting, though, their
approach is outperformed by the one we are going to present
(see Table 5).

Finally, Maserrat and Pei [MP10] propose a completely dif-
ferent approach that does not rely on a specific permutation
of the graph. Their method compresses social networks by ex-

6The quite extensive survey in [BSV10] shows that many other ap-
proaches to web-graph compression, not quoted here, either fail to com-
press social networks, or are strongly dependent on the initial ordering
of the graph.

7Our experiments show in fact a very limited variation in compres-
sion (10–15%) when starting from URL ordering or from a random per-
mutation, except for the altavista-nd dataset, which however is quite
pathological.

ploiting Eulerian data structures and multi-position lineari-
sations of directed graphs. Notably, their technique is able
to answer both successor and predecessor queries: however,
while querying for adjacency of two nodes is a fast operation,
the cost per link of enumerating the successors and predeces-
sors of a node is between one and two orders of magnitude
larger than what we allowed. In other words, by the stan-
dards followed in this paper their algorithm does not qualify
as a compressed data structure.

We must also remark that the comparison given in [MP10]
of the compression ratio w.r.t. WebGraph’s BV scheme is
quite unfair: indeed, the authors argue that since their al-
gorithm provides both predecessors and successors, the right
comparison with the BV scheme requires roughly doubling
the number of bits per link (as the BV scheme just returns
successors). However, this bound is quite näıve: consider a
simple strategy that uses the set Esym of all symmetric edges,
and let Gsym D .V;Esym/ and Gres D .V;E n Esym/. To be
able to answer both successor and predecessor queries one can
just store Gsym, Gres and Gres transposed. Using this simple
strategy and applying the ordering proposed in this paper to
the datasets used in [CKLC09] we obtain better compression
ratios.

3 Our Contribution

In this paper we give a number of algorithmic and experi-
mental results:

� We identify two measures of fitness for algorithms that
try to recover the host structure of the web, and report
experiments on large web graphs that suggest that the
success of the best coordinate-free orderings is probably
due to their capability of guessing the host structure.

� Since the existing coordinate-free orderings do not work
well on social networks, we propose a new algorithm,
called Layered Label Propagation, that builds on pre-
vious work on scalable clustering by label propaga-
tion [RAK07, RN10]; the algorithm can reorder very
large graphs (billions of nodes), and unlike previous pro-
posals, is free from parameters.

� We report experiments on the compression of a wide ar-
ray of web graphs and social networks using WebGraph
after a reordering by Layered Label Propagation; the
experiments show that our combination of techniques
provides a major increase in compression with respect
to all currently known approaches. This is particularly
surprising in view of the fact that we obtain the best
results both on web graphs and on social networks. Our
largest graph contains more than 600 millions nodes—
one order of magnitude more than any published result
in this area.
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Almost all the datasets can be downloaded from the site
http://law.dsi.unimi.it/ (or from other public or free
sources) and have been widely used in the previous litera-
ture to benchmark compression algorithms. The Java code
for our new algorithm is distributed at the same URL under
the GNU General Public License.

We remark that our new algorithm has also been applied
with excellent results to the Minimum Logarithmic Arrange-
ment Problem [ST10] 8.

4 Recovering Host information
from a Random Permutation

As a warm-up towards our new algorithm, we propose an
empirical analysis that aims at determining objectively why
existing approaches compress well web graphs.

The results presented in [BSV09] suggest that what is re-
ally important in order to achieve good compression perfor-
mances on web graphs is not the URL ordering per se, but
rather an ordering that keeps nodes from the same host close
to one another. For this reason, we will be naturally inter-
ested to measure how much a given ordering � respects the
partition induced by the hosts, H .

The first measure we propose is the probability to have a
host transition (HT):

HT.H ; �/ D

PjVG j�1
iD1 ı

�
H Œ��1.i/�;H Œ��1.i � 1/�

�
jVG j � 1

where ı denotes the usual Kronecker’s delta and H Œx� is the
equivalence class of node x (i.e., the set of all nodes that have
the same host as x): this is simply the fraction of nodes that
are followed, in the order � , by another node with a different
host.

Alternatively, we can reason as follows: the ordering in-
duces a refinement of the original host partition, and the
appropriateness of a given ordering can be measured by com-
paring the original partition with the refined one. More for-
mally, let us denote with Hj� the partition induced by the
reflexive and transitive closure of the relation � defined by

x � y ” j�.x/ � �.y/j D 1 and H Œx� DH Œy�:

Intuitively, the classes of Hj� are made of nodes belonging
to the same host and that are separated in the order only by
nodes of the same host. Notice that this is always a refine-
ment of the partition H .

