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ABSTRACT
In this paper we propose a protocol that allows end-users in a de-
centralized setup (without requiring any trusted third party) to pro-
tect data shipped to remote servers using two factors - knowledge
(passwords) and possession (a time based one time password gener-
ation for authentication) that is portable. The protocol also supports
revocation and recreation of a new possession factor if the older
possession factor is compromised, provided the legitimate owner
still has a copy of the possession factor. Furthermore, akin to some
other recent works, our approach naturally protects the outsourced
data from the storage servers themselves, by application of encryp-
tion and dispersal of information across multiple servers. We also
extend the basic protocol to demonstrate how collaboration can be
supported even while the stored content is encrypted, and where
each collaborator is still restrained from accessing the data through
a multi-factor access mechanism. Such techniques achieving lay-
ered security is crucial to (opportunistically) harness storage re-
sources from untrusted entities.

CCS Concepts
•Security and privacy→Multi-factor authentication; Database
and storage security; Access control;

Keywords
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edge computing, user controlled encryption, erasure codes

1. Introduction
Since its early days, there has been a continuous flux in com-

puting paradigm, moving back and forth between centralization
and decentralization: from mainframes to PCs, peer-to-peer and
federated grids to cloud to mention some prominent trends across
decades. Fuelled by evolution of miniaturized hardware, there is

a renewed swing back towards (partial) decentralisation, wherein
edge elements in the system reassert a prominent role not only as
consumer of resources, but also act as active contributors to the
overall computing infrastructure. There is a growing cognizance
from various perspectives and interpretations, and under various
nomenclatures such as fog computing [14], edge computing [27],
internet of everything (IoE) [22], that edge elements provide a nat-
ural way to scale and solve last mile problems, by augmenting and
extending the ‘core’ cloud computing and service infrastructure. It
is worth disambiguate at this juncture that though modern high-end
mobile devices (phones/tablets/‘things’ from IoT) are capable of
running process heavy applications, in this work we do not focus
on such energy restricted devices as the storage edge servers (these
may very well be the clients though), but refer by edge services
more the kind of setups envisioned under fog computing [14].

Storage is a cardinal functionality, along with other elements
such as computation and services. In order for edge/fog comput-
ing to gain adequate traction, security and reliability of such an
edge resource based storage service would thus be of paramount
importance. The focus of this work is primarily on the security,
and in particular, on realising layered security (multi-factor access
control) in a decentralised set-up, where the edge elements cannot
be fully trusted, nor a trusted centralized entity may be desirable.
At this juncture we will like to emphasize that the aim here is to
go beyond the popular ‘user controlled encryption’ paradigm that
is already used in several cloud service offeings, in that, typically
the control factor the end user has is knowledge of a password. The
objective of this work is to augment the knowledge factor with an
orthogonal possession factor.

Given the emphasis on decentralization, there are some natural
echoes with works done in the context of peer-to-peer (P2P) stor-
age systems, and the proposed approach is naturally applicable in
P2P and hybrid environments [20]. While our work also inherently
supports fault-tolerance and availability, it is not the emphasis, and
accordingly, the treatment of this work is more on layered security
and not on issues like churn, which is a central theme of P2P liter-
ature. The works closest to our treatment in the P2P literature are
those of [21, 40], but these works do not explicitly address issues
of layered security, as is the case in this paper. We do use the user
controlled encryption paradigm (the user holds the encryption key,
and the storage servers can’t decrypt it as such) as several recent
commercial cloud service offerings [4, 6] do natively, and alterna-
tively, users can separately carry out using tools like TrueCrypt or
Boxcryptor [1, 5]. But in addition, we leverage on dispersing the
content across multiple storage services to gain an additional layer
of security, which makes [10, 25] the closest works in the cloud se-
curity literature. However, these prior works rely on a single con-
trol (knowledge factor) at the end-user’s end, while the approach



we propose augments the security of user controlled encryption by
explicitly realizing an orthogonal possession factor.

It is often desirable to deploy multiple controls in order to realise
a layered defense in protecting resources or data. A ready example
of such layered defense is multi-factor authentication based access
control. Typically, multi-factor authentication relies on information
which can be divided across orthogonal factors such as knowledge
(something one knows, e.g., password), possession (something the
user has, e.g., a hardware token) or inherence (something the user
is, e.g., biometric information such as fingerprint or retina scan).

Traditionally, the authentication service provider facilitating an
additional factor authentication has the burden, but also control
over the the infrastructure to support multi-factor authentication,
and is implicitly trusted with the same. It can thus become a single
point of vulnerability. For instance, breach of RSA’s SecureID1 is
a well known incident.

Furthermore, in adopting a multi-factor access control solution
provided by a storage service provider, the end user can prevent
other entities from accessing the content, but do not achieve layered
security from the storage service or access control service providers
themselves. The obvious and popular solution of encrypting the
content before shipping it to the outsourced storage service will
only have a single factor security from the service or any entity
which can access the content of the storage servers of the service
provider directly, e.g., insiders, or someone who has compromised
the service provider’s institutional security.

A natural workaround to protect data from individual service
provi- ders (in addition to applying user controlled encryption) is to
distribute the data across multiple services [10, 26] using a thresh-
old cryptography or erasure coding technique. Such redundant
dispersion provide additionally the benefit of fault-tolerance [7,
10, 26], even when content from a small subset of used service
providers become unavailable.

