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Abstract. This paper adopts the communication closed layer (CCL) concept of Elrad and Francez to
the formal reasoning of randomized distributed algorithms. We do so by enriching probabilistic automata
(PA) with a layered composition operator, an intermediate between parallel and sequential composition.
Layered composition is used to establish probabilistic counterparts of the CCL laws that exploit independence
and / or precedence conditions between the constituent PA. The probabilistic CCL laws enable partial
order (po-) equivalence when layered composition is replaced by sequential composition. Such po-equivalence
induces a purely syntactic partial-order state space reduction via layered separation in compositions of PA
while preserving probabilistic next-free linear-time properties. The feasibility of such layered separation is
demonstrated on a randomized mutual exclusion algorithm by Kushilevitz and Rabin, complementing an
algebraic approach (for analyzing this algorithm) by McIver, Gonzalia, Cohen, and Morgan.
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1. Introduction

Randomized distributed algorithms are intricate. Randomization is of paramount importance in the
setting of distributed algorithms. It is used to break the symmetry between identical process components
in leader election and mutual exclusion, for routing purposes, or for obtaining consensus—a problem that
is known to be unsolvable in a deterministic setting. The design and analysis of randomized distributed
algorithms is however highly non-trivial. Lehmann and Rabin, e.g., argue that “proofs of correctness for
probabilistic distributed systems are extremely slippery” [LR81], and various flawed versions of randomized
distributed algorithms exist, cf. [Seg00]. This is mainly due to the fact that the stochastic process describing
the evolution of a randomized distributed algorithm changes depending on the generally unknown scheduling
policies and relative speeds of the individual process components, entailing a complex interplay between
randomization and nondeterminism.
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Why probabilistic automata? Probabilistic automata [SL95, Seg00] (PA) constitute an operational
framework for the modelling and analysis of discrete systems that exhibit both nondeterministic and ran-
domized behavior, such as randomized distributed algorithms. An I/O-variant of PA (PIOA) has been used
to successfully analyze intricate randomized distributed algorithms such as the Aspnes-Herlihy randomized
consensus algorithm [PSL00] and the IEEE Firewire protocol [SV99]. Extensions of PIOA have been used for
specifying and verifying security protocols [CCK+08]. In the context of concurrency theory, PA are used as
semantic models for stochastic process algebras, and have been equipped with (bi)simulation notions [SL95].

Layering. Despite the presence of modular verification techniques for PA [Seg00], the correctness proofs
of randomized distributed algorithms remain difficult and require substantial human ingenuity. This paper
attempts to simplify their reasoning by enriching probabilistic automata with the concept of layering. The
main underlying idea is that the computations of randomized distributed algorithms often exhibit a se-
quential (i.e., layered) structure. The idea of using such sequential structure to simplify the verification of
distributed algorithms was originally proposed in the eighties by Elrad and Francez [EF82], and has been
extended, formalized [SdR94], and applied to intricate distributed algorithms such as the minimal spanning
tree algorithm [JZ92] about a decade later. Layered reasoning (though in a different way as in this paper)
has been recently used to obtain tighter bounds for asynchronous randomized consensus [AC08]; earlier
work on applying layering to bound analysis appeared in [MR02]. Most recently, a notion of layering for
distributed real-time systems (modelled as networks of timed automata) has been investigated in [OS10]. To
our knowledge, layering has not been applied to ease the verification of randomized distributed algorithms.
We therefore study in this paper layered reasoning for randomized distributed algorithms, with PA (enriched
with shared data variables) as the underlying operational model. Our layered reasoning here builds on that
investigated in [OS10] for the non-randomized, real-time setting.

Our contributions. For simplifying the formal reasoning of randomized distributed algorithms, we intro-
duce layered composition P •Q of PA P and Q; the PA P •Q behaves like P||Q, the parallel composition of
P and Q, except that for all actions a of P and b of Q that depend on each other (e.g., as both actions affect
the same shared variable), a is executed before b. Layered composition is thus a kind of asymmetric parallel
composition. We obtain a probabilistic version of the communication closed layer (CCL) law that allows us
to identify (P1 •P2)||(Q1 •Q2) and (P1||Q1)• (P2||Q2), provided P1,Q2 and P2,Q1 respect pair-wise certain
independence or precedence conditions. This CCL law enables us to transform a randomized distributed
algorithm into an equivalent layered one so as to permit easier verification. This verification is technically
enabled using a partial-order (po) equivalence on probabilistic automata; in particular we show that P • Q
and P ;Q are po-equivalent. The notion of po-equivalence is shown to preserve probabilistic next-free linear
temporal logic properties. The CCL law together with the po-equivalence of • and ; allows the transforma-
tion of (P1;P2)||(Q1;Q2) –via intermediate representations (P1 • P2)||(Q1 • Q2) and (P1||Q1) • (P2||Q2)–
finally to (P1‖P2); (Q1‖Q2) under the aforementioned independence or precedence conditions. This yields
a syntactic (partial order) state-space reduction that may be applied prior to automated model checking of
randomized distributed algorithms (as in [KN02]). We illustrate the feasibility of probabilistic layering on
the (non-trivial) randomized mutual exclusion algorithm of Kushilevitz and Rabin [KR92]. This algorithm
improves an earlier version proposed by Rabin in [Rab82], whose correctness proof was demonstrated as
being flawed in [Sai92], due to the comparison of two probabilities that were not defined within the same
probability space [Seg00].

Relation to the work of Carroll Morgan. Since the mid-nineties, the research of Carroll Morgan has
largely been centered on the (algebraic) specification and verification of probabilistic programs described in
a probabilistic guarded command language (pGCL). This research has been consolidated in the monograph
co-authored with Annabelle McIver [MM04]. More recently, Morgan (along with his co-authors McIver,
Gonzalia, and Cohen) advanced the pGCL-based algebraic specification and verification approach by a
probabilistic Kleene Algebra (pKA) [MGCM08], with application to randomized distributed algorithms. This
pGCL- / pKA- based approach compares to our layering as follows:

• Central to the pGCL/pKA approach in [MGCM08] is the exploitation of the separation theorems intro-
duced earlier in [Coh00] for the non-randomized setting. Such separation theorems simplify the (algebraic)
reasoning of (randomized) distributed systems by reducing complex interleavings into “separated” be-
haviours that admit individual analysis [MGCM08]. Our layering principle is similar in spirit: we exploit
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structural properties (formalized by means of suitable independence and precedence conditions that in-
duce communication closedness) in complex randomized distributed systems so as to admit a layered
separation that consequently simplifies verification.

• The work in [MGCM08] gives an axiomatic specification of some key properties of the randomized mutual
exclusion algorithm of Kushilevitz and Rabin [KR92]. These axioms then enable simplified reasoning via
separation theorems expressed in pKA. While the randomized mutual exclusion algorithm of [KR92] is
likewise considered in our paper for demonstrating the applicability and potential of our layered separa-
tion, we however provide a more detailed operational perspective of the algorithm’s intricate behaviour
via suitable PA models (cf. Figures 1-4). An analysis of these PA models then enables us to derive prop-
erties of the algorithm that were algebraically specified in Figure 7 of [MGCM08], as a consequence of
our layered separation (cf. Proposition 7 and Section 6).

• Our layered separation and the pKA-based separation in [MGCM08] differ in their respective operational
models and the verification techniques that they consequently admit. While the pKA-based separation
aims for easier assertional reasoning or interactive theorem proving using pGCL in which probabilities
can be treated as parameters, our layered separation is focussed on Segala’s PA, aiming to achieve a
syntactic (partial order) state space reduction prior to model checking.

Other related work. Partial-order reductions based on ample-set constructions for Markov Decision Pro-
cesses (MDPs) have been investigated in [BGC04, DN04] and shown to preserve next-free probabilistic
linear- and branching-time properties. As MDPs are basically PA in which the transition relation is viewed
as a function, notions like action independence from [BGC04, DN04] can be easily adopted in our setting.
An alternative symbolic on-the-fly partial-order reduction (termed confluence reduction) has been proposed
in [TSvdP11] for the preservation of probabilistic branching bisimulation, based on a process-algebraic frame-
work for data-enriched PA [KvST12].

Outline of this paper. Section 2 recalls the PA framework and the notion of trace distributions. It also
defines sequential (denoted by ;) and parallel composition (denoted by ||). Section 3 defines the notion of
layered composition (denoted by •), precedence relations for PA, and formulates the probabilistic CCL laws.
Section 4 defines po-equivalence ≡∗

po and shows its preservation when • is replaced by ; within the CCL laws.
It also demonstrates the preservation by ≡∗

po of probabilistic next-free linear temporal properties. Section 5
shows the applicability of our approach to the randomized mutual exclusion algorithm of Kushilevitz and
Rabin [KR92]. Section 6 concludes the paper with additional perspectives on our results (particularly in
relation to the pGCL- / pKA- based analysis in [MGCM08]) and some directions for future work.

2. Probabilistic Automata

In this section, we introduce Probabilistic Automata (PA) [Seg00, Sto02] enriched with shared data vari-
ables as operational models for randomized distributed algorithms. Such PA exhibit both probabilistic and
non-deterministic behaviour. The non-deterministic behaviours of PA are resolved using adversaries. Trace
distributions characterize the probability spaces associated to such adversaries. The behaviours of PA are
compared in terms of their trace distributions. To enable modular reasoning of PA, we also introduce the
concepts of sequential and parallel composition. The non-deterministic selection of a component during
distributed execution is modelled by a corresponding operator on PA.