The second measure that we have decided to employ to
compare partitions is the Variation of Information (VI) pro-
posed in [Mei05]. Define the entropy associated with the

8http://www.mcs.anl.gov/~safro/mloga.html. The authors had
been provided a preliminary version of our code to perform their tests.

partition S as:

H.S / D �
X
S2S

P.S/ log.P.S// where P.S/ D
jS j

jVG j

and the mutual information between two partitions as:

I.S ;T / D
X
S2S

X
T2T

P.S; T / log
P.S; T /

P.S/P.T /

where P.S; T / D jS\T j
jVG j

. The Variation of information is then
defined as

VI.S ;T / D H.S /CH.T / � 2 I.S ;T /I

notice that, in our setting, since Hj� is always a refinement
of H , we have I.H ;Hj�/ D H.H / and so VI simplifies into

VI.H ;Hj�/ D H.Hj�/ �H.H /:

Armed with these definitions, we can determine how much
different intrinsic orderings are able to identify the original
host structure. We computed the two measures defined above
on a number of web graphs (see Section 8) and using some
different orderings described in the literature; more precisely,
we considered:

� Random: a random node order;

� Natural : for web graphs, this is the URL-based order-
ing; for the other non-web social networks, it is the order
in which nodes are presented, which is essentially arbi-
trary (and indeed produces compression ratios not very
different from random);

� Gray : the Gray order explained in [BSV09];

� Shingle: the compression-friendly order described
in [CKLC09];

� BFS : the breadth-first search traversal order, exploited
in [AD09];

� LLP : the Layered Label Propagation algorithm de-
scribed in this paper (see Section 6 for details).

The results of this experiment are shown in Table 1; com-
paring them with the compression results of Table 7 (that
shows the compression performances starting from a truly
random order), it is clear that recovering the host structure
from random is the key property that is needed for obtaining
a real coordinate-free algorithm. However, the only ordering
proposed so far that is able to do this is breadth-first search,
and its capability to identify hosts seems actually a side effect
of the very structure of the web. In the rest of the paper, we
use BFS as a strong baseline against which our new results
should be compared.9.

9It is unlikely that, in presence of the more complicated structure
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Name LLP BFS Shingle Gray Natural Random
HT VI HT VI HT VI HT VI HT VI HT VI

eu 1.58% 4.60 2.04% 4.60 20.12% 7.33 20.09% 7.55 0.05% 0.00 97.11% 13.80
in 1.83% 1.92 2.53% 2.32 15.83% 4.51 37.11% 6.76 0.32% 0.00 99.62% 11.37
indochina 1.37% 1.61 1.99% 2.63 32.05% 6.03 30.96% 5.93 0.26% 0.00 99.93% 11.71
it 3.05% 2.63 2.93% 2.83 27.04% 5.32 26.18% 5.27 0.34% 0.00 99.99% 11.45
uk 2.52% 2.88 1.29% 2.65 20.64% 5.52 19.93% 5.46 0.11% 0.00 99.98% 13.76

Table 1: Various measures to evaluate the ability of different orderings to recover host information. Smaller values indicate
a better recovery.

5 Label Propagation Algorithms

Most of the intrinsic orderings proposed so far in the liter-
ature are unable to produce satisfactory compression ratios
when applied to a randomly permuted graph, mainly because
they mostly fail in reconstructing host information as we dis-
cussed in the last section. To overcome their limitations, we
can try to approach this issue as a clustering problem. How-
ever, this attempt presents a number of difficulties that are
rather peculiar. First of all, the size of the graphs we are
dealing with imposes to use algorithms that scale linearly
with the number of arcs (and there are very few of them;
see [For10]). Moreover, we do not possess any prior informa-
tion on the number of clusters we should expect and their
sizes are going to be highly unbalanced.

These difficulties strongly restrict the choice of the cluster-
ing algorithm. In the last years, a new family of clustering
algorithms were developed starting from the label propaga-
tion algorithm presented in [RAK07], that use the network
structure alone as their guide and require neither optimisa-
tion of a predefined objective function nor prior information
about the communities. These algorithms are inherently lo-
cal, linear in the number of edges, and require just few passes
on the graph.

The main idea of label propagation algorithms is the fol-
lowing: the algorithms execute in rounds, and at the begin-
ning of each round every node has a label representing the
cluster that the node currently belongs (at the beginning, ev-
ery node has a different label). At each round, every node
will update its label according to some rule, the update order
being chosen at random at the beginning of the round; the
algorithm terminates as soon as no more updates take place.
Label propagation algorithms differ from each other on the
basis of the update rule.