However, when multiple services are used, then all these services
may not natively support multi-factor authentication, and moreover
it may not be desirable to introduce a trusted third party to realise
the functionality universally. To fully benefit from opportunistic
usage of available resources at the edge, a decentralised mechanism
is preferable instead.

Consequently, in this paper we explore a holistic technique to
realize multi-factor access control which provides layered security
with respect to both extrinsic parties, as well as the storage service
providers, is robust against the collusion of a (small) fraction of
service providers, and can be deployed and controlled by individ-
ual data owners in a decentralised manner without requiring any
trusted third party, or collaboration among the storage services. We
also demonstrate how the basic protocol can be extended to facil-
itate collaborative manipulation of the data (i.e., not only read op-
erations, but also write operations) among multiple users approved
by a data owner.

Though the overall objective looks challenging, in fact, existing
works from cloud and P2P security literature realize different sub-
sets of the objectives, and the main contribution of this paper is
to put these techniques together in a seamless manner to achieve
all the properties in harmony. The elimination of centralized enti-
ties to realise the solution means that the approach decouples the
user’s identity from the access-control mechanism, which then can
furthermore provide the end user certain degree of anonymity. We
next discuss related works, which provide the founding pillars for
the proposed solution, and also differentiate our work with respect
to these prior works.

1http://en.wikipedia.org/wiki/RSA_SecurID#March_2011_
system_compromise

2. Related Work
There are many different security aspects to data outsourcing,

and a myriad of approaches to address those respective issues. En-
crypting the content before outsourcing it to a storage service is
the most obvious thing to do. There are several commercial solu-
tions that natively do so [4, 6], but furthermore, users can use other
solutions such as TrueCrypt [5] or Boxcryptor [1] on their own.

In addition to the basic encryption based security that is already
available for use, the data outsourcing security literature is rich with
approaches that go beyond mere encryption, to provide either fur-
ther functionality or further security and privacy. Some prominent
ones among these include works on search over encrypted content
[12], determining the integrity and ensuring availability of the out-
sourced data [7, 10, 26, 36], masking the query (and results) in-
formation [31], etc. Depending on the specific treatment of the
problems at hand, some of these related works are of peripheral
relevance to the presented work, while others are more directly re-
lated. In the rest of this section, we will focus mainly on those
works which have direct bearing to some of the techniques that are
used in the current work.

2.1 Multi-cloud and multi-server storage
In the recent years, several approaches to leverage multiple cloud

services have been proposed. [16] demonstrates that freemium ser-
vice resources can be easily aggregated, and in doing so a better
end user performance can be achieved. Erasure coded redundancy
across cloud services to achieve fault tolerance has been explored in
[7, 10, 26]. The dispersal of information across different (and pre-
sumed independent) services has also been used as a mechanism
for security in [10, 25]. It is worth noting that the model used in
[25] is somewhat ambiguous with respect to the relationship among
the multiple servers. Parts of the processes require some coopera-
tion among the servers, and yet part of the security is derived from
the distribution of data across servers.

Our proposed approach shares the basic design choices of [10,
25], in that we also apply encryption at the end user (client) and
dispersal as a two-pronged approach to derive security. However,
the specific authentication mechanism proposed in our approach
introduces a possession factor as an orthogonal control in addition
to the knowledge factor of passwords, which allows us to generate
time limited one time authentication tokens, and is the key novelty
providing multi-factor access control in a decentralised manner.

It is also worth noting that the usage of erasure coding in our
approach naturally provides some fault-tolerance, similar to [7, 10,
26], however, the erasure code itself does not add anything to the
security. Specifically, the dispersal is desired, but the additional
redundancy (while beneficial for fault-tolerance) in fact has slight
detrimental effect from a confidentiality point of view. We elabo-
rate this issue later in Section 6.

P2P storage systems literature extensively study the utility of
erasure coding based information dispersion, mainly for reliabil-
ity reasons. In [40], a threshold cryptography based technique is
used to store a user’s private keys over a p2p network, and the main
emphasis is on choosing the servers based on a trust model in or-
der to minimize the chance that an adversary can control adequate
servers to gain access to the private key of a specific user. Follow-
up works have explored variants to emulate password based login
in a P2P network [21]. Our work does not make any of the several
assumptions, e.g., of (partial) global information using a gossip
algorithm, or an additional extrinsic directory infrastructure (e.g.,
DHT services) as these works from P2P domain assume, but also,
in essence, this work addresses a rather different problem despite



the apparent similarity at a high level (all these works do address
different kinds of access control).

2.2 Authentication factors
In addition to hardware based tokens for creating one time pass-

words, such as RSA’s SecureID, there are many software based so-
lutions. Popular software solutions like Google’s one time pass-
word (OTP) [3] is based on Time-Based One-Time Password Al-
gorithm (TOTP) defined in IETF’s RFC 6238 [30]. We leverage
the same principle in our approach to carry out time based authen-
tication.