Actions, data variables, and probability distributions. Let Σ be a finite alphabet of (communication)
channels. A typical element of Σ is denoted α, β, · · · . There are two actions for each channel α ∈ Σ: α?
denotes an input on α, while α! denotes the corresponding output on α, where α?, α! /∈ Σ. We denote by
τ an action resulting from synchronization, with τ 6∈ Σ. By Σ?! = {α? | α ∈ Σ} ∪ {α! | α ∈ Σ} ∪ {τ}, we
denote the set of all actions over the alphabet Σ. A typical element of Σ?! is denoted a, b, · · · . In the context
of parallel composition, input and output are complementary actions that can synchronize yielding τ . For
an action a ∈ Σ?! \ {τ}, its complementary action is denoted by a, i.e., α? = α! and vice-versa. We stipulate
that τ -actions may result only from the synchronization of complementary input and output actions.

Let V be a finite set of data variables (ranged over by v) that take values in some finite range D. By Ψ(V )
we denote the set of data updates with typical element ψ. The left-hand side of an update is a variable in V
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whereas its right-hand side is an expression involving the variables of V and the usual arithmetic operators
+,−, · · · . For each ψ ∈ Ψ(V ) each variable occurs at most once on the left-hand side of an update. The set
Φ(V ) of data constraints over V with typical element φ is the set of Boolean constraints over variables in V
involving the usual arithmetic (+,−, · · · ) and relational (<,≤, >,≥) operators. A data valuation assigns a
value in D to each data variable in V . If |V | = m, a data valuation is identified with a point in Dm, denoted
typically by ~u,~v etc. Applying an update ψ ∈ Ψ(V ) on data valuation ~u yields the data valuation ψ(~u). For
valuation ~u and boolean constraint φ, let ~u |= φ denote that the valuation ~u satisfies the data constraint φ.

Let S be a countable set. The function µ : S → [0, 1] is a distribution on S if
∑

s∈S µ(s) = 1. Let Dist(S)
denote the set of distributions on S and supp(µ) = {s ∈ S | µ(s) > 0} be the support of µ.

Definition 1 (Probabilistic automata (PA)). PA are tuples P = 〈L, l0, lf , V,Σ, prob〉, where:

• L is a finite, non-empty set of locations, ranged over by l, l′, · · · .

• l0 ∈ L is the start location.

• lf ∈ L is the final location with l0 6= lf .

• V is a finite set of data variables taking on values in a finite range D.

• Σ is a finite alphabet of channels.

• prob ⊆ L \ {lf} × Σ?! × Φ(V )×Dist(Ψ(V )× L) is a probabilistic transition relation.

In the above definition, prob relates a location l 6= lf , action a and guard φ ∈ Φ(V ) to a distribution over
Ψ(V ) × L, i.e., an update and a target location. The intuitive operational meaning of (l, a, φ, µ) ∈ prob is
as follows. Given the current location l, action a, and a data valuation in l satisfying the guard φ, with
probability µ(ψ, l′) a transition to location l′ is made while updating the data variables according to the
update ψ. In case (l, a, φ, µ) ∈ prob and (l, a, φ, ν) ∈ prob, on action a and satisfaction of guard φ a non-
deterministic choice between distributions µ and ν is made. Tuples (l, a, φ, µ) ∈ prob are called edges of
the PA. Let edges(l, a, φ) denote the set of edges {(l, a, φ, µ) ∈ prob}. Note that by the above definition,
edges(lf , a, φ) = ∅ for all a ∈ Σ?! and all φ ∈ Φ(V ).

Remark 1. According to the above definition, multiple distributions can be associated with a given location
l, action a, and guard φ, as prob is a relation. This enables a conceptually cleaner notion of non-deterministic
choice between probabilistic automata, as will be defined later (cf. Definition 13).

The semantics of a PA is given in terms of a probabilistic transition system (PTS). A PTS is basically a
labelled transition system where the target of labelled transitions are distributions over states, rather than
just simply states. A state of a PA with |V | = m is a pair (l, ~u) ∈ L×Dm, denoted typically by s, consisting
of a location l and a data valuation ~u.

Definition 2 (Induced probabilistic transition system). The PA P = 〈L, l0, lf , V, Σ, prob〉 with
|V | = m induces the PTS [P ] = 〈S, s0,Σ,∆〉, where

• S = L×Dm is the state space.

• s0 = (l0, ~v0), where ~v0 ∈ Dm denotes a designated initial data valuation.

• ∆ ⊆ S × Σ?! ×Dist(S) is the transition relation defined by:

((l, ~u), a, ν) ∈ ∆ iff (l, a, φ, µ) ∈ prob and ~u |= φ, with ν((l′, ~v)) =
∑

{‖µ(ψ, l′) | ~v = ψ(~u) ‖},

where {‖ . . .‖} denotes a multi-set.

The transition relation ∆ thus contains triples (s, a, ν) with s = (l, ~u) whenever there is an edge (l, a, φ, µ)
in the PA such that the valuation ~u satisfies the guard φ. The probability to move to the state s′ = (l′, ~v)
is the cumulative probability µ(ψ, l′) where the valuation ~v is obtained from ~u by an update according to
ψ. The multi-set is needed as there may be several branches of the edge (l, a, φ, µ) that lead with the same
likelihood to the next state s′ = (l′, ~v). A transition (s, a, µ) ∈ ∆ is denoted s a−→µ.

Remark 2. Note that the induced PTS considered in this paper are all finite state, owing to the range D
of the data variables being finite.
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Paths and traces. The PA model thus incorporates both non-determinism and probabilistic choice, and a
possible behaviour reflected in the corresponding PTS results from the resolution of non-deterministic and
probabilistic choices, described in terms of paths. A path π of a PTS [P ] = 〈S, s0,Σ,∆〉 is a (possibly infinite)

sequence of the form π = s0a1µ1s1a2µ2s2a3µ3s3 . . . where ∀n : sn
an+1−−−−→µn+1, and µn+1(sn+1) > 0. Let

last(π) denote the last state of π (if π is finite), π(n) the nth state of π, and |π| the length (i.e., number of
actions) of π. For a given PTS [P ], let Path∗([P ]) be the set of all finite paths of [P ], and Pathω([P ]) the
set of all (possibly infinite) paths of [P ]. Also, we denote by Pathn([P ]) the set of paths [P ] of length upto
n. For a given path π = s0a1µ1s1a2µ2s2a3µ3s3 . . ., the nth transition is sn−1

an−−→µn, and its trace is given
by trace(π) = a1a2a3 . . ., obtained by omitting all states and distributions from π.

Definition 3 (Adversary). For a given PTS [P ] = 〈S, s0,Σ,∆〉, an adversary A of [P ] is a function
A : Path∗([P ]) 7→ (Σ?! ×Dist(S)) ∪ {⊥} that maps every finite path π of [P ] to a pair (a, µ) or to ⊥, such
that if A(π) = (a, µ) for some a ∈ Σ?! and µ ∈ Dist(S), then (last(π), a, µ) ∈ ∆ and if there is no a ∈ Σ?! and
µ ∈ Dist(S) such that (last(π), a, µ) ∈ ∆ then A(π) = ⊥, where ⊥ denotes a special action for termination.

Thus, an adversary resolves all non-deterministic choices of the PTS [P ], so that under a given adversary A
of [P ], the behaviour of P is purely probabilistic. Let Adv([P ]) be the set of all adversaries of the PTS [P ].

A path π = s0a1µ1s1a2µ2s2 . . . ∈ Pathω([P ]) under an adversaryA is such thatA(prefn(π)) = (an+1, µn+1)
and µn+1(sn+1) > 0 for all 0 ≤ n ≤ |π|. Here, prefn(π) denotes the prefix of π of length n. We denote by
Path∗A([P ]) (resp. Pathω

A([P ])) the set of all finite (resp. possibly infinite) paths of the PTS [P ] under a
given adversary A. Similarly, Pathn

A([P ]) denotes the set of paths upto length n of [P ] under A. Note that
states having the final location lf of the PA P as their location component do not admit further actions (cf.
Definition 1), so that ∀A ∈ Adv([P ]), ∀π ∈ Path∗A([P ]) : last(π) = (lf , ~u) we have that A(π) = ⊥.

A path π is said to be maximal under a given adversary A if either π is an infinite path in Pathω
A([P ]),

or if π is a finite path in Path∗A([P ]) and A(π) = ⊥. That is to say, a maximal path under adversary A is
a path that cannot be prolonged under A. We denote by Pathmax

A ([P ]) the set of all maximal paths in [P ]
under the adversary A.

We now formulate a notion of equivalence on adversaries for comparing the behaviours of PA that are
defined over the same alphabet, the same state space, and the same set of distributions. Such PA arise when
considering the probabilistic communication closed equivalences that will be detailed in the next section.

Definition 4 (Equivalence ≡ on adversaries). Given PA P1 and P2 defined over the same alphabet Σ,
the same state space S, and the same set of distributions Dist(S), with Ai ∈ Adv([Pi]). Then A1 ≡ A2 iff
∀πi ∈ Path∗Ai

([Pi]) ∃π3−i ∈ Path∗A3−i
([P3−i]) : |πi| = |π3−i| ∧ last(πi) = last(π3−i) ∧ A3−i(π3−i) = Ai(πi)

where i ∈ {1, 2}.

Thus, equivalent adversaries induce the same possible non-deterministic choices for all same-length finite
paths with identical last-states. The probability that a given resolution of non-determinism —as specified by
an adversary A of [P ]— results in a path π ∈ Path∗([P ]) is given by a function QA : Path∗([P ]) 7→ [0, 1]. It
is defined inductively as follows: QA(s0) = 1 and if A(π) = (a, µ) for some a ∈ Σ?! and µ ∈ Dist(S), then
QA(πaµs) = QA(π) · µ(s), and if A(π) = ⊥, then QA(π⊥) = QA(π).

