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Section 1 provides additional details for each of the “cooperative” moves used in optimizing the discrete layered model.

Section 2 provides a high-level description of the algorithms for determining the depth ordering and the number of layers.

Section 3 provides the full set of images illustrating the experimental results. The results include the screen shots of the

Middlebury AAE and EPE evaluation tables at the time of writing (April 2012), as well as all experimental results on the

Middlebury flow dataset and the MIT layer segmentation dataset.

1. “Cooperative” Moves for the Discrete Model

We will use a toy example to explain the effect achieved by each move. Figure 1 shows the desired layer segmentation and

flow field for the input “bird apple” sequence. During optimization we will see that there are several (fairly bad) local optima

and we will need to make large changes to the solution to get out of these optima. Note that the binary selection variable

b controls different variables for each move. The potential functions for each move are also defined differently though the

functions may share the same name.

(a) first image (b) second image (c) segmentation (d) flow field
Figure 1. Input “bird apple” frames, the ground truth segmentation, and flow field.

Simultaneous segmentation and flow move. Sometimes a region may be assigned to the wrong layer but with the correct

motion, as shown in Figure 2. Changing the segmentation or the flow field alone will not move the solution from the local

optimum. We need to simultaneously change the segmentation and the motion. At each step, this move allows a pixel to

become visible at a particular layer k̂. The newly visible pixel at layer k̂ takes the motion of the corresponding pixel at the

previously visible layer k′, while the latter takes the motion of its affine flow field. Note that the binary decision variable

b
p
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(a) segmentation (b) flow field
Figure 2. Local minimum of the objective requiring the simultaneous segmentation and flow move. A large region of pixels in the center

has been incorrectly assigned to the bird layer though their motion is correct. Changing either the segmentation or the flow field alone will

not resolve this and get us out of the local minimum. We need to make these pixels visible in the apple layer and still retain their motion

using the simultaneous segmentation and flow move (see text).

representation, we can perform the following simplification
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where ut(bt) and vt(bt) are deterministic functions of the candidate flow fields and the binary selection variable bt, and

gt(bt) is a deterministic function of the previous support function gold
t and the binary selection variable bt.

A pixel p at each layer has two flow vector candidates to select and may interact with two different pixels at the next frame.

We define different potential functions for both temporal neighborhood structures. For example, when b
p
t = 0, the temporal

neighbors are
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which incorporates both the data term and the temporal consistency term of the first K − 1 support functions. We evaluate
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For the spatial pairwise term, the set Np,space contains all the four nearest neighbors of the pixel p and is fixed throughout the

document. The binary selection variable changes the states of several binary support functions and flow fields. The effects

sum together as
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(a) segmentation (b) flow field
Figure 3. Local minimum that can be solved with the visibility move. A large number of pixels in the center of the image are assigned

incorrectly to the bird layer, while the apple layer has the correct motion field for these pixels. Changing these pixels to be visible at the

apple layer will fix this particular solution and get us out of the local minimum.

The unary term enforces the selected motion vector to be similar to the affine motion field of the newly visible layer
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We can solve this binary problem using QPBO and set the states of all these involved variables according to the binary

selection variables.

Visibility move. Sometimes the segmentation is wrong, while the correct layer has the right motion field. Hence we can

make big changes to the layer segmentation to correct the errors in the motion field, as shown in Figure 3. Given the current

flow estimate, we decide whether to make a pixel p visible for some layer k̂ by modifying the previous layer support gold.

Because the visibility state of a pixel is jointly determined by several support functions, the binary selection variable controls

the states of all the support functions involved. When b
p
t = 0, all the support functions retain their previous value at p, i.e.

g
p
tk(0) = g

p,old
tk . When b

p
t = 1, we need to adjust the support functions of the first k̂ layers so that layer k̂ is visible at p, i.e.

g
p
tk(1) = 0 if k < k̂, and g

p
tk(1) = 1 if k = k̂. When k̂ is the last layer, all the support functions of the first K − 1 layers are

set to be 0 at p. The energy function for the binary variable is

E(b) =

T−1
∑

t=1

{

Edata(ut,vt,gt(bt),gt+1(bt+1)) + λcEtime(gtk(bt),gt+1,k(bt+1),utk,vtk)