Public-key cryptography has long been used as a mechanism for
authentication. In our context, we do not need to bind a public
key to any specific identity, in that the storage server just needs to
know that a current access request is coming from a party which
possesses the private key corresponding to the public key, which
the original data owner had provided when storing the object. This
eliminates the burden of a public key infrastructure (PKI). Specif-
ically, we use the private key to create a time-based one time au-
thentication code that a storage server can verify based on the pub-
lic key it holds. The basic usage of public key cryptography is
thus similar to other schemes using public key cryptography for
authentication [17]. However, in typical deployment scenarios the
service provider/server generates the possession factor and the pri-
vate/public keys as opposed to our approach. The main novelty of
our deployment is however in explicitly leveraging on it to create an
orthogonal possession factor separate from the knowledge factor.

2.3 Proxy Re-encryption over Cloud Storage
One of the natural challenges of data outsourcing over untrusted

storages is to allow multiple parties collaborate. For confidentiality,
the data is encrypted by the owner, therefore it is masked not only
from the servers but everyone else that possibly needs to collaborate
on the data. Using an encryption where the key is shared by every
collaborator is a naive and inflexible option. Mambo and Okamoto
first proposed a proxy re-encryption (PRE) scheme to delegate the
ability to decrypt the ciphertexts [28], where a proxy server can
transform data encrypted for Alice to the one encrypted for Bob,
without learning any function out of the plaintext. Later, symmetric
PRE schemes were prosed [18, 37], where security guarantees and
proxy functions are defined. The schemes can be broadly divided
into two categories: unidirectional and bidirectional, depending on
if the re-encryption works only from Alice to Bob or works for
both directions. Additionally, PRE scheme is said to be of multi-
use if the transformation is transitive and can continue from Bob to
someone else and so on. Blaze et al. proposed an El Gamal based
scheme which is multi-use and bidirectional [11]. While the main
idea stays, many later works focused on solving outstanding issues
such as; Bob’s colluding with the proxy resulting with revealing
Alice’s secret [19], for some settings bidirectional property is not
required [19, 23], thus not proper and lastly, addressing vulnerabil-
ities to chosen ciphertext attack (cca-security) [13, 23, 35].

Subsequently, proxy-re-encryption has been applied to secure
storage systems by Ateniese et al. for collaboration and sharing
[8] for the files stored on distributed replicas. The idea was then
generalized and applied to the settings where data is dispersed us-
ing erasure coding instead [24]. The PRE scheme employed in [8]
is unidirectional and the protocol itself is designed employing a
centralized access control server. Our approach to faciliate collab-
oration is inspired by the fully distributed setting of [24], and uses
bidirectional PRE to support write operations by multiple collab-
orators. In this aspect, the contribution or emphasis of our work

(in section 5) in not the way PRE is used for collaboration, but on
the extension of our basic multi-factor access enforcement (main
contribution of this paper, the protocol presented next in section 3)
mechanism to the collaborative setting.

3. Protocol
We next discuss our protocol (shown in Figure 1) which achieves

layered security against both storage service providers as well as
any other third party entities by the application of encryption and
dispersal. While, at a high level, usage of these two approaches in
conjunction is along the lines of prior works [10, 25], the novelty in
our approach is derived from the usage of a orthogonal possession
factor in addition to the usage of knowledge factor, as a mecha-
nism to control access. We note however that the proposed protocol
does not follow the strict interpretation of conventional centralized
multi-factor authentication, in that the enforcement of these multi-
ple factors is not carried out at the storage servers which uses only
an authorisation information sent by the client, however the client
does need to use both a knowledge and a possession factor together
in order to generate the authorisation information to start with, and
therefrom our protocol derives multi-factor control.

3.1 Access-control factors
The proposed design enables the enforcement of access control

using two factors - knowledge and possession. Specifically, an en-
cryption password epp is used, which acts as the primary knowl-
edge factor. In our proposed solution, another password pw =
[pw1|pw2] is also used (which can be seen as a knowledge fac-
tor), but mainly for additional protection of the possession factor.
We use ‘|’ to indicate concatenation.

The possession factor is a secret package SP which comprises
of a randomly (locally at client) generated secret token sk and a
public/private key pair privk/pubk. These randomised content of
SP need to be cryptographically strong. Furthermore, n salt values
salti (alternatively, a seed to a random sequence generator may be
stored for storage efficiency) and address information of n servers
ipi are also stored as part of SP. n is a design parameter of the pro-
tocol that is described below, and it (along with another parameter
m < n) determines the number of servers across which information
is dispersed, and the quorum needed to retrieve back the informa-
tion. Note that we will not particularly leverage on the randomness
of the salti to derive security and thus we have not emphasised on
it be cryptographically strong. Identity of the servers in SP is like-
wise not particularly vital to the security of the proposed protocol,
however if kept confidential, it provides an additional layer of secu-
rity by obfuscation. The content of SP acts as the possession factor.
For further security, one may thus encrypt this content using pw1
part of pw.

3.2 Setup
A client needs to input the passwords epp and pw, and ini-

tialise the remaining content of secret package SP. For that the
user may need to explicitly determine the choice of the n servers
(S0,S1, ...,Sn−1), or it may be automated through a background
process - depending on whichever is suitable for a specific setting.
The servers in turn may be dedicated services like Amazon web
services (AWS), or edge resources in fog computing or peer-to-peer
networks, or a mix. The choice of these servers generates the tuple
ips: ip0, ip1, ..., ipi, ..., ipn−1 stored in SP. Overall, the following
secret package SP is created. Note that the public key pubk need
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Figure 1: Client authentication and data retrieval.

not be kept confidential, but just for the sake of portability has been
stored along with the remaining secret package.