This probability is embedded within a probability space associated to the given adversary A. Note that it
is necessary to reason about the (probabilistic) behaviour of adversaries in terms of their respective probability
spaces —the mere assignment of probabilities to paths via distributions does not suffice. 1

Definition 5 (Probability space). A probability space 〈Ω,F ,P〉 consists of

• Ω, the sample space.

• F ⊆ 2Ω, a σ-field, i.e., F contains Ω, and is closed under countable union and complementation.

• P : F 7→ [0, 1], a probability measure on F , such that P(Ω) = 1, and P(∪iXi) =
∑

i P(Xi), where the Xi

are pair-wise disjoint subsets of F .

This leads to the notion of a probability space associated to an adversary A, by considering for each finite
path π generated by A the corresponding cylinder cyl(π) containing all maximal paths with π as prefix.

1 In fact, the comparison of two probabilities that were not defined in the same probability space resulted in an erroneous proof
of correctness [Seg00] for the earliest randomized algorithm for mutual exclusion [Rab82].
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Definition 6 (Probability space associated to an adversary). The probability space associated to an
adversary A of a PTS [P ] is 〈ΩA,FA,PA〉, where

• ΩA = Pathmax
A ([P ])

• FA is the smallest σ-field containing the cylinder sets { cyl(π) | π ∈ Path∗A([P ])},
where cyl(π) = {π′ ∈ ΩA | π prefix of π′}

• PA is the unique measure on FA such that PA(cyl(π)) = QA(π) for all π ∈ Path∗A([P ]).

Measure-theoretic arguments ensure that 〈ΩA,FA,PA〉 is indeed a probability space. We are now posi-
tioned to characterize the semantics of a given PA P in terms of the trace distribution for some adversary
A of its PTS [P ]. Such a trace distribution is obtained from the probability space associated to paths under
the adversary A by omitting all states and distributions.

Definition 7 (Trace distribution). The trace distribution T = trdistA([P ]) of an adversary A of a PTS
[P ] = 〈S, s0,Σ,∆〉 is the probability space 〈ΩT ,FT ,PT 〉, where

• ΩT = Σ∗
?! ∪ Σω

?!.

• FT is the smallest σ-field containing {cyl(w) | w ∈ Σ∗
?!}, where cyl(w) = {w′ ∈ ΩT | w prefix of w′}.

• PT (X) = PA({π ∈ Pathmax
A ([P ]) | trace(π) ∈ X}) for all X ∈ FT .

The sample space of trdistA([P ]) are sets of finite and infinite action-sequences, referred to as traces.
Measurable elements are sets of traces obtained via a standard cylinder construction. The measure of set X
is the probability of the set of maximal paths of PTS [P ] under adversary A yielding a trace in X . Measure-
theoretic arguments ensure the well-definedness of the above probability space. We denote by trdist([P ]) the
set of the trace distributions of the PTS [P ] under all possible adversarial resolutions.

Thus: trdist([P ]) = { trdistA([P ]) | A ∈ Adv([P ]) }.

Definition 8 (Trace distribution equivalence). P1 ≡TD P2 iff trdist([P1]) = trdist([P2]).

This trace distribution equivalence ≡TD enables the comparison of the behaviours of PA via the following
proposition that gives a sufficient condition relating ≡TD to the adversaries of the PA being compared.

Proposition 1 (From ≡ on adversaries to ≡TD). Given PA P1 and P2 over the same alphabet Σ, the
same state space S, and the same set of distributions Dist(S). If ∀Ai ∈ Adv([Pi]) ∃A3−i ∈ Adv([P3−i]) :
Ai ≡ A3−i (where i ∈ {1, 2}), then P1 ≡TD P2.

Proof. The PA P1 and P2 have the same alphabet Σ, the same state space S, and the same set of distributions
Dist(S), where each of Σ, S, and Dist(S) is finite, and thus the induced PTS [P1] and [P2] are also finite
(cf. Definition 1 and Remark 2). This finiteness rules out the existence of non-cyclic infinite paths in both
Pathmax

A1
([P1]) and Pathmax

A2
([P2]), which might otherwise arise owing to König’s Lemma [Koe36] for infinite

graphs. Thus, reasoning about maximal paths in Pathmax
A1

([P1]) and Pathmax
A2

([P2]) reduces to reasoning
about their finite prefixes of arbitrary length in Path∗A1

([P1]) and Path∗A2
([P2]), owing to all infinite paths

in Pathmax
A1

([P1]) and Pathmax
A2

([P2]) being necessarily cyclic. In particular, two equivalent adversaries A1

and A2 –with A1 ∈ Adv([P1]) and A2 ∈ Adv([P2])– will induce the same set of maximal paths, i.e.,
Pathmax

A1
([P1]) = Pathmax

A2
([P2]) whenever A1 ≡ A2. Now, the trace distribution of a PTS for a given

adversary is uniquely specified by the channel alphabet and the set of maximal paths under that adversary
(Definition 7). Equivalent adversaries will therefore result in equal trace distributions, i.e., A1 ≡ A2 ⇒
trdistA1

([P1]) = trdistA2
([P2]). Further, we have that ∀Ai ∈ Adv([Pi]) ∃A3−i ∈ Adv([P3−i]) : Ai ≡ A3−i

(where i ∈ {1, 2}), thus entailing trdist([P1]) = trdist([P2]). By Definition 8, this means P1 ≡TD P2.

Composing PA. We have thus far considered the semantics of PA that operate in isolation. In practice,
however, PA need to be able to communicate with each other in order to effectively model the inter-component
interactions within a randomized distributed system. We now define sequential, parallel, and choice compo-
sition of PA (denoted ;, ‖, and +, respectively) for assembling PA into a composite system.

Definition 9 (Sequential composition). Given PA Pi = 〈Li, l0i, lf i
, Vi,Σi, probi〉, where i ∈ {1, 2} with

L1 ∩L2 = ∅. Their sequential composition, denoted P1;P2, is the PA 〈L, l0, lf , V1 ∪ V2,Σ1 ∪Σ2, prob〉, where
L = (L1 \ {lf1

}) ∪ L2 with l0 = l01, lf = lf 2
and prob = prob′1 ∪ prob2.



Randomized Layered Reasoning 7

Here prob′1 = prob1[l02 ← lf 1
] is defined by (l, a, φ, µ) ∈ prob1 iff (l, a, φ, ν) ∈ prob′1 with

ν(ψ, l′) = µ(ψ, l′) if l′ 6= lf 1
, and

ν(ψ, l02) = µ(ψ, lf 1
) otherwise.

The PA P1;P2 behaves first like P1 and subsequently like P2. To establish this, the final location lf1
of

P1 is amalgamated with the initial location l02 of P2. This is reflected in the construction of prob, where
basically all edges to lf 1

are redirected to l02. This construction models sequential composition, since the
final location lf 1

of P1 has no outgoing edges, cf. Definition 1.
While sequential composition describes the evolution of one PA followed by that of another, parallel

composition ‖ captures the concurrent evolution of two PA. We adopt the CCS-style composition [Mil89],
i.e., parallel PA synchronize on common actions and act autonomously on all other actions —the latter is
modelled by interleaving. In order to avoid any read-write and write-write conflicts w.r.t. the shared variables
in the parallel PA, we require that edges corresponding to synchronizing actions are non-interfering. This
notion is defined as follows. Consider edge e = (l, a, φ, µ). Let the write-set of e, denoted wr(e), be the set of
variables occurring on the left-hand side of an update ψ with µ(ψ, l′) > 0 for some l′. The read-set of edge
e, denoted rd(e), consists of all data variables that appear in the guard φ or on the right-hand side of an
update ψ with µ(ψ, l′) > 0 for some l′.

Definition 10 (Non-interfering edges). Let E1, E2 be sets of edges with e1 ∈ E1 and e2 ∈ E2. The
non-interference relation 6⌢⊆ E1 × E2 is defined by:

e1 6⌢ e2 iff rd(e1) ∩wr(e2) = wr(e1) ∩ rd(e2) = wr(e1) ∩wr(e2) = ∅.

Thus, two edges are non-interfering whenever it is excluded that some variable that may change in one edge
is read (or may change) in the other edge. The relation 6⌢ is then canonically lifted to sets of edges: E1 6⌢ E2

iff for all e1 ∈ E1 and e2 ∈ E2 we have e1 6⌢ e2. In the following, let edges(a) = {(l, a, φ, µ) ∈ prob | ∃l ∈ L}
denote the set of a-labelled edges emanating from some location l ∈ L. Two PA are now called non-interfering
if their synchronized edges are non-interfering with each other.

Definition 11 (Non-interfering PA). PA P1 and P2 over alphabet Σ1 and Σ2 respectively, are non-
interfering, denoted P1 6⌢sync P2, if

∀a : a ∈ Σi?! ∧ a ∈ Σ3−i?!, it holds that edgesi(a) 6⌢ edges3−i(a),

where edgesi(a) is the set of a-edges in PA Pi, for i ∈ {1, 2}.

Remark 3. The above notion of non-interference is only w.r.t synchronizing actions on common channels.
Note that this does not preclude shared-variable dependencies between actions on disjoint channels.

We now define parallel composition for such non-interfering PA.

Definition 12 (Parallel composition). Let PA P1 and P2 with Pi = 〈Li, l0i, lf i
, Vi,Σi, probi〉 for i ∈

{1, 2} with P1 6⌢sync P2 and L1 ∩L2 = ∅. The parallel composition of P1 and P2, denoted P1‖P2, is the PA
〈L, l0, lf , V1 ∪ V2,Σ1 ∪ Σ2, prob〉, where

• L = L1 × L2 with l0 = (l01, l02) and lf = (lf 1
, lf 2

).