}

+

T
∑

t=1

K−1
∑

k=1

λbE
sup
space(gtk(bt))

=

T−1
∑

t=1

∑

p

∑

q∈Np,time

φtime(b
p
t , b

q
t+1) +

T
∑

t=1

∑

p

∑

q∈Np,space

φspace(b
p
t , b

q
t ), (8)

in which Np,time = {(i + [up
tk], j + [vptk]), 1 ≤ k ≤ K} and the time term incorporates both the data term and the temporal

consistency of the first K − 1 support functions
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where the visibility mask s depends on the support function which in turn depends on the binary variable b, and the corre-

sponding pixel q depends on the flow vector of the kth layer. The visibility move may change several support functions and

the potential function for the spatial term is
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Support function move. Given the current flow estimate, we decide whether to make the support function of a pixel p at

the selected layer k̂ equal to 1 or retain its previous value. The energy function and the potential functions are the same as

Eqs. (8)- (10) but the binary variable selects the solutions in a different way. When b
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(a) segmentation (b) flow field
Figure 4. Local minimum that can be solved using the occlusion-aware fusion flow move. A large number of pixels in the center of the

image have the wrong motion vectors. Making large changes to the flow field can reduce the errors. Note that we use the segmentation

information to reason about occlusions.

Occlusion-aware fusion flow move. Here we deal with the case in which the segmentation is correct, but the motion field

has a large region of errors, particularly in occlusion regions, as shown in Figure 4. We must make large changes to the flow

field to reduce the motion errors. Given the current estimate of the support functions for each layer, we want to select the

motion of each pixel between its current flow estimate and its affine mean flow field, u
p
tk(0) = u

p,old
tk and u

p
tk(1) = u

p
θtk

.

Note that for occluded pixels, their data likelihood term does not provide useful information to estimate the motion. Instead

we can predict the motion of the occluded pixels using the affine motion field fitted to the visible pixels of the same object

(layer). For a particular layer k of frame t (t < T ), the energy function to minimize is
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where the unary term incorporates the data term, the temporal consistency of the support function, and the deviation from the

affine motion field
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in which the corresponding pixel at the next frame depends on the flow field selection at the current frame, q′ =
(

i +

u
p
tk(b

p
tk), j+v

p
tk(b

p
tk)

)

and q =
(

i+[up
tk(b

p
tk)], j+[vptk(b

p
tk)]

)

. This energy function differs from the FusionFlow method [3]

in that the segmentation information directly modulates the data likelihood term in Eq. (12) and enables occlusion reasoning.

Continuous flow refinement. Given the current estimate of the support functions for each layer, we refine the flow field

for each layer by minimizing E(utk,vtk) =

Edata(utk,vtk,gt,gt+1) + λa(E
flow
space(utk, θtk) + Eflow

space(vtk, θtk)) + λcEtime(gtk,gt+1,k,utk,vtk)(1− δ(k,K)). (13)

Compared with standard optical flow formulation, this energy function contains the segmentation information necessary

to reason about occlusions and an additional temporal consistency term for the support functions. We can still optimize the

energy function using standard warping-based incremental estimation methods [4] and the refinement step adaptively changes

the flow field for the discrete optimization.

2. Pseudo Code for the Discrete Optimizer

The high-level algorithm for the initialization and the discrete optimization is

Perform flow estimation using "Classic+NL"

Cluster initial flow into different affine motion groups



Perform Sequence A for forward and backward depth ordering

Pick the solution with lower energy

Perform Sequence B to decide depth ordering

Perform Sequence A to refine segmentation and flow

Sequence A tries to merge layers with similar motion together and includes

Perform visibility move for each layer

Remove redundant layers

Perform joint segmentation and flow move

Remove redundant layers

Perform support function move

Remove redundant layers

Re-estimate affine flow field for each layer

Perform flow selection move

Perform continuous flow refinement

During the optimization, some layers may have no visible pixels and are redundant in the energy minimization. Removing

these layers will always reduce the energy of the solution. The new solution can explain the image data equally well but does

not pay any cost for the spatial and temporal penalty terms for the redundant layers. Hence we remove these redundant layers

and change the number of layers accordingly.