SP =


ips: ip0, ip1, ..., ipi, ..., ipn−1
salts: salt0, salt1, ..., salti, ..., saltn−1
secret token: sk
private/public key: privk/pubk

(1)

The possession of SP acts akin to possession of a token, but be-
cause of its software implementation, it can be used in a portable
manner across different devices if the user so wishes. Consequently,
similar to the use of a secret PIN for hardware tokens, we propose
to store the SP encrypted with pw1.

The client generates distinct authentication tokens ATi per server
as follows, and uploads pubk and ATi to the respective servers Si at
the set-up phase.

ATi = hash(sk|pw2|salti) (2)

3.3 Storage outsourcing
When a user needs to store an object O, the client splits the ob-

ject in m parts, and applies a maximum distance separable (MDS)
erasure code such as Reed-Solomon code to generate n encoded
parts. These n parts are then encrypted using distinct symmetric
encryption keys seki (per server symmetric encryption key creation
is described in 3) to generate encrypted data di which are shipped
to respective servers Si. “1” is concatenated to the salt value only
to differentiate it from its use in AT .

seki = hash(sk|epp|salti|1) (3)

3.4 Multi-factor data access
When the user wants to access the original data object, she first

provides the password pw = [pw1|pw2] to the client application,

which then decrypts and retrieves SP. Any m (or more) of the
ips are chosen, and corresponding authentication tokens AT ′i (com-
puted as in Equation 2). The current system time is used to pick a
timestamp, and finally an authentication package is created based
on signature using the private key privk retrieved from SP and sent
to server Si.

Authentication package =
{

timestamp
SIGNprivk (AT ′i |timestamp) (4)

Upon receipt of a data retrieval request along with the authenti-
cation package, the server verifies the time-stamped authentication
package (using ATi and pubk that have been stored at the server
during the setup phase). The server sends di back to the client only
if satisfied with the authentication package. We note that the times-
tamp used in our approach is similar to the TOTP [30] approach,
and limits the time for which the specific authentication token is
valid, thwarting replay attacks. Typically the client would store
multiple objects in the storage system. One can furthermore in-
clude an object identifier before creating the signed authentication
package, to further limit any illegitimate access. Finally, in a decen-
tralized setup, the servers and the client’s system clock may not be
in perfect synch, however, the client can first query the server time
in order to correct the necessary offset. For the sake of simplicity,
we have excluded details of such variations.

Once the client receives at least m of the encrypted di pieces, it
can decrypt them using the knowledge factor epp, and then carry
out (erasure) decoding in order to reconstruct the original object O.

3.5 Updating possession factor
After successful authentication at each server, the client can re-

place the older authentication token and public key stored at the
servers using new ones, generated using a new password pw′, and
updating the locally stored SP accordingly. This will render SPs



stored (if any) at any other locations invalid. Note that pw2 is never
stored locally, hence even if an adversary had gained access and
broken the encryption in order to retrieve the older SP in plain text,
they may not easily revoke the legitimate user’s access in a similar
manner.

The data owner can always re-encrypt and request to replace dis
using a new epp, however such an operation may be less meaning-
ful. An attacker controlling a compromised server can continue to
be in possession of the older version of encrypted data. Hence we
don’t explore this option.

4. Protocol security discussion
The proposed mechanism provides layered security, where mul-

tiple controls need to be breached in order to gain access to the
stored object. We next analyse the robustness of the proposed ap-
proach against compromise of a partial set of controls, and what
all the adversary will have to subsequently do in order to gain ille-
gitimate access. We note for the discussions below that situations
where a storage server is compromised is somewhat outside the
scope of multi-factor access control per say. However, our layered
security mechanism naturally provides some security even under
these circumstances, and thus compromised servers are discussed
accordingly. Furthermore, we assume that a server that is not com-
promised follows the proposed protocol properly, and likewise, if
a storage server deviates from the protocol in any manner, we con-
sider that server compromised.

Adversary gets hold of a device containing SP: The adversary
will first require to break the encryption to retrieve the content of
SP. In the process, the adversary will be able to estimate pw1. Even
so, the adversary will be unable to authenticate with any server and
obtain any di without the knowledge of pw2. It will also not be
able to prevent the legitimate owner to continue to gain access to
the content, or revoke the original SP. With the identity of the
servers, it may however try to compromise the servers themselves.
If it manages to compromise a quorum of at least m servers, then
it can obtain the corresponding encrypted pieces di. Each of these
encryption is done with a distinct key which the attacker will have
to break in order to gain access to the actual content.

Adversary learns both the passwords used by the user: The
adversary will have to get access to the device storing SP, either
by gaining physical possession or by compromising it over the net-
work. Then the adversary will have access to the content. Note, if
the adversary knew only epp but not pw then there would be fur-
ther barrier for illegitimate access. Alternatively, if the adversary
cannot get hold of SP, the adversary can monitor the network traffic
in order to identify the servers at which the encrypted data is dis-
persed. Even then, without content of SP the adversary will not be
able to authenticate. The adversary will thus have to compromise at
least m of these servers before getting hold of the encrypted pieces.
Knowing epp, but without knowing sk which is stored in SP, the
adversary is forced to break the encryption of each of these pieces
individually before gaining access to the content.