• ((l1, l2), a, φ, µ) ∈ prob iff (li, ai, φi, µi) ∈ probi, i ∈ {1, 2} and either:

1. Synchronization
ai ∈ Σi?! ∧ ai ∈ Σ3−i?!, a = τ , φ = φ1 ∧ φ2, and µ(ψ, (l′1, l

′
2)) = µ1(ψ⌈V1

, l′1) · µ2(ψ⌈V2
, l′2), or

2. Interleaving

ai ∈ Σi?!, a = ai, φ = φi, and µ(ψ, (l′1, l
′
2)) =

{

µi(ψ⌈Vi
, l′i) if ψ⌈V3−i

= idV3−i
∧ l′3−i = l3−i,

0 otherwise

where ψ⌈Vi
restricts ψ to the domain Vi, while idVi

denotes the identity valuation over Vi, for i ∈ {1, 2}.

The parallel composition of P1 and P2 is thus the product of these PA, where the probability of synchro-
nizing on a common channel is the product of the individual probabilities of performing the corresponding
input/output actions in P1 and P2. Note that (as in CCS) we always allow each component to perform
autonomous actions, where the other component idles with unit probability.
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During the execution of randomized distributed algorithms, one often encounters non-deterministic se-
lection between various components that are to be subsequently executed. Such non-deterministic selection
is modelled by the operator + on PA.

Definition 13 (Non-deterministic choice). Let PA Pi = 〈Li, l0i, lf i
, Vi,Σi, probi〉, for i ∈ {1, 2} with

(L1 \ {l01, lf1
})∩ (L2 \ {l02, lf 2

}) = ∅, l01 = l02 = l0 and lf 1
= lf 2

= lf . The non-deterministic choice of P1

and P2, denoted P1 + P2, is the PA 〈L1 ∪ L2, l0, lf , V1 ∪ V2,Σ1 ∪Σ2, prob1 ∪ prob2〉.

Note that in the above definition, we require the initial and final locations of the component PA to be
identical, while imposing disjointness of all other locations.

The compositional constructs ‖ and + are both symmetric, and do not impose the precedence of one
component over the other based on the dependencies between the individual PA. In the next section, we will
examine an asymmetric compositional operator and some relations that exploit such dependencies.

3. Action Independence, Precedence, Layering

A randomized distributed algorithm often consists of (sequential) phases that execute in parallel on different
components, wherein a transition within a given phase can execute only after all dependent transitions in
each preceding phase have been executed. In this section, we introduce the notion of action independence in
PA and its corresponding PTS along the lines of action independence in Markov Decision Processes (MDPs)
proposed in [BGC04, DN04]. This notion forms the basis for a layered composition operator, denoted •, on PA
that is intermediate between parallel and sequential composition. The • -operator is then used to formulate
the communication-closed layer (CCL) laws in a probabilistic setting. For a PTS [P ] = 〈S, s0,Σ,∆〉, let
act(s) = {a ∈ Σ?! | ∃µ : (s, a, µ) ∈ ∆} denote the set of enabled actions in state s.

Definition 14 (Action independence). Let [P ] = 〈S, s0,Σ,∆〉 be a PTS. The actions a, b ∈ Σ?! are
independent in [P ], denoted a !| b, iff for all states s ∈ S with a, b ∈ act(s) it holds that:

1. For any s′ ∈ S : if s a−→µ and µ(s′) > 0, then b ∈ act(s′).

2. For any s′ ∈ S : if s b−→ ν and ν(s′) > 0, then a ∈ act(s′).

3. For any s′′ ∈ S :
∑

{µ(s′) · ν(s′′) | s a−→µ ∧ s′ b−→ ν} =
∑

{µ(s′) · ν(s′′) | s b−→µ ∧ s′ a−→ ν}.

Stated in words, actions a and b are independent whenever for every state s in which both actions are
enabled, (1.) the occurrence of a does not disable b, (2.) and vice versa. Moreover, (3.) the total probability
of reaching s′′ from s by either performing a followed by b, or by performing b followed by a, coincides. Two
distinct actions a and b are dependent, denoted a ! b, iff they are not independent. The relation !| is
lifted to sets of actions in the standard manner. Notice that action independence is a semantic notion as it is
defined on the underlying PTS [P ] of the PA P . The following proposition shows that the non-interference
relation 6⌢, which can be determined by a simple syntactic analysis of P , is a sufficient condition for action
independence. Let a 6⌢ b whenever edges(a) 6⌢ edges(b).

Proposition 2 (Sufficient condition for action independence). Let PA P1 and P2 be over the alpha-
bets Σ1 and Σ2, respectively. Then for ai ∈ Σi?!, i ∈ {i, 2}, a1 6⌢ a2 implies a1 !| a2 in [P1‖P2].

We may now define the layered composition, denoted •, of two PA. The operational interpretation of P1 •P2

is that it behaves like the parallel composition of P1 and P2 except that an action a in P2 can only occur if all
the actions in P1 on which a depends (in the sense of !) have already occurred. Stated differently, dependent
actions in P1 and P2 are treated as in the sequential composition P1;P2 whereas independent actions are
handled as in interleaving. For location l in PA P , let l ∗−→ l′ denote that location l′ is syntactically reachable
from l through an arbitrary finite sequence of edges. Let act(l) = {a ∈ Σ?! | (l, a, φ, µ) is an edge in P}
denote the set of enabled actions in location l.

Definition 15 (Layered composition). Given two PA Pi = 〈Li, l0i, lf i
, Vi,Σi, probi〉, where i ∈ {1, 2},

with L1 ∩ L2 = ∅ and P1 6⌢sync P2. The layered composition of P1 and P2, denoted P1 • P2 is the PA
〈L, l0, lf , V1 ∪ V2,Σ1 ∪ Σ2, prob〉, where
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• L = L1 × L2 with l0 = (l01, l02) and lf = (lf 1
, lf 2

).

• ((l1, l2), a, φ, µ) ∈ prob iff (li, ai, φi, µi) ∈ probi, i ∈ {1, 2} and either:

1. Synchronization
ai ∈ Σi?! ∧ ai ∈ Σ3−i?!, a = τ , φ = φ1 ∧ φ2, and µ(ψ, (l′1, l

′
2)) = µ1(ψ⌈V1

, l′1) · µ2(ψ⌈V2
, l′2), or

2. Interleaving P1

a = a1 ∈ Σ1?!, φ = φ1, and µ(ψ, (l′1, l
′
2)) =

{

µ1(ψ⌈V1
, l′1) if ψ⌈V2

= idV2
∧ l′2 = l2,

0 otherwise
, or

3. Interleaving P2

a = a2 ∈ Σ2?!, φ = φ2, and µ(ψ, (l′1, l
′
2)) =











µ2(ψ⌈V2
, l′2) if ψ⌈V1

= idV1
∧ l′1 = l1 ∧

∀l∗1 : l1
∗
→ l∗1 : act(l∗1) !| a in [P1‖P2],

0 otherwise.

In the above definition, the first two clauses are the same as for synchronization and interleaving in parallel
composition, whereas the third clause restricts the autonomous execution of actions by P2 to actions that
are ensured to be independent of those in P1. PA P1 and P2 are independent, denoted P1 !| P2, iff for
all a1 ∈ Σ1?! and for all a2 ∈ Σ2?! it holds that a1 !| a2 in the PTS [P1‖P2]. Otherwise, P1 and P2 are
dependent, denoted P1 ! P2. In the presence of a shared variable dependence between P1 and P2, a related
notion is that of precedence for PA, defined as follows:

Definition 16 (Precedence ≺). For PA P1 and P2, P1 ≺ P2 iff P1‖P2 ≡TD P1;P2.

The relation ≺ is transitive and enforces a precedence of P1 over P2 by requiring that P1 and P2 do not
synchronize on common channels, and that trdist([P2;P1]) = ∅, which is ensured at the semantic level
by appropriate guards querying the data variables shared between P1 and P2. This is illustrated in the
analysis of the randomized mutual exclusion algorithm in Section 5. The following proposition establishes
the behaviour of the operator + w.r.t. the independence !| and precedence ≺ relations for PA, and follows
quite straightforwardly from the definitions.

Proposition 3 (Relating + with !| and ≺). For PA P1 and P2 with P1 = R1 +U1 and P2 = R2 +U2,

• R1 !| R2 ∧ R1 !| U2 ∧ U1 !| R2 ∧ U1 !| U2 if and only if P1 !| P2, and

• R1 ≺ R2 ∧ R1 ≺ U2 ∧ U1 ≺ R2 ∧ U1 ≺ U2 if and only if P1 ≺ P2.

We then use layered composition and appropriate independence and precedence side-conditions for for-
mulating the following communication closed layer (CCL) equivalences for PA.