Sequence B determines the local depth ordering between neighboring layers and includes

For iter = 1:maxIters

Select candidate pairs to compare by comparing the occlusion area

current_solution = input_solution

local_minimum = true

For each selected pair of selected neighboring layers

Swap depth ordering

Perform visibility move for the two selected layers

Perform support function move for the two selected layers

If energy(new solution) < energy(current solution)

current_solution = new_solution

local_minimum = false

End if

End for

Remove redundant layers

If local_minimum == true

break

End if

End for

maxIters is set to be 10 in the current implementation and the algorithm usually stops after 4− 6 iterations.

The pseudo code for selecting the candidate neighboring layer pairs is

Input: max_pairs (max number of layer pairs to compare)

Output: pairs of neighboring layers to compare

Compute (num_pairs) neighboring pairs using current segmentation

If num_pairs <= max_pairs

Output all the neighboring pairs and exit

Else

Compute occlusion regions between each neighboring pairs

Order the pairs by the occlusion area in descending order

Output the top max_pairs neighboring layer pairs

End of if



3. Additional Experimental Results

Figure 5 provides a screen shot of the top-performing methods on the Middlebury evaluation website at the time of writing

(April 2012). Figure 6 shows the color keys for the ordering of layers and the flow field. Figures 7-10 show the first frame,

estimated layer segmentation, and the estimated flow fields on the Middlebury optical flow training and test sets. Figure 11

shows the first frame, the segmentations by HGVS [2], Layers++ [5], and nLayers, the flow field estimated by nLayers,

and the human labeled ground truth.

Figure 5. Screen shots of the Middlebury evaluation EPE/AAE tables. At the time of writing (April 2012), the proposed method, nLayers,

is ranked fourth in EPE and first in AAE. Note that the EPE ranks for the top four methods are very close; while the AAE rank of nLayers

is significantly higher than the other methods.

Figure 6. Left: the color key for the ordering of depth layers (blue is close and red is far); right: the color key for the flow fields [1].
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(a)First frame (b) Layer segmentation (c) Estimated flow field

Figure 7. Estimated flow fields and scene structure on the Middlebury training sequences. Left to right: first frame, layer segmentation,

and estimated flow field. Top to bottom: “Venus”, “Dimetrodon”, “Hydrangea”, and “RubberWhale”.



(a)First frame (b) Layer segmentation (c) Estimated flow field

Figure 8. Estimated flow fields and scene structure on the Middlebury training sequences. Left to right: first frame, layer segmentation,

and estimated flow field. Top to bottom: “Grove2”, “Grove3”, “Urban2”, and “Urban3”.



(a)First frame (b) Layer segmentation (c) Estimated flow field

Figure 9. Estimated flow fields and scene structure on the Middlebury test sequences. Left to right: first frame, layer segmentation, and

estimated flow field. Top to bottom: “Army”, “Mequon”, “Schefflera”, and “Wooden”.



(a)First frame (b) Layer segmentation (c) Estimated flow field

Figure 10. Estimated flow fields and scene structure on the Middlebury test sequences. Left to right: first frame, layer segmentation, and

estimated flow field. Top to bottom: “Grove”, “Urban”, “Yosemite”, and “Teddy”.



(a)First frame (b) HGVS [2] (c) Layers++ [5] (d) nLayers++ (e) Flow nLayers++ (f) Ground truth

(a)First frame (b) HGVS [2] (c) Layers++ [5] (d) nLayers++ (e) Flow nLayers++ (f) Ground truth

Figure 11. MIT dataset. Left to right first frame, segmentation results by HGVS [2], Layers++ [5], nLayers, estimated flow field by

nLayers, and human labeled ground truth. Top to bottom “car”, “car2”, “car2”, “dog”, “phone”, “table”, “toy”, “hand”, and “person”.