One or few servers are compromised: Compromising some
servers do not provide information about the identity of the other
servers, nor information necessary to authenticate with the other
servers. Furthermore it does not provide any knowledge on how
to decrypt the individual pieces stored at any of the servers. How-
ever if the adversary then goes on to break the encryption of some
of the pieces, even if the number of such pieces obtained in less
than m, the adversary may gain partial information regarding the
original content. Application of threshold (secret sharing [9]) cryp-
tography instead of erasure coding would alleviate this problem,

but at the cost of greater overheads. The user may also want to
use distinct public/private key pair per server, so that an adversary
controlling multiple compromised servers cannot create an obvi-
ous link of content of an individual user (assuming that the server
stores data from multiple users). However, server logs and access
timing analysis can easily give away such association, and despite
the overheads the value of deploying distinct public/private key per
server is questionable. Hence, we have discarded this design op-
tion.

Attacker eavesdrop on the communication between client and
servers: We first note that this scenario is somewhat beyond the
scope of multi-factor access control. The attacker will gain ac-
cess to the encrypted pieces being communicated back to the client
in this case, and the adversary can then try to break the encryp-
tion. More crucially, the adversary can try to replay the authentica-
tion token to fetch encrypted pieces of other objects stored (but not
queried in that particular session) by the user. The authentication
token is however time limited, thus limiting the adversary’s attack.
In fact, it is extremely simple to modify our time limited token cre-
ation by also using the object identifier in addition when computing
the hash, so that the token cannot be used to fetch any other object
even within the limited window of opportunity.

The user loses the possession factor or forgets one of the pass-
words: Unlike in a centralised solution where the service provider
may be able to establish the user’s identity using other out-of-band
mechanisms to issue new credentials, in our approach, because of
its decentralized design, there is no mechanism for the data owner
to gain access back to the data anymore (barring the options any
attacker would have had, as enumerated above).

Using a compromised client: We so far assumed the client
device is itself not compromised and congregates all trust in the
client’s device. Therefore a compromised client device during the
setup and/or authentication phase (such as a key-logger or a cuckoo
attack [32]) may defeat the security of the proposed scheme. When
the user provides the passwords and the SP is decrypted, the at-
tacker can obtain all the necessary information not only to authen-
ticate to servers once but also to be used for later interactions as
well. A totally compromised client during the authentication pro-
cess already yields breach, but third party OTP mechanisms can
still prevent the attacker from carrying out future transactions. This
is not the case with the current presentation and implementation of
our work. However, though it needs more extensive investigation
deferred for future, we speculate that this vulnerability can in fact
be mitigated by decoupling the private key used for the signature
scheme to yet another device. This device that holds the private
key and runs the signature scheme can be either an easily attain-
able device (such as a cellphone, smartwatch, etc.) or a specifically
manufactured token that is initialized during the setup phase.

As a final note, we will like to add that a further layer of security
based on inherence factor may be added to our proposal. This can
be achieved by eliminating sk, and instead of storing it in SP, gen-
erating it on the fly based on a suitable biometric input. Note that if
someone opts to compromise the servers and break the encryptions,
then use of biometrics may not provide further security. But for the
other attack vectors, creating sk on the fly using inherence would
add to the overall security.

5. Collaboration
Let’s say Alice has set up a secure distributed storage space using

our proposed multi-factor access control protocol and then natu-
rally, and subsequently she needs to collaborate with her colleague
Bob, who needs to have read/write rights on the data. In this sec-
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Figure 2: Bob collaborating on data owned by Alice

tion we elaborate on how Alice can set Bob up to gain access to and
decrypt the data owned by (and encrypted under the secret of) Al-
ice, and update the data, while also enforcing a multi-factor access
control on such third party.

Similar to related prior works [8, 24], in principle, the encrypted
data can be collaborated on using a proxy re-encryption (PRE)
scheme where the untrusted server can re-encrypt the ciphertext
under a private key privPRE

k_Alice into another ciphertext of the same
data under another private key privPRE

k_Bob. The untrusted server can-
not, however, access any part of the plaintext or get any function
out of it. For Bob to be able to update the data, the PRE scheme
employed should be bidirectional. Our proposed protocol varies
mainly in how the multi-factor access control is set-up and en-
forced, rather than in its use of proxy re-encryption per say. We
next summarize the main operational primitives of bi-directional
proxy re-encryption, before elaborating our protocol, which lever-
ages on these operations.

5.1 Bidirectional Proxy Re-encryption
For the next sections we employ a generic proxy re-encryption

scheme. A bidirectional proxy re-encryption scheme between Al-
ice and Bob consists of the following 5 algorithms;
• Key generation Keygen(sr) → (pubPRE

k , privPRE
k ), where it

takes the security requirements (such as key length, protocol
specifications, etc.) as input and returns a public and a private
key.
• Re-encryption key generation ReKeyGen(privPRE

k_A , privPRE
k_B )

→ RKA↔B that takes two secrets of two parties as input and
returns a re-encryption key that works both ways between
Alice and Bob.
• Encryption Enc(privPRE

k ,m)→ d that encrypts the data with
public key and returns the ciphertext.
• Re-encryption ReEnc(RKA↔B,dA)→ dB that transforms ci-

phertext for Alice with the re-encryption key and outputs ci-

phertext for Bob.
• Decryption Dec(privPRE

k ,d′)→ d that takes private key and
encrypted data and returns the plaintext.