The algorithm described in [RAK07] (hereafter referred to
as standard label propagation or just label propagation) works
on a purely local basis: every node takes the label that occurs

that we expect in social networks, an algorithm as simple as a breadth-
first search can identify meaningful clusters (see again the BFS column
of Table 7), and this leaves room for improvement.

more frequently in its neighbourhood10. Metaphorically, ev-
ery node in the network chooses to join the largest neighbour-
ing community (i.e., the one to which the maximum number
of its neighbours belongs). As labels propagate, densely con-
nected groups of nodes quickly reach a consensus on a unique
label. When many such dense consensus groups are created
throughout the network, they continue to expand outwards
until it is possible to do so. At the end of the propagation
process, nodes having the same labels are grouped together
as one community.

It has been proved [TK08] that this kind of label prop-
agation algorithm is formally equivalent to finding the lo-
cal minima of the Hamiltonian for a kinetic Potts model.
This problem has a trivial globally optimal solution when
all the nodes have the same label; nonetheless, since the
label-propagation optimisation procedure produces only lo-
cal changes, the search for maxima in the Hamiltonian is
prone to becoming trapped at a local optimum instead of
reaching the global optimum. While normally a drawback
of local search algorithms, this characteristic is essential to
clustering: the trivial optimal solution is avoided by the dy-
namics of the local search algorithm, rather than through
formal exclusion.

Despite its efficiency, it was observed that the algorithm
just described tends to produce one giant cluster containing
the majority of nodes. The presence of this giant compo-
nent is due to the very topology of social networks; to try to
overcome this problem we have tested variants of the label
propagation that introduce further constraints. One of the
most interesting is the algorithm developed in [BC09], where
the update rule is modified in such a way that the objective
function being optimised becomes the modularity [NG04] of
the resulting clustering. Unfortunately, modularity is not a
good measure in very large graphs as pointed out by several
authors (e.g., [FB07]) due to its resolution limit that makes
it hardly usable on large networks.

Another variant, called Absolute Pott Model

10In the case of ties, a random choice is performed, unless the current
label of the node is one of the most frequent in its neighbourhood, in
which case the label is simply not changed.
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(APM) [RN10], introduces a nonlocal discount based
on a resolution parameter  . For a given node x, let
�1; : : : ; �k be the labels currently appearing on the neigh-
bours of x, ki be the number of neighbours of x having
label �i and vi be the overall number of nodes in the graph
with label �i ; when x is updated, instead of choosing the
label �i maximizing ki (as we would do in standard label
propagation), we choose it as to maximise (see Algorithm 1)

ki � .vi � ki /:

Observe that when  D 0 the algorithm degenerates to la-
bel propagation; the reason behind the discount term is that
when we decide to join a given community, we are increasing
its density because of the ki new edges joining x to existing
members of the community, but we are at the same time de-
creasing it because of vi � ki non-existing edges. Indeed, it
can be shown that the density of the sparsest community at
the end of the algorithm is never below =. C 1/.

Algorithm 1 The APM algorithm. � is a function that
will provide, at the end, the cluster labels. For the sake of
readability, we omitted the resolution of ties.

Require: G a graph,  a density parameter
1: �  a random permutation of G’s nodes
2: for all x: �.x/ x, v.x/ 1

3: while (some stopping criterion) do
4: for i D 0; 1; : : : ; n � 1 do
5: for every label `, k`  j�

�1.`/ \NG.�.i//j

6: Ò  argmax`Œk` � .v.`/ � k`/�
7: decrement v.�.�.i///

8: �.�.i// Ò

9: increment v.�.�.i///
10: end for
11: end while

Figure 1: An example of the distribution of cluster sizes com-
puted by APM.

This algorithm demonstrated to be the best candidate for
our needs. However it has two major drawbacks. The first
is that there are no theoretical results that can be used to
determine a priori the optimal value of  (on the contrary,
experiments show that such an optimal value is extremely
changeable and does not depend on some obvious parame-
ters like the network size or density). The second is that it
tends to produce clusters with sizes that follow a heavy-tailed
decreasing distribution, yielding both a huge number of clus-
ters and clusters with a huge number of nodes (see Figure 1).
Thus to obtain good compression performances we have to
decide both the order between clusters and the order of the
nodes that belong to the same cluster.

6 Layered Label Propagation

In this section we present a new algorithm based on label
propagation that yields a compression-friendly ordering.