Theorem 1 (CCL laws for PA). For PA P1, P2,Q1, andQ2, with (P1 !| Q2 or P1 ≺ Q2) and (Q1 !| P2

or Q1 ≺ P2), the following communication closed layer (CCL) equivalences hold:

1. P1 • Q2 ≡TD P1‖Q2 (IND)

2. (P1 • P2)‖Q2 ≡TD P1 • (P2‖Q2) (CCL-L)

3. (P1 • P2)‖Q1 ≡TD (P1‖Q1) • P2 (CCL-R)

4. (P1 • P2)‖(Q1 • Q2) ≡TD (P1‖Q1) • (P2‖Q2) (CCL)

Proof. We sketch a proof of the law CCL-L. The proofs of the other CCL laws are similar. Given PA
P1,P2,Q2, with P1 !| Q2 or P1 ≺ Q2, we aim to show R ≡TD U , where R = (P1 • P2)‖Q2 and U =
P1 • (P2‖Q2). Note that R and U are both defined over the same channel alphabet Σ, state space S,
and set of distributions Dist(S), each of which is finite. It therefore suffices by Proposition 1 to show that
∀A ∈ Adv([R]) ∃A′ ∈ Adv([U ]) : A ≡ A′, and vice versa. We show such adversarial equivalence by induction
on path lengths n for finite paths in Path∗A([R]) and Path∗A′([U ]). The existence of an equivalent adversary
A in Adv([R]) for each adversary A′ in Adv([U ]) is not hard to see intuitively, as the parallel composition
operator ‖ dominates in R and the layered composition operator • in U . The dominance of • induces fewer
interleavings in [U ] on the basis of the respective dependencies or precedences.

We now show: ∀A ∈ Adv([R]) ∃A′ ∈ Adv([U ]) : A ≡ A′. By Definition 4, this amounts to showing:
∀A ∈ Adv([R]) ∀π ∈ Path∗A([R]) ∃A′ ∈ Adv([U ]) ∃π′ ∈ Path∗A′([U ]): |π| = |π′| ∧ last(π) = last(π′) ∧
A′(π′) = A(π).

For an adversary A ∈ Adv([R]) we proceed by induction on the length n of a path π generated by A.
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Induction Basis. For the case n = 0, we have π = s0, where s0 = ((l0P1, l0P2, l0Q2), ~v0)
2 is the initial state

of both R and U . Thus we take π′ = π = s0 and choose A′ = A, as R and U have the same alphabet Σ, the
same state-space S, and the same set of distributions Dist(S).
Induction Step. Consider a path πn+1 ∈ Path

n+1
A ([R]) (of length n + 1) with prefn (πn+1) = πn such that

last(πn) = sn = ((lP1, lP2, lQ2), ~u) and A(πn) = (an, µn) for an ∈ Σ?! and µn ∈ Dist(S). This choice (an, µn)
could have been performed in R by either (a1) P1, (a2) P2, (a3) Q2 individually, or as a synchronization
involving either (b1) P2 and Q2, (b2) P1 and Q2, or (b3) P1 and P2.

The cases (a1) and (a2) are relatively straightforward. We now consider case (a3). This means that there
exists an edge e = (lQ2, an, φ, µn) in Q2 with µn(ψ, l′Q2) > 0 for some l′Q2 ∈ LQ2 and ~u |= φ, leading to a

state sn+1 = ((lP1, lP2, l
′
Q2), ~u

′) where ~u′ = ψ(~u). From the induction hypothesis, there exists A′ ∈ Adv([U ])

resulting in a path π′
n ∈ Pathn

A′([U ]) with last(π′
n) = sn and A′(πn) = (an, µn). As either P1 !| Q2 or

P1 ≺ Q2, this necessarily means the existence of the same edge e in U leading to the same state sn+1. We
have thus shown that last(πn+1) = last(π′

n+1) = sn+1 where π′
n+1 is a path in Pathn+1

A′ ([U ]) obtained by
continuing from π′

n along the adversarial choice (an, µn) of A′. Now let A(πn+1) = (an+1, µn+1). Then the
possibilities for the choice (an+1, µn+1) are again as in (a1)–(a3) and (b1)–(b3). Thus for the case (a3) (and
also straightforwardly for (a1) and (a2)), using again the fact that either P1 !| Q2 or P1 ≺ Q2, we see that
(last(π′

n+1), an+1, µn+1) ∈ ∆U , and thus take A′(π′
n+1) = (an+1, µn+1).

On the other hand, when sn = ((lf P1
, lf P2

, lf Q2
), ~u), we have A(πn) = A′(π′

n) = ⊥.

In (b1) there are edges with complementary actions enabled in P2 and Q2 individually that can syn-
chronize to an edge labeled with τ in the context of P2‖Q2. The part of the τ -edge stemming from P2 was
possible in P1 • P2, so it is possible also in U = P1 • (P2‖Q2). When P1 !| Q2 or P1 ≺ Q2, the part of
the τ -edge stemming from Q2 is also enabled in U , and when executed in U yields the same state as when
executed in R = (P1 • P2)‖Q2, with the same possible further adversarial choices.

The case (b2) reduces to (a1) and (a3), and the case (b3) reduces to (a1) and (a2).

Remark 4. Note that each of the equivalences of Theorem 1 in fact relates isomorphic PA, as expressed by
the equivalence ≡ on adversaries at each transition step.

The CCL laws (generalized to an arbitrary number of processes) together with the po-equivalences of the
next section will be used in the analysis of the randomized mutex algorithm in Section 5.

4. Partial Order Equivalence and Linear Time Properties

We introduce in this section partial order equivalence (≡∗
po) for PA, and show that two po-equivalent PA

satisfy the same probabilistic stutter-invariant (i.e., next-free) linear-time properties. As we are interested
in comparing layered and sequential compositions of PA w.r.t ≡∗

po, we first need to eliminate paths having
τ -edges in the layered composition that have resulted from the synchronization of complementary actions.

For PA P1 and P1, let P = P1•P2. Let Path∗\{τ}([P ]) denote the set of finite paths of P with no τ -labelled

transitions, i.e., Path∗\{τ}([P ]) = {π ∈ Path∗([P ]) | π = s0a1µ1s1a2µ2s3 · · · ∧ ∀i : ai 6= τ}. Similarly, we

denote by Path∗A\{τ}([P ]) the set of all finite paths without τ -edges under some adversary A ∈ Adv([P ]).
We then have the following proposition that relates the (probabilistic) behaviour of paths of P with those
that do not contain τ -labelled edges.

Proposition 4 (Ignoring paths with τ-edges). For PA P1 and P1, let P = P1 • P2. Then we have
∀A ∈ Adv([P ]) ∀π ∈ Path∗A([P ]) : ∃Ai ∈ Adv([P ]) ∃πi ∈ Path∗Ai\{τ}([P ]) : PA(cyl(π)) = PAi

(cyl(πi)),

where i ∈ {1, 2}.

Proof. Let π ∈ Path∗A([P ]) be a finite path (under some adversary A of the layered composition P) contain-
ing a τ -labelled edge. Then π is of the form π = π′τµπ′′, where π′ and π′′ are finite path-fragments. Then
from Definition 15 and from our stipulation that τ -edges may only result from synchronization along comple-
mentary actions, there necessarily exist adversaries Ai and corresponding finite paths πi ∈ Path∗Ai\{τ}

([P ])

such that π1 = π′aµ′s1aµ
′′π′′ and π2 = π′aµ′′s2aµ

′π′′, where a ∈ Σi?!, a ∈ Σ3−i?! (i ∈ {1, 2}). Owing

2 l0P1 is the initial location of P1, etc. We identify nested pairs ((x, y), z) and (x, (y, z)) of locations with tuples (x, y, z).
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to the layered composition • admitting a CCS-style interleaving on all actions, and owing to the non-
interference condition imposed on complementary actions (cf. Definition 15), we have that µ′(s1)·µ′′(π′′(0)) =
µ′′(s2) · µ′(π′′(0)) = µ(π′′(0)), where π′′(0) denotes the starting state of the path-fragment π′′. As in
the proof of Proposition 1, reasoning about the path probabilities along π, π1 and π2 may then be ex-
tended to reasoning about their possibly infinite continuations via the cylinder constructions, thus yielding
PA(cyl(π)) = PA1

(cyl(π1)) = PA2
(cyl(π2)).

Note that π1 and π2 appearing in (the proof of) Proposition 4 differ only in the permutative ordering of the
independent transitions corresponding to a and a, and they both preserve the validity of properties that are
insensitive to superfluous intermediate states (such as s1 and s2). For such (stutter invariant, or next-free)
properties, it therefore suffices to consider paths in Path∗\{τ}([P ]). For relating paths in Path∗\{τ}([P ]) with

those of sequential composition, we introduce the partial order equivalence ≡∗
po on (finite paths of) PA.

Definition 17 (po-equivalence ≡∗
po on finite paths). For PA P1 and P2, let π1 ∈ Path∗\{τ}([P1]) and

π2 ∈ Path∗\{τ}([P2]). Then π1 ≡po π2 iff there exist finite path fragments π, π′ such that π1 = πaµs1bµ
′π′

and π2 = πbµ′s2aµπ
′, where a !| b. The partial order equivalence ≡∗

po on finite paths without τ -labelled
edges is then the reflexive, transitive closure of ≡po.

Thus two paths related via ≡∗
po may be obtained from each other by repeated permutation of adjacent

independent actions, modulo some superfluous intermediate states (such as s1 and s2 in the above definition).
Note that by the independence a !| b, we have µ(s1) · µ′(π′(0)) = µ′(s2) · µ(π′(0)). We then introduce a
notion of layered normal form to relate via ≡∗

po the τ -eliminated paths of a layered composition.

Definition 18 (Paths of • in LNF). Given two PA Pi = 〈Li, l0i, lf i
, Vi,Σi, probi〉, where i ∈ {1, 2}, with

L1 ∩ L2 = ∅ and P1 6⌢sync P2. Then π ∈ Path∗\{τ}([P1 • P2]) is said to be in layered normal form (LNF) iff

π = s0a1µ1s1.... such that [ ∀n : an ∈ Σ1?! ∧ loc(sn) = (l, l02) for some l ∈ L1 ] ∨
[ ∃n : loc(sn) = (lf 1

, l02) ∧ ∀m ≤ n : am ∈ Σ1?! ∧ ∀m > n : am ∈ Σ2?! ].