5.2 Two-factor Authentication for Bob
With the original protocol, while Alice securely distributes her

data, she can not collaborate with another party (Bob). Bob can
neither prove to the servers that he is the person who is authorized
to read the data nor can he decrypt the data even if he receives it.
Given that Alice herself needs multiple factors to access the stored
data, Bob too should at least be challenged by multiple factors as
well, thus the protocol should satisfy the requirement of multiple
factors for him (Problem 1). Furthermore, the collaboration needs
to be approved by Alice (Problem 2) in a way that without her per-
mission, her data shouldn’t be accessible to any other parties. And
when authorized, Bob should be able to interact with the data not
only by decrypting it, but also encrypting his modifications accord-
ingly, so that Alice can decrypt it back as well (Problem 3). A
problem that has not been covered by many previous schemes (if
not all) is that if Bob removes or overwrites during an update, Alice
may lose some of her data (Problem 4). Even if Bob may be trusted
not to act in a malicious manner, nevertheless such precautions are
important for inadvertent loss or corruption of the data. We address
the last issue in Section 5.3 and 5.4. Last, but not least, some col-
laborative activities may need to support nonrepudiation, which in
turn requires that neither Alice nor anyone else should be able to
authenticate pretending to be Bob (Problem 5).

We design a triangular protocol where Bob registers to the sys-
tem through Alice (solution to Problems 1,2). We integrate a PRE
scheme into the protocol instead of using a symmetric encryption,
where we add another public/private key pair into the Secret Pack-
age (SP) that Alice and Bob keeps as the possession factor (address-
ing Problem 3). Note that the encryption password epp from the



original protocol is the password for the PRE private key. Lastly,
by using a different public private key pair for PRE scheme than the
signature scheme, we let Bob keep his secret for signature scheme
to himself (solution to Problem 5).

In Figure 2 we show how Bob becomes a part of the protocol and
claims the read/write privileges. In the following text, the numbers
correspond to a sequence of steps in the protocol, and are likewise
marked in the accompanying figure. We assume that Bob and Al-
ice have a secure channel to communicate on. First, Bob creates
his own authentication tokens (AT), public/private key pair (for the
signature scheme) and then Bob registers these with Alice where
Bob sends all authentication tokens, signature public key and a se-
cret (privPRE

k_Bob) for the PRE scheme to alice (1). Then, as input, a
secret of her own, and Bob’s secret, Alice runs the ReKeyGen of
the PRE protocol to generate a re-encryption key RKA↔B (2). Alice
provides the ip list of the servers to Bob (3). Alice also sends Bob’s
authentication token, Bob’s signature public key and re-encryption
key to the servers (4). Bob then creates and encrypts his own SP lo-
cally (6) as shown in Equation 5. Now that the registration is done
and Bob is authorized by Alice, he can two-factor authenticate with
the servers to download the re-encrypted data.

SPBob =


ips: ip0, ip1, ..., ipi, ..., ipn−1
salts: salt0, salt1, ..., salti, ..., saltn−1
secret token: sk
signature private/public key: privk_Bob/pubk_Bob
PRE private/public key: privPRE

k_Bob/pubPRE
k_Bob

(5)
For the actual access at this stage, all that Bob needs to do is to

choose necessary number of ips from his SP to recreate the data
and authenticate to them with the two-factor authentication pro-
tocol (steps 7,8,9 in Figure 2). Each server can either re-encrypt
and store the data (redundant storage, but fast response time when
Bob queries) or re-encrypt on the fly when the corresponding data
download request arrives (5). Once the verification is done, server
returns the re-encrypted data to Bob (9) who then can decrypt it
(10) using the new private key privPRE

k_Bob that he had shared with
Alice at the first instance.

5.3 Updates by Bob
A bidirectional encryption scheme allows the updates by Bob to

be re-encrypted under the secret of Alice for her later use. On the
other hand, she already knows the secret of Bob and can anytime
decrypt his updates. We suggest a bidirectional PRE scheme to
prevent any confusions and many re-encryptions when there are
multiple parties collaborating. When an update by Bob is issued, it
can be re-encrypted back and stored.

Another concern is that any data may be overwritten or removed
by Bob. An easy way to keep Alice in the loop and let her choose
which data to be updated, added or removed is to let her approve
each and every update by other parties. But this would be cum-
bersome and undesirable if Alice is not online/present. An alter-
native is to apply a persistent versioning mechanism. One way to
achieve persistent versioning is to apply a variant of proof of data
possession technique that has been proposed recently [15]. With
this scheme, both parties can keep track of the integrity of all their
own versions.

5.4 Auditable Versioning
This subsection is not a contribution of this paper per say. It

provides a summary of [15] and is being included for the sake of

A

B

Bob s Update

d1 d2 d3 d4 d5Alice s Data

dB

Figure 3: Bob’s Update.

self-containedness, to elaborate how one can avoid both intentional
or unintentional data corruption while allowing content mutation
and collaboration in the proposed setting. We show the enabling
data structure for the versioning scheme in Figure 3. Data, divided
into parts, is kept at each leaf level node of the data structure where
each part is encrypted. When Bob sends an update, the parts that
belongs to Alice are not to be touched, yet making use of the persis-
tence algorithms of the data structure, the new data is added to its
place. Later if Alice doesn’t like the updated data, she can anytime
return to her own by simply following the root of the data structure
that belongs to her. If the data structure is authenticated [15, 38]
then she even can challenge each of the untrusted servers to check
integrity of her data at any version. We note that, such an integrity
guarantee is a must-have in any case when storing data over un-
trusted servers, and the storage and performance overheads of such
an authenticated data structure are marginal.