A run of the APM algorithm (discussed in the previous
section) over a given graph and with a given value of the
parameter  produces as output a clustering, that may be
represented as a labelling (mapping each node to the label of
the cluster it belongs to). An important observation is that,
intuitively, there is no notion of optimality for the tuning of
 : every value of this parameter describes a different reso-
lution of the given graph. Values of  close to 0 highlight a
coarse structure with few, big and sparse clusters, while, as
 grows, the clusters are small and dense, unveiling a fine-
grained structure. Ideally, we would like to find a way to
compose clusterings obtained at different resolution levels.11

This intuition leads to the definition of Layered Label Prop-
agation (LLP); this algorithm is iterative and produces a
sequence of node orderings; at each iteration, the APM al-
gorithm is run with a suitable value of  and the resulting
labelling is then turned into an ordering of the graph that
keeps nodes with the same label close to one another; nodes
within the same cluster are left in the same order they had
before.

To determine the relative order among different clusters,
it is worth observing that the actual label produced by the
label propagation algorithm suggests a natural choice: since
every cluster will be characterised by the initial label of the
leader node (the node which flooded that portion of graph;
see Algorithm 1), we can sort the clusters according to the
order that the leader nodes had.

More formally, let a sequence 0; 1; 2; : : : and an initial
ordering �0 W VG ! jVG j of the nodes of G be fixed; we
define a sequence of orderings �1; �2; : : : W VG ! jVG j and
a sequence of labelling functions �0; �1; : : : W VG ! jVG j as

11Of course, such a compositional approach could be applied also to
other scalable clustering techniques: we have experimented with several
alternatives [For10], and APM is by far the most interesting candidate.
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follows: �k is obtained by running the APM algorithm on the
graph G with parameter k ; then we let �kC1 be the ordering
defined by

x �kC1 y iff

(
�k.�k.x// < �k.�k.y// or

�k.x/ D �k.y/
V
�k.x/ � �k.y/:

The rationale behind this way of composing the newly
obtained clustering with the previous ordering is explained
above: elements in the same cluster (i.e., with the same la-
bel) are ordered as before; for elements with a different label,
we use the order that the corresponding labels (i.e., leader
nodes) had before.

The output of LLP actually depends on two elements: the
initial ordering �0 and the choice of the parameters k at
each iteration.

Regarding the choice of the k ’s, instead of trying to find at
each iteration an optimal value for the parameter we exploit
the diverse resolution obtained through different choices of
the parameter, thus finding a proper order between clusters
that suitably mixes the clusterings obtained at all resolution
levels. To obtain this effect, we choose every k uniformly at
random in the set12 f0g[f2�i ; i D 0; : : : ; Kg. Since the APM
algorithm is run at every step on the same graph G, it turns
out that it is easier (and more efficient) to precompute the
labelling function output by the APM algorithm for each 
in the above set, and then to re-use such labellings.

The surprising result is that the final ordering obtained
by this mutilresolution strategy is better than the ordering
obtained by applying the same strategy with K different clus-
terings generated with the same value of  chosen after a grid
search for the optimal value (as shown in Table 2), and a for-
tiori on the ordering induced by one single clustering gener-
ated with the optimal  . Moreover the final order obtained is
essentially independent on the initial permutation �0 of the
graph (as one can see comparing Table 6 with Table 7).

One may wonder if this iterative strategy can be applied
also to improve the performances of other intrinsic orderings.
Our experiments rule out this hypothesis. Iterating Gray, lex,
or BFS orderings does not produce a significant improvement.

7 Parallel Implementation

Layered label propagation lends itself naturally to the task-
decomposition parallel-programming paradigm, which may
dramatically improve performances on modern multicore ar-
chitectures: since the update order is randomised, there is
no obstacle in updating several nodes in parallel. Our imple-
mentation breaks the set of nodes into a very small number of

12Although in theory  could be larger than 1, such a choice would
be of no practical use on large networks, because it would only yield a
complete fragmentation of the graph.

Name LLP Fixed LLP

Amazon 9.12 9.43 (+3%)
DBLP 6.87 7.13 (+3%)
Enron 6.45 6.90 (+6%)
Hollywood 5.17 5.55 (+7%)
LiveJournal 10.95 11.40 (+4%)
Flickr 8.9 9.27 (+4%)
indochina (hosts) 5.57 6.25 (+12%)
uk (hosts) 6.35 6.79 (+6%)

eu 3.88 4.46 (+14%)
in 2.44 2.99 (+22%)
indochina 1.68 1.92 (+14%)
it 2.05 2.59 (+26%)
uk 1.8 2.27 (+26%)

Table 2: Comparison between LLP with different values of 
and LLP with the best value of  only. Values are bits per
link.

tasks (in the order of thousands). A large number of threads
picks up the first available task and solves it: as a result,
we obtain a performance improvement that is linear in the
number of cores. We are helped by WebGraph’s facilities,
which allows us to provide each thread with a lightweight
copy of the graph that shares the bitstream and associated
information with all other threads.