Here, loc(sn) is the location component of the nth state sn of π. Thus, a path (in the PTS) of a layered
composition P1 • P2 is in LNF iff it first consecutively executes actions of P1 (until P1 has terminated in
lf 1

), and thereafter consecutively executes actions of P2. We denote by Path∗LNF ([P1 • P2]) the set of all
paths of [P1 • P2] that are in LNF. The definition of the layered composition • permits the execution of P2

actions only after the execution of all dependent P1 actions, thus leading to the following proposition.

Proposition 5 (Relating paths in LNF via ≡∗
po). For PA P1 and P2, the following holds:

∀π ∈ Path∗\{τ}([P1 • P2]) ∃π′ ∈ Path∗LNF ([P1 • P2]) : π ≡∗
po π

′.

Proof. This proposition follows from the definition of • and the construction of paths in LNF, given that an
action of P2 is allowed to execute in P1 • P2 only after all dependent actions of P1 have been executed, and
any action of P2 in a path of P1 • P2 is thus necessarily independent of all P1 actions it precedes, and may
therefore be permuted repeatedly to yield a path of P1 • P2 in LNF.

We now lift the notion of ≡∗
po from paths to PA.

Definition 19 (≡∗
po for PA). For PA P1 and P2, we write P1 ≡∗

po P2 iff the following holds for i ∈ {1, 2}
∀Ai ∈ Adv([Pi]) ∀πi ∈ Path∗Ai\{τ}

([Pi]) ∃A3−i ∈ Adv([P3−i]) ∃π3−i ∈ Path∗A3−i\{τ}
([P3−i]) : πi ≡∗

po π3−i

Remark 5. Proposition 4 ensures that it is sufficient for ≡∗
po to consider paths in Path∗Ai\{τ}

([Pi]). As in

Proposition 4, we have for the po-equivalent paths π1 and π2 above: PA1
(cyl(π1)) = PA2

(cyl(π2)).

A consequence of Definition 19 and Proposition 5 is that ≡∗
po holds between the compositions • and ; .

Theorem 2 (≡∗
po between • and ;). For PA P1 and P2, P1 • P2 ≡∗

po P1;P2.

Proof. Let π ∈ Path∗LNF ([P1•P2]). Then by Definition 18, there exists a path π′ ∈ Path∗([P1;P2]) such that

∀n ≥ 0 : loc(π(n)) ≈ loc(π′(n)) ∧ val(π(n)) = val(π′(n)) ∧ π(n)
an+1−−−−→µn+1 ⇒ π′(n)

an+1−−−−→µn+1 ∧
µn+1(π(n+ 1)) = µn+1(π

′(n+ 1)), where val(π(n)) is the vector of data valuations in the nth state π(n) of
path π, and≈ is a relation defined as follows on the location spaces L1×L2 of P1 • P2 and (L1 ∪L2) \ {lf1

}
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of P1;P2 : ∀l1 ∈ L1 with l1 6= lf 1
: (l1, l02) ≈ l1 and ∀l2 ∈ L2 : (lf 1

, l2) ≈ l2. Every path of P1 •P2 in LNF is
therefore exactly mimicked by a path of P1;P2 (modulo the relation ≈ on the location spaces of P1 •P2 and
P1;P2), and vice-versa. We also have from Proposition 5 that every finite (τ -eliminated) path of P1 • P2 is
either in LNF, or is po-equivalent to another path in LNF.

As the PA related by Theorem 1 are isomorphic, with the equivalence ≡ on adversaries being stronger
than ≡∗

po, we then have the following corollary from Theorems 1 and 2.

Corollary 1. Replacement of • by ; in the CCL laws yields po-equivalences.

We now illustrate the probabilistic preservation of stutter invariant properties expressible in the Linear
Temporal Logic (LTL) without the next operator (denoted LTL \ X) by the partial order equivalence ≡∗

po.

Theorem 3 (Preservation by ≡∗
po of LTL \ X). Given P1 ≡∗

po P2 and a formula ϕ in LTL \ X. Then
the following holds: ∀Ai ∈ Adv([Pi]) ∃A3−i ∈ Adv([P3−i]) : PAi

([ϕ]) = PA3−i
([ϕ]), where

PAi
([ϕ]) = PAi({π ∈ Path

max
Ai

([Pi]) | π |= ϕ}), and i ∈ {1, 2}.

Proof. Consider two paths π′
1 and π′

2 with π′
i ∈ Path

∗
Ai\{τ}([Pi]), where i ∈ {1, 2}, such that π′

1 ≡
∗
po π

′
2. As π′

1

and π′
2 differ only in the permutative ordering of independent actions and in some superfluous intermediate

states, π′
1 and π′

2 are stutter equivalent [BGC04, DN04] in the sense that any stutter invariant (i.e., next
free) LTL formula ϕ (where the LTL atomic propositions correspond to assertions on the data valuations)
will be satisfied by π′

1 iff it is satisfied by π′
2. As in the proof of Proposition 1, it suffices here to reason about

arbitrary length finite prefixes in Path∗Ai\{τ}([Pi]) of maximal paths in Pathmax
Ai

([Pi]) owing to finiteness of

the induced PTS. Thus, all possibly infinite continuations of π′
1 and π′

2 via the cylinder constructions will be
necessarily cyclic, and will induce the same probability measure via the respective adversaries A1 and A2.
The theorem then follows from Definition 19 and Remark 5.

Methodology for layered separation. We conclude this section with an outline of the intended method-
ology for layered separation, illustrated on a schematic example. Suppose we want to verify for PA P1,P2,Q1

that the system (P1;P2)‖Q1 satisfies with a probability threshold p a formula ϕ expressible in LTL \ X. If
Q1 !| P2 or Q1 ≺ P2 we can reduce the state space of the PA system by applying to it the equivalences
≡TD and ≡∗

po, as shown below.

(P1;P2)‖Q1

≡∗
po { Corollary 1 }

(P1 • P2)‖Q1

≡TD { CCL-R }
(P1‖Q1) • P2

≡∗
po { Corollary 1 }

(P1‖Q1);P2.

From Theorem 3, it then suffices to check that (P1‖Q1);P2 satisfies ϕ with the probability threshold p. If
each of P1,P2,Q1 has 10 locations then –from the definitions of the compositional constructs ‖, •, and ;–
we see that the original PA system has 190 locations while the transformed system via layered separation
(using ≡TD and ≡∗

po) has 109 locations. These reductions in the number of discrete locations to be explored
become more pronounced as the number of system components increases, as will be illustrated next.

5. Case Study : Randomized Mutual Exclusion

To demonstrate the benefit of the layered separation achieved by means of the CCL laws and the associated
po-equivalences, we consider the (revised) randomized mutual exclusion algorithm MUTEX for N ≥ 2
processes by Kushilevitz and Rabin [KR92]. The authors in [KR92] describe their algorithm informally, partly
in the running text and partly by pieces of pseudo code. This makes it difficult to obtain a complete picture
of the algorithm. We present here (our view of) the essential ingredients of the algorithm in terms of PA
composed sequentially, nondeterministically and in parallel. Our presentation is influenced by the algebraic
analysis in the work of McIver, Gonzalia, Cohen, and Morgan [MGCM08] of parts of the algorithm in terms
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of separation theorems expressed in a probabilistic Kleene Algebra. We however analyze the algorithm of
[KR92] in this section by means of layered separation.

The algorithm proceeds in rounds. To avoid keeping a record of the unbounded round numbers, the
algorithm uses a randomized round number chosen by the process entering the critical section. During a
round, every process Pi with i ∈ {1, . . . , N} cycles through four phases: drawing or voting Vi, notification or
testing Ti, critical section Ci, and remainder Ri. In the voting phase, the processes participate in a lottery
where they use a geometric distribution to pick numbers in the set {1, . . . , B}, where B = log2N + 4. The
value k is drawn with probability 1/2k for k ≤ B − 1, and with probability 1/2k−1 for k = B. The process
that has drawn the highest number in the lottery will be notified as the winner in the subsequent notification
round and will next enter the critical section. It stays thereafter in its remainder phase until it decides to
participate in another voting phase.

The algorithm distinguishes between even and odd rounds, with different pseudo-code for voting, notifi-
cation, and critical section. Between an access to the critical section in an even round (called even critical
section) and the access to the critical section in the subsequent odd round (called odd critical section) both
an odd notification phase (for entering the odd critical section) and an even voting phase (for the next even
critical section) will occur, and vice versa, with the roles of even and odd exchanged.

The processes P1, . . . ,PN share several variables: b even and b odd (maximal lottery value in even and
odd rounds, respectively), r even and r odd (random round number bit in even and odd rounds, respectively),
s (binary semaphore guarding the critical section), p (parity bit serving as guards of even and odd phases),
and w (indicator that the winner of lottery is notified). Whereas b even, b odd range over {0, . . . , B}, the
variables s, p, w range over {0, 1}, and r even, r odd range over {nil, 0, 1}. Additionally, each process Pi

manipulates some local variables: b(i) (lottery value drawn by Pi), d(i) (difference contributed by Pi to
the maximum lottery value), r(i) (round number), w(i) (indicator that Pi knows it has won the lottery),
and pc(i) (program counter). Here b(i) and d(i) range over {0, . . . , B}, r(i) ranges over {nil, 0, 1}, w(i) over
{0, 1}, and pc(i) over {nil, rem, it}.

In Fig. 1–4 we show for process Pi the PA representing the even phases Vi, Ti, Ci (and explain how PA
for the odd phases are obtained) as well as PA representing Ri and idling versions of voting and notification.
In these PA, all edges are labelled uniquely by corresponding actions, which we omit in the graphic repre-
sentation. Synchronization between the processes P1, . . . ,PN does not take place via these actions, but via
guards checking the values of the shared variables.