6. Performance implication of param-
eter choices

We have implemented the individual building blocks of the pro-
tocol, and they work in tandem. The testing and performance bench-
marking have been done on a 64-bit computer with 4 Intel (R)
Xeon (R) CPU E5-2640 @ 2.50GHz CPU, 16GB of memory and
16MB of L2 level cache, running Ubuntu 12.04 LTS. We employed
openssl[39], cashlib[29], ceph[41] and crypto++[2] libraries and
C++ as the programming language for our implementation. All
results are the average of 10 runs. Our results include all environ-
mental effects such as input/output times, serialization overheads
of objects, random key generation times, etc. We employed RSA
with modulus size of 2048 bits and SHA-1 as the hash function for
our signature scheme. 256 bit AES (salt enabled) in CBC mode
was used for encryption. We generated a 256 bit random string as
the secret sk. SHA-1 was used also for authentication token hash
calculation. For the experiments, we assume the client has a total
of 1GB of data to store. We investigate the time and space require-
ments of the protocol and show the explicit overheads (other than
the standard IO times for storage) in Table 1. The first row stands
for the simple case where the data owner sends her data to a server
without processing it anyhow. Descending in the table, with each
row we present time and space requirements at each step of the



Setup Retrieve Update

Comm. Cost Client Process Server 
Process

Client 
Storage

Server 
Storage 
(each)

Comm. Cost Client Process Server 
Process

Comm. 
Cost

Client 
Process

Server 
Process

Client sends Client 
sends

Server 
(each) 
sends

Simple (Base 
case) 1* GB 0 sec 0 0 1* GB ~0 bytes 1* GB 0 0 20´ KB 0 0

Authentication 
Overhead (OH)

1* GB +        
20ª bytes 0.05ª ms 0 0 1* GB +   

20ª bytes 20ª bytes 1* GB 0.05ª ms ~0˚ ms 20´ KB + 
20ª bytes 0.05ª ms ~0˚ ms

2 fact. 
Authentication 
OH

1* GB +     
471ª¨ bytes 125^ª ms 0 ~2^ KB

1* GB +   
471¨ bytes 256º bytes 1* GB 4˜ ms +    

12ªº ms 6˚ ms 20´ KB + 
256º bytes 12ªº ms 6˚ ms

2 fact. Auth. + 
Encryption OH

1* GB +      
471ª¨ bytes

3.75‘ sec +    
125^ª ms 0 ~2^ KB

1* GB +   
471¨ bytes 256º bytes 1* GB

4˜ ms +    
12ªº ms +     
2’ sec

6˚ ms ~20´ KB + 
256º bytes 

~0.5‘ ms + 
12ªº ms

6˚ ms

2 fact. Auth. + 
Encr. + 
Replication OH

(1* GB +    
471ª¨ bytes)    
x n

3.75‘ sec +     
125^ ms +    
(0.05ª ms x n)

0 ~2^ KB
1* GB +   
471¨ bytes 256º bytes (1* GB)/n

4˜ ms +    
12ªº ms x n + 
2’ sec 

6˚ ms
(~20´ KB + 
256º bytes) 
x n

~0.5‘ ms + 
12º ms x n

6˚ ms

2 fact. Auth. + 
Encr. + 
Erasure 
Coding OH

1* GB x (n/m) + 
471ª¨ bytes x n

10“ sec +       
3.75‘ sec +     
125^ ms +    
(0.05ª ms x n)

0 ~2^ KB
(1* GB)/m + 
471¨ bytes 256º bytes (1* GB)/m

4˜ ms +    
12ªº ms x m + 
2’ sec +      
7” sec

6˚ ms
(~20´ KB + 
256º bytes) 
x n

1“ ms + 
12ªº ms x m 6˚ ms

* Data   ª Authentication Token  ¨ Public Key  ^ Secret Package (SP)   º Signature   ˚ Verification   ´ Update
‘ Data Encryption   ’ Data Decryption   “ Data Encoding   ’’ Data Decoding   ˜ Secret Package Decryption  

ª alt 9 ´ alt e
^ shift 6 ¨ alt u
º alt 0 “‘ alt []
˚ alt k ˜ alt n

Table 1: Protocol Overhead Comparison.

protocol for a set of additional security measures.
Setup: The preprocessing time at the client - to generate the pos-

session factor was 125ms. Time to generate individual authentica-
tion token per server is essentially the time to compute one hash,
and it was 0.044ms. Each server is initially sent a data package of
471 bytes comprising of the user’s public key, and the authentica-
tion token. That is also the storage footprint at each server for carry-
ing out subsequent authentication verification. The secret package
(stored at the client side) which includes information for only one
server is of 1926 bytes and it increases by 16 bytes for each addi-
tional server used. The public key of 451 bytes can also be stored
along with the secret package for portability.

Authentication: When the client sends a request to receive her
data, the authentication package generation which consists of the
authentication token generation and the signature generation, takes
12ms per server. The size of the authentication package is 268
bytes. Each server takes 6ms for carrying out verification of the
authentication package.