8 Experiments

For our experiments, we considered a number of graphs with
various sizes and characteristics; most of them are (directed
or undirected) social graphs of some kind, but we also con-
sidered some web graphs for comparison (because for web
graphs we can rely on the URLs as external source of infor-
mation). More precisely, we used the following datasets (see
also Table 3 and 4):

� Hollywood : One of the most popular undirected social
graphs, the graph of movie actors: vertices are actors,
and two actors are joined by an edge whenever they ap-
peared in a movie together.

� DBLP : DBLP13 is a bibliography service from which
an undirected scientific collaboration network can be ex-
tracted: each vertex of this undirected graph represents
a scientist and two vertices are connected if they have
worked together on an article.

� LiveJournal : LiveJournal14 is a virtual community so-
cial site started in 1999: nodes are users and there is

13http://www.informatik.uni-trier.de/~ley/db/
14http://www.livejournal.com/
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an arc from x to y if x registered y among his friends
(it is not necessary to ask y permission, so the graph
is directed). We considered the same 2008 snapshot of
LiveJournal used in [CKLC09] for their experiments15.

� Amazon: This dataset describes similarity among books
as reported by the Amazon store; more precisely the data
was obtained16 in 2008 using the Amazon E-Commerce
Service APIs using SimilarityLookup queries.

� Enron: This dataset was made public by the Federal En-
ergy Regulatory Commission during its investigations: it
is a partially anonymised corpus of e-mail messages ex-
changed by some Enron employees (mostly part of the
senior management). We turned this dataset into a di-
rected graph, whose nodes represent people and with an
arc from x to y whenever y was the recipient of (at least)
a message sent by x.

� Flickr : Flickr17 is an online community where users can
share photographs and videos. In Flickr the notion of
acquaintance is modelled through contacts; we used an
undirected version of this network, where vertices corre-
spond to users and there is an edge connecting x and
y whenever either vertex is recorded as a contact of the
other one.

� For comparison, we considered five web graphs of various
sizes (ranging from about 800 thousand nodes to more
than 650 million nodes), available at the LAW web site
http://law.dsi.unimi.it/.

� Finally, the altavista-nd graph was obtained from the
Altavista dataset distributed by Yahoo! within the Web-
scope program (AltaVista webpage connectivity dataset,
version 1.018). With respect to the original dataset, we
pruned all dangling nodes (“nd” stands for “no dan-
gling”). The original graph, indeed, contains 53:74%
dangling nodes (a preposterous percentage [Vig07]),
probably because it also considers the frontier of the
crawl—the nodes that have been discovered but not vis-
ited. We eliminated (one level of) dangling nodes to
approximate the set of visited nodes, and also because
dangling nodes are of little importance in compression.19

15The dataset was kindly provided by the authors of [CKLC09].
16http://www.archive.org/details/amazon_similarity_isbn/
17http://www.flickr.com/; we thank Yahoo! for the experimental

results on the Flickr graph.
18http://research.yahoo.com/Academic_Relations
19It should be remarked by this graph, albeit widely used in the liter-

ature, is not a good dataset. As we already noted, most likely all nodes
in the frontier of the crawler (and not only visited nodes) were added to
the graph; moreover, the giant component is less than 4% of the whole
graph.

Name Nodes Edges

Amazon 735 323 5 158 388
DBLP 326 186 1 615 400
Enron 69 244 276 143
Hollywood 1 139 905 113 891 327
LiveJournal 5 363 260 79 023 142
Flickr 526 606 47 097 454

Table 3: Social graph description.

Name Year Nodes Edges

eu 2005 862 664 19 235 140
in 2004 1 382 908 16 917 053
indochina 2004 7 414 866 194 109 311
indochina (hosts) 2004 19 123 233 380
it 2004 41 291 594 1 150 725 436
uk (hosts) 2005 587 205 12 825 465
uk 2007 105 896 555 3 738 733 648
altavista-nd 2002 653 912 338 4 226 882 364

Table 4: Web graph description.

Each graph was compressed in the BV format using We-
bGraph [BV04]20 and we measured the compression perfor-
mance using the number of bits/link actually occupied by the
graph file.

We also compared LLP+BV with the compression ob-
tained using the algorithm proposed by Apostolico and
Drovandi [AD09] at level 8 starting from a randomly per-
muted graph; the results, shown in Table 5, provide evidence
that LLP+BV outperforms AD in all cases, and in a signif-
icant way on social networks and large web graphs. This is
particularly relevant, since the compression algorithm of AD
is designed to take full advantage of a specific ordering (the
breadth-first search) and is the only known coordinate-free
alternative we are aware of. In our comparison, contrarily to
all other tables, we used the full compression power of the BV
format, as our intent is to motivate LLP+BV as a very com-
petitive coordinate-free compression algorithm. In the rest
of the paper, as we already explained, we have turned off in-
tervalisation, as our purpose is to study the effect of different
permutations on locality and similarity: this explains why
the bits per link found in Table 5 are smaller than elsewhere
in the paper.