The algorithm is modeled by the following parallel composition MUTEX , where each process Pi is a
loop (represented by ∗ ) built up from sequences of nondeterministic choices of the phases defined above:

MUTEX = (P1‖ . . . ‖PN) with Pi =





















odd Vi + IV i + even Ci
;

odd Ti + IT i +Ri

;

even Vi + IV i + odd Ci
;

even Ti + IT i +Ri





















∗

The algorithm starts with the following initial values: b even = b odd = 0, r even = r odd = nil, s = 0,
p = 1, w = 1, and for all i ∈ {1, . . . , N} we assume b(i) = 0, d(i) = 0, r(i) = 0, pc(i) = nil. Furthermore, we
stipulate w.l.o.g that w(1) = 1 and w(i) = 0 for i ∈ {2, . . . , N}.

The nondeterministic choices in Pi are restricted by the following sequencing constraints enforced via
the local program counter pc(i): once idle voting IV i is chosen, only idle notification IT i can follow due
to the guard pc(i) = it; once the critical section Ci is chosen, only the remainder Ri can follow due to the
guard pc(i) = rem. Once voting Vi is chosen and it ends with a contribution d(i) > 0, only notification Ti

can follow. If Vi ends with d(i) = 0, only idle notification IT i can follow.

Transformation into a layered representation. We now show that MUTEX can be transformed into a
layered representation. Since the CCL laws stated in Section 3 do not involve the ∗-operator on PA, we argue
by considering finite, initial unfoldings of the ∗ and establish the layering for these unfoldings. Inferring a
layered representation of the loops from a layered representation of the unfoldings is correct if the processes
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r(i) := r_even

b_even < b(i)

d(i) := b(i) − b_even

b_even := b(i)

b(i) := 0

d(i) := 0

not(b_even < b(i))

......

{ r(i) = r_even  /\  b_even > 0 }

{ b(i) > 0 }

"lottery"
b(i) := 1 b(i) := B

p=0

/\
( d(i)=0  /\  w(i)=0  )

0.5 1 / 2B−1

( r(i) =/= r_even   \/   b_even = 0 )

Figure 1. The PA for even voting Vi with guard p = 0. In the PA for odd voting this guard is replaced by p = 1, and r even
and b even are replaced by r odd and b odd, respectively. Note that the lottery has B branches with the last two branches
having the same probability 1/2B−1.

not( w=0  /\  b(i)=b_even  /\  b_even > 0 )

w=1 and w(i)=0
w(i) := 1;  w := 1

b_even := b_even − d(i)

d(i) := 0

r(i) := nil

b(i) :=  0;  d(i) := 0

b_even := b_even − d(i)

w=0  /\  b(i)=b_even  /\  b_even > 0

p=1  /\  d(i) > 0

Figure 2. The PA for even notification Ti. Note that the guard is p = 1 ∧ d(i) > 0. In the PA for odd notification this guard
is replaced by p = 0∧ d(i) > 0 and b even by b odd. The right branch is taken when Pi is not the winner, where it waits in the
intermediate state until notified of the winner Pj via an update w := 1 in the left branch of Tj .
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���
���
���

���
���
���

s=0

w(i)=1 and b_even=0

0.50.5

w := 0;  w(i) := 0 w := 0;  w(i) := 0
b(i) := 0;  r(i) := nil
p :=  0

s := 1

r_even :=  1

b(i) := 0;  r(i) := nil

r_even := 0

p :=  0

s := 1

{ s=1: inside the critical section }

s := 0;  pc(i) := rem

Figure 3. The PA for even critical section Ci. In the PA for odd critical section the update p := 0 is replaced by p := 1, and
r even by r odd, and b even by b odd.

pc(i)=rem

pc(i) := it pc(i) := nilpc(i) := nil

w(i)=0 pc(i)=it  \/  d(i)=0 

Figure 4. The PA for remainder Ri (left), idle voting IVi (middle), and idle notification IT i (right).

Pi of MUTEX are prevented from pursuing infinite executions of idle voting and idle notification by a
fairness assumption.

In Table 1 we display the unfolded MUTEX up to round 4. To refer uniquely to different instances of the
phases of each process Pi in the unfolding we attach a round number r ∈ N to them and thus write Vr

i , T r
i ,

Cr
i , Rr

i , IV
r
i , and IT r

i . The instances are defined as follows: Vr
i = even Vi if r is even and Vr

i = odd Vi if r is
odd, and analogously for T r

i and Cr
i . Furthermore, for all r ∈ N, Rr

i = Ri, IV
r
i = IV i, and IT r

i = IT i. The
initial unfolding up to round 4 is presented by the parallel composition in Table 1, with one sequential thread
for each of the processes P1, . . . ,PN . The nondeterminism represented by + is resolved during execution so
that in each round r there is exactly one i ∈ {1, . . . , N} such that the critical section Cr

i is entered (thus
guaranteeing mutual exclusion). Exactly for that i the remainder Rr

i will follow. All the other processes
j 6= i are already in their next round r+ 1 performing voting Vr+1

j and then notification T r+1
j . For a proper
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odd (r = 1) : {p = 1}V1
1 + IV1

1 + C0
1

;

{p = 0}T 1
1

+ IT 1
1 + R0

1

;

even (r = 2) : {p = 0}V2
1

+ IV2
1 + C1

1

;

{p = 1}T 2
1 + IT 2

1 + R1
1

;

odd (r = 3) : {p = 1}V3
1

+ IV3
1 + C2

1

;

{p = 0}T 3
1

+ IT 3
1 + R2

1

;

even (r = 4) : {p = 0}V4
1

+ IV4
1 + C3

1

;

{p = 1}T 4
1 + IT 4

1 + R3
1

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

V1
2 + IV1

2 + C0
2

;

T 1
2

+ IT 1
2 + R0

2

;

V2
2

+ IV2
2 + C1

2

;

T 2
2 + IT 2

2 + R1
2

;

V3
2

+ IV3
2 + C2

2

;

T 3
2

+ IT 3
2 + R2

2

;

V4
2

+ IV4
2 + C3

2

;

T 4
2 + IT 4

2 + R3
2

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·

· · ·

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

V1
N

+ IV1
N + C0

N
;

T 1
N + IT 1

N + R0
N

;

V2
N + IV2

N + C1
N

;

T 2
N + IT 2

N + R1
N

;

V3
N

+ IV3
N + C2

N
;

T 3
N

+ IT 3
N + R2

N
;

V4
N

+ IV4
N + C3

N
;

T 4
N

+ IT 4
N + R3

N

Table 1. Unfolding of the parallel MUTEX algorithm up to round 4. For clarity, we have indicated the round numbers r and
as assertions the p-values required in the guards of voting Vr

1
and notification T r

1
of process P1 in each round. The voting and

notification phases Vr
i and T r

i of the other processes Pi have the same guards. Note that + binds stronger than ; and ‖, and
that ; binds stronger than ‖.

initialization of the algorithm we stipulate an abridged round 0 in which one process, say P1, enters its
critical section C0

1 without previous voting and testing.
We now establish crucial independence and precedence relations between the phases.

Proposition 6. The phases of the unfolded MUTEX satisfy the following independence and precedence
conditions, where r, r1, r2 > 0 and i, j ∈ {1, . . . , N}.

1. Remainder Rr
i , idle voting IVr

i and idle notification IT r
i are independent (!| ) of any other phase.

2. If one of the rounds r1 and r2 is even and the other odd, voting Vr1
i and notification T r1

i are independent

of both voting Vr2
j and notification T r2

j , so Vr1
i !| Vr2

j , Vr1
i !| T r2

j , T r1
i !| Vr2

j , and T r1
i !| T r2

j .

3. A critical section Cr
i can only start if notification T r

i has been completed, which in turn can only start if
voting Vr

i has been completed: Vr
i ≺ T

r
i and T r

i ≺ C
r
i .

4. A critical section Cr
i can only start if all processes j that contributed d(j) > 0 to b even or b odd,

respectively, in their voting Vr
j have completed their notification T r

j , so T r
j ≺ C

r
i for all these j.

5. Notification T r+1
j and voting Vr+2

j can only start if some critical section Cr
i has been completed:

Cr
i ≺ T

r+1
j and Cr

i ≺ V
r+2
j .

6. The critical section C0
1 and all votings V1

j with j ∈ {2, . . . , N} are not preceded by any other phase and
can thus start immediately.

Proof. Claim 1. This is clear because Rr
i , IV

r
i , IT

r
i do not access any of the shared variables.