Data processing: In terms of computation, the most time con-
suming part of our protocol is to create the n pieces out of the data,
to be dispersed across the n servers, and subsequently recreating the
original data object out of m of these n dispersed pieces. Note that
there will also be network usage and latency issues, which we have
left out in the current discussions. We considered the application of
both erasure coding as well as Shamir’s secret sharing [34]. Specif-
ically, for erasure coding, we applied Reed Solomon Vandermonde
implementation from jerasure plugin of ceph library [41]. We used
the default 4KB stripe size. The crypto++ [2] library was used to
implement Shamir’s secret sharing algorithm. The reported times
include the actual computation time, but also the time to read/write
to the buffer.

Before we discuss the computation time for these two approaches,
it is worth discussing qualitatively the implications of the choice of
parameters m and n. The two-factor aspect of approach will work
even with m = 1, however the additional level of security achieved
through dispersal will be missing in that case. For a given choice

of m, a larger n will provide a potential attacker a larger choice
of subsets of servers to compromise, and may have a negative ef-
fect on security from the perspective of content confidentiality. At
the same time, though fault-tolerance was out of the direct scope of
this paper, a larger n for any particular choice of m also provides the
system to better mitigate server failures vis-a-vis data availability
and integrity. The storage (and communication) overhead increases
by a factor of n/m when erasure coding is used, while it increases
by a factor of n when using Shamir’s secret sharing scheme. This
also means that for same choice of m and n, secret sharing uses m-
folds more storage than erasure coding. Thus, an optimal choice of
m and n is not obvious, and further systematic investigation to de-
termine good choices, likely dependent on the deployment environ-
ment, will have to be carried out in future. For the time being, we
instead report the performance for a few ad-hoc parameter choices,
where we aimed for n/m within 2 (since that will also be the stor-
age overhead if erasure coding is used), while still allowing for a
margin of recovery from 1 or 2 faults, while exploring non-trivial
m and yet keeping n small (since the storage overhead worst case
scenario is determined by n when using secret sharing). Specifi-
cally, we chose the following n/m configurations: 3/2, 4/3 and 6/4
to carry out our experiments. Figure 4 shows the time for dispersal
and recreation of 1GB of data. In order to also determine the fault-
tolerance implications, we simulated one randomly missing piece
among the dispersed data for each of our experiment iterations.

Since both Reed Solomon erasure coding and Shamir’s secret
sharing (indicated with RS and SS respectively in Figure 4) are well
studied, the results are on expected lines, but nevertheless, there
are several interesting things to note. Erasure coding/decoding is
orders of magnitude faster. In fact, the dominant time for erasure
coding is really the data read/write operations, and a larger n/m
value leads to larger amount of data writes after coding. That’s why
coding operations for n/m = 4/3 is faster than for n/m = 3/2 and
n/m = 6/4. In contrast, for secret sharing, while read/write opera-
tions take much more time than erasure coding, the dominant time
is in the computation. Decryption however is significantly faster
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Figure 4: Times spent for Reed Solomon and Shamir’s Secret
Sharing algorithms.

than encryption. We further note that even though the performance
results are reasonably acceptable when using erasure codes, by en-
abling SIMD parallelization [33] and increasing the stripe size (e.g.
1Mb) the coding can be made even faster. Overall, given the other
layers of security in our approach, and the performance penalty
that secret sharing imposes, we advocate the use of erasure coding
as the preferred mechanism for data dispersal. AES-256 encryp-
tion and decryption took respectively 3.75 and 2.02 seconds per
GB. Note that due to the redundancy added for the dispersal pro-
cess, the volumes of data to be encrypted increase, and the time
taken for encryption/decryption increase proportionally. The en-
cryption/decryption time overheads are dominated by those of (de-
)coding. Though we have not measured the network latency to ship
in and out data in our experiments, all the computations cumulated
together still is significantly small, and hence, the proposed ap-
proach for multi-factor access control should readily extend exist-
ing works like [10, 25] without perceptible performance deteriora-
tion. Exploring a completely integrated system and benchmarking
other system aspects (network usage, energy implications for mo-
bile devices, etc.) are outstanding aspects for future.

7. Conclusions
In this paper we propose a decentralised layered security mecha-

nism for data outsourcing, which protects confidentiality of content
from third parties by enforcing a multi-factor access control, which
requires both knowledge and possession factors. Security from
storage servers is achieved using user controlled encryptions and
dispersal (a technique which already exists in the literature). The
current protocol is also flexible, in that it allows the user to revoke
and create a new possession factor, if the user believes that the pos-
session factor has been compromised. We furthermore demonstrate
how the basic protocol can be extended with the use of proxy re-
encryption to facilitate collaboration across multiple parties, where
each party needs to go through multi-factor access control of the
data. A minor limitation of the proposed approach is that one
specific user has to act as the owner of the data, and has to ap-
prove/facilitate the registration of the other collaborators. A limita-
tion of the general protocol is that a user can revoke older posses-
sion factor and reestablish a new possession factor only if he is still
also in possession (of a copy of) the possession factor. Because of
the decentralised nature of the approach, there is also no mecha-

nism of recovery or changing of either the possession factor or the
knowledge factor, if the user loses any of these. Note that the last
drawback may be inherent to the degree of security and decentrali-
sation (no trusted third party) aimed at.
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