20We adopted the default window size (W D 7), disabled intervalisa-
tion and put a limit of 3 to the length of the possible reference chains
(see [BSV09] for details on the rôle of this parameter). Observe that the
latter two settings tend to deteriorate the compression results, but make
decompression extremely efficient even when random access is required.
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Name LLP+BV AD

Amazon 9.13 12.39 (+36%)
DBLP 6.82 7.47 (+10%)
Enron 6.07 7.74 (+28%)
Hollywood 4.99 7.64 (+53%)
LiveJournal 10.91 14.97 (+37%)
Flickr 8.9 11.19 (+26%)
indochina (hosts) 5.42 6.83 (+26%)
uk (hosts) 6.19 7.85 (+27%)

eu 3.78 4.01 (+6%)
in 2.24 2.39 (+7%)
indochina 1.53 1.70 (+11%)
it 1.91 2.31 (+21%)
uk 1.72 2.32 (+36%)
altavista-nd 5.16 11.04 (+114%)

Table 5: Comparison between LLP+BV compression (for
this particular table, the full set of compression tecniques
available in WebGraph has been used, including intervalisa-
tion) and the algorithm proposed by Apostolico and Drovandi
(AD) at level 8. Values are bits per link.

A comment is needed about the bad performance the
Apostolico–Drovandi method on the altavista-nd dataset.
Apparently, the size of the dataset is such that scrambling it
by a random permutation causes the method to use a bad
naming for the nodes, in spite of the initial breadth-first
visit. In our previous experiments, the Apostolico–Drovandi
method did not show variations of more than 20% in com-
pression due to random permutations, but clearly the issue
needs to be investigated again.

9 Results

Tables 6 and 7 present the number of bits per link required
by our datasets under the different orderings discussed above
and produced starting from the natural order and from a
random order (the percentages shown in parenthesis give the
gain w.r.t. breadth-first search ordering). Here are some ob-
servations that the experimental results suggest:

� LLP provides always the best compression, with an av-
erage gain of 25% with respect to BFS, and largely out-
performs both simple Gray [BSV09] and shingle order-
ings [CKLC09]. Some simple experiments not reported
here shows that the same happen for transposed graphs:
for instance, uk is compressed at 1:06 bits per link. This
makes LLP+BV encoding by far the best compressed
data structure available today.

� LLP is extremely robust with respect to the initial or-
dering of nodes and its combination with BV provides
actually a coordinate-free compressed data structure.
Other orderings (in particular, Gray and shingle) are
much more sensitive to the initial numbering, especially
on web graphs. We urge researchers in this field to al-
ways generate permutations starting from a randomised
copy of the graph, as “useful” ordering information in
the original dataset can percolate as an artifact in the
final results.

� As already remarked elsewhere [CKLC09], social net-
works seem to be harder to compress than web graphs:
this fact would suggest that there should be some yet un-
explained topological difference between the two kinds of
graphs that accounts for the different compression ratio.

Despite the great improvement in terms of compression
results our technique remains highly scalable. All experi-
ments are performed on a Linux server equipped with Intel
Xeon X5660 CPUs (2:80GHz, 12MB cache size) for overall
24 cores and 128GB of RAM; the server cost about 8 900
EUR in 2010. Our Java implementation of LLP sports a lin-
ear scaling in the number of arcs with an average speed of
� 80 000 000 arcs/s per iteration. The overall time cost of
the algorithm depends on the number  ’s and on the stop-
ping criterion. With our typical setting the overall speed of
the algorithm is � 800 000 arcs/s.

The algorithm is also very memory efficient (it uses 3n in-
tegers plus the space required by the graph21) and it is easy
to distribute, making a good candidate for huge networks.
Indeed, most of the time is spent on sampling values of 
to produce base clusterings,22 and this operation can be per-
formed for each  in a fully parallel way. Applying LLP to
a web graph with 1 billion nodes and 50 billions arcs would
require few hours in this setting.

For comparison, we also tried to compress our dataset using
the alternative versions of LLP described in Section 5: in
particular, we considered APM (with the optimal choice of
) and the combination APM+Gray (that sorts each APM
cluster using Gray). Besides the number of bits per link,
we also analysed two measures that quantify two different
structural properties:

� the average gap cost (i.e., the average of the base-2 log-
arithms of the gaps between the successors of a node:
this is an approximate measure of the number of bits re-
quired to write the gaps using a universal variable-length
code); this measure is intended to account for locality:

21It is possible in principle to avoid keeping the graph in main memory,
but the cost becomes O.n logn/.