Claim 2. Let r1 be even and r2 be odd. Of the shared variables, voting and notification both read p, and
moreover, even voting Vr1

i accesses r even, b even, and even notification T r1
i accesses b even and w, whereas

odd voting Vr2
j accesses r odd, b odd, and odd notification T r2

j accesses b odd and w. However, both T r1
i and

T r2
j have the same effect on the shared variable w, namely updating w to 1 (via the left branch on Figure

2) in case the corresponding process has won the lottery in the preceding voting phase. So even voting Vr1
i

and notification T r1
i are independent of odd voting Vr2

j and notification T r2
j . Similar arguments apply when

r1 is odd and r2 is even.
Claim 3. An even critical section Cr

i can only start if in round r process i left its notification T r
i with

w(i) = 1, which in turn is only possible if in the prior voting phase Vr
i process i drew the highest number

b(i) yielding b(i) = b even. The corresponding precedence relation holds for an odd critical section.
Claim 4. An even critical section Cr

i can only start if b even = 0 holds, which is only possible if in round r
all processes j that increased b even by contributing d(j) > 0 to it in their voting phase Vr

j have deducted the
value d(j) again from b even in their notification phase T r

j . Thus all these processes j must have completed
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(V1
1

+ IV1
1 + C0

1
‖ V1

2
+ IV1

2 + C0
2

‖ · · · ‖ V1
N + IV1

N + C0
N )

;

(T 1
1 + IT 1

1 + R0
1 ‖ T 1

2 + IT 1
2 + R0

2 ‖ · · · ‖ T 1
N + IT 1

N + R0
N )

;

(V2
1 + IV2

1 + C1
1 ‖ V2

2 + IV2
2 + C1

2 ‖ · · · ‖ V2
N + IV2

N + C1
N )

;

(T 2
1 + IT 2

1 + R1
1 ‖ T 2

2 + IT 2
2 + R1

2 ‖ · · · ‖ T 2
N + IT 2

N + R1
N )

;

(V3
1

+ IV3
1 + C2

1
‖ V3

2
+ IV3

2 + C2
2

‖ · · · ‖ V3
N

+ IV3
N + C2

N
)

;

(T 3
1

+ IT 3
1 + R2

1
‖ T 3

2
+ IT 3

2 + R2
2
‖ · · · ‖ T 3

N
+ IT 3

N + R2
N

)
;

(V4
1

+ IV4
1 + C3

1
‖ V4

2
+ IV4

2 + C3
2

‖ · · · ‖ V4
N

+ IV4
N + C3

N
)

;

(T 4
1

+ IT 4
1 + R3

1
‖ T 4

2
+ IT 4

2 + R3
2
‖ · · · ‖ T 4

N + IT 4
N + R3

N )

Table 2. Unfolding of the layered MUTEX algorithm up to round 4.

their notification T r
j before Cr

i can start. The corresponding precedence relation holds for an odd critical
section.

Claim 5. Every even notification T r+1
j in round r+1 and every odd voting Vr+2

j in round r+2 is guarded
by p = 1, which can only be established by the update p := 1 of a previous odd critical section Cr

i in round
r. Analogously, every odd notification T r+1

j and every even voting Vr+2
j is guarded by p = 0, which can only

be established by the update p := 0 of a previous even critical section Cr
i .

Claim 6. Initially, we assume w(1) = 1 and b even = 0, so C0
1 can start immediately. Since initially also

p = 0 and w(j) = 0, d(j) = 0 holds for all j ∈ {2, . . . , N}, voting V1
j can start for these j.

We are now prepared for the layered restructuring.

Proposition 7. The unfolding of the parallel MUTEX algorithm shown in Table 1 is po-equivalent (≡∗
po)

to the unfolding of the layered MUTEX algorithm shown in Table 2.

Proof. We check that the claims of Proposition 6 imply the necessary independence and precedence relations
between phases in different rounds and processes so that Theorem 1 and Corollary 1 can be applied. Since
by Claim 1, the phases for remainder, idle voting, and idle notification are independent of any other phase,
it suffices to analyze voting, notification, and critical section. Of these we pick phases phr

j with a high round
number r and argue that phases with a round number lower than r are either independent of phr

j or precede
phr

j .

Case 1. Consider a voting V4
j in round 4. Then in round 3, we have V4

j !| T 3
i and V4

j !| V3
i by Claim 2.

In round 2, we have C2
i ≺ V

4
j for the critical section of one process i due to Claim 5. Moreover, by Claim 4,

we have T 2
k ≺ C

2
i for all processes k that contributed d(k) > 0 to the maximum lottery value in their voting

V2
k before T 2

k . All other processes l either abstained from voting before C2
i , which we can simulate by an

independent idle voting IV2
l , or their voting V2

l occurred before C2
i but yielded only d(l) = 0. In both cases

only an independent idle notification IT 2
l can follow. By Claim 5, any notification T 2

k in round 2 must be
preceded by one critical section in round 1, say C1

m ≺ T
2

k . Similar arguments apply when comparing phases
in further lower numbered rounds with V4

j .

Case 2. Consider a notification T 3
j in round 3. Then in round 2, we have C2

i ≺ T
3

j for the critical section

of one process i due to Claim 5. Note that the votings V3
l of round 3 must have occurred before C2

i as this

changes the value of p. After C2
i only idle voting IV3

l of round 3 remain possible. Furthermore, in round 2
we have T 3

j !| V2
k and T 3

j !| T 2
k due to Claim 2. By Claim 5, any notification T 2

k in round 2 must be

preceded by one critical section in round 1, say C1
m ≺ T

2
k . For C1

m we argue similar to Case 1, starting with
C2

i in round 2.
Case 3. Consider a critical section C3

i in round 3. Again, we argue similar to Case 1, starting with C2
i in

round 2.
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Proposition 7 holds for unfoldings up to any round number. This enables us to conclude that (under the
assumption of fairness) the parallel MUTEX is po-equivalent (≡∗

po) to the following layered version:

layered MUTEX =





















(odd V1 + IV1 + even C1 ‖ · · · ‖ odd VN + IVN + even CN)
;

(odd T1 + IT 1 +R1 ‖ · · · ‖ odd TN + IT N +RN )
;

(even V1 + IV1 + odd C1 ‖ · · · ‖ even VN + IVN + odd CN)
;

(even T1 + IT 1 +R1 ‖ · · · ‖ even TN + IT N +RN )





















∗

For this layered version, we establish the following reduction in the number of locations. The number of
locations |LP | for any of the constituent PA P is taken from Fig. 1–4. For nondeterministic choice we
calculate |LP+Q| = |LP | + |LQ| − 2, for sequential composition |LP ;Q| = |LP | + |LQ| − 1, and for parallel
composition |LP‖Q| = |LP | · |LQ|, due to the definitions of these operators in Section 2.

number of locations in ...

N ... MUTEX ... layered MUTEX reduction factor

3 15,625 1,453 ≥ 10
4 390,625 10,781 ≥ 36
5 9,765,625 81,085 ≥ 120

Such reductions will speed up model checking the algorithm. Since both representations are (modulo fairness
inMUTEX) po-equivalent, by Theorem 3, they satisfy the same probabilistic next-free linear-time properties
– for example, some of the properties verified or computed for the original (flawed) randomized mutual
exclusion algorithm by Rabin [Rab82] in a case study of the model checker PRISM [KNP04]. 3

6. Conclusion

This paper adopted the concept of communication-closed layers to probabilistic automata, a popular opera-
tional framework for the specification and verification of randomized distributed algorithms. The focus was
on the theoretical underpinnings of incorporating layered separation into the framework of PA, for the anal-
ysis of complex, distributed compositions of PA. The application of such layered separation has been shown
in the modelling and analysis of a randomized mutual exclusion algorithm by Kushilevitz and Rabin [KR92].

McIver, Gonzalia, Cohen, and Morgan in [MGCM08] distilled from the description of this algorithm
algebraic axioms that enabled them to simplify its reasoning by separation laws established for probabilistic
Kleene Algebras. We start operationally, formalizing parts of the mutual exclusion algorithm of [KR92] in
terms of probabilistic automata and combine them by nondeterministic, sequential and parallel composition.
Then we check whether suitable independence and precedence relations allow us to restructure parallel
computations into layered ones, aiming (via a state-space reduction) at a simpler verification.

It is interesting to ask whether our formalization satisfies the four axioms of [MGCM08], which we cite
here in their informal versions:

(1) Voting and notification commute.

(2) Notification occurs when the critical section is free.

(3) Voting occurs when the critical section is busy.

(4) It’s more likely to lose, the later the vote.

Following Kushilevitz and Rabin, we distinguish even and odd rounds. This difference is not addressed
in [MGCM08]. Regarding (1), we show in Proposition 6 the independence (!| ) of voting and notification,
but only when voting is performed in an even round and notification in an odd round (or vice versa). Of

3 see http://www.prismmodelchecker.org/casestudies/rabin.php
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course, independence implies commutativity. If voting Vr1
i and notification T r2

j both occur in even rounds

r1, r2 they interfere by writing to the shared variable b even. Interestingly, Vr1
i and T r2

j still commute, but

in a degenerate sense: since Vr1
i is guarded by p = 0 and T r

j by p = 1, and p is not changed by Vr1
i or T r2

j ,

both Vr1
i ; T r2

j and T r2
j ;Vr1

i end in a deadlock. The analogous statement is true for odd rounds. So axiom (1)
is indeed satisfied.

Regarding (2) and (3), the unfolding of the layered MUTEX in Table 2 shows that notification T r
i takes

place when no process is in its critical section and voting Vr
i takes place when one process is in its critical

section. So axioms (2) and (3) are also satisfied.
Regarding (4), consider a sequence of even votings (cf. Fig. 1) by different processes in a given even

round r, say Vr
1 ; . . . ;Vr

m for m ≤ N . Then after Vr
1 , process 1 will be the (temporary) winner with some

value k drawn with probability 1/2k for 1 ≤ k ≤ B − 1, and with probability 1/2k−1 for k = B, where
B = log2N + 4, according to the geometric distribution assumed in the lottery. For process 2 to outperform
process 1, it must draw a value l > k, but this is only possible with a probability of 1/2l < 1/2k, etc. The
same argument is true for odd votings. So axiom (4) is satisfied.

The satisfaction of the axioms (1)–(4) thus enables the application of the algebraic analysis of [MGCM08]
to our operational model of Kushilevitz and Rabin’s randomized mutual exclusion algorithm [KR92] in terms
of probabilistic automata.

Future work consists in exploiting layered separation in the actual automated verification by probabilistic
model-checkers. In addition, we would like to investigate the use of our notion of layering for the analysis of
complexity bounds, such as in [AC08, MR02].
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