22The combination of clusterings is extremely fast, as it is linear in
the number of nodes, rather than in the number of arcs, and has little
impact on the overall run time.

9



the average gap cost is small if the ordering tends to keep
well-connected nodes close to one another;23

� the percentage of copied arcs (i.e., the number of arcs
that are not written explicitly but rather obtained by
reference from a previous successor list); this is intended
to account for similarity: this percentage is small if the
ordering tends to keep nodes with similar successor lists
close to one another.

The results obtained are presented in Table 8. In most cases
APM copies a smaller percentage of arcs than APM+Gray,
because Gray precisely aims at optimising similarity rather
than locality; this phenomenon is less pronounced on web
graphs, where anyway the overall number of copied arcs is
larger; looking at the average gap cost, all clustering methods
turn out to do a better job than Gray in improving locality
(data not shown in the table). LLP usually copies less arcs
than APM+Gray, but the difference is often negligible and
definitely balanced by the gain in locality.

We would like to point out that, at least when using the
best compression currently available (LLP+BV), the average
gap cost is definitely more correlated with compression rates
than the average distance cost, that is, the average of the
logarithms of the (absolute) difference between the source
and target of each arc (see Figure 2). Indeed, the correlation
coefficient is 0:9681 between bits per link and average gap
cost and 0:1742 between bits per link and average distance
cost. In [CKLC09] the problems MLogA and MLogGapA
consist exactly in minimising the average distance and the
average gap cost, respectively: that authors claim that both
problems capture the essence of a good ordering, but our
extensive experimentation suggests otherwise.

As a final remark, it is worth noticing that similarity and
locality have a different impact in social networks than in
web graphs: in web graphs the percentage of copied arcs
is much larger (a clue of the presence of a better-defined
structure) and in fact it completely determines the number
of bits per link, whilst in social networks the compression
ratio is entirely established by the gain of locality (measured,
as usual, by the average gap cost).

10 Conclusions and Future Work

We have presented highly scalable techniques that improve
compressed data structures for representing web graphs and
social networks significantly beyond the current state-of-art.

23We remark that the average gap cost is essentially an amortised
version of the standard gap measure used in the context of data-aware
compressed data structures [GHSV07].

More importantly, we have shown that coordinate-free meth-
ods can outperform state-of-art extrinsic techniques on a
large range of networks. The clustering techniques we have
devised are scalable to billions of nodes, as they just require
few linear passes over the graphs involved. In some cases
(e.g., the uk dataset) we bring down the cost of a link to 1:8
bits. We remark again that our improvements are measured
w.r.t. the BFS baseline, which is itself often an improvement
when compared to the existing literature.

Finally, we leave for future work a full investigation of the
compression ratio that can be obtained when fast access is not
required. For instance, uk compressed by LLP+BV at maxi-
mum compression requires only 1:21 bits per link—better, for
instance, than the Apostolico–Drovandi method with maxi-
mum compression (1:44). Some partial experimental data
suggests that we would obtain by far the highest compres-
sion ratio currently available.

The experiments that we report required several thousands
of hours of computation: we plan to make available the re-
sults both under the form of WebGraph property files (which
contain a wealth of statistical data) and under the form of
comprehensive graphical representations.
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Kumara. Near linear time algorithm to detect
community structures in large-scale networks.
Physical Review E (Statistical, Nonlinear, and
Soft Matter Physics), 76(3), 2007.

[RN10] Peter Ronhovde and Zohar Nussinov. Local
resolution-limit-free Potts model for community
detection. Phys. Rev. E, 81(4):046114, Apr 2010.

11



Name LLP BFS Shingle Gray Natural Random

Amazon 9.12 (-30%) 13.01 14.36 (+10%) 13.11 (+0%) 16.92 (+30%) 23.62 (+81%)
DBLP 6.87 (-24%) 8.98 11.39 (+26%) 8.50 (-6%) 11.36 (+26%) 22.07 (+145%)
Enron 6.45 (-26%) 8.68 9.80 (+12%) 9.78 (+12%) 13.43 (+54%) 14.02 (+61%)
Hollywood 5.17 (-33%) 7.64 6.68 (-13%) 6.35 (-17%) 15.20 (+98%) 16.23 (+112%)
LiveJournal 10.95 (-28%) 15.05 15.66 (+4%) 14.19 (-6%) 14.35 (-5%) 23.50 (+56%)
Flickr 8.90 (-19%) 10.92 10.22 (-7%) 10.82 (-1%) 13.87 (+27%) 14.49 (+32%)
indochina (hosts) 5.57 (-15%) 6.55 7.15 (+9%) 7.49 (+14%) 9.26 (+41%) 10.59 (+61%)
uk (hosts) 6.35 (-17%) 7.59 8.07 (+6%) 8.13 (+7%) 10.81 (+42%) 15.58 (+105%)

eu 3.88 (-21%) 4.87 6.09 (+25%) 4.98 (+2%) 5.24 (+7%) 19.89 (+308%)
in 2.44 (-26%) 3.29 4.19 (+27%) 2.90 (-12%) 2.99 (-10%) 21.15 (+542%)
indochina 1.68 (-24%) 2.21 2.91 (+31%) 2.12 (-5%) 2.19 (-1%) 21.46 (+871%)
it 2.05 (-26%) 2.76 3.61 (+30%) 2.67 (-4%) 2.83 (+2%) 26.40 (+856%)
uk 1.80 (-26%) 2.43 3.26 (+34%) 2.47 (+1%) 2.75 (+13%) 27.55 (+1033%)
altavista-nd 5.25 (-10%) 5.78 8.12 (+40%) 6.40 (+10%) 8.37 (+44%) 34.76 (+501%)

Table 6: Compression results starting from natural order (percentages are relative to BFS). Values are bits per link.

[RSWW02] Keith H. Randall, Raymie Stata, Janet L.
Wiener, and Rajiv G. Wickremesinghe. The
Link Database: Fast access to graphs of the web.
In Proceedings of the Data Compression Con-
ference, pages 122–131, Washington, DC, USA,
2002. IEEE Computer Society.

[ST10] Ilya Safro and Boris Temkin. Multiscale ap-
proach for the network compression-friendly or-
dering. Journal of Discrete Algorithms, 2010.
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Name LLP BFS Shingle Gray Natural Random
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indochina (hosts) 5.53 (-17%) 6.63 7.16 (+7%) 7.49 (+12%) 9.26 (+39%) 10.59 (+59%)
uk (hosts) 6.26 (-18%) 7.62 8.12 (+6%) 8.13 (+6%) 10.81 (+41%) 15.58 (+104%)

eu 3.90 (-21%) 4.93 6.86 (+39%) 6.27 (+27%) 5.24 (+6%) 19.89 (+303%)
in 2.46 (-30%) 3.51 4.79 (+36%) 4.40 (+25%) 2.99 (-15%) 21.15 (+502%)
indochina 1.71 (-26%) 2.31 3.59 (+55%) 3.09 (+33%) 2.19 (-6%) 21.46 (+829%)
it 2.10 (-28%) 2.89 4.39 (+51%) 3.79 (+31%) 2.83 (-3%) 26.40 (+813%)
uk 1.91 (-33%) 2.84 4.09 (+44%) 3.36 (+18%) 2.75 (-4%) 27.55 (+870%)
altavista-nd 5.22 (-11%) 5.85 8.12 (+38%) 7.52 (+28%) 8.37 (+43%) 34.76 (+494%)

Table 7: Compression results starting from a random order (percentages are relative to BFS). Values are bits per link.

Name Bits/link Copied arcs Avg. gap cost
LLP APM + Gray APM LLP APM + Gray APM LLP APM + Gray APM

Amazon 9.14 10.45 10.67 31.22 32.32 28.87 5.64 6.87 6.97
DBLP 6.87 8.38 8.48 36.55 37.66 36.42 4.04 5.73 5.80
Enron 6.48 7.15 7.97 24.07 25.45 10.86 3.92 4.58 4.76
Hollywood 5.13 5.38 6.10 44.22 42.49 38.68 4.14 4.38 4.92
LiveJournal 10.90 12.00 12.79 23.57 23.66 17.48 7.34 8.29 8.69
Flickr 8.89 9.22 9.69 13.65 11.77 8.88 5.59 5.84 6.17

eu 3.90 4.86 5.76 65.84 66.33 59.57 3.62 5.16 5.78
in 2.46 3.11 4.05 72.45 73.04 65.11 2.31 4.02 4.60
indochina 1.71 2.17 3.00 80.36 80.78 75.53 2.06 3.59 4.09
indochina (hosts) 5.54 6.04 6.16 33.51 34.69 26.94 3.46 4.02 3.90
it 2.10 2.56 3.94 77.18 79.76 69.53 2.43 4.36 5.16
uk (hosts) 6.26 6.68 6.90 33.94 37.34 30.48 4.24 4.76 4.79
uk 1.91 2.39 3.73 79.16 81.92 71.73 2.31 4.71 5.35

Table 8: Comparison between LLP and the ordering produced by other clustering algorithms (APM and the combination
APM+Gray) when compressing with the BV algorithm. We consider the value of  that minimises the number of bits/link.